101
|
Su V, Lau AF. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol Life Sci 2009; 66:2819-33. [PMID: 19468686 PMCID: PMC2725189 DOI: 10.1007/s00018-009-0048-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/14/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL-UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.
Collapse
Affiliation(s)
- Vivian Su
- Natural Products and Cancer Biology Program, Cancer Research Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | | |
Collapse
|
102
|
Abstract
The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
103
|
Fenner BJ, Scannell M, Prehn JH. Identification of polyubiquitin binding proteins involved in NF-κB signaling using protein arrays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1010-6. [DOI: 10.1016/j.bbapap.2009.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
104
|
Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 2009; 28:2461-8. [PMID: 19536136 DOI: 10.1038/emboj.2009.160] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 11/09/2022] Open
Abstract
RAP80 has a key role in the recruitment of the Abraxas-BRCC36-BRCA1-BARD1 complex to DNA-damage foci for DNA repair through specific recognition of Lys 63-linked polyubiquitinated proteins by its tandem ubiquitin-interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80-UIM1-UIM2) in complex with Lys 63-linked di-ubiquitin at 2.2 A resolution. The two UIMs, UIM1 and UIM2, and the alpha-helical inter-UIM region together form a continuous 60 A-long alpha-helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44-centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63-linked isopeptide bond. Our structure suggests that the inter-UIM region forms a 12 A-long alpha-helix that ensures that the UIMs are arranged to enable specific binding of Lys 63-linked di-ubiquitin. This was confirmed by pull-down analyses using RAP80-UIM1-UIM2 mutants of various length inter-UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter-UIM region similar to that of RAP80-UIM1-UIM2, also selectively binds Lys 63-linked di-ubiquitin.
Collapse
Affiliation(s)
- Yusuke Sato
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
106
|
Bello NF, Lamsoul I, Heuzé ML, Métais A, Moreaux G, Calderwood DA, Duprez D, Moog-Lutz C, Lutz PG. The E3 ubiquitin ligase specificity subunit ASB2beta is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ 2009; 16:921-32. [PMID: 19300455 PMCID: PMC2709956 DOI: 10.1038/cdd.2009.27] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ubiquitin-mediated protein degradation is the main mechanism for controlled proteolysis, which is crucial for muscle development and maintenance. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 gene (ASB2) encodes the specificity subunit of an E3 ubiquitin ligase complex involved in differentiation of hematopoietic cells. Here, we provide the first evidence that a novel ASB2 isoform, ASB2beta, is important for muscle differentiation. ASB2beta is expressed in muscle cells during embryogenesis and in adult tissues. ASB2beta is part of an active E3 ubiquitin ligase complex and targets the actin-binding protein filamin B (FLNb) for proteasomal degradation. Thus, ASB2beta regulates FLNb functions by controlling its degradation. Knockdown of endogenous ASB2beta by shRNAs during induced differentiation of C2C12 cells delayed FLNb degradation as well as myoblast fusion and expression of muscle contractile proteins. Finally, knockdown of FLNb in ASB2beta knockdown cells restores myogenic differentiation. Altogether, our results suggest that ASB2beta is involved in muscle differentiation through the targeting of FLNb to destruction by the proteasome.
Collapse
Affiliation(s)
- Nana Fatimath Bello
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Isabelle Lamsoul
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Mélina L. Heuzé
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Arnaud Métais
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Guenièvre Moreaux
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - David A. Calderwood
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Delphine Duprez
- Université Pierre et Marie Curie, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Christel Moog-Lutz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
- Université Pierre et Marie Curie, Paris, France
| | - Pierre G. Lutz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| |
Collapse
|
107
|
Uchiki T, Kim HT, Zhai B, Gygi SP, Johnston JA, O'Bryan JP, Goldberg AL. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem 2009; 284:12622-32. [PMID: 19240029 PMCID: PMC2675991 DOI: 10.1074/jbc.m900556200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Indexed: 12/13/2022] Open
Abstract
S5a/Rpn10 is a ubiquitin (Ub)-binding protein that is a subunit of the 26S proteasome but also exists free in the cytosol. It binds poly-Ub chains through its two Ub-interacting motifs (UIMs). We discovered that, unlike typical substrates of Ub ligases (E3s), S5a can be ubiquitinated by all E3s tested including multimeric and monomeric Ring finger E3s (MuRF1, Siah2, Parkin, APC, and SCF(betaTRCP1)), the U-box E3, CHIP, and HECT domain E3s (E6AP and Nedd4) when assayed with UbcH5 or related Ub-conjugating enzymes. However, the E2s, UbcH1 and UbcH13/Uev1a, which function by distinct mechanisms, do not support S5a ubiquitination. Thus, S5a can be used for assay of probably all E3s with UbcH5. Ubiquitination of S5a results from its binding to Ub chains on the E3 (after self-ubiquitination) or on the substrate, as a mutant lacking the UIM domain was not ubiquitinated. Furthermore, if the S5a UIM domains were fused to GST, the protein was rapidly ubiquitinated by MuRF1 and CHIP. In addition, polyubiquitination (but not monoubiquitination) of MuRF1 allowed S5a to bind to MuRF1 and accelerated S5a ubiquitination. This tendency of S5a to associate with the growing Ub chain can explain how S5a, unlike typical substrates, which are recognized by certain E3s through specific motifs, is ubiquitinated by all E3s tested and is rapidly degraded in vivo.
