101
|
Lu HT, Yang DD, Wysk M, Gatti E, Mellman I, Davis RJ, Flavell RA. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J 1999; 18:1845-57. [PMID: 10202148 PMCID: PMC1171270 DOI: 10.1093/emboj/18.7.1845] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway, like the c-Jun N-terminal kinase (JNK) MAPK pathway, is activated in response to cellular stress and inflammation and is involved in many fundamental biological processes. To study the role of the p38 MAPK pathway in vivo, we have used homologous recombination in mice to inactivate the Mkk3 gene, one of the two specific MAPK kinases (MAPKKs) that activate p38 MAPK. Mkk3(-/-) mice were viable and fertile; however, they were defective in interleukin-12 (IL-12) production by macrophages and dendritic cells. Interferon-gamma production following immunization with protein antigens and in vitro differentiation of naive T cells is greatly reduced, suggesting an impaired type I cytokine immune response. The effect of the p38 MAPK pathway on IL-12 expression is at least partly transcriptional, since inhibition of this pathway blocks IL-12 p40 promoter activity in macrophage cell lines and IL-12 p40 mRNA is reduced in MKK3-deficient mice. We conclude that the p38 MAP kinase, activated through MKK3, is required for the production of inflammatory cytokines by both antigen-presenting cells and CD4(+) T cells.
Collapse
Affiliation(s)
- H T Lu
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Wysk M, Yang DD, Lu HT, Flavell RA, Davis RJ. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A 1999; 96:3763-8. [PMID: 10097111 PMCID: PMC22368 DOI: 10.1073/pnas.96.7.3763] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.
Collapse
Affiliation(s)
- M Wysk
- Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
103
|
Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, Billstrom MA, Henson PM, Johnson GL, Worthen GS. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 1999; 103:851-8. [PMID: 10079106 PMCID: PMC408145 DOI: 10.1172/jci5257] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38alpha and p38delta were detected in neutrophils. LPS stimulation selectively activated p38alpha. Specific inhibitors of p38alpha MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-kappaB) activation, and synthesis of tumor necrosis factor-alpha (TNF-alpha). Inhibition of p38alpha MAPk resulted in a transient decrease in TNF-alpha mRNA accumulation but persistent loss of TNF-alpha synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38alpha MAPk, ultimately regulating adhesion, NF-kappaB activation, enhanced gene expression of TNF-alpha, and regulation of TNF-alpha synthesis.
Collapse
Affiliation(s)
- J A Nick
- Department of Medicine, Program in Molecular Signal Transduction, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH. Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 1999; 274:7095-102. [PMID: 10066767 DOI: 10.1074/jbc.274.11.7095] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p38 mitogen-activated protein kinases (MAPK) play a crucial role in stress and inflammatory responses and are also involved in activation of the human immunodeficiency virus gene expression. We have isolated the murine cDNA clones encoding p38-delta MAPK, and we have localized the p38-delta gene to mouse chromosome 17A3-B and human chromosome 6p21.3. By using Northern and in situ hybridization, we have examined the expression of p38-delta in the mouse adult tissues and embryos. p38-delta was expressed primarily in the lung, testis, kidney, and gut epithelium in the adult tissues. Although p38-delta was expressed predominantly in the developing gut and the septum transversum in the mouse embryo at 9.5 days, its expression began to be expanded to many specific tissues in the 12.5-day embryo. At 15.5 days, p38-delta was expressed virtually in most developing epithelia in embryos, suggesting that p38-delta is a developmentally regulated MAPK. Interestingly, p38-delta and p38-alpha were similar serine/threonine kinases but differed in substrate specificity. Overall, p38-delta resembles p38-gamma, whereas p38-beta resembles p38-alpha. Moreover, p38-delta is activated by environmental stress, extracellular stimulants, and MAPK kinase-3, -4, -6, and -7, suggesting that p38-delta is a unique stress-responsive protein kinase.
Collapse
Affiliation(s)
- M C Hu
- Department of Cell Biology, Amgen, Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | |
Collapse
|
105
|
Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ. The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 1999; 19:1569-81. [PMID: 9891090 PMCID: PMC116085 DOI: 10.1128/mcb.19.2.1569] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (alpha, beta, and gamma isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7alpha isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7alpha isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7beta and MKK7gamma isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that the MKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.
Collapse
Affiliation(s)
- C Tournier
- Howard Hughes Medical Institute and Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
106
|
Schafer PH, Wang L, Wadsworth SA, Davis JE, Siekierka JJ. T Cell Activation Signals Up-Regulate p38 Mitogen-Activated Protein Kinase Activity and Induce TNF-α Production in a Manner Distinct from LPS Activation of Monocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
p38 mitogen-activated protein kinase (MAPK) (p38) is involved in various cellular responses, including LPS stimulation of monocytes, resulting in production of proinflammatory cytokines such as TNF-α. However, the function of p38 during antigenic stimulation of T cells is largely unknown. Stimulation of the human Th cell clone HA-1.70 with either the superantigen staphylococcal enterotoxin B (SEB) or with a specific antigenic peptide resulted in p38 activation and the release of TNF-α. MAPK-activated protein kinase-2 (MAPKAPK-2), an in vivo substrate for p38, was also activated by T cell signaling. SB 203580, a selective inhibitor of p38, blocked p38 and MAPKAPK-2 activation in the T cell clone but did not completely inhibit TNF-α release. PD 098059, a selective inhibitor of MAPK kinase 1 (MEK1), blocked activation of extracellular signal-regulated kinase (ERK) and partially blocked TNF-α production by the clone. In human peripheral T cells, p38 was not activated by SEB, but rather by CD28 cross-linking, whereas in the human leukemic T cell line Jurkat, p38 was activated by CD3 and CD28 cross-linking in an additive fashion. TNF-α production by peripheral T cells in response to SEB and anti-CD28 mAb correlated more closely with ERK activity than with p38 activity. Therefore, various forms of T cell stimulation can activate the p38 pathway depending on the cells examined. Furthermore, unlike LPS-stimulated monocytes, TNF-α production by T cells is only partially p38-dependent.
Collapse
Affiliation(s)
- Peter H. Schafer
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Liwen Wang
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Scott A. Wadsworth
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Janet E. Davis
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - John J. Siekierka
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| |
Collapse
|
107
|
Ceramide and Cyclic Adenosine Monophosphate (cAMP) Induce cAMP Response Element Binding Protein Phosphorylation via Distinct Signaling Pathways While Having Opposite Effects on Myeloid Cell Survival. Blood 1999. [DOI: 10.1182/blood.v93.1.217] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.
Collapse
|
108
|
Ceramide and Cyclic Adenosine Monophosphate (cAMP) Induce cAMP Response Element Binding Protein Phosphorylation via Distinct Signaling Pathways While Having Opposite Effects on Myeloid Cell Survival. Blood 1999. [DOI: 10.1182/blood.v93.1.217.401k16_217_225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of ceramide as a second messenger is a subject of great interest, particularly since it is implicated in signaling in response to inflammatory cytokines. Ceramide induces apoptosis in both cytokine-dependent MC/9 cells and factor-independent U937 cells. Elevation of cyclic adenosine monophosphate (cAMP) levels inhibits apoptosis induced by ceramide and several other treatments. One target of cAMP-mediated signaling is the transcription factor CREB (cAMP response element binding protein), and recently CREB phosphorylation at an activating site has been shown to also be mediated by a cascade involving p38 mitogen-activated protein kinase (MAPK), one of the stress-activated MAP kinases. Because no role for p38 MAPK in apoptosis has been firmly established, we examined the relationship between p38 MAPK and CREB phosphorylation under various conditions. Ceramide, or sphingomyelinase, like tumor necrosis factor- (TNF-) or the hematopoietic growth factor, interleukin-3 (IL-3), was shown to activate p38 MAPK, which in turn activated MAPKAP kinase-2. Each of these treatments led to phosphorylation of CREB (and the related factor ATF-1). A selective p38 MAPK inhibitor, SB203580, blocked TNF-– or ceramide-induced CREB phosphorylation, but had no effect on the induction of apoptosis mediated by these agents. The protective agents cAMP and IL-3 also led to CREB phosphorylation, but this effect was independent of p38 MAPK, even though IL-3 was shown to activate both p38 MAPK and MAPKAP kinase-2. Therefore, the opposing effects on apoptosis observed with cAMP and IL-3, compared with ceramide and TNF-, could not be explained on the basis of phosphorylation of CREB. In addition, because SB203580 had no effect of TNF- or ceramide-induced apoptosis, our results strongly argue against a role for p38 MAPK in the induction of TNF-– or ceramide-induced apoptosis.
