101
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
102
|
Weber FD, Wiesinger C, Forss-Petter S, Regelsberger G, Einwich A, Weber WHA, Köhler W, Stockinger H, Berger J. X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes. Hum Mol Genet 2013; 23:2542-50. [PMID: 24363066 PMCID: PMC3990157 DOI: 10.1093/hmg/ddt645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disease caused by mutations in the ABCD1 gene, encoding a member of the peroxisomal ABC transporter family. The ABCD1 protein transports CoA-activated very long-chain fatty acids (VLCFAs) into peroxisomes for degradation via β-oxidation. In the severest form, X-ALD patients suffer from inflammatory demyelination of the brain. As the extent of the metabolic defect in the main immune cells is unknown, we explored their phenotypes concerning mRNA expression pattern of the three peroxisomal ABC transporters, VLCFA accumulation and peroxisomal β-oxidation. In controls, ABCD1 expression was high in monocytes, intermediate in B cells and low in T cells; ABCD2 expression was extremely low in monocytes, intermediate in B cells and highest in T cells; ABCD3 mRNA was equally distributed. In X-ALD patients, the expression patterns remained unaltered; accordingly, monocytes, which lack compensatory VLCFA transport by ABCD2, displayed the severest biochemical phenotype with a 6-fold accumulation of C26:0 and a striking 70% reduction in peroxisomal β-oxidation activity. In contrast, VLCFA metabolism was close to control values in B cells and T cells, supporting the hypothesis that sufficient ABCD2 is present to compensate for ABCD1 deficiency. Thus, the vulnerability of the main immune cell types is highly variable in X-ALD. Based on these results, we propose that in X-ALD the halt of inflammation after allogeneic hematopoietic stem cell transplantation relies particularly on the replacement of the monocyte lineage. Additionally, these findings support the concept that ABCD2 is a target for pharmacological induction as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Franziska D Weber
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna A-1090, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Çakır B, Kılıçkaya O. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera. PLoS One 2013; 8:e78860. [PMID: 24244377 PMCID: PMC3823996 DOI: 10.1371/journal.pone.0078860] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.
Collapse
Affiliation(s)
- Birsen Çakır
- Department of Horticulture, Faculty of Agriculture, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| | - Ozan Kılıçkaya
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
104
|
Freeman SR, Jin X, Anzinger JJ, Xu Q, Purushothaman S, Fessler MB, Addadi L, Kruth HS. ABCG1-mediated generation of extracellular cholesterol microdomains. J Lipid Res 2013; 55:115-27. [PMID: 24212237 DOI: 10.1194/jlr.m044552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space.
Collapse
Affiliation(s)
- Sebastian R Freeman
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | |
Collapse
|
105
|
D'Amore S, Vacca M, Graziano G, D'Orazio A, Cariello M, Martelli N, Di Tullio G, Salvia R, Grandaliano G, Belfiore A, Pellegrini F, Palasciano G, Moschetta A. Nuclear receptors expression chart in peripheral blood mononuclear cells identifies patients with Metabolic Syndrome. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2289-301. [PMID: 24060638 DOI: 10.1016/j.bbadis.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nuclear receptors are a class of 48 ligand-activated transcription factors identified as key players of metabolic and developmental processes. Most of these receptors are potential targets for pharmacological strategies in the Metabolic Syndrome. In the present study, we analyzed changes in the mRNA expression of nuclear receptors in the peripheral blood mononuclear cells of patients with Metabolic Syndrome, in order to identify novel biomarkers of disease and candidate targets for putative therapeutical approaches. METHODS AND RESULTS We enrolled thirty healthy controls (14 M:16 F) and thirty naïve patients (16 M: 14 F; >3 criteria for Metabolic Syndrome upon Adult Treatment Panel III) without organ damage. Using quantitative real-time PCR, we assessed the expression patterns of nuclear receptors in peripheral blood mononuclear cells. 33/48 nuclear receptors were expressed in peripheral blood mononuclear cells. In patients with Metabolic Syndrome, we found a significant down-regulation of the entire PPAR, NR4A and RAR families, together with a repression of RXRα, VDR, and Rev-Erbα. Furthermore, we performed a novel statistical analysis with classification trees, which allowed us to depict a predictive core of nuclear receptor expression patterns characterizing subjects with Metabolic Syndrome. Random Forest Analysis identified NOR1 and PPARδ, which were both reduced in peripheral blood mononuclear cells and specifically in CD14(+) cells (mostly monocytes), as classifiers of Metabolic Syndrome, with high specificity and sensitivity. CONCLUSIONS Our results point to the use of PPAR and NR4A mRNA levels in the overall peripheral blood mononuclear cells as biomarkers of Metabolic Syndrome and bona fide putative targets of pharmacological therapy.
Collapse
Affiliation(s)
- Simona D'Amore
- Clinica Medica "A. Murri", "Aldo Moro" University of Bari, Italy; National Cancer Research Center, IRCCS Oncologico Giovanni Paolo II, Bari, Italy; Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
FoxO regulates expression of ABCA6, an intracellular ATP-binding-cassette transporter responsive to cholesterol. Int J Biochem Cell Biol 2013; 45:2651-9. [PMID: 24028821 DOI: 10.1016/j.biocel.2013.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 08/30/2013] [Indexed: 11/24/2022]
Abstract
ATP-binding-cassette (ABC) proteins have been recognized as key players in cellular physiological transport processes. ABC transporter A6 (ABCA6) is a member of the ABC subfamily A. Although it was cloned more than 10 years ago, its expression regulation, subcellular localization, and physiologic function remain largely unknown. We here demonstrated that expression of ABCA6 was Forkhead box O (FoxO)-dependent in human endothelial cell line EA.hy926 and human umbilical vein endothelial cells. Two functional FoxO-responsive elements were identified in ABCA6 promoter and characterized in detail. ABCA6 mRNA was suppressed by insulin-like growth factor-1 which stimulates the phosphorylation and inactivation of FoxOs while inhibitor of phosphatidylinositol 3-kinase had the opposite effect. By immunofluorescence and confocal microscopy, ABCA6 protein is localized primarily in an intracellular compartment, likely representing the Golgi apparatus. ABCA6 mRNA was demonstrated to be responsive to cholesterol loading as well as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors in human endothelial cells. Our data provide evidence for an essential role of FoxO proteins in the transcription of ABCA6 in human vascular endothelial cells. Based on its cholesterol responsiveness, a potential involvement of ABCA6 in intracellular lipid transport processes may be anticipated.