Collapse
Affiliation(s)
- Tomoaki Uchiki
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Kurepa J, Wang S, Li Y, Zaitlin D, Pierce AJ, Smalle JA. Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. PLANT PHYSIOLOGY 2009; 150:178-89. [PMID: 19321709 PMCID: PMC2675745 DOI: 10.1104/pp.109.135970] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/18/2009] [Indexed: 05/19/2023]
Abstract
Although the final size of plant organs is influenced by environmental cues, it is generally accepted that the primary size determinants are intrinsic factors that regulate and coordinate cell proliferation and cell expansion. Here, we show that optimal proteasome function is required to maintain final shoot organ size in Arabidopsis (Arabidopsis thaliana). Loss of function of the subunit regulatory particle AAA ATPase (RPT2a) causes a weak defect in 26S proteasome activity and leads to an enlargement of leaves, stems, flowers, fruits, seeds, and embryos. These size increases are a result of increased cell expansion that compensates for a reduction in cell number. Increased ploidy levels were found in some but not all enlarged organs, indicating that the cell size increases are not caused by a higher nuclear DNA content. Partial loss of function of the regulatory particle non-ATPase (RPN) subunits RPN10 and RPN12a causes a stronger defect in proteasome function and also results in cell enlargement and decreased cell proliferation. However, the increased cell volumes in rpn10-1 and rpn12a-1 mutants translated into the enlargement of only some, but not all, shoot organs. Collectively, these data show that during Arabidopsis shoot development, the maintenance of optimal proteasome activity levels is important for balancing cell expansion with cell proliferation rates.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, and Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | |
Collapse
|
109
|
Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 2009; 284:5030-41. [PMID: 19098288 PMCID: PMC2696100 DOI: 10.1074/jbc.m805871200] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Both p53 and its repressor Mdm2 are subject to ubiquitination and proteasomal degradation. We show that knockdown of the deubiquitinating enzyme USP5 (isopeptidase T) results in an increase in the level and transcriptional activity of p53. Suppression of USP5 stabilizes p53, whereas it has little or no effect on the stability of Mdm2. This provides a mechanism for transcriptional activation of p53. USP5 knockdown interferes with the degradation of ubiquitinated p53 rather than attenuating p53 ubiquitination. In vitro studies have shown that a preferred substrate for USP5 is unanchored polyubiquitin. Consistent with this, we observed for the first time in a mammalian system that USP5 makes a major contribution to Lys-48-linked polyubiquitin disassembly and that suppression of USP5 results in the accumulation of unanchored polyubiquitin chains. Ectopic expression of a C-terminal mutant of ubiquitin (G75A/G76A), which also causes the accumulation of free polyubiquitin, recapitulates the effects of USP5 knockdown on the p53 pathway. We propose a model in which p53 is selectively stabilized because the unanchored polyubiquitin that accumulates after USP5 knockdown is able to compete with ubiquitinated p53 but not with Mdm2 for proteasomal recognition. This raises the possibility that there are significant differences in proteasomal recognition of p53 and Mdm2. These differences could be exploited therapeutically. Our study reveals a novel mechanism for regulation of p53 and identifies USP5 as a potential target for p53 activating therapeutic agents for the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Jimmy Jacob
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Nerea Allende-Vega
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | | | - Mark K. Saville
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| |
Collapse
|
110
|
Dantuma NP, Heinen C, Hoogstraten D. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 2009; 8:449-60. [PMID: 19223247 DOI: 10.1016/j.dnarep.2009.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
111
|