Collapse
|
109
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1989] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
110
|
Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 1999; 103:185-95. [PMID: 9916130 PMCID: PMC407875 DOI: 10.1172/jci3326] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1998] [Accepted: 12/01/1998] [Indexed: 11/17/2022] Open
Abstract
Hyperglycemia can cause vascular dysfunctions by multiple factors including hyperosmolarity, oxidant formation, and protein kinase C (PKC) activation. We have characterized the effect of hyperglycemia on p38 mitogen-activated protein (p38) kinase activation, which can be induced by oxidants, hyperosmolarity, and proinflammatory cytokines, leading to apoptosis, cell growth, and gene regulation. Glucose at 16.5 mM increased p38 kinase activity in a time-dependent manner compared with 5.5 mM in rat aortic smooth muscle cells (SMC). Mannitol activated p38 kinase only at or greater than 22 mM. High glucose levels and a PKC agonist activated p38 kinase, and a PKC inhibitor, GF109203X, prevented its activation. However, p38 kinase activation by mannitol or tumor necrosis factor-alpha was not inhibited by GF109203X. Changes in PKC isoform distribution after exposure to 16.5 mM glucose in SMC suggested that both PKC-beta2 and PKC-delta isoforms were increased. Activities of p38 kinase in PKC-delta- but not PKC-beta1-overexpressed SMC were increased compared with control cells. Activation of p38 kinase was also observed and characterized in various vascular cells in culture and aorta from diabetic rats. Thus, moderate hyperglycemia can activate p38 kinase by a PKC-delta isoform-dependent pathway, but glucose at extremely elevated levels can also activate p38 kinase by hyperosmolarity via a PKC-independent pathway.
Collapse
Affiliation(s)
- M Igarashi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Chan-Hui PY, Weaver R. Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades. Biochem J 1998; 336 ( Pt 3):599-609. [PMID: 9841871 PMCID: PMC1219910 DOI: 10.1042/bj3360599] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades represent one of the important signalling mechanisms in response to environmental stimuli. We report the identification of a human MAPK kinase kinase, MAPKKK4, via sequence similarity with other MAPKKKs. When truncated MAPKKK4 (DeltaMAPKKK4) was overexpressed in HEK293 cells, it was constitutively active and induced the activation of endogenous p38alpha, c-Jun N-terminal kinase (JNK)1/2 and extracellular signal-regulated kinase (ERK)2 in vivo. Kinase-inactive DeltaMAPKKK4 partly inhibited the activation of p38alpha, JNK1/2 and ERK2 induced by stress, tumour necrosis factor alpha or epidermal growth factor, suggesting that MAPKKK4 might be physiologically involved in all three MAPK cascades. Co-expressed MAP kinase kinase (MKK)-1, MKK-4, MKK-3 and MKK-6 were activated in vivo by DeltaMAPKKK4. All of the above MKKs purified from Escherichia coli were phosphorylated and activated by DeltaMAPKKK4 immunoprecipitates in vitro. When expressed by lower plasmid doses, DeltaMAPKKK4 preferentially activated MKK-3 and p38alpha in vivo. Overexpression of DeltaMAPKKK4 did not activate the NF-kappaB pathway. Immunoprecipitation of endogenous MAPKKK4 by specific antibodies showed that MAPKKK4 was activated after the treatment of K562 cells with various stress conditions. As a broadly distributed kinase, MAPKKK4 might serve as a stress responder. MAPKKK4 is 91% identical with the recently described murine MEKK-4beta and might be its human homologue. It is also identical with the recently cloned human MAP three kinase 1 except for the lack of an internal sequence homologous to the murine MEKK-4alpha isoform. Differences in the reported functional activities of the three kinases are discussed.
Collapse
Affiliation(s)
- P Y Chan-Hui
- Amgen, Department of Inflammation Research, 3200 Walnut Street, Boulder, CO 80301, USA.
| | | |
Collapse
|
112
|
Keesler GA, Bray J, Hunt J, Johnson DA, Gleason T, Yao Z, Wang SW, Parker C, Yamane H, Cole C, Lichenstein HS. Purification and activation of recombinant p38 isoforms alpha, beta, gamma, and delta. Protein Expr Purif 1998; 14:221-8. [PMID: 9790884 DOI: 10.1006/prep.1998.0947] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38 is a proline-directed serine/threonine kinase that is activated by inflammatory cytokines and cellular stress. At present, four isoforms of p38 have been identified and termed alpha, beta, gamma, and delta. We expressed each p38 homolog in Escherichia coli and purified the recombinant isoforms. p38alpha and C-terminal Flag-tagged p38beta were purified by Q-Sepharose fast flow, hydroxyapatite, and Q-Sepharose high-performance chromatography. His-tagged p38gamma was purified using Ni2+-NTA resin followed by Mono Q chromatography. Glutathione S-transferase-Flag p38delta was purified using M2 affinity agarose and gel-filtration chromatography. Upstream activators of p38, constitutively active (ca) MKK3 and MKK6, were also cloned, purified, and used to activate each p38 isoform. p38 alpha, gamma, and delta were phosphorylated by both MKK6 and caMKK3. p38beta was phosphorylated only by MKK6. Mass spectrometry analysis and kinase assays showed that MKK6 was the superior reagent for phosphorylating and activating all p38 isoforms.
Collapse
|
113
|
Xia Y, Wu Z, Su B, Murray B, Karin M. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 1998; 12:3369-81. [PMID: 9808624 PMCID: PMC317229 DOI: 10.1101/gad.12.21.3369] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1998] [Accepted: 09/04/1998] [Indexed: 11/24/2022]
Abstract
MAP kinase (MAPK) cascades are composed of a MAPK, MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Despite the existence of numerous components and ample opportunities for crosstalk, most MAPKs are specifically and distinctly activated. We investigated the basis for specific activation of the JNK subgroup of MAPKs. The specificity of JNK activation is determined by the MAPKK JNKK1, which interacts with the MAPKKK MEKK1 and JNK through its amino-terminal extension. Inactive JNKK1 mutants can disrupt JNK activation by MEKK1 or tumor necrosis factor (TNF) in intact cells only if they contain an intact amino-terminal extension. Mutations in this region interfere with the ability of JNKK1 to respond to TNF but do not affect its activation by physical stressors. As JNK and MEKK1 compete for binding to JNKK1 and activation of JNKK1 prevents its binding to MEKK1, activation of this module is likely to occur through sequential MEKK1:JNKK1 and JNKK1:JNK interactions. These results underscore a role for the amino-terminal extension of MAPKKs in determination of response specificity.
Collapse
Affiliation(s)
- Y Xia
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 USA
| | | | | | | | | |
Collapse
|
114
|
Hanada M, Kobayashi T, Ohnishi M, Ikeda S, Wang H, Katsura K, Yanagawa Y, Hiraga A, Kanamaru R, Tamura S. Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 1998; 437:172-6. [PMID: 9824284 DOI: 10.1016/s0014-5793(98)01229-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2Calpha (PP2Calpha) or PP2Cbeta-1 expressed in COS7 cells suppressed anisomycin- and NaCl-enhanced phosphorylations of p38 co-expressed in the cells. PP2Calpha or PP2Cbeta-1 expression also suppressed both basal and stress-enhanced phosphorylations of MKK3b and MKK6b, which are upstream protein kinases of p38, and of MKK4, which is one of the major upstream protein kinases of JNK. Basal activity of MKK7, another upstream protein kinase of JNK, was also suppressed by PP2Calpha or PP2Cbeta-1 expression. However, basal as well as serum-activated phosphorylation of MKK1alpha, an upstream protein kinase of ERKs, was not affected by PP2Cbeta or PP2Cbeta-1. A catalytically inactive mutant of PP2Cbeta-1 further enhanced the NaCl-stimulated phosphorylations of MMK3b, MKK4 and MKK6b, suggesting that this mutant PP2Cbeta-1 works as a dominant negative form. These results suggest that PP2C selectively inhibits the SAPK pathways through suppression of MKK3b, MKK4, MKK6b and MKK7 activities in mammalian cells.
Collapse
Affiliation(s)
- M Hanada
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Ming XF, Kaiser M, Moroni C. c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. EMBO J 1998; 17:6039-48. [PMID: 9774347 PMCID: PMC1170930 DOI: 10.1093/emboj/17.20.6039] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whereas signalling pathways involved in transcriptional control have been studied extensively, the pathways regulating mRNA turnover remain poorly understood. We are interested in the role of mRNA stability in cell activation and oncogenesis using PB-3c mast cells as a model system. In these cells the short-lived interleukin-3 (IL-3) mRNA is stabilized by ionomycin treatment and following oncogenesis. To identify the signalling pathways involved in these mechanisms, we analysed the effect of different kinase inhibitors. SB202190 and wortmannin were shown to antagonize ionomycin-induced IL-3 mRNA stabilization in PB-3c cells in the presence of actinomycin D, and this effect coincided with their ability to inhibit c-jun N-terminal kinase (JNK) activation by ionomycin. Moreover, transfection of activated MEKK1 amplified ionomycin-induced IL-3 mRNA expression at the post-transcriptional level, and a dominant-negative mutant of JNK counteracted mRNA stabilization by ionomycin. Taken together, these data indicate that JNK is involved in the regulation of IL-3 mRNA turnover in mast cells. In addition, transfection experiments revealed that the cis-acting AU-rich element in the 3' untranslated region of IL-3 mRNA is necessary and sufficient to confer JNK-dependent mRNA stabilization in response to cell activation.