Collapse
|
107
|
Akiyama M. The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:435-40. [PMID: 23954554 DOI: 10.1016/j.bbalip.2013.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023]
Abstract
ATP-binding cassette (ABC) transporters form a large superfamily of transporters that bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to transport lipid materials. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. ABCA12 is considered to transport lipids including ceramides to form extracellular lipid layers in the stratum corneum of the epidermis, which is essential for skin barrier function. ABCA12 mutations are known to underlie the three major types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations result in defective lipid transport via lamellar granules in the keratinocytes, leading to ichthyosis phenotypes from malformation of the stratum corneum lipid barrier. Studies on ABCA12-deficient bioengineered models have revealed that lipid transport by ABCA12 is required for keratinocyte differentiation and epidermal morphogenesis. Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12(-/-) keratinocytes. It was reported that AKT activation occurs in Abca12(-/-) granular-layer keratinocytes, which suggests that AKT activation serves to prevent the cell death of Abca12(-/-) keratinocytes. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
108
|
Zhang J. Epidemiological link between low cholesterol and suicidality: A puzzle never finished. Nutr Neurosci 2013; 14:268-87. [DOI: 10.1179/1476830511y.0000000021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
109
|
Fang L, Choi SH, Baek JS, Liu C, Almazan F, Ulrich F, Wiesner P, Taleb A, Deer E, Pattison J, Torres-Vázquez J, Li AC, Miller YI. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 2013; 498:118-22. [PMID: 23719382 PMCID: PMC3760669 DOI: 10.1038/nature12166] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/08/2013] [Indexed: 12/26/2022]
Abstract
Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis.
Collapse
Affiliation(s)
- Longhou Fang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Pannu PS, Allahverdian S, Francis GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 2013; 368:99-107. [PMID: 22884520 DOI: 10.1016/j.mce.2012.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 12/31/2022]
Abstract
Cell cholesterol metabolism is a tightly regulated process, dependent in part on activation of nuclear liver X receptors (LXRs) to increase expression of genes mediating removal of excess cholesterol from cells in the reverse cholesterol transport pathway. LXRs are thought to be activated predominantly by oxysterols generated enzymatically from cholesterol in different cell organelles. Defects resulting in slowed release of cholesterol from late endosomes and lysosomes or reduction in sterol-27-hydroxylase activity lead to specific blocks in oxysterol production and impaired LXR-dependent gene activation. This block does not appear to be compensated by oxysterol production in other cell compartments. The purpose of this review is to summarize current knowledge about oxysterol-dependent activation by LXR of genes involved in reverse cholesterol transport, and what these defects of cell cholesterol homeostasis can teach us about the critical pathways of oxysterol generation for expression of LXR-dependent genes.
Collapse
Affiliation(s)
- Parveer S Pannu
- Department of Medicine, UBC James Hogg Research Centre, Institute of Heart and Lung Health at St. Paul's Hospital, Vancouver, BC, Canada V6Z 1Y6.
| | | | | |
Collapse
|
111
|
Kakiuchi Y, Hirohashi N, Murakami-Murofushi K. The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. Biochem Biophys Res Commun 2013; 433:298-304. [DOI: 10.1016/j.bbrc.2013.02.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
|
112
|
Yoon HS, Ju JH, Lee JE, Park HJ, Lee JM, Shin HK, Holzapfel W, Park KY, Do MS. The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterol efflux and suppress inflammation in THP-1 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:781-787. [PMID: 22806829 DOI: 10.1002/jsfa.5797] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The balance between the rate of cholesterol uptake/accumulation and the rate of cholesterol efflux is reflected in the amount of lipid accumulation in macrophages. Based upon the fact that liver X receptors (LXRs) play a role in cholesterol efflux, we studied the effects of probiotics on cholesterol efflux and anti-inflammatory action in macrophages. We confirmed changes in LXR expression by treatment of LXR-transfected CHO-K1 cells with lactic acid bacteria (LAB), and co-cultured THP-1 cells with LAB to investigate changes in cholesterol efflux and inflammation. RESULTS The experiment with CHO-K1 cells showed upregulation of LXR-β by LAB. Treatment of THP-1 cells with LAB promoted LXR expression in THP-1, which eventually led to significant upregulation of ABCA1 and ABCG1 expression. The treatment with live LAB also significantly promoted cholesterol efflux. LAB suppressed expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, which resulted from activation of LXR. CONCLUSION Our study shows that Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 activated LXR and induced cholesterol efflux by promoting expression of ABCA1 and ABCG1. Both strains also suppressed proinflammatory cytokines including IL-1β and TNF-α. This study could account for the observation that LAB may block foam cell formation by cholesterol efflux and immune modulation.
Collapse
Affiliation(s)
- Hong-sup Yoon
- School of Life Science, Handong Global University, Pohang, Gyeongbuk 791-708, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
The transcription levels of ABCA1, ABCG1 and SR-BI are negatively associated with plasma CRP in Chinese populations with various risk factors for atherosclerosis. Inflammation 2013; 35:1641-8. [PMID: 22614118 DOI: 10.1007/s10753-012-9479-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ATP binding cassette transporters (ABCA1, ABCG1) and scavenger receptor class B type I (SR-BI) are the three most important cellular cholesterol transporters that may prevent atherogenesis. The aim of this study was to investigate whether they were altered in Chinese populations with various risk factors for atherosclerosis and their potential associations with C-reactive protein (CRP). Healthy female controls (n = 30) and populations with various risk factors for atherosclerosis, such as type 2 diabetes (n = 17), hypertension (n = 12), overweight/obesity (n = 10), incipient nephropathy (n = 10), postmenopausal women (n = 9), male (n = 19), ageing male (n = 22), or smoking (n = 16), were recruited. ABCA1, ABCG1 and SR-BI mRNA levels in peripheral monocytes was determined. ABCG1 was decreased in all the risk populations except ageing. ABCA1 was decreased in all the risk populations except diabetes and male. SR-BI was decreased in those with overweight/obesity and incipient nephropathy. Circulating CRP was increased almost in all the risk populations except in males. The levels of ABCA1, ABCG1 and SR-BI were reduced in those with subclinically high CRP, and negatively associated with CRP level. These data indicates that ABCA1, ABCG1, and SR-BI are reduced in various populations under subclinically inflammatory conditions, which may potentially lead to impairing reverse cholesterol transport and developing atherosclerosis.