Yan J, Jetten AM. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett 2008; 271:179-90. [PMID: 18550271 PMCID: PMC2749678 DOI: 10.1016/j.canlet.2008.04.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal double-strand breaks (DSBs) in eukaryotes provoke a rapid, extensive modification in chromatin flanking the breaks. The DNA damage response (DDR) coordinates activation of cell cycle checkpoints, apoptosis, and DNA repair networks, to ensure accurate repair and genomic integrity. The checkpoint kinase ATM plays a critical role in the initiation of DDR in response to DSBs. The early ATM-mediated phosphorylation of the histone variant H2AX proteins near DSBs leads to the subsequent binding of MDC1, which functions as a scaffold for the recruitment and assembly of many DDR mediators and effectors, including BRCA1. Recent studies have provided new insights into the mechanism by which BRCA1 and associated proteins are recruited to DNA damage foci and revealed key roles for the receptor-associated protein 80 (RAP80) and the E3 ligase RNF8 in this process. RAP80 is an ubiquitin-interaction motif (UIM) containing protein that is associated with a BRCA1/BARD1 complex through its interaction with CCDC98 (Abraxas). The UIMs of RAP80 are critical for targeting this protein complex to DSB sites. Additional studies revealed that after binding gamma-H2AX, ATM-phosphorylated MDC1 is recognized by the FHA domain of RNF8, which subsequently binds the E2 conjugating enzyme UBC13. This complex catalyzes K63-linked polyubiquitination of histones H2A and gamma-H2AX, which are then recognized by the UIMs of RAP80, thereby facilitating the recruitment of the BRCA1/BARD1/CCDC98/RAP80 protein complex to DSB sites. Depletion of RAP80 or RNF8 impairs the translocation of BRCA1 to DNA damage sites and results in defective cell cycle checkpoint control and DSB repair. In this review, we discuss this cascade of protein phosphorylation and ubiquitination and the role it plays in the control of cellular responses to genotoxic stress by regulating the interactions, localization, and function of DDR proteins.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section Division of Intramural Research National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, NC 27709
| | - Anton M. Jetten
- Cell Biology Section Division of Intramural Research National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, NC 27709
| |
Collapse
|
112
|
Scanlon TC, Gottlieb B, Durcan TM, Fon EA, Beitel LK, Trifiro MA. Isolation of human proteasomes and putative proteasome-interacting proteins using a novel affinity chromatography method. Exp Cell Res 2008; 315:176-89. [PMID: 19013454 DOI: 10.1016/j.yexcr.2008.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 02/02/2023]
Abstract
The proteasome is the primary subcellular organelle responsible for protein degradation. It is a dynamic assemblage of 34 core subunits and many differentially expressed, transiently interacting, modulatory proteins. This paper describes a novel affinity chromatography method for the purification of functional human holoproteasome complexes using mild conditions. Human proteasomes purified by this simple procedure maintained the ability to proteolytically process synthetic peptide substrates and degrade ubiquitinated parkin. Furthermore, the entire purification fraction was analyzed by mass spectrometry in order to identify proteasomal proteins and putative proteasome-interacting proteins. The mild purification conditions maintained transient physical interactions between holoproteasomes and a number of known modulatory proteins. In addition, several classes of putative interacting proteins co-purified with the proteasomes, including proteins with a role in the ubiquitin proteasome system for protein degradation or DNA repair. These results demonstrate the efficacy of using this affinity purification strategy for isolating functional human proteasomes and identifying proteins that may physically interact with human proteasomes.
Collapse
Affiliation(s)
- Thomas C Scanlon
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
Post-translational modification of proteins offers a rapid route to change the activity of crucial factors within the cell. One of the more drastic post-translational modifications, in terms of effect on biochemical properties, is the covalent attachment of the small protein ubiquitin, to a target factor. The labile nature of some post-translational modifications puts obstacles in the path of attempting to detect modified species of most proteins. Indeed, ubiquitination can be rapidly reversed by the action of a large family of DUBs (deubiquitinating enzymes), most of which are cysteine proteases. This, taken together with the rapid proteasomal degradation of some species of ubiquitinated proteins, results in difficulties in detecting modified targets. In this review, practical approaches developed for the detection, purification and characterization of ubiquitinated proteins are reviewed. After a brief appraisal of the use of histidine-tagged ubiquitin, focus is placed on development of UBD (ubiquitin-binding domain)–ubiquitin affinity purification.