Collapse
Affiliation(s)
- X F Ming
- Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | | | | |
Collapse
|
116
|
Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 1998; 8:1049-57. [PMID: 9768359 DOI: 10.1016/s0960-9822(98)70442-7] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mitogen-activated protein (MAP) kinases (or extracellular signal regulated kinases; Erks) and stress-activated protein (SAP) kinases mediate cellular responses to a wide variety of signals. In the Erk MAP kinase pathway, activation of MAP kinases takes place in the cytoplasm and the activated enzyme moves to the nucleus. This translocation to the nucleus is essential to MAP kinase signalling because it enables the kinase to phosphorylate transcription factors. Whether components of the pathway mediated by the SAP kinase p38 change their cellular location on activation is not clear; we have therefore studied the cellular localisation of components of this pathway before and after stimulation. RESULTS The p38 SAP kinase substrate MAP-kinase-activated protein kinase-2 (MAPKAP kinase-2) contains a putative nuclear localisation signal which we show is functional and required for activation by a variety of stimuli. Following phosphorylation of MAPKAP kinase-2, nuclear p38 was exported to the cytoplasm in a complex with MAPKAP kinase-2. Export of MAPKAP kinase-2 required phosphorylation by p38 but did not appear to require the kinase activity of MAPKAP kinase-2. The p38 activators MKK3 and MKK6 were present in both the nucleus and the cytoplasm, consistent with a role in activating p38 in the nucleus. CONCLUSIONS In the p38 SAP kinase pathway, MAPKAP kinase-2 serves both as an effector of p38 by phosphorylating substrates and as a determinant of cellular localisation of p38. Nuclear export of p38 and MAPKAP kinase-2 may permit them to phosphorylate substrates in the cytoplasm.
Collapse
Affiliation(s)
- R Ben-Levy
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
117
|
Schäfer C, Ross SE, Bragado MJ, Groblewski GE, Ernst SA, Williams JA. A role for the p38 mitogen-activated protein kinase/Hsp 27 pathway in cholecystokinin-induced changes in the actin cytoskeleton in rat pancreatic acini. J Biol Chem 1998; 273:24173-80. [PMID: 9727040 DOI: 10.1074/jbc.273.37.24173] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin (CCK) and other pancreatic secretagogues have recently been shown to activate signaling kinase cascades in pancreatic acinar cells, leading to the activation of extracellular signal-regulated kinases and Jun N-terminal kinases. We now show the presence of a third kinase cascade activating p38 mitogen-activated protein (MAP) kinase in isolated rat pancreatic acini. CCK and osmotic stress induced by sorbitol activated p38 MAP kinase within minutes; their effects were dose-dependent, with maximal activation of 2.8- and 4.4-fold, respectively. The effects of carbachol and bombesin on p38 MAP kinase activity were similar to those of CCK, whereas phorbol ester, epidermal growth factor, and vasoactive intestinal polypeptide stimulated p38 MAP kinase by 2-fold or less. Both CCK and sorbitol also increased the tyrosyl phosphorylation of p38 MAP kinase. Using the specific inhibitor of p38 MAP kinase, SB 203580, we found that p38 MAP kinase activity was required for MAP kinase-activated protein kinase-2 activation in pancreatic acini. SB 203580 reduced the level of basal phosphorylation and blocked the increased phosphorylation of Hsp 27 after stimulation with either CCK or sorbitol. CCK treatment induced an initial rapid decrease in total F-actin content of acini, followed by an increase after 40 min. Preincubation with SB 203580 significantly inhibited these changes in F-actin content. Staining of the actin cytoskeleton with rhodamine-conjugated phalloidin and analysis by confocal fluorescence microscopy showed disruption of the actin cytoskeleton after 10 and 40 min of CCK stimulation. Pretreatment with SB 203580 reduced these changes. These findings demonstrate that the activation of p38 MAP kinase is involved not only in response to stress, but also in physiological signaling by gastrointestinal hormones such as CCK, where activation of Gq-coupled receptors stimulates a cascade in which p38 MAP kinase activates MAP kinase-activated protein kinase-2, resulting in Hsp 27 phosphorylation. Activation of p38 MAP kinase, most likely through phosphorylation of Hsp 27, plays a role in the organization of the actin cytoskeleton in pancreatic acini.
Collapse
Affiliation(s)
- C Schäfer
- Department of Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | | | |
Collapse
|
118
|
Grammer AC, Swantek JL, McFarland RD, Miura Y, Geppert T, Lipsky PE. TNF Receptor-Associated Factor-3 Signaling Mediates Activation of p38 and Jun N-Terminal Kinase, Cytokine Secretion, and Ig Production Following Ligation of CD40 on Human B Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.3.1183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD40 engagement induces a variety of functional outcomes following association with adaptor molecules of the TNF receptor-associated factor (TRAF) family. Whereas TRAF2, -5, and -6 initiate NF-κB activation, the outcomes of TRAF3-initiated signaling are less characterized. To delineate CD40-induced TRAF3-dependent events, Ramos B cells stably transfected with a dominant negative TRAF3 were stimulated with membranes expressing recombinant CD154/CD40 ligand. In the absence of TRAF3 signaling, activation of p38 and control of Ig production were abrogated, whereas Jun N-terminal kinase activation and secretion of IL-10, lymphotoxin-α, and TNF-α were partially blocked. By contrast, induction of apoptosis, activation of NF-κB, generation of granulocyte-macrophage CSF, and up-regulation of CD54, MHC class II, and CD95 were unaffected by the TRAF3 dominant negative. Together, these results indicate that TRAF3 initiates independent signaling pathways via p38 and JNK that are associated with specific functional outcomes.
Collapse
Affiliation(s)
- Amrie C. Grammer
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | | | | | - Yasushi Miura
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | - Thomas Geppert
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | - Peter E. Lipsky
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| |
Collapse
|
119
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in transducting environmental stimuli to the transcriptional machinery in the nucleus by virtue of their ability to phosphorylate and regulate the activity of various transcription factors. Originally found to be activated in response to occupancy of cell surface receptors for polypeptide hormones, cytokines, and growth factors, MAPK cascades were recently found to be activated by a variety of stresses including ischemia reperfusion, neuronal injury, osmotic shock, and exposure to UV irradiation. Therefore, MAPK cascades are likely to be important regulatory elements in a variety of stress responses.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, University of California, San Diego, La Jolla 92903-0636, USA
| |
Collapse
|
120
|
Rincón M, Enslen H, Raingeaud J, Recht M, Zapton T, Su MS, Penix LA, Davis RJ, Flavell RA. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J 1998; 17:2817-29. [PMID: 9582275 PMCID: PMC1170622 DOI: 10.1093/emboj/17.10.2817] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signal transduction via MAP kinase pathways plays a key role in a variety of cellular responses, including growth factor-induced proliferation, differentiation and cell death. In mammalian cells, p38 MAP kinase can be activated by multiple stimuli, such as pro-inflammatory cytokines and environmental stress. Although p38 MAP kinase is implicated in the control of inflammatory responses, the molecular mechanisms remain unclear. Upon activation, CD4+ T cells differentiate into Th2 cells, which potentiate the humoral immune response or pro-inflammatory Th1 cells. Here, we show that pyridinyl imidazole compounds (specific inhibitors of p38 MAP kinase) block the production of interferon-gamma (IFNgamma) by Th1 cells without affecting IL-4 production by Th2 cells. These drugs also inhibit transcription driven by the IFNgamma promoter. In transgenic mice, inhibition of the p38 MAP kinase pathway by the expression of dominant-negative p38 MAP kinase results in selective impairment of Th1 responses. In contrast, activation of the p38 MAP kinase pathway by the expression of constitutivelyactivated MAP kinase kinase 6 in transgenic mice caused increased production of IFNgamma during the differentiation and activation of Th1 cells. Together, these data demonstrate that the p38 MAP kinase is relevant for Th1 cells, not Th2 cells, and that inhibition of p38 MAP kinase represents a possible site of therapeutic intervention in diseases where a predominant Th1 immune response leads to a pathological outcome. Moreover, our study provides an additional mechanism by which the p38 MAP kinase pathway controls inflammatory responses.