Collapse
|
114
|
Interrelationship between ATP-binding cassette transporters and oxysterols. Biochem Pharmacol 2013; 86:80-8. [PMID: 23500544 DOI: 10.1016/j.bcp.2013.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of membrane proteins responsible for the translocation of several substances across membranes using the chemical energy provided by ATP hydrolysis. ABC transporters participate in many physiological and pathophysiological processes, including cholesterol and lipid transportation and multidrug resistance. Oxysterols are the products of cholesterol oxidation, formed by both enzymatic and non-enzymatic mechanisms. The role of oxysterols in cholesterol metabolism and several diseases has been widely investigated, but many questions remain to be answered. Several lines of evidence link ABC transporter functions with cholesterol and oxysterol metabolism. This review discusses ABC transporters, oxysterols, and how they interact with each other.
Collapse
|
115
|
Villard EF, EI Khoury P, Frisdal E, Bruckert E, Clement K, Bonnefont-Rousselot D, Bittar R, Le Goff W, Guerin M. Genetic determination of plasma cholesterol efflux capacity is gender-specific and independent of HDL-cholesterol levels. Arterioscler Thromb Vasc Biol 2013; 33:822-8. [PMID: 23372063 DOI: 10.1161/atvbaha.112.300979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the impact of several genetic variants located in genes encoding for proteins involved in biogenesis, maturation, and intravascular remodeling of high density lipoprotein (HDL) particles on plasma efflux capacity. APPROACH AND RESULTS The capacity of whole-plasma to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages was measured in 846 individuals (450 men and 396 women). We demonstrated that rs17231506 (CETP c.-1337 C>T), rs2230806 (ABCA1 p.R219K), rs1799837 (APOA1 c.-75 G>A), rs5086 (APOAII c.-265 T>C), and rs1800588 (LIPC c.-514 C>T) single nucleotide polymorphisms (SNPs) significantly modulate the capacity of whole-plasma to mediate cholesterol efflux from human macrophages in a sex-dependent manner. Such associations were independent of circulating plasma lipid levels (HDL-cholesterol, triglyceride, low density lipoprotein-cholesterol). In women, we identified the APOA1 c.-75 G>A and the LIPC c.-514 C>T variants as major contributors of interindividual variability of plasma efflux capacity, whereas the ABCA1 p.R219K and the APOAII c.-265 T>C SNPs mostly contribute to total variance of plasma efflux capacity in men. Multiple regression analyses revealed that the 7 SNPs tested accounted together for approximately 6% of total plasma efflux capacity. We demonstrated that genetically determined plasma efflux capacity represents a better predictor of macrophage cholesterol removal, as compared with plasma HDL-cholesterol levels. CONCLUSIONS Genetic variants located within genes encoding proteins involved in HDL metabolism significantly impact plasma efflux capacity independently of variation in plasma HDL-cholesterol levels.
Collapse
Affiliation(s)
- Elise F Villard
- INSERM UMRS 939, Hôpital de la Pitié, Pavillon Benjamin Delessert, 83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Turton J, Morgan K. ATP-Binding Cassette, Subfamily A (ABC1), Member 7 (ABCA7). GENETIC VARIANTS IN ALZHEIMER'S DISEASE 2013:135-158. [DOI: 10.1007/978-1-4614-7309-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
117
|
Iatan I, Palmyre A, Alrasheed S, Ruel I, Genest J. Genetics of cholesterol efflux. Curr Atheroscler Rep 2012; 14:235-46. [PMID: 22528521 DOI: 10.1007/s11883-012-0247-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plasma levels of high-density lipoprotein cholesterol (HDL-C) show an inverse association with coronary heart disease (CHD). As a biological trait, HDL-C is strongly genetically determined, with a heritability index ranging from 40 % to 60 %. HDL represents an appealing therapeutic target due to its beneficial pleiotropic effects in preventing CHD. This review focuses on the genetic basis of cellular cholesterol efflux, the rate-limiting step in HDL biogenesis. There are several monogenic disorders (e.g., Tangier disease, caused by mutations within ABCA1) affecting HDL biogenesis. Importantly, many disorders of cellular cholesterol homeostasis cause a reduced HDL-C. We integrate information from family studies and linkage analyses with that derived from genome-wide association studies (GWAS) and review the recent identification of micro-RNAs (miRNA) involved in cellular cholesterol metabolism. The identification of genomic pathways related to HDL may help pave the way for novel therapeutic approaches to promote cellular cholesterol efflux as a therapeutic modality to prevent atherosclerosis.
Collapse
Affiliation(s)
- Iulia Iatan
- Cardiovascular Research Laboratories, Division of Cardiology, Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
118
|
Toledo JD, Cabaleiro LV, Garda HA, Gonzalez MC. Effect of reconstituted discoidal high-density lipoproteins on lipid mobilization in RAW 264.7 and CHOK1 cells. J Cell Biochem 2012; 113:1208-16. [PMID: 22095661 DOI: 10.1002/jcb.23453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reconstituted discoidal high-density lipoproteins (rHDL) resemble nascent HDL, which are formed at the early reverse cholesterol transport steps, and constitute the initial cholesterol (Chol) acceptors from cell membranes. We have used different sized rHDL containing or not Chol, to test their abilities to promote cholesterol and phospholipid efflux from two different cell lines: Raw 264.7 macrophages and CHOK1 cells. All rHDL and lipid-free apolipoprotein A-I (apoA-I) were found to be bound to CHO and RAW cells. In RAW cells, a positive correlation between cellular binding and Chol removal was found for 78 and 96 Å rHDL. Chol-free rHDL were more effective than Chol-containing ones in binding to RAW cells and promoting Chol removal. These results were more evident in the 96 Å rHDL. On the other hand, rHDL binding to CHO cells was relatively independent of disc size and Chol content. In spite of the fact that apoA-I and rHDL promoted Chol efflux from both cellular lines, only in CHOK1 cells this result was also associated to decrease Chol esterification. Among choline-containing phospholipids, only phosphatidylcholine (PC) (but not sphingomyelin) was detected to be effuxed from both cellular lines. With the only exception of Chol-free 96 Å discs, the other rHDL as well as apoA-I promoted PC efflux from RAW cells. Chol-containing rHDL were more active than Chol-free ones of comparable size to promote PC efflux from RAW macrophages. Regarding CHO cells, only apoA-I and Chol-free 78 Å rHDL were active enough to remove PC.