Collapse
|
114
|
Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J Mol Biol 2008; 383:693-712. [PMID: 18775730 DOI: 10.1016/j.jmb.2008.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/16/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Deleted in Split hand/Split foot 1 (DSS1) was previously identified as a novel 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible gene with possible involvement in early event of mouse skin carcinogenesis. The mechanisms by which human DSS1 (HsDSS1) exerts its biological effects via regulation of the ubiquitin-proteasome system (UPS) are currently unknown. Here, we demonstrated that HsDSS1 regulates the human proteasome by associating with it in the cytosol and nucleus via the RPN3/S3 subunit of the 19S regulatory particle (RP). Molecular anatomy of HsDSS1 revealed an RPN3/S3-interacting motif (R3IM), located at amino acid residues 15 to 21 of the NH(2) terminus. Importantly, negative charges of the R3IM motif were demonstrated to be required for proteasome interaction and binding to poly-ubiquitinated substrates. Indeed, the R3IM motif of HsDSS1 protein alone was sufficient to replace the ability of intact HsDSS1 protein to pull down proteasome complexes and protein substrates with high-molecular mass ubiquitin conjugates. Interestingly, this interaction is highly conserved throughout evolution from humans to nematodes. Functional study, lowering the levels of the endogenous HsDSS1 using siRNA, indicates that the R3IM/proteasome complex binds and targets p53 for ubiquitin-mediated degradation via gankyrin-MDM2/HDM2 pathway. Most significantly, this work indicates that the R3IM motif of HsDSS1, in conjunction with the complexes of 19S RP and 20S core particle (CP), regulates proteasome interaction through RPN3/S3 molecule, and utilizes a specific subset of poly-ubiquitinated p53 as a substrate.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
The neuronal ubiquitin-proteasome system: Murine models and their neurological phenotype. Prog Neurobiol 2008; 85:176-93. [DOI: 10.1016/j.pneurobio.2008.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/12/2007] [Accepted: 03/11/2008] [Indexed: 02/03/2023]
|
116
|
|
117
|
Zouambia M, Fischer DF, Hobo B, De Vos RAI, Hol EM, Varndell IM, Sheppard PW, Van Leeuwen FW. Proteasome subunit proteins and neuropathology in tauopathies and synucleinopathies: Consequences for proteomic analyses. Proteomics 2008; 8:1221-36. [DOI: 10.1002/pmic.200700679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
118
|
Haririnia A, Verma R, Purohit N, Twarog MZ, Deshaies RJ, Bolon D, Fushman D. Mutations in the hydrophobic core of ubiquitin differentially affect its recognition by receptor proteins. J Mol Biol 2008; 375:979-96. [PMID: 18054791 PMCID: PMC2254529 DOI: 10.1016/j.jmb.2007.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/30/2022]
Abstract
Ubiquitin (Ub) is one of the most highly conserved signaling proteins in eukaryotes. In carrying out its myriad functions, Ub conjugated to substrate proteins interacts with dozens of receptor proteins that link the Ub signal to various biological outcomes. Here we report mutations in conserved residues of Ub's hydrophobic core that have surprisingly potent and specific effects on molecular recognition. Mutant Ubs bind tightly to the Ub-associated domain of the receptor proteins Rad23 and hHR23A but fail to bind the Ub-interacting motif present in the receptors Rpn10 and S5a. Moreover, chains assembled on target substrates with mutant Ubs are unable to support substrate degradation by the proteasome in vitro or sustain viability of yeast cells. The mutations have relatively little effect on Ub's overall structure but reduce its rigidity and cause a slight displacement of the C-terminal beta-sheet, thereby compromising association with Ub-interacting motif but not with Ub-associated domains. These studies emphasize an unexpected role for Ub's core in molecular recognition and suggest that the diversity of protein-protein interactions in which Ub engages placed enormous constraints on its evolvability.
Collapse
Affiliation(s)
- Aydin Haririnia
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742
| | - Rati Verma
- Department of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Nisha Purohit
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742
| | - Michael Z. Twarog
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605
| | - Raymond J. Deshaies
- Department of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Dan Bolon
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742
| |
Collapse
|
119
|
Kremlev SG, Gaurnier-Hausser AL, Del Valle L, Perez-Liz G, Dimitrov S, Tuszynski G. Angiocidin promotes pro-inflammatory cytokine production and antigen presentation in multiple sclerosis. J Neuroimmunol 2008; 194:132-42. [PMID: 18207252 DOI: 10.1016/j.jneuroim.2007.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/01/2007] [Accepted: 11/08/2007] [Indexed: 11/26/2022]
Abstract
Angiocidin was originally identified as a potent inhibitor of angiogenesis and tumor growth in vivo. In addition to its involvement in the regulation of carcinogenesis, recent studies indicate that angiocidin may also play a significant role in immune system modulation. This report describes the expression and potential function of angiocidin in multiple sclerosis (MS), a severe demyelinating, inflammatory and autoimmune disease of the central nervous system (CNS). We demonstrated that angiocidin and interleukin-7 (IL-7) are over-expressed in brain lesions of MS patients. Angiocidin-treated monocytes, peripheral blood T cells and primary astrocytes secreted various cytokines and chemokines including, IL-6, IL-7, GM-CSF, and MCP-1. Addition of recombinant angiocidin to cell cultures was able to promote differentiation of monocytes into a macrophage-like cell, induce MHC class I and class II gene expression and activate CD4(+) and CD8(+) T lymphocytes. Consistent with these findings, angiocidin induced mononuclear phagocyte migration and adhesion as well as increased the IL-2 response by antigen-specific T cells to myelin basic protein peptide presented to them by autologous mononuclear phagocytes. Furthermore, we examined STAT3 expression in angiocidin stimulated mononuclear phagocytes, T cells, and primary astrocytes. We found that angiocidin markedly stimulates STAT3 expression in these cell populations. Angiocidin, therefore appears to play a previously unappreciated and potentially important role in the regulation of immune response during the clinical course of MS.