Collapse
Affiliation(s)
- M Rincón
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Clarke N, Arenzana N, Hai T, Minden A, Prywes R. Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol Cell Biol 1998; 18:1065-73. [PMID: 9448004 PMCID: PMC108819 DOI: 10.1128/mcb.18.2.1065] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-jun proto-oncogene encodes a transcription factor which is activated by mitogens both transcriptionally and by phosphorylation by Jun N-terminal kinase (JNK). We have investigated the cellular signalling pathways involved in epidermal growth factor (EGF) induction of the c-jun promoter. We find that two sequence elements, which bind ATF1 and MEF2D transcription factors, are required in HeLa cells, although they are not sufficient for maximal induction. Activated forms of Ras, RacI, Cdc42Hs, and MEKK increased expression of the c-jun promoter, while dominant negative forms of Ras, RacI, and MEK kinase (MEKK) inhibited EGF induction. These and previously published results suggest that EGF activates the c-jun promoter by a Ras-to-Rac-to-MEKK pathway. This pathway is similar to that used for posttranslational activation of c-jun by JNK.
Collapse
Affiliation(s)
- N Clarke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
122
|
Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 1998; 273:1741-8. [PMID: 9430721 DOI: 10.1074/jbc.273.3.1741] [Citation(s) in RCA: 441] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular response to treatment with proinflammatory cytokines or exposure to environmental stress is mediated, in part, by the p38 group of mitogen-activated protein (MAP) kinases. We report the molecular cloning of a novel isoform of p38 MAP kinase, p38 beta 2. This p38 MAP kinase, like p38 alpha, is inhibited by the pyridinyl imidazole drug SB203580. The p38 MAP kinase kinase MKK6 is identified as a common activator of p38 alpha, p38 beta 2, and p38 gamma MAP kinase isoforms, while MKK3 activates only p38 alpha and p38 gamma MAP kinase isoforms. The MKK3 and MKK6 signal transduction pathways are therefore coupled to distinct, but overlapping, groups of p38 MAP kinases.
Collapse
Affiliation(s)
- H Enslen
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | |
Collapse
|
123
|
Fritz G, Kaina B. rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J Biol Chem 1997; 272:30637-44. [PMID: 9388198 DOI: 10.1074/jbc.272.49.30637] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The small GTPase RhoB is immediate-early inducible by DNA damaging treatments and thus part of the early response of eukaryotic cells to genotoxic stress. To investigate the regulation of this cellular response, we isolated the gene for rhoB from a mouse genomic library. Sequence analysis of the rhoB gene showed that its coding region does not contain introns. The promoter region of rhoB harbors regulatory elements such as TATA, CAAT, and Sp1 boxes but not consensus sequences for AP-1, Elk-1, or c-Jun/ATF-2. The rhoB promoter was activated by UV irradiation, but not by 12-O-tetradecanoylphorbol-13-acetate treatment. rhoB promoter deletion constructs revealed a fragment of 0.17 kilobases in size which was sufficient in eliciting the UV response. This minimal promoter fragment contains TATA and CAAT boxes but no other known regulatory elements. Neither MEK inhibitor PD98059 nor p38 kinase inhibitor SB203580 blocked stimulation of rhoB by UVC (UV light, 254 nm) which indicates that ERK or p38 mitogen-activated protein (MAP) kinase are not involved in the UV induction of rhoB. Also, phosphatidylinositol 3-kinase inhibitor wortmannin, which blocks UV stimulation of both JNK and p38 MAP kinase, did not inhibit rhoB activation. Furthermore, activation of JNK by interleukin-1beta did not affect rhoB expression. These data indicate that JNK is not involved in the regulation of rhoB. Overexpression of wild-type Rac as well as the Rho guanine-dissociation inhibitor caused activation of rhoB. Wild-type RhoB inhibited both basal and UV-stimulated rhoB promoter activity, indicating a negative regulatory feedback by RhoB itself. The data provide evidence both for a signal transduction pathway independent of JNK, ERK, and p38 MAP kinase to be involved in the induction of rhoB by genotoxic stress, and furthermore, indicate autoregulation of rhoB.
Collapse
Affiliation(s)
- G Fritz
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
124
|
Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E. A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses. EMBO J 1997; 16:7045-53. [PMID: 9384583 PMCID: PMC1170307 DOI: 10.1093/emboj/16.23.7045] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase (MAPK) superfamily, is thought to play a key role in a variety of cellular responses. To date, SEK1/MKK4, one of the MAP kinase kinase (MAPKK) family of molecules, is the only SAPK/JNK kinase that has been cloned. Here we have cloned, identified and characterized a novel member of the mammalian MAPKKs, designated MKK7. MKK7 is most similar to the mediator of morphogenesis, hemipterous (hep), in Drosophila. Immunochemical studies have identified MKK7 as one of the major SAPK/JNK-activating kinases in osmotically shocked cells. While SEK1/MKK4 can activate both the SAPK/JNK and p38 subgroups of the MAPK superfamily, MKK7 is specific for the SAPK/JNK subgroup. MKK7 is activated strongly by tumour necrosis factor alpha (TNFalpha) as well as by environmental stresses, whereas SEK1/MKK4 is not activated by TNFalpha. Column fractionation studies have shown that MKK7 is a major activator for SAPK/JNK in the TNFalpha-stimulated pathway. Moreover, we have found that overexpression of MKK7 enhances transcription from an AP-1-dependent reporter construct. Thus, MKK7 is an evolutionarily conserved MAPKK isoform which is specific for SAPK/JNK, is involved in AP-1-dependent transcription and may be a crucial mediator of TNFalpha signalling.
Collapse
Affiliation(s)
- T Moriguchi
- Institute for Virus Research, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Wu Z, Wu J, Jacinto E, Karin M. Molecular cloning and characterization of human JNKK2, a novel Jun NH2-terminal kinase-specific kinase. Mol Cell Biol 1997; 17:7407-16. [PMID: 9372971 PMCID: PMC232596 DOI: 10.1128/mcb.17.12.7407] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
At least three mitogen-activated protein kinase (MAPK) cascades were identified in mammals, each consisting of a well-defined three-kinase module composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). These cascades play key roles in relaying various physiological, environmental, or pathological signals from the environment to the transcriptional machinery in the nucleus. One of these MAPKs, c-Jun N-terminal kinase (JNK), stimulates the transcriptional activity of c-Jun in response to growth factors, proinflammatory cytokines, and certain environmental stresses, such as short wavelength UV light or osmotic shock. The JNKs are directly activated by the MAPKK JNKK1/SEK1/MKK4. However, inactivation of the gene encoding this MAPKK by homologous recombination suggested the existence of at least one more JNK-activating kinase. Recently, the JNK cascade was found to be structurally and functionally conserved in Drosophila, where DJNK is activated by the MAPKK DJNKK (hep). By a database search, we identified an expressed sequence tag (EST) encoding a portion of human MAPKK that is highly related to DJNKK (hep). We used this EST to isolate a full-length cDNA clone encoding a human JNKK2. We show that JNKK2 is a highly specific JNK kinase. Unlike JNKK1, it does not activate the related MAPK, p38. Although the regulation of JNKK1 activities and that of JNKK2 activities could be very similar, the two kinases may play somewhat different regulatory roles in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Z Wu
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | |
Collapse
|
126
|
Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 1997; 272:30122-8. [PMID: 9374491 DOI: 10.1074/jbc.272.48.30122] [Citation(s) in RCA: 377] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have cloned and characterized a new member of the p38 group of mitogen-activated protein kinases here termed p38delta. Sequence comparisons revealed that p38delta is approximately 60% identical to the other three p38 isoforms but only 40-45% to the other mitogen-activated protein kinase family members. It contains the TGY dual phosphorylation site present in all p38 group members and is activated by a group of extracellular stimuli including cytokines and environmental stresses that also activate the other three known p38 isoforms. However, unlike the other p38 isoforms, the kinase activity of p38delta is not blocked by the pyridinyl imidazole, 4-(4-fluorophenyl)-2-2(4-hydroxyphenyl)-5-(4-pyridyl)-imidazole (identicalto SB202190). p38delta can be activated by MKK3 and MKK6, known activators of the other isoforms. Nonetheless, in-gel kinase assays provide evidence for additional activators. The data presented herein show that p38delta has many properties that are similar to those of other p38 group members. Nonetheless important differences exist among the four members of the p38 group of enzymes, and thus each may have highly specific, individual contributions to biologic events involving activation of the p38 pathways.
Collapse
Affiliation(s)
- Y Jiang
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Finch A, Holland P, Cooper J, Saklatvala J, Kracht M. Selective activation of JNK/SAPK by interleukin-1 in rabbit liver is mediated by MKK7. FEBS Lett 1997; 418:144-8. [PMID: 9414114 DOI: 10.1016/s0014-5793(97)01364-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) by interleukin-1 (IL-1) has been reported in many cells and in rabbit liver. Here we report selective activation of JNK/SAPK, without activation of p38 or p42 mitogen-activated protein kinases (MAPKs), by IL-1 in rabbit liver. We identified an IL-1 regulated JNK/SAPK activator present in rabbit liver using S Sepharose chromatography. It was purified and immunoprecipitated by two antisera to MAP kinase kinase 7 (MKK7). It was not recognised by an antibody to MKK4. We conclude that MKK7 is the activator of JNK/SAPK activated by IL-1 in liver and that JNK/SAPK is the only MAPK activated by IL-1 in liver.