Collapse
Affiliation(s)
- Juan D Toledo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, Facultad de Ciencias Médicas, calles 60 y 120, 1900-La Plata, Argentina
| | | | | | | |
Collapse
|
119
|
Unsaturated fatty acids repress expression of ATP binding cassette transporter A1 and G1 in RAW 264.7 macrophages. J Nutr Biochem 2012; 23:1271-6. [DOI: 10.1016/j.jnutbio.2011.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/28/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
|
120
|
Song G, Zong C, Liu Q, Si Y, Liu J, Li W, Zhu P, Qin S. SR-BI associates with ABCG1 and inhibits ABCG1-mediated cholesterol efflux from cells to high-density lipoprotein 3. Lipids Health Dis 2012; 11:118. [PMID: 22984960 PMCID: PMC3512508 DOI: 10.1186/1476-511x-11-118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022] Open
Abstract
Background The single and combined effects of scavenger receptor-BI (SR-BI), ATP-binding cassette transporter (ABC) A1 and G1 on cholesterol efflux from Chinese Hamster Ovary (CHO) cells were investigated. Results When apolipoproteinA-I (apoA-I) was used as an acceptor, ABCA1 overexpression led to an increase in total cholesterol (TC) in medium which is attributable to a 2-fold increase in free cholesterol (FC) content. When high-density lipoprotein 3 (HDL3) was used as an acceptor, SR-BI overexpression not only promoted FC efflux, but also promoted the uptake of cholesteryl ester (CE) into cells, resulting in no TC varieties in medium. Overexpression of ABCG1 increased both the FC and CE levels in medium. However, when apoA-I and HDL3 were both used as acceptors, coexpression of SR-BI has no effect on ABCA1-mediated increased FC and TC accumulation in medium. Interestingly, coexpression of SR-BI with ABCG1 blocked the ABCG1-mediated cholesterol efflux to HDL3, mostly by promoting the reuptake of CE from the medium. Furthermore, co-immunoprecipitation experiments revealed that SR-BI interacted with ABCG1 in BHK cells overexpressing ABCG1 and SR-BI. Conclusions We found SR-BI associates with ABCG1 and inhibits ABCG1-mediated cholesterol efflux from cells to HDL3.
Collapse
Affiliation(s)
- Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, China
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Zhang L, Reue K, Fong LG, Young SG, Tontonoz P. Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol 2012; 32:2541-6. [PMID: 22936343 DOI: 10.1161/atvbaha.112.250571] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase that mediates the ubiquitination and degradation of the low-density lipoprotein receptor (LDLR). IDOL expression is controlled at the transcriptional level by the cholesterol-sensing nuclear receptor liver X receptor (LXR). In response to rising cellular sterol levels, activated LXR induces IDOL production, thereby limiting further uptake of exogenous cholesterol through the LDLR pathway. The LXR-IDOL-LDLR mechanism for feedback inhibition of cholesterol uptake is independent of and complementary to the sterol regulatory element-binding protein pathway. Since the initial description of the LXR-IDOL pathway, biochemical studies have helped to define the structural basis for both IDOL target recognition and LDLR ubiquitin transfer. Recent work has also suggested links between IDOL and human lipid metabolism.
Collapse
Affiliation(s)
- Li Zhang
- Howard Hughes Medical Institute, UCLA School of Medicine, Box 951662, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
122
|
Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice. Atherosclerosis 2012; 223:332-41. [PMID: 22748276 DOI: 10.1016/j.atherosclerosis.2012.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. METHODS Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. RESULTS Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. CONCLUSIONS Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development.
Collapse
|
123
|
Wang Y, Zhang Y, Wang X, Liu Y, Xia M. Supplementation with cyanidin-3-O-β-glucoside protects against hypercholesterolemia-mediated endothelial dysfunction and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr 2012; 142:1033-7. [PMID: 22535762 DOI: 10.3945/jn.112.157701] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated the protective effects of the anthocyanin cyanidin-3-O-β-glucoside (C3G) on hypercholesterolemia-induced endothelial dysfunction in apoE-deficient (apoE(-/-)) mice. In the prevention study, twenty 8-wk-old male apoE(-/-) mice (n = 10/group) were fed a high-fat, cholesterol-rich diet (HCD) or the HCD supplemented with C3G (2 g/kg diet) for 8 wk. The endothelium-dependent relaxation response to acetylcholine in the aortas of the C3G-fed mice was greater compared with those fed the HCD (P < 0.05). The atherosclerotic plaque area in the aortic sinus of mice fed the C3G diet was lowered by 54% compared with those fed the HCD (P < 0.01). Mice fed C3G had greater expression of the ATP-binding cassette transporter G1 (ABCG1) and lower cholesterol, mainly 7-ketocholesterol (7-KC), concentrations than those fed the HCD. Superoxide production and lipid hydroperoxides in aorta were lower in mice fed C3G compared with those fed the HCD. The phosphorylation levels at Ser1177 of endothelial NO synthase (eNOS) and the production of cyclic GMP (cGMP) in aorta were greater in C3G-fed mice than in HCD-fed mice. In the therapy study, apoE(-/-) mice were fed the HCD for 8 wk and then continued to receive the HCD or were switched to the HCD supplemented with C3G (2 g/kg diet) for another 8 wk. The established endothelial dysfunction and atherosclerosis were reversed, accompanied by greater ABCG1 expression in aorta, lower cholesterol and 7-KC concentrations, and greater generation of cGMP in mice fed C3G compared with those fed the HCD. Taken together, our results show that the anthocyanin C3G prevents or reverses hypercholesterolemia-induced endothelial dysfunction by inhibiting cholesterol and 7-oxysterol accumulation in the aorta and the subsequent decrease in superoxide production, thereby preserving eNOS activity and NO bioavailability.