Collapse
Affiliation(s)
- Sergey G Kremlev
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, United States.
| | | | | | | | | | | |
Collapse
|
120
|
Johansson E, Jonson I, Bosaeus M, Jennische E. Identification of flotillin-1 as an interacting protein for antisecretory factor. ACTA ACUST UNITED AC 2007; 146:303-9. [PMID: 18164080 DOI: 10.1016/j.regpep.2007.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Antisecretory factor (AF) also named S5a/Rpn10 was originally identified through its capacity to inhibit intestinal hypersecretion and was later shown to be a component in the proteasome complex. AF is also a potent anti-inflammatory agent and can act as a neuromodulator. In this study we used yeast two-hybrid screens, with yeast strain PJ692A transformed with the bait vector pGBKT7 (AF aa 1-105) against yeast strain Y187 pretransformed with human brain or placenta cDNA libraries, to identify AF-binding proteins. Flotillin-1 was identified as a specific interacting factor with AF. Immunohistochemistry showed co-localization of AF and flotillin-1 in nervous tissue. Flotillin-1 is an integral membrane protein and a component of lipid rafts, a membrane specialization involved in transport processes. Intracellular AF may affect secretory processes by regulating the localization of signal proteins to lipid rafts.
Collapse
Affiliation(s)
- Ewa Johansson
- Institute of Biomedicine, Department of Infectious Diseases, Section of Clinical Bacteriology, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
121
|
Iwaki T, Onishi M, Ikeuchi M, Kita A, Sugiura R, Giga-Hama Y, Fukui Y, Takegawa K. Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2007; 153:2753-2764. [PMID: 17660439 PMCID: PMC2885615 DOI: 10.1099/mic.0.2007/006072-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The multivesicular body (MVB) sorting pathway is required for a number of biological processes, including downregulation of cell-surface proteins and protein sorting into the vacuolar lumen. The function of this pathway requires endosomal sorting complexes required for transport (ESCRT) composed of class E vacuolar protein sorting (Vps) proteins in Saccharomyces cerevisiae, many of which are conserved in Schizosaccharomyces pombe. Of these, sst4/vps27 (homologous to VPS27) and sst6 (similar to VPS23) have been identified as suppressors of sterility in ste12Delta (sst), although their functions have not been uncovered to date. In this report, these two sst genes are shown to be required for vacuolar sorting of carboxypeptidase Y (CPY) and an MVB marker, the ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein, despite the lack of the ubiquitin E2 variant domain in Sst6p. Disruption mutants of a variety of other class E vps homologues also had defects in sorting of CPY and Ub-GFP-CPS. Sch. pombe has a mammalian AMSH homologue, sst2. Phenotypic analyses suggested that Sst2p is a class E Vps protein. Taken together, these results suggest that sorting into multivesicular bodies is dependent on class E Vps proteins, including Sst2p, in Sch. pombe.
Collapse
Affiliation(s)
- Tomoko Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
- Research Center, Asahi Glass Co. Ltd, Kanagawa, Yokohama 221-8755, Japan
| | - Masayuki Onishi
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Ikeuchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka 577-8502, Japan
| | - Yuko Giga-Hama
- Research Center, Asahi Glass Co. Ltd, Kanagawa, Yokohama 221-8755, Japan
| | - Yasuhisa Fukui
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kaoru Takegawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
122
|
Elangovan M, Choi ES, Jang BG, Kim MS, Yoo YJ. The ubiquitin-interacting motif of 26S proteasome subunit S5a induces A549 lung cancer cell death. Biochem Biophys Res Commun 2007; 364:226-30. [PMID: 17949686 DOI: 10.1016/j.bbrc.2007.09.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway.