Collapse
Affiliation(s)
- A Finch
- Kennedy Institute of Rheumatology, London, UK
| | | | | | | | | |
Collapse
|
128
|
Toyoshima F, Moriguchi T, Nishida E. Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases. J Cell Biol 1997; 139:1005-15. [PMID: 9362518 PMCID: PMC2139975 DOI: 10.1083/jcb.139.4.1005] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-1beta converting enzyme (ICE) family cysteine proteases are subdivided into three groups; ICE-, CPP32-, and Ich-1-like proteases. In Fas-induced apoptosis, activation of ICE-like proteases is followed by activation of CPP32-like proteases which is thought to be essential for execution of the cell death. It was recently reported that two subfamily members of the mitogen-activated protein kinase superfamily, JNK/SAPK and p38, are activated during Fas-induced apoptosis. Here, we have shown that MKK7, but not SEK1/ MKK4, is activated by Fas as an activator for JNK/ SAPK and that MKK6 is a major activator for p38 in Fas signaling. Then, to dissect various cellular responses induced by Fas, we used several peptide inhibitors for ICE family proteases in Fas-treated Jurkat cells and KB cells. While Z-VAD-FK which inhibited almost all the Fas-induced cellular responses blocked the activation of JNK/SAPK and p38, Ac-DEVD-CHO and Z-DEVD-FK, specific inhibitors for CPP32-like proteases, which inhibited the Fas-induced chromatin condensation and DNA fragmentation did not block the activation of JNK/SAPK and p38. Interestingly, these DEVD-type inhibitors did not block the Fas-induced morphological changes (cell shrinkage and surface blebbing), induction of Apo2.7 antigen, or the cell death (as assessed by the dye exclusion ability). These results suggest that the Fas-induced activation of the JNK/SAPK and p38 signaling pathways does not require CPP32-like proteases and that CPP32-like proteases, although essential for apoptotic nuclear events (such as chromatin condensation and DNA fragmentation), are not required for other apoptotic events in the cytoplasm or the cell death itself. Thus, the Fas signaling pathway diverges into multiple, separate processes, each of which may be responsible for part of the apoptotic cellular responses.
Collapse
Affiliation(s)
- F Toyoshima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-01, Japan
| | | | | |
Collapse
|
129
|
Zhuang S, Hirai S, Mizuno K, Suzuki A, Akimoto K, Izumi Y, Yamashita A, Ohno S. Involvement of protein kinase C in the activation of extracellular signal-regulated kinase 1/2 by UVC irradiation. Biochem Biophys Res Commun 1997; 240:273-8. [PMID: 9388466 DOI: 10.1006/bbrc.1997.7474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UVC irradiation activates mitogen-activated protein kinases (MAPKs), including ERK, JNK, and P38. This study examined the role of protein kinase C (PKC) in the regulation of UVC-stimulated MAPKs activation. Either the depletion of PKC by prolonged treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) or the inhibition of PKC by a selective PKC inhibitor, UCN-01-ME, attenuated UVC-activation of ERK1/2, keeping the activation of JNK1/2 intact. However, K252a, a non-selective PKC inhibitor, inhibited the activation of both ERK1/2 and JNK1/2 by UVC. In three isoforms of PKC (alpha, delta, epsilon) examined, PKC epsilon shows the most evident translocation, a temporal association with cell membrane, upon the UVC irradiation of NIH 3T3 cells. These results suggest that PKC is acting in the UVC-dependent activation of ERK1/2, and PKC epsilon is one of the PKC isozymes playing such a role.
Collapse
Affiliation(s)
- S Zhuang
- Department of Molecular Biology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Schinkmann K, Blenis J. Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J Biol Chem 1997; 272:28695-703. [PMID: 9353338 DOI: 10.1074/jbc.272.45.28695] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We cloned and characterized a novel human member of the STE20 serine/threonine protein kinase family named mst-3. Based on its domain structure, mst-3 belongs to the SPS1 subgroup of STE20-like proteins, which includes germinal center (GC) kinase, hematopoietic progenitor kinase (HPK), kinase homologous to STE20/SPS-1 (KHS), kinases responsive to stress (KRS1/2), the mammalian STE20-like kinases (mst1/2), and the recently published STE20/oxidant stress response kinase SOK-1. mst-3 is most closely related to SOK-1, with 88% amino acid similarity in the kinase domain. The similarity of the mst-3 kinase domain to STE20 is 42%. The mst-3 transcript is ubiquitously expressed, and the protein was found in all human, mouse, and monkey cell lines tested. An in vitro kinase assay showed that mst-3 can phosphorylate basic exogenous substrates as well as itself. Interestingly, mst-3 prefers Mn2+ to Mg2+ as a divalent cation and can use both GTP and ATP as phosphate donors. Like SOK-1, mst-3 is activated by autophosphorylation. However, a physiological stimulus of mst-3 activity was not identified. mst-3 activity does not change upon exposure to several mitogenic and stress stimuli. Overexpression of mst-3 wild-type or kinase dead protein affects neither the extracellular signal-regulated kinases (ERK1/2 or ERK6), c-Jun N-terminal kinase (JNK), p38, nor pp70S6 kinase, suggesting that mst-3 is part of a novel signaling pathway.
Collapse
Affiliation(s)
- K Schinkmann
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
131
|
Swantek JL, Cobb MH, Geppert TD. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 1997; 17:6274-82. [PMID: 9343388 PMCID: PMC232478 DOI: 10.1128/mcb.17.11.6274] [Citation(s) in RCA: 397] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The adverse effects of lipopolysaccharide (LPS) are mediated primarily by tumor necrosis factor alpha (TNF-alpha). TNF-alpha production by LPS-stimulated macrophages is regulated at the levels of both transcription and translation. It has previously been shown that several mitogen-activated protein kinases (MAPKs) are activated in response to LPS. We set out to determine which MAPK signaling pathways are activated in our system and which MAPK pathways are required for TNF-alpha gene transcription or TNF-alpha mRNA translation. We confirm activation of the MAPK family members extracellular-signal-regulated kinases 1 and 2 (ERK1 and ERK2), p38, and Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), as well as activation of the immediate upstream MAPK activators MAPK/ERK kinases 1 and 4 (MEK1 and MEK4). We demonstrate that LPS also activates MEK2, MEK3, and MEK6. Furthermore, we demonstrate that dexamethasone, which inhibits the production of cytokines, including TNF-alpha, significantly inhibits LPS induction of JNK/SAPK activity but not that of p38, ERK1 and ERK2, or MEK3, MEK4, or MEK6. Dexamethasone also blocks the sorbitol but not anisomycin stimulation of JNK/SAPK activity. A kinase-defective mutant of SAPKbeta, SAPKbeta K-A, blocked translation of TNF-alpha, as determined by using a TNF-alpha translational reporting system. Finally, overexpression of wild-type SAPKbeta was able to overcome the dexamethasone-induced block of TNF-alpha translation. These data confirm that three MAPK family members and their upstream activators are stimulated by LPS and demonstrate that JNK/SAPK is required for LPS-induced translation of TNF-alpha mRNA. A novel mechanism by which dexamethasone inhibits translation of TNF-alpha is also revealed.
Collapse
Affiliation(s)
- J L Swantek
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas 75235-9041, USA
| | | | | |
Collapse
|
132
|
Yamauchi J, Nagao M, Kaziro Y, Itoh H. Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gbetagamma and Galphaq/11 subunits. J Biol Chem 1997; 272:27771-7. [PMID: 9346921 DOI: 10.1074/jbc.272.44.27771] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Various extracellular stimuli activate three classes of mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK. In mammalian cells, p38 MAPK is activated by endotoxins, inflammatory cytokines, and environmental stresses. We show here that p38 MAPK is also activated upon stimulation of G protein-coupled receptors (Gq/G11-coupled m1 and Gi-coupled m2 muscarinic acetylcholine and Gs-coupled beta-adrenergic receptors) in human embryonal kidney 293 cells. The activation of p38 MAPK through the m2 and beta-adrenergic receptors was completely inhibited by coexpression of Galphao, whereas the activation by the m1 receptor was only partially inhibited. Furthermore, we show that overexpression of Gbetagamma or a constitutively activated mutant of Galpha11, but not Galphas and Galphai, can stimulate p38 MAPK. These results suggest that the signal from the m2 and beta-adrenergic receptors to p38 MAPK is mediated by Gbetagamma, whereas the signal from the m1 receptor is mediated by both Gbetagamma and Galphaq/11.