Collapse
Affiliation(s)
- Yun Wang
- Department of Nutrition, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | | | |
Collapse
|
124
|
Matsson P, Yee SW, Markova S, Morrissey K, Jenkins G, Xuan J, Jorgenson E, Kroetz DL, Giacomini KM. Discovery of regulatory elements in human ATP-binding cassette transporters through expression quantitative trait mapping. THE PHARMACOGENOMICS JOURNAL 2012; 12:214-26. [PMID: 21383772 PMCID: PMC3325368 DOI: 10.1038/tpj.2011.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ATP-binding cassette (ABC) membrane transporters determine the disposition of many drugs, metabolites and endogenous compounds. Coding region variation in ABC transporters is the cause of many genetic disorders, but much less is known about the genetic basis and functional outcome of ABC transporter expression level variation. We used genotype and mRNA transcript level data from human lymphoblastoid cell lines to assess population and gender differences in ABC transporter expression, and to guide the discovery of genomic regions involved in transcriptional regulation. Nineteen of 49 ABC genes were differentially expressed between individuals of African, Asian and European descent, suggesting an important influence of race on expression level of ABC transporters. Twenty-four significant associations were found between transporter transcript levels and proximally located genetic variants. Several of the associations were experimentally validated in reporter assays. Through influencing ABC expression levels, these single-nucleotide polymorphisms may affect disease susceptibility and response to drugs.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Svetlana Markova
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Kari Morrissey
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Gerard Jenkins
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Jiekun Xuan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Eric Jorgenson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
125
|
Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 2012; 164:1767-79. [PMID: 21175590 DOI: 10.1111/j.1476-5381.2010.01177.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Along with many other mammalian ATP-binding cassette (ABC) transporters, members of the ABCG group are involved in the regulated transport of hydrophobic compounds across cellular membranes. In humans, five ABCG family members have been identified, encoding proteins ranging from 638 to 678 amino acids in length. All five have been the subject of intensive investigation to better understand their physiological roles, expression patterns, interactions with substrates and inhibitors, and regulation at both the transcript and protein level. The principal substrates for at least four of the ABCG proteins are endogenous and dietary lipids, with ABCG1 implicated in particular in the export of cholesterol, and ABCG5 and G8 forming a functional heterodimer responsible for plant sterol elimination from the body. ABCG2 has a much broader substrate specificity and its ability to transport numerous diverse pharmaceuticals has implications for the absorption, distribution, metabolism, excretion and toxicity (ADMETOx) profile of these compounds. ABCG2 is one of at least three so-called multidrug resistant ABC transporters expressed in humans, and its activity is associated with decreased efficacy of anti-cancer agents in several carcinomas. In addition to its role in cancer, ABCG2 also plays a role in the normal physiological transport of urate and haem, the implications of which are described. We summarize here data on all five human ABCG transporters and provide a current perspective on their roles in human health and disease.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham.
| | | | | |
Collapse
|
126
|
Meurs I, Calpe-Berdiel L, Habets KLL, Zhao Y, Korporaal SJA, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJC, Chimini G, Van Eck M. Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 2012; 7:e30984. [PMID: 22403608 PMCID: PMC3293875 DOI: 10.1371/journal.pone.0030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.
Collapse
Affiliation(s)
- Illiana Meurs
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- Current position at Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Calpe-Berdiel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Suzanne J. A. Korporaal
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - A. Mieke Mommaas
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuelle Josselin
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Reeni B. Hildebrand
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Dan Ye
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Giovanna Chimini
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
127
|
Meurs I, Lammers B, Zhao Y, Out R, Hildebrand RB, Hoekstra M, Van Berkel TJ, Van Eck M. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 2012; 221:41-7. [DOI: 10.1016/j.atherosclerosis.2011.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 01/01/2023]
|
128
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
129
|
Seo JM, Lee JY, Ji GE, You JC. Down-regulation of ATP-binding cassette transporter G1 expression by unmethylated CpG oligodeoxynucleotides in RAW 264.7 macrophages. Exp Mol Med 2012; 43:510-6. [PMID: 21737995 DOI: 10.3858/emm.2011.43.9.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We have investigated the effect of various forms of phosphodiester cytidine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) on the production of pro-inflammatory cytokines and related genes in RAW 264.7 macrophages. Treatment with the CpG ODNs increased the expression of tumor necrosis factor α (TNF-α), IL-6, and inducible nitric oxide synthase but not interleukin-1β (IL-1β). We also investigated the effect of CpG ODNs on the expression of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) genes which are known to facilitate cholesterol efflux from macrophages for anti-atherosclerosis. CpG 2006 significantly reduced the levels of ABCG1 mRNA as determined by real-time polymerase chain reaction, whereas ABCA1 mRNA level was not changed. Western blot analysis further confirmed the reduction of ABCG1 protein expression by CpG 2006. In addition, we also determined the protein level of peroxisome proliferator activated receptor γ (PPARγ), which is recognized as a transcriptional activator of ABC transporters, was also reduced by CpG 2006. Thus, these results suggest that ABCG1 is specifically down-regulated by CpG 2006 in a PPARγ-dependent manner in macrophages.
Collapse
Affiliation(s)
- Jeong Min Seo
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
130
|
Ji A, Wroblewski JM, Cai L, de Beer MC, Webb NR, van der Westhuyzen DR. Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI. J Lipid Res 2011; 53:446-455. [PMID: 22190590 DOI: 10.1194/jlr.m017079] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.
Collapse
Affiliation(s)
- Ailing Ji
- Departments of Internal Medicine, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Joanne M Wroblewski
- Departments of Internal Medicine, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Lei Cai
- Departments of Internal Medicine, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Maria C de Beer
- Physiology, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Nancy R Webb
- Departments of Internal Medicine, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Deneys R van der Westhuyzen
- Departments of Internal Medicine, University of Kentucky, Lexington, KY; Cardiovascular Research Center, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; Molecular and Cellular Biochemistry and Physiology, University of Kentucky, Lexington, KY; Department of Veterans Affairs Medical Center, Lexington, KY.
| |
Collapse
|
131
|
Phang YL, Soga T, Kitahashi T, Parhar IS. Cloning and functional expression of novel cholesterol transporters ABCG1 and ABCG4 in gonadotropin-releasing hormone neurons of the tilapia. Neuroscience 2011; 203:39-49. [PMID: 22198513 DOI: 10.1016/j.neuroscience.2011.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4.