Collapse
Affiliation(s)
- Muthukumar Elangovan
- Department of Life Science, Gwangju Institute of Science & Technology (GIST), 1 Oryong-dong Buk-ku, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
123
|
Yi H, Friedman JL, Ferreira PA. The cyclophilin-like domain of Ran-binding protein-2 modulates selectively the activity of the ubiquitin-proteasome system and protein biogenesis. J Biol Chem 2007; 282:34770-8. [PMID: 17911097 DOI: 10.1074/jbc.m706903200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in protein degradation. The 19S regulatory particle (RP) of the 26S proteasome mediates the recognition, deubiquitylation, unfolding, and channeling of ubiquitylated substrates to the 20S proteasome. Several subunits of the 19S RP interact with a growing number of factors. The cyclophilin-like domain (CLD) of Ran-binding protein-2 (RanBP2/Nup358) associates specifically with at least one subunit, S1, of the base subcomplex of the 19S RP, but the functional implications of this interaction on the UPS activity are elusive. This study shows the CLD of RanBP2 promotes selectively the accumulation of a subset of reporter substrates of the UPS, such as the ubiquitin (Ub)-fusion yellow fluorescent protein (YFP) degradation substrate, Ub(G76V)-YFP, and the N-end rule substrate, Ub-R-YFP. Conversely, the degradation of endoplasmic reticulum and misfolded proteins, and of those linked to UPS-independent degradation, is not affected by CLD. The selective effect of CLD on the UPS in vivo is independent of, and synergistic with, proteasome inhibitors, and CLD does not affect the intrinsic proteolytic activity of the 20S proteasome. The inhibitory activity of CLD on the UPS resides in a purported SUMO binding motif. We also found two RanBP2 substrates, RanGTPase-activating protein and retinitis pigmentosa GTPase regulator interacting protein-1alpha1, whose steady-state levels are selectively modulated by CLD. Hence, the CLD of RanBP2 acts as a novel auxiliary modulator of the UPS activity; it may contribute to the molecular and subcellular compartmentation of the turnover of properly folded proteins and modulation of the expressivity of several neurological diseases.
Collapse
Affiliation(s)
- Haiqing Yi
- Department of Ophthalmology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
124
|
Tayama Y, Kawahara H, Minami R, Shimada M, Yokosawa H. Association of Rpn10 with high molecular weight complex is enhanced during retinoic acid-induced differentiation of neuroblastoma cells. Mol Cell Biochem 2007; 306:53-7. [PMID: 17668154 DOI: 10.1007/s11010-007-9553-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/12/2007] [Indexed: 01/19/2023]
Abstract
The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356-5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Yoko Tayama
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
125
|
Babushok DV, Ohshima K, Ostertag EM, Chen X, Wang Y, Mandal PK, Okada N, Abrams CS, Kazazian HH. A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res 2007; 17:1129-38. [PMID: 17623810 PMCID: PMC1933510 DOI: 10.1101/gr.6252107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most new genes arise by duplication of existing gene structures, after which relaxed selection on the new copy frequently leads to mutational inactivation of the duplicate; only rarely will a new gene with modified function emerge. Here we describe a unique mechanism of gene creation, whereby new combinations of functional domains are assembled at the RNA level from distinct genes, and the resulting chimera is then reverse transcribed and integrated into the genome by the L1 retrotransposon. We characterized a novel gene, which we termed PIP5K1A and PSMD4-like (PIPSL), created by this mechanism from an intergenic transcript between the phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and the 26S proteasome subunit (PSMD4) genes in a hominoid ancestor. PIPSL is transcribed specifically in the testis both in humans and chimpanzees, and is post-transcriptionally repressed by independent mechanisms in these primate lineages. The PIPSL gene encodes a chimeric protein combining the lipid kinase domain of PIP5K1A and the ubiquitin-binding motifs of PSMD4. Strong positive selection on PIPSL led to its rapid divergence from the parental genes PIP5K1A and PSMD4, forming a chimeric protein with a distinct cellular localization and minimal lipid kinase activity, but significant affinity for cellular ubiquitinated proteins. PIPSL is a tightly regulated, testis-specific novel ubiquitin-binding protein formed by an unusual exon-shuffling mechanism in hominoid primates and represents a key example of rapid evolution of a testis-specific gene.