Collapse
Affiliation(s)
- J Yamauchi
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
| | | | | | | |
Collapse
|
133
|
Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 1997; 272:23668-74. [PMID: 9295308 DOI: 10.1074/jbc.272.38.23668] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p38 mitogen-activated protein kinases (MAPK) are activated by cellular stresses and play an important role in regulating gene expression. We have isolated a cDNA encoding a novel protein kinase that has significant homology (57% amino acid identity) to human p38alpha/CSBP. The novel kinase, p38delta, has a nucleotide sequence encoding a protein of 365 amino acids with a putative TGY dual phosphorylation motif. Dot-blot analysis of p38delta mRNA in 50 human tissues revealed a distribution profile of p38delta that differs from p38alpha. p38delta is highly expressed in salivary gland, pituitary gland, and adrenal gland, whereas p38alpha is highly expressed in placenta, cerebellum, bone marrow, thyroid gland, peripheral leukocytes, liver, and spleen. Like p38alpha, p38delta is activated by cellular stress and proinflammatory cytokines. p38delta phosphorylates ATF-2 and PHAS-I, but not MAPK-activated protein kinase-2 and -3, known in vivo and in vitro substrates of p38alpha. We also observed that p38delta was strongly activated by MKK3 and MKK6, while p38alpha was preferentially activated by MKK6. Other experiments showed that a potent p38alpha kinase inhibitor AMG 2372 minimally inhibited the kinase activity of p38delta. Taken together, these data indicate that p38delta is a new member of the p38 MAPK family and that p38delta likely has functions distinct from that of p38alpha.
Collapse
Affiliation(s)
- X S Wang
- Amgen Inc., Boulder, Colorado 80301, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kuroki DW, Minden A, Sánchez I, Wattenberg EV. Regulation of a c-Jun amino-terminal kinase/stress-activated protein kinase cascade by a sodium-dependent signal transduction pathway. J Biol Chem 1997; 272:23905-11. [PMID: 9295340 DOI: 10.1074/jbc.272.38.23905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Palytoxin is a novel skin tumor promoter that does not activate protein kinase C. Previous studies demonstrated that palytoxin stimulates a sodium-dependent signaling pathway that activates the c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK) in Swiss 3T3 fibroblasts. In this study we show that a JNK kinase known as the stress-activated protein kinase/extracellular signal-regulated kinase-1 (SEK1) plays an important role in the regulation of JNK by palytoxin. We found that palytoxin stimulates the sustained activation of both JNK and SEK1 in COS7 and HeLa cells. Transiently expressed SEK1 isolated from palytoxin-treated cells can phosphorylate and activate JNK, which, in turn, can phosphorylate c-Jun. Furthermore, expression of a dominant negative mutant of SEK1 blocks activation of JNK by palytoxin. Sodium appears to play an important role in the regulation of JNK and SEK1 by palytoxin. Activation of JNK and SEK1 by palytoxin, but not anisomycin, requires extracellular sodium. Complementary studies showed that the sodium ionophore gramicidin can mimic palytoxin by regulating JNK and SEK1 through a sodium-dependent mechanism. Collectively, these results demonstrate that palytoxin stimulates a sodium-dependent signaling pathway that activates the SEK1/JNK/c-Jun protein kinase cascade.
Collapse
Affiliation(s)
- D W Kuroki
- Division of Environmental and Occupational Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
135
|
Paul A, Wilson S, Belham CM, Robinson CJ, Scott PH, Gould GW, Plevin R. Stress-activated protein kinases: activation, regulation and function. Cell Signal 1997; 9:403-10. [PMID: 9376221 DOI: 10.1016/s0898-6568(97)00042-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The response of cells to extracellular stimuli is mediated in part by a number of intracellular kinase and phosphatase enzymes. Within this area of research the activation of the p42 and p44 isoforms of mitogen-activated protein (MAP) kinases have been extensively described and characterised as central components of the signal transduction pathways stimulated by both growth factors and G-protein-coupled receptor agonists. Signaling events mediated by these kinases are fundamental to cellular functions such as proliferation and differentiation. More recently, homologues of the p42 and p44 isoforms of MAP kinase have been described, namely the stress-activated protein kinases (SAPKs) or alternatively the c-jun N-terminal kinases (JNKs) and p38 MAP kinase (the mammalian homologue of yeast HOG1). These MAP kinase homologues are integral components of parallel MAP kinase cascades activated in response to a number of cellular stresses including inflammatory cytokines (e.g., Interleukin-1 (Il-1) and tumour necrosis factor-alpha (TNF-alpha), heat and chemical shock, bacterial endotoxin and ischaemia/cellular ATP depletion. Activation of these MAP kinase homologues mediates the transduction of extracellular signals to the nucleus and are pivotal events in the regulation of the transcription events that determine functional outcome in response to such stresses. In this review we highlight the identification and characterisation of the stress-activated MAP kinase homologues, their role as components of parallel MAP kinase pathways and the regulation of cellular responses following exposure to cellular stress.
Collapse
Affiliation(s)
- A Paul
- Department of Physiology and Pharmacology, Royal College, University of Strathclyde, Glasgow
| | | | | | | | | | | | | |
Collapse
|
136
|
Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS. p38-2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem 1997; 272:19509-17. [PMID: 9235954 DOI: 10.1074/jbc.272.31.19509] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are involved in many cellular processes. Here we describe the cloning and characterization of a new MAP kinase, p38-2. p38-2 belongs to the p38 subfamily of MAP kinases and shares with it the TGY phosphorylation motif. The complete p38-2 cDNA was isolated by polymerase chain reaction. It encodes a 364-amino acid protein with 73% identity to p38. Two shorter isoforms missing the phosphorylation motif were identified. Analysis of various tissues demonstrated that p38-2 is differently expressed from p38. Highest expression levels were found in heart and skeletal muscle. Like p38, p38-2 is activated by stress-inducing signals and proinflammatory cytokines. The preferred upstream kinase is MEK6. Although p38-2 and p38 phosphorylate the same substrates, the site specificity of phosphorylation can differ as shown by two-dimensional phosphopeptide analysis of Sap-1a. Additionally, kinetic studies showed that p38-2 appears to be about 180 times more active than p38 on certain substrates such as ATF2. Both kinases are inhibited by a class of pyridinyl imidazoles. p38-2 phosphorylation of ATF2 and Sap-1a but not Elk1 results in increased transcriptional activity of these factors. A sequential kinetic mechanism of p38-2 is suggested by steady state kinetic analysis. In conclusion, p38-2 may be an important component of the stress response required for the homeostasis of a cell.
Collapse
Affiliation(s)
- B Stein
- Signal Pharmaceuticals Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
AbstractActivation of p38 MAP kinase (p38) as well as JNK/SAPK has been described as being induced by a variety of environmental stresses such as osmotic shock, ultraviolet radiation, and heat shock, or the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 (IL-3). We found that the hematopoietic cytokines erythropoietin (Epo) and IL-3, which regulate growth and differentiation of erythroids and hematopoietic progenitors, respectively, also activate a p38 cascade. Immunoblot analyses and in vitro kinase assay clearly showed that Epo and IL-3 rapidly and transiently phosphorylated and activated p38 in Epo– or IL-3–dependent mouse hematopoietic progenitor cells. p38 can generally be activated by the upstream kinase MKK3 or MKK6. However, in vitro kinase assays in the immunoprecipitates with anti-MKK6 antibody and anti-phosphorylated MKK3/MKK6 antibody showed that activation of neither MKK3 nor MKK6 was detected after Epo or IL-3 stimulation, while osmotic shock clearly induced activation of both MKK3/MKK6 and p38. Together with previous observations, these results suggest that both p38 and JNK cascades play an important role not only in stress and proinflammatory cytokine responses but also in hematopoietic cytokine actions.
Collapse
|
138
|
Abstract
Activation of p38 MAP kinase (p38) as well as JNK/SAPK has been described as being induced by a variety of environmental stresses such as osmotic shock, ultraviolet radiation, and heat shock, or the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 (IL-3). We found that the hematopoietic cytokines erythropoietin (Epo) and IL-3, which regulate growth and differentiation of erythroids and hematopoietic progenitors, respectively, also activate a p38 cascade. Immunoblot analyses and in vitro kinase assay clearly showed that Epo and IL-3 rapidly and transiently phosphorylated and activated p38 in Epo– or IL-3–dependent mouse hematopoietic progenitor cells. p38 can generally be activated by the upstream kinase MKK3 or MKK6. However, in vitro kinase assays in the immunoprecipitates with anti-MKK6 antibody and anti-phosphorylated MKK3/MKK6 antibody showed that activation of neither MKK3 nor MKK6 was detected after Epo or IL-3 stimulation, while osmotic shock clearly induced activation of both MKK3/MKK6 and p38. Together with previous observations, these results suggest that both p38 and JNK cascades play an important role not only in stress and proinflammatory cytokine responses but also in hematopoietic cytokine actions.