Collapse
Affiliation(s)
- Y L Phang
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | | | | | | |
Collapse
|
132
|
Schou J, Frikke-Schmidt R, Kardassis D, Thymiakou E, Nordestgaard BG, Jensen G, Grande P, Tybjærg-Hansen A. Genetic variation in ABCG1 and risk of myocardial infarction and ischemic heart disease. Arterioscler Thromb Vasc Biol 2011; 32:506-15. [PMID: 22155456 DOI: 10.1161/atvbaha.111.234872] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ATP binding cassette transporter G1 (ABCG1) facilitates cholesterol efflux from macrophages to mature high-density lipoprotein particles. Whether genetic variation in ABCG1 affects risk of atherosclerosis in humans remains to be determined. METHODS AND RESULTS We resequenced the core promoter and coding regions of ABCG1 in 380 individuals from the general population. Next, we genotyped 10 237 individuals from the Copenhagen City Heart Study for the identified variants and determined the effect on lipid and lipoprotein levels and on risk of myocardial infarction (MI) and ischemic heart disease (IHD). g.-376C>T, g.-311T>A, and Ser630Leu predicted risk of MI in the Copenhagen City Heart Study, with hazard ratios of 2.2 (95% confidence interval: 1.2-4.3), 1.7 (1.0-2.9), and 7.5 (1.9-30), respectively. These results were confirmed for g.-376C>T in a case-control study comprising 4983 independently ascertained IHD cases and 7489 controls. Expression levels of ABCG1 mRNA were decreased by approximately 40% in g.-376C>T heterozygotes versus noncarriers (probability values: 0.005-0.009). Finally, in vitro specificity protein 1 (Sp1) bound specifically to a putative Sp1 binding site at position -382 to -373 in the ABCG1 promoter, and the presence of the -376 T allele reduced binding and transactivation of the promoter by Sp1. CONCLUSIONS This is the first report of a functional variant in ABCG1 that associates with increased risk of MI and IHD in the general population.
Collapse
Affiliation(s)
- Jesper Schou
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Interactions Between Rnase L Ankyrin-Like Domain and ABC Transporters as a Possible Origin for Pain, Ion Transport, CNS and Immune Disorders of Chronic Fatigue Immune Dysfunction Syndrome. ACTA ACUST UNITED AC 2011. [DOI: 10.1300/j092v08n03_08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
134
|
Malur A, Huizar I, Wells G, Barna BP, Malur AG, Thomassen MJ. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice. Biochem Biophys Res Commun 2011; 415:288-93. [DOI: 10.1016/j.bbrc.2011.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/10/2011] [Indexed: 11/17/2022]
|
135
|
Moitra K, Silverton L, Limpert K, Im K, Dean M. Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps. ACTA ACUST UNITED AC 2011; 26:105-11. [PMID: 21942345 DOI: 10.1515/dmdi.2011.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ATP binding cassette (ABC) proteins are typically ATP-driven transmembrane pumps that have been evolutionarily conserved from bacteria to humans. In humans these transporters are subdivided into seven subfamilies, ranging from A to G. The ABCG subfamily of transporters is the primary focus of this review. This subfamily of proteins has been conserved throughout evolution and plays a central role in several cellular processes, such as sterol homeostasis and multidrug resistance. Functional polymorphisms/mutations in some of these G-subfamily transporters have clinical consequences in humans.
Collapse
|
136
|
Quantification of protein group coherence and pathway assignment using functional association. BMC Bioinformatics 2011; 12:373. [PMID: 21929787 PMCID: PMC3189934 DOI: 10.1186/1471-2105-12-373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022] Open
Abstract
Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of proteins. The scores were further successfully applied for assigning proteins to pathways.
Collapse
|
137
|
Abellán R, Mansego ML, Martínez-Hervás S, Morcillo S, Pineda-Alonso M, Carmena R, Real JT, Redon J, Rojo-Martínez G, Martín-Escudero JC, Chaves FJ. Dietary polyunsaturated fatty acids may increase plasma LDL-cholesterol and plasma cholesterol concentrations in carriers of an ABCG1 gene single nucleotide polymorphism: study in two Spanish populations. Atherosclerosis 2011; 219:900-6. [PMID: 21978921 DOI: 10.1016/j.atherosclerosis.2011.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/05/2011] [Accepted: 09/10/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND ABCG1 mediates cellular cholesterol transport, but there is very little known about the influence of ABCG1 polymorphisms on human plasma lipoprotein cholesterol concentrations or on the interactions of these polymorphisms with diet. OBJECTIVE Our objective was to investigate whether interactions between PUFA intake and ABCG1 polymorphisms modulate associations with plasma total cholesterol (TC), LDL- and HDL-cholesterol in two Spanish populations. METHODS We grounded our investigation on two general population-based studies: the Hortega study (population A) and the Pizarra study (population B). Participants included 1178 individuals (50.0% women, age range 21-85 years) and 763 individuals (66% women, age range 23-73 years) from populations A and B, respectively, without lipid lowering drugs. Subjects were genotyped for ABCG1 variants. Biochemical measurements were taken by standard procedures. Dietary intakes were estimated with a validated questionnaire. RESULTS In population A, the A allele homozygotes of SNP rs4148102 had higher TC and LDLc concentrations in subjects on a high PUFA diet than did the carriers of the G allele (242.1 ± 38.9 vs. 198.0 ± 36.0mg/dL, p = 0.003, and 149.8 ± 37.9 vs. 111.4 ± 32.1mg/dL, p = 0.005, respectively), and significant gene-diet interactions were observed (p=0.020 and p = 0.013, respectively). In population B, similar differences in TC and LDLc concentrations were also found in association with this SNP under a high PUFA diet (253.2±24.9 vs. 197.7 ± 39.9 mg/dL, p = 0.009, and 171.8 ± 20.5 vs. 120.4 ± 34.2mg/dL, p = 0.004, respectively), but the gene-diet interactions observed were not significant (p = 0.379 and p = 0.422, respectively). In the pooled populations, differences in the TC and LDLc concentrations increased (246.8 ± 32.9 vs. 198.0 ± 37.5, p = 6 × 10(-5), and 159.0±32.6 vs. 114.3 ± 33.1, p = 3 × 10(-5), respectively), and significant gene-diet interactions were maintained (p = 0.006 and p = 0.003, respectively). CONCLUSION In two Spanish populations, the ABCG1 polymorphism rs4148102 was associated with variations in plasma lipoprotein cholesterol concentrations in subjects with high PUFA intakes. Carriers of the AA genotype consuming high PUFA diet showed higher plasma LDLc concentrations.