Collapse
Affiliation(s)
- Daria V. Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kazuhiko Ohshima
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | - Eric M. Ostertag
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinsheng Chen
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanfeng Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Prabhat K. Mandal
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haig H. Kazazian
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-mail ; fax (215) 573-7760
| |
Collapse
|
126
|
Boutet SC, Disatnik MH, Chan LS, Iori K, Rando TA. Regulation of Pax3 by Proteasomal Degradation of Monoubiquitinated Protein in Skeletal Muscle Progenitors. Cell 2007; 130:349-62. [PMID: 17662948 DOI: 10.1016/j.cell.2007.05.044] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 03/17/2007] [Accepted: 05/17/2007] [Indexed: 12/21/2022]
Abstract
Pax3 and Pax7 play distinct but overlapping roles in developmental and postnatal myogenesis. The mechanisms involved in the differential regulation of these highly homologous proteins are unknown. We present evidence that Pax3, but not Pax7, is regulated by ubiquitination and proteasomal degradation during adult muscle stem cell activation. Intriguingly, only monoubiquitinated forms of Pax3 could be detected. Mutation of two specific lysine residues in the C-terminal region of Pax3 reduced the extent of its monoubiquitination and susceptibility to proteasomal degradation, whereas introduction of a key lysine into the C-terminal region of Pax7 rendered that protein susceptible to monoubiquitination and proteasomal degradation. Monoubiquitinated Pax3 was shuttled to the intrinsic proteasomal protein S5a by interacting specifically with the ubiquitin-binding protein Rad23B. Functionally, sustained expression of Pax3 proteins inhibited myogenic differentiation, demonstrating that Pax3 degradation is an essential step for the progression of the myogenic program. These results reveal an important mechanism of Pax3 regulation in muscle progenitors and an unrecognized role of protein monoubiquitination in mediating proteasomal degradation.
Collapse
Affiliation(s)
- Stéphane C Boutet
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
127
|
Sabherwal Y, Rothman VL, Poon RTP, Tuszynski GP. Clinical significance of serum angiocidin levels in hepatocellular carcinoma. Cancer Lett 2007; 251:28-35. [PMID: 17188426 PMCID: PMC1955767 DOI: 10.1016/j.canlet.2006.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/23/2006] [Indexed: 12/25/2022]
Abstract
Angiocidin, a tumor-secreted protein, was measured in serum of 27 healthy volunteers and 33 hepatocellular carcinoma (HCC) patients. Healthy controls either hepatitis B surface antigen (HBsAg) positive or negative showed undetectable levels. Patients had levels of angiocidin ranging from 15.09 to 195.73 pg/ml. Patients with stages III-IV had higher levels of angiocidin (97+/-13 pg/ml, n=17) compared to those with stages I-II (63+/-37 pg/ml, n=16), p<0.043. Patients with microsatellite tumor nodules had higher average levels (98+/-55 pg/ml, n=17) compared to those without microsatellite nodules (51+/-27 pg/ml, n=20), p<0.032. Our studies suggest that angiocidin predicts advanced stage and intra-hepatic metastasis.
Collapse
Affiliation(s)
- Yamini Sabherwal
- Center for Neurovirology, Department of Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
128
|
Wang H, Jia N, Fei E, Wang Z, Liu C, Zhang T, Fan J, Wu M, Chen L, Nukina N, Zhou J, Wang G. p45, an ATPase subunit of the 19S proteasome, targets the polyglutamine disease protein ataxin-3 to the proteasome. J Neurochem 2007; 101:1651-1661. [PMID: 17302910 DOI: 10.1111/j.1471-4159.2007.04460.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract near the C-terminus of the MJD-1 gene product, ataxin-3. Ataxin-3 is degraded by the proteasome. However, the precise mechanism of ataxin-3 degradation remains to be elucidated. In this study, we show direct links between ataxin-3 and the proteasome. p45, an ATPase subunit of the 19S proteasome, interacts with ataxin-3 in vitro and stimulates the degradation of ataxin-3 in an in vitro reconstituted degradation assay system. The effect of p45 on ataxin-3 degradation is blocked by MG132, a proteasome inhibitor. In N2a or 293 cells, overexpression of p45 strikingly enhances the clearance of both normal and expanded ataxin-3, but not alpha synuclein or SOD1, implying a functional specificity of p45 in this proteolytic process. The N-terminus of ataxin-3, which serves as a recognition site by p45, is necessary for the proteolytic process of ataxin-3. We also show that other three ATPases of the 19S proteasome, MSS1, p48, and p56 have no effect on ataxin-3 degradation. These data provide evidence that p45 plays an important role in regulating ataxin-3 degradation by the proteasome.