Collapse
|
139
|
Huang S, Jiang Y, Li Z, Nishida E, Mathias P, Lin S, Ulevitch RJ, Nemerow GR, Han J. Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b. Immunity 1997; 6:739-49. [PMID: 9208846 DOI: 10.1016/s1074-7613(00)80449-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fas/APO-1(CD95) ligation activates programmed cell death, a cellular process that plays an important role in the maturation of the host immune response. We show that activation of a specific MAP kinase kinase (MKK), MKK6b, is necessary and sufficient for Fas-induced apoptosis of Jurkat T cells. MKK6b activation occurs downstream of an interleukin-1 converting enzyme-like (ICE-like) protease(s), while execution of the apoptotic pathway by MKK6b requires both ICE- and CPP32-like proteases. Surprisingly, the p38 MAP kinase protein, a known substrate of MKK6b, does not participate in Fas/MKK6b-mediated apoptosis. These findings indicate a divergence of the MKK6b signaling pathways, one of which activates p38 and leads to regulation of gene expression, and one of which activates the ICE/Ced-3 family of proteases and leads to cell death. These studies represent a demonstration of an apoptotic pathway that is comprised of both the ICE/Ced-3 family of proteases and MAP kinase kinase 6.
Collapse
Affiliation(s)
- S Huang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Pyne NJ, Pyne S. Platelet-derived growth factor activates a mammalian Ste20 coupled mitogen-activated protein kinase in airway smooth muscle. Cell Signal 1997; 9:311-7. [PMID: 9218133 DOI: 10.1016/s0898-6568(96)00190-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the mechanisms regulating p38MAPK in airway smooth muscle cells. Incubation of cells with platelet-derived growth factor (PDGF) stimulated MAPKA kinase-2 activity, a kinase immediately down-stream of P38MAPK. Preincubation of the cells with forskolin (10 microM), which stimulated a 20-fold increase in intracellular cAMP formation, inhibited this response. An antibody raised against subdomain VI of yeast Ste20 kinase co-immunoprecipitated p38MAPK from cell lysates. The immunoprecipitated kinase(s) was shown to catalyse the phosphorylation of myelin basic protein (MBP) and to activate purified MAPKAP kinase-2. Incubation of cells with PDGF did not increase the amount of p38MAPK isolated in the anti-Ste20 immunoprecipitate. However, the kinase phosphorylated MBP and stimulated purified MAPKAP kinase-2 activity more effectively than kinase from control cells. The preincubation of cells with forskolin (10 microM) reduced the amount of P38MAPK in the immunoprecipitate and this correlated with a decrease in kinase activity. We conclude the PDGF induces the activation of p38MAPK, whereas forskolin elicits its dissociation from the complex with Ste20. Therefore, Ste20/p38MAPK may form part of a signal transduction pathway linked to activation of MAPKAP kinase-2 in ASM cells.
Collapse
Affiliation(s)
- N J Pyne
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland
| | | |
Collapse
|
141
|
Whitmarsh AJ, Yang SH, Su MS, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 1997; 17:2360-71. [PMID: 9111305 PMCID: PMC232085 DOI: 10.1128/mcb.17.5.2360] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factors Elk-1 and SAP-1 bind together with serum response factor to the serum response element present in the c-fos promoter and mediate increased gene expression. The ERK, JNK, and p38 groups of mitogen-activated protein (MAP) kinases phosphorylate and activate Elk-1 in response to a variety of extracellular stimuli. In contrast, SAP-1 is activated by ERK and p38 MAP kinases but not by JNK. The proinflammatory cytokine interleukin-1 (IL-1) activates JNK and p38 MAP kinases and induces the transcriptional activity of Elk-1 and SAP-1. These effects of IL-1 appear to be mediated by Rho family GTPases. To examine the relative roles of the JNK and p38 MAP kinase pathways, we examined the effects of IL-1 on CHO and NIH 3T3 cells. Studies of NIH 3T3 cells demonstrated that both the JNK and p38 MAP kinases are required for IL-1-stimulated Elk-1 transcriptional activity, while only p38 MAP kinase contributes to IL-1-induced activation of SAP-1. In contrast, studies of CHO cells demonstrated that JNK (but not the p38 MAP kinase) is required for IL-1-stimulated Elk-1-dependent gene expression and that neither JNK nor p38 MAP kinase is required for IL-1 signaling to SAP-1. We conclude that (i) distinct MAP kinase signal transduction pathways mediate IL-1 signaling to ternary complex transcription factors (TCFs) in different cell types and (ii) individual TCFs show different responses to the JNK and p38 signaling pathways. The differential utilization of TCF proteins and MAP kinase signaling pathways represents a potential mechanism for the determination of cell-type-specific responses to extracellular stimuli.
Collapse
Affiliation(s)
- A J Whitmarsh
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | |
Collapse
|
142
|
Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 1997; 16:1921-33. [PMID: 9155018 PMCID: PMC1169795 DOI: 10.1093/emboj/16.8.1921] [Citation(s) in RCA: 532] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a novel expression screening method for identifying protein kinase substrates. In this method, a lambda phage cDNA expression library is screened by in situ, solid-phase phosphorylation using purified protein kinase and [gamma-32P]ATP. Screening a HeLa cDNA library with ERK1 MAP kinase yielded cDNAs of previously characterized ERK substrates, c-Myc and p90RSK, demonstrating the utility of this method for identifying physiological protein kinase substrates. A novel clone isolated in this screen, designated MNK1, encodes a protein-serine/threonine kinase, which is most similar to MAP kinase-activated protein kinase 2 (MAPKAP-K2), 3pK/MAPKAP-K3 and p90RSK. Bacterially expressed MNK1 was phosphorylated and activated in vitro by ERK1 and p38 MAP kinases but not by JNK/SAPK. Further, MNK1 was activated upon stimulation of HeLa cells with 12-O-tetradecanoylphorbol-13-acetate, fetal calf serum, anisomycin, UV irradiation, tumor necrosis factor-alpha, interleukin-1beta, or osmotic shock, and the activation by these stimuli was differentially inhibited by the MEK inhibitor PD098059 or the p38 MAP kinase inhibitor SB202190. Together, these results indicate that MNK1 is a novel class of protein kinase that is activated through both the ERK and p38 MAP kinase signaling pathways.
Collapse
Affiliation(s)
- R Fukunaga
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
143
|
Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, Flavell RA. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A 1997; 94:3004-9. [PMID: 9096336 PMCID: PMC20312 DOI: 10.1073/pnas.94.7.3004] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MKK4 is a member of the mitogen-activated protein kinase kinase group of dual specificity protein kinases that functions as an activator of the c-Jun NH2-terminal kinase (JNK) in vitro. To examine the function of MKK4 in vivo, we investigated the effect of targeted disruption of the MKK4 gene. Crosses of heterozygous MKK4 (+/-) mice demonstrated that homozygous knockout (-/-) animals die before embryonic day 14, indicating that the MKK4 gene is required for viability. The role of MKK4 in JNK activation was examined by investigation of cultured MKK4 (+/+) and MKK4 (-/-) cells. Disruption of the MKK4 gene blocked JNK activation caused by: (i) the mitogen-activated protein kinase kinase kinase MEKK1, and (ii) treatment with anisomycin or heat shock. In contrast, JNK activation caused by other forms of environmental stress (UV-C radiation and osmotic shock) was partially inhibited in MKK4 (-/-) cells. Regulated AP-1 transcriptional activity, a target of the JNK signal transduction pathway, was also selectively blocked in MKK4 (-/-) cells. Complementation studies demonstrated that the defective AP-1 transcriptional activity was restored by transfection of MKK4 (-/-) cells with an MKK4 expression vector. These data establish that MKK4 is a JNK activator in vivo and demonstrate that MKK4 is an essential component of the JNK signal transduction pathway.
Collapse
Affiliation(s)
- D Yang
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Wang Z, Harkins PC, Ulevitch RJ, Han J, Cobb MH, Goldsmith EJ. The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci U S A 1997; 94:2327-32. [PMID: 9122194 PMCID: PMC20087 DOI: 10.1073/pnas.94.6.2327] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1996] [Accepted: 12/05/1996] [Indexed: 02/04/2023] Open
Abstract
The structure of mitogen-activated protein (MAP) kinase p38 has been solved at 2.1-A to an R factor of 21.0%, making p38 the second low activity MAP kinase solved to date. Although p38 is topologically similar to the MAP kinase ERK2, the phosphorylation Lip (a regulatory loop near the active site) adopts a different fold in p38. The peptide substrate binding site and the ATP binding site are also different from those of ERK2. The results explain why MAP kinases are specific for different activating enzymes, substrates, and inhibitors. A model presented for substrate and activator interactions has implications for the evolution of protein kinase cascades.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, 75235, USA
| | | | | | | | | | | |
Collapse
|
145
|
Foltz IN, Lee JC, Young PR, Schrader JW. Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J Biol Chem 1997; 272:3296-301. [PMID: 9013568 DOI: 10.1074/jbc.272.6.3296] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mammalian mitogen-activated protein (MAP) kinase homologue p38 has been shown to be activated by pro-inflammatory cytokines as well as physical and chemical stresses. We now show that a variety of hemopoietic growth factors, including Steel locus factor, colony stimulating factor-1, granulocyte/macrophage-colony stimulating factor, and interleukin-3, activate p38 MAP kinase and the downstream kinase MAPKAP kinase-2. Furthermore, although these growth factors activate both p38 MAP kinase and Erk MAP kinases, we demonstrate using a specific inhibitor of p38 MAP kinase, SB 203580, that p38 MAP kinase activity was required for MAP kinase-activated protein kinase-2 activation. Conversely p38 MAP kinase was shown not to be required for in vivo activation of p90(rsk), known to be downstream of the Erk MAP kinases. Interleukin-4 was unique among the hemopoietic growth factors we examined in failing to induce activation of either p38 MAP kinase or MAP kinase-activated protein kinase-2. These findings demonstrate that the activation of p38 MAP kinase is involved not only in responses to stresses but also in signaling by growth factors that regulate the normal development and function of cells of the immune system.