Collapse
Affiliation(s)
- Rosario Abellán
- Fundación Investigación Clínico de Valencia, Instituto de Investigación Sanitaria INCLIVA, Avda Blasco Ibáñez 17, 46010 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
ATP-binding cassette (ABC) transporters form a large family of transmembrane proteins that facilitate the transport of specific substrates across membranes in an ATP-dependent manner. Transported substrates include lipids, lipopolysaccharides, amino acids, peptides, proteins, inorganic ions, sugars and xenobiotics. Despite this broad array of substrates, the physiological substrate of many ABC transporters has remained elusive. ABC transporters are divided into seven subfamilies, A-G, based on sequence similarity and domain organization. Here we review the role of members of the ABCG subfamily in human disease and how the identification of disease genes helped to determine physiological substrates for specific ABC transporters. We focus on the recent discovery of mutations in ABCG2 causing hyperuricemia and gout, which has led to the identification of urate as a physiological substrate for ABCG2.
Collapse
Affiliation(s)
- Owen M Woodward
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
139
|
Lenz LS, Marx J, Chamulitrat W, Kaiser I, Gröne HJ, Liebisch G, Schmitz G, Elsing C, Straub BK, Füllekrug J, Stremmel W, Herrmann T. Adipocyte-specific inactivation of Acyl-CoA synthetase fatty acid transport protein 4 (Fatp4) in mice causes adipose hypertrophy and alterations in metabolism of complex lipids under high fat diet. J Biol Chem 2011; 286:35578-35587. [PMID: 21808061 DOI: 10.1074/jbc.m111.226530] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fatp4 exhibits acyl-CoA synthetase activity and is thereby able to catalyze the activation of fatty acids for further metabolism. However, its actual function in most tissues remains unresolved, and its role in cellular fatty acid uptake is still controversial. To characterize Fatp4 functions in adipocytes in vivo, we generated a mouse line with adipocyte-specific inactivation of the Fatp4 gene (Fatp4(A-/-)). Under standard conditions mutant mice showed no phenotypical aberrance. Uptake of radiolabeled palmitic and lignoceric acid into adipose tissue of Fatp4(A-/-) mice was unchanged. When exposed to a diet enriched in long chain fatty acids, Fatp4(A-/-) mice gained more body weight compared with control mice, although they were not consuming more food. Pronounced obesity was accompanied by a thicker layer of subcutaneous fat and greater adipocyte circumference, although expression of genes involved in de novo lipogenesis was not changed. However, the increase in total fat mass was contrasted by a significant decrease in various phospholipids, sphingomyelin, and cholesteryl esters in adipocytes. Livers of Fatp4-deficient animals under a high fat diet exhibited a higher degree of fatty degeneration. Nonetheless, no evidence for changes in insulin sensitivity and adipose inflammation was found. In summary, the results of this study confirm that Fatp4 is not crucial for fatty acid uptake into adipocytes. Instead, under the condition of a diet enriched in long chain fatty acids, adipocyte-specific Fatp4 deficiency results in adipose hypertrophy and profound alterations in the metabolism of complex lipids.
Collapse
Affiliation(s)
- Lena-Solveig Lenz
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Jana Marx
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Iris Kaiser
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, 69120 Heidelberg
| | - Gerhard Liebisch
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg
| | - Gerd Schmitz
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg
| | - Christoph Elsing
- Department of Internal Medicine, St. Elisabeth Hospital, 46225 Dorsten
| | - Beate K Straub
- Department of General Pathology, Institute of Pathology, 69120 Heidelberg
| | - Joachim Füllekrug
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Thomas Herrmann
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg; Department of Internal Medicine I, Klinikum Idar-Oberstein, 55743 Idar-Oberstein, Germany.
| |
Collapse
|
140
|
Identification of an amino acid residue in ATP-binding cassette transport G1 critical for mediating cholesterol efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:552-9. [PMID: 21821149 DOI: 10.1016/j.bbalip.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys(514)) within the third putative transmembrane domain and is highly conserved. Replacement of Cys(514) with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys(514) with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
|
141
|
Tarling EJ, Edwards PA. Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:386-95. [PMID: 21824529 DOI: 10.1016/j.bbalip.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
142
|
Lin CY, Lee TS, Chen CC, Chang CA, Lin YJ, Hsu YP, Ho LT. Endothelin-1 exacerbates lipid accumulation by increasing the protein degradation of the ATP-binding cassette transporter G1 in macrophages. J Cell Physiol 2011; 226:2198-205. [PMID: 21520072 DOI: 10.1002/jcp.22556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelin-1 (ET-1), a potent proatherogenic vasoconstrictive peptide, is known to promote macrophage foam cell formation via mechanisms that are not fully understood. Excessive lipid accumulation in macrophages is a major hallmark during the early stages of atherosclerotic lesions. Cholesterol homeostasis is tightly regulated by scavenger receptors (SRs) and ATP-binding cassette (ABC) transporters during the transformation of macrophage foam cells. The aim of this study was to investigate the possible mechanisms by which ET-1 affects lipid accumulation in macrophages. Our results demonstrate that oxidized low-density lipoprotein (oxLDL) treatment increases lipid accumulation in rat bone marrow-derived macrophages. Combined treatment with ET-1 and oxLDL significantly exacerbated lipid accumulation in macrophages as compared to treatment with oxLDL alone. The results of Western blotting show that ET-1 markedly decreased the ABCG1 levels via ET type A and B receptors and activation of the phosphatidylinositol 3-kinase pathway; however, ET-1 had no effect on the protein expression of CD36, SR-BI, SR-A, or ABCA1. In addition, real-time PCR analysis showed that ET-1 treatment did not affect ABCG1 mRNA expression. We also found that ET-1 decreases ABCG1 possibly due to the enhancement of the proteosome/calpain pathway-dependent degradation of ABCG1. Moreover, ET-1 significantly reduced the efficiency of the cholesterol efflux in macrophages. Taken together, these findings suggest that ET-1 may impair cholesterol efflux and further exacerbate lipid accumulation during the transformation of macrophage foam cells.