Collapse
Affiliation(s)
- I N Foltz
- The Biomedical Research Centre, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
146
|
Ellinger-Ziegelbauer H, Brown K, Kelly K, Siebenlist U. Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. J Biol Chem 1997; 272:2668-74. [PMID: 9006902 DOI: 10.1074/jbc.272.5.2668] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway, the stress-activated protein kinase (SAPK) pathway, and the p38 pathway are three major mitogen-activated protein kinase (MAPK) cascades known to participate in the regulation of cellular responses to a variety of extracellular signals. Upstream regulatory components of these kinase cascades, the MAPK/ERK kinase kinases (MEKK), have been described in several systems. We have isolated a cDNA encoding human MEKK3. Transfected MEKK3 has the ability to activate both SAPK and ERK pathways, but does not induce p38 activity, in agreement with a previous report on murine MEKK3 (Blank, J. L., Gerwins, P., Elliott, E. M., Sather, S., and Johnson, G. L. (1996) J. Biol. Chem. 271, 5361-5368). We now demonstrate that MEKK3 activates SEK and MEK, the known kinases targeting SAPK and ERK, respectively. Utilizing an estrogen ligand-activated MEKK3 derivative, we furthermore demonstrate that MEKK3 regulates the SAPK and the ERK pathway directly. Consistent with the fact that several SAPK-inducing agents activate the transcription factor NFkappaB, we now show that MEKK3 also enhances transcription from an NFkappaB-dependent reporter gene in cotransfection assays. The ability of MEKK3 to simultaneously activate the SAPK and ERK pathways is remarkable, given that they have divergent roles in cellular homeostasis.
Collapse
Affiliation(s)
- H Ellinger-Ziegelbauer
- Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | | | |
Collapse
|
147
|
Cuenda A, Cohen P, Buée-Scherrer V, Goedert M. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J 1997; 16:295-305. [PMID: 9029150 PMCID: PMC1169636 DOI: 10.1093/emboj/16.2.295] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stress-activated protein kinase-3 (SAPK3), a recently described MAP kinase family member with a wide-spread tissue distribution, was transfected into several mammalian cell lines and shown to be activated in response to cellular stresses, interleukin-1 (IL-1) and tumour necrosis factor (TNF) in a similar manner to SAPK1 (also termed JNK) and SAPK2 (also termed p38, RK, CSBP and Mxi2). SAPK3 and SAPK2 were activated at similar rates in vitro by SAPKK3 (also termed MKK6), and SAPKK3 was the only activator of SAPK3 that was induced when KB or 293 cells were exposed to cellular stresses or stimulated with IL-1 or TNF. Co-transfection with SAPKK3 induced SAPK3 activity and greatly enhanced activation in response to osmotic shock. These experiments indicate that SAPKK3 mediates the activation of SAPK3 in several mammalian cells. SAPK3 and SAPK2 phosphorylated a number of proteins at similar rates, including the transcription factors ATF2, Elk-1 and SAP1, but SAPK3 was far less effective than SAPK2 in activating MAPKAP kinase-2 and MAPKAP kinase-3. Unlike SAPK2, SAPK3 was not inhibited by the drug SB 203580. SAPK3 phosphorylated ATF2 at Thr69, Thr71 and Ser90, the same residues phosphorylated by SAPK1, whereas SAPK2 only phosphorylated Thr69 and Thr71. Our results suggest that cellular functions previously attributed to SAPK1 and/or SAPK2 may be mediated by SAPK3.
Collapse
Affiliation(s)
- A Cuenda
- Department of Biochemistry, University of Dundee, UK
| | | | | | | |
Collapse
|
148
|
Crews CM. Deciphering isozyme function: exploring cell biology with chemistry in the post-genomic era. CHEMISTRY & BIOLOGY 1996; 3:961-5. [PMID: 9000005 DOI: 10.1016/s1074-5521(96)90162-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genome sequencing projects are identifying protein sequences faster than it is possible to discover their functions. Fortunately, combinatorial chemistry offers an opportunity to develop new biological reagents with which to determine the roles of related isozymes.
Collapse
Affiliation(s)
- C M Crews
- Biology Department, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
149
|
Robinson MJ, Cheng M, Khokhlatchev A, Ebert D, Ahn N, Guan KL, Stein B, Goldsmith E, Cobb MH. Contributions of the mitogen-activated protein (MAP) kinase backbone and phosphorylation loop to MEK specificity. J Biol Chem 1996; 271:29734-9. [PMID: 8939908 DOI: 10.1074/jbc.271.47.29734] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To examine the specificity of MEKs for MAP kinase family members, we determined the abilities of several MEK isoforms to phosphorylate mutants of the MAP kinase ERK2 and the related kinase ERK3 which are modified in the phosphorylation loop. The ERK2 mutants included mutations of the two phosphorylation sites, mutations of the acidic residue between these two sites, and mutations that shorten the length of this loop. All mutants were tested for phosphorylation by six mammalian MEKs and compared with several wild type MAP kinases. MEK1 and MEK2 phosphorylate a majority of the ERK2 mutants. MEK2 but not MEK1 will phosphorylate ERK3. Alteration of the residue between the two phosphorylation sites neither dramatically affected the activity of MEK1 and MEK2 toward ERK2 nor conferred recognition by other MEKs. Likewise, reduction of the length of the phosphorylation loop only partially reduces recognition by MEK1 and MEK2 but does not promote recognition by other MEKs. Thus other yet to be identified factors must contribute to the specificity of MEK recognition of MAP kinases.
Collapse
Affiliation(s)
- M J Robinson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Moriguchi T, Toyoshima F, Gotoh Y, Iwamatsu A, Irie K, Mori E, Kuroyanagi N, Hagiwara M, Matsumoto K, Nishida E. Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O2. J Biol Chem 1996; 271:26981-8. [PMID: 8900184 DOI: 10.1074/jbc.271.43.26981] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A stress-activated, serine/threonine kinase, p38 (also known as HOG1 or MPK2) belongs to a subgroup of mitogen-activated protein kinase (MAPK) superfamily molecules. An activity to activate p38 (p38 activator activity) as well as p38 activity itself were greatly stimulated by hyperosmolar media in mouse lymphoma L5178Y cells. The activator activity has been purified by sequential chromatography. A 36-kDa polypeptide that was coeluted with the activity in the final chromatography step was identified as MAPK kinase 6 (MAPKK6) by protein microsequencing analysis. Monoclonal and polyclonal antibodies raised against recombinant MAPKK6 recognized specifically the 36-kDa MAPKK6 protein but did not cross-react with MKK3 proteins. The use of these anti-MAPKK6 antibodies revealed that two major peaks of the p38 activator activity in the first chromatography step reside in the activated MAPKK6. Using a genetic screen in yeast, we isolated MKK3b, an alternatively spliced form of MKK3. Like MKK3 and MAPKK6, MKK3b was shown to be a specific activator for p38 and was activated by osmotic shock when expressed in COS7 cells. Immunoblotting analysis revealed that MAPKK6 is expressed highly in HeLa and KB cells and scarcely in PC12 cells, whereas MKK3 and MKK3b are expressed in all cells examined. Immunodepletion of MAPKK6 from the extracts obtained from L5178Y cells and KB cells exposed to hyperosmolar media depleted them of almost all of the p38 activator activity, indicating that MAPKK6 is a major activator for p38 in an osmosensing pathway in these cells. In addition, MAPKK6 was activated strongly by tumor necrosis factor-alpha, H2O2, and okadaic acid and moderately by cycloheximide in KB cells. Thus, there are at least three members of p38 activator, MKK3, MKK3b, and MAPKK6, and MAPKK6 may function as a major activator for p38 when expressed.
Collapse
Affiliation(s)
- T Moriguchi
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|