Collapse
Affiliation(s)
- Chun-Yueh Lin
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
143
|
|
144
|
Xu Y, Wang W, Zhang L, Qi LP, Li LY, Chen LF, Fang Q, Dang AM, Yan XW. A polymorphism in the ABCG1 promoter is functionally associated with coronary artery disease in a Chinese Han population. Atherosclerosis 2011; 219:648-54. [PMID: 21722899 DOI: 10.1016/j.atherosclerosis.2011.05.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examine the association of single nucleotide polymorphisms (SNPs) of the human ATP binding cassette transporter G1 (ABCG1) gene with atherosclerotic coronary artery disease (CAD) in a Chinese Han population. METHODS 1021 patients with CAD and 1013 unaffected control subjects were enrolled. PCR-based ligation detection reaction (PCR-LDR) method was used to genotype four SNPs of ABCG1, three (rs2234714, rs2234715 and rs57137919) in the promoter region and one (rs1044317) in the 3'-untranslated region (UTR). RESULTS The human ABCG1 -367G>A polymorphism (rs57137919) showed a significantly decreased risk for CAD and myocardial infarction (MI) in a dominant model (adjusted OR = 0.73, p = 0.033 for CAD, and adjusted OR = 0.65, p = 0.014 for MI, respectively). The rs57137919 also showed an association with angiographic severity of CAD (multi-vessel vs. single-vessel CAD, adjusted OR = 0.40, p = 0.005). The findings were further supported by luciferase reporter assay, in which the polymorphism impaired reporter gene expression. The ABCG1 -768G>A polymorphism (rs2234714) showed an association with CAD in a recessive model (adjusted OR = 0.64, p = 0.015), but did not demonstrate a functional influence on reporter gene expression in the luciferase reporter assay. CONCLUSIONS The SNP rs57137919 in the ABCG1 promoter region is functionally associated with a reduced risk of CAD in a Chinese Han population.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Tamashevski AV, Kozlova NM, Goncharova NV, Zubritskaya GP, Slobozhanina EI. Effect of cholesterol on the functional activity of proteins responsible for the resistance of human lymphocytes to xenobiotics. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
146
|
Marek M, Milles S, Schreiber G, Daleke DL, Dittmar G, Herrmann A, Müller P, Pomorski TG. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity. J Biol Chem 2011; 286:21835-43. [PMID: 21521689 DOI: 10.1074/jbc.m111.244525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.
Collapse
Affiliation(s)
- Magdalena Marek
- Institute of Biology, Humboldt University of Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Akiyama M. The roles of ABCA12 in keratinocyte differentiation and lipid barrier formation in the epidermis. DERMATO-ENDOCRINOLOGY 2011; 3:107-12. [PMID: 21695020 PMCID: PMC3117010 DOI: 10.4161/derm.3.2.15136] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
ABCA12 is a member of the large superfamily of ATP-binding cassette (ABC) transporters, which bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to be lipid transporters. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids in lamellar granules to the apical surface of granular layer keratinocytes. Extracellular lipids, including ceramide, are thought to be essential for skin barrier function. ABCA12 mutations are known to underlie the three main types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations lead to defective lipid transport via lamellar granules in the keratinocytes, resulting in malformation of the epidermal lipid barrier and ichthyosis phenotypes. Studies of ABCA12-deficient model mice indicate that lipid transport by ABCA12 is also indispensable for intact differentiation of keratinocytes.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
148
|
Hori N, Hayashi H, Sugiyama Y. Calpain-mediated cleavage negatively regulates the expression level of ABCG1. Atherosclerosis 2011; 215:383-91. [DOI: 10.1016/j.atherosclerosis.2010.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 11/29/2022]
|
149
|
Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:181-93. [PMID: 21223384 DOI: 10.1111/j.1365-313x.2010.04412.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.
Collapse
Affiliation(s)
- Hyunju Choi
- POSTECH-University of Zurich Global Research Laboratory, Division of Molecular Life Sciences, POSTECH, Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
150
|
Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJC, Van Eck M. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 2010; 107:e20-31. [PMID: 21071707 DOI: 10.1161/circresaha.110.226282] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE macrophages cannot limit the uptake of lipids and rely on cholesterol efflux mechanisms for maintaining cellular cholesterol homeostasis. Important mediators of macrophage cholesterol efflux are ATP-binding cassette transporter 1 (ABCA1), which mediates the efflux of cholesterol to lipid-poor apolipoprotein AI, and scavenger receptor class B type I (SR-BI), which promotes efflux to mature high-density lipoprotein. OBJECTIVE the aim of the present study was to increase the insight into the putative synergistic roles of ABCA1 and SR-BI in foam cell formation and atherosclerosis. METHODS AND RESULTS low-density lipoprotein receptor knockout (LDLr KO) mice were transplanted with bone marrow from ABCA1/SR-BI double knockout mice, the respective single knockouts, or wild-type littermates. Serum cholesterol levels were lower in ABCA1/SR-BI double knockout transplanted animals, as compared to the single knockout and wild-type transplanted animals on Western-type diet. Despite the lower serum cholesterol levels, massive foam cell formation was found in macrophages from spleen and the peritoneal cavity. Interestingly, ABCA1/SR-BI double knockout transplanted animals also showed a major increase in proinflammatory KC (murine interleukin-8) and interleukin-12p40 levels in the circulation. Furthermore, after 10 weeks of Western-type diet feeding, atherosclerotic lesion development in the aortic root was more extensive in the LDLr KO mice reconstituted with ABCA1/SR-BI double knockout bone marrow. CONCLUSIONS deletion of ABCA1 and SR-BI in bone marrow-derived cells enhances in vivo macrophage foam cell formation and atherosclerotic lesion development in LDLr KO mice on Western diet, indicating that under high dietary lipid conditions, both macrophage ABCA1 and SR-BI contribute significantly to cholesterol homeostasis in the macrophage in vivo and are essential for reducing the risk for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|