Collapse
Affiliation(s)
- Hongfeng Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Neurobiology, School of Life Sciences, University of Science & Technology of China, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Hunter JM, Lesort M, Johnson GVW. Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J Neurosci Res 2007; 85:1774-88. [PMID: 17455294 DOI: 10.1002/jnr.21287] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disease caused by an abnormally expanded CAG repeat in the HD gene. Ubiquitylated aggregates containing mutant huntingtin protein in neurons are hallmarks of HD. Misfolded mutant huntingtin monomers, oligomers, or aggregates may be a result of, and cause, ubiquitin- proteasome dysfunction. To investigate the ubiquitin-proteasome system we designed a series of firefly luciferase reporters targeted selectively to different points along this pathway. These reporters were used to monitor ubiquitin-proteasome system function in a striatal cell culture model of HD. Ubiquitylation processes were not reduced in mutant huntingtin cells but recognition or degradation of ubiquitylated substrates was decreased. We also found mutant huntingtin expressing cells had slight but significant decreases in chymotrypsin-like and caspase-like activities, and an unexpected increase in trypsin-like activity of the proteasome core. General proteasome core inhibitors, as well as selective caspase-like activity inhibitors, were less effective in mutant cells. Finally, treatment with 3-nitropropionic acid, a succinate dehydrogenase inhibitor, had opposite effects on the ubiquitin-proteasome system with activation in wild-type and decreased activity in mutant huntingtin expressing cells. The results of these experiments show clearly selective disruption of the ubiquitin-proteasome system in this cell culture model of HD. The high throughput tools that we have designed and optimized will also be useful in identifying compounds that alter ubiquitin-proteasome system function and to investigate other neurodegenerative diseases such Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jesse M Hunter
- Department of Cell Biology, and Department of Psychiatry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
130
|
French M, Swanson K, Shih SC, Radhakrishnan I, Hicke L. Identification and characterization of modular domains that bind ubiquitin. Methods Enzymol 2007; 399:135-57. [PMID: 16338353 DOI: 10.1016/s0076-6879(05)99009-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To receive and transmit the information carried by ubiquitin signals, cells have evolved an array of modular ubiquitin-binding domains. These domains bind directly and noncovalently to monoubiquitin and polyubiquitin chains and are found within proteins that function in diverse biological processes. Ubiquitin-binding domains characterized thus far are generally small and structurally diverse, yet they all interact with the same hydrophobic patch on the surface of ubiquitin. The rapid identification and characterization of ubiquitin-binding domains has been accomplished through the extensive use of bioinformatics, biochemistry, molecular biology, and biophysics. Here, we discuss the strategies and tools that have been most successful in the identification and characterization of ubiquitin-binding domains.
Collapse
Affiliation(s)
- Michael French
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | |
Collapse
|
131
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
132
|
Abstract
We performed a functional genetic screen to find novel antiapoptotic genes that are under the regulation of the oncoprotein c-Src. Several clones were identified, including subunit S5a of the 26S proteasome. We found that S5a rescued Saos-2 cells from apoptosis induced by Src inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1). S5a mRNA and protein levels were downregulated as a result of Src inhibition, either by siRNA or PP1. In cell lines that possess high activity of Src S5a levels were elevated. Cloning of the S5a promoter region showed that S5a transcription responds to several stimuli. Analysis of the promoter sequence revealed a binding site for Tcf/Lef-1 transcription factor. Indeed, beta-catenin significantly induced transcription from the S5a promoter, whereas EMSA studies showed that Lef-1 binds the S5a promoter-binding site. Furthermore, we also found that PP1 and LY294002, but not PD98059 inhibit the S5a promoter activity. These results suggest that S5a is regulated during apoptosis at the transcriptional level and that S5a upregulation by antiapoptotic signals can contribute to cell survival.
Collapse
Affiliation(s)
- Yael Gus
- The Hebrew University, Department of Biological Chemistry, Silberman Institute, Givat Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
133
|
Tomlinson E, Palaniyappan N, Tooth D, Layfield R. Methods for the purification of ubiquitinated Proteins. Proteomics 2007; 7:1016-22. [PMID: 17351889 DOI: 10.1002/pmic.200601008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-translational protein modification by the covalent conjugation of ubiquitin, originally implicated as a signal for proteolytic degradation by 26S proteasome, has now been realised to play important roles in the regulation of almost all biological processes in eukaryotes. In order to understand these processes in greater detail there is a requirement for techniques that can purify mixtures of ubiquitin-conjugated proteins, as a prerequisite to their identification and characterisation. Here we review the methods that have been applied to the bulk purification of ubiquitinated proteins and discuss their applications in proteomic analyses of the 'ubiquitome'.
Collapse
Affiliation(s)
- Emma Tomlinson
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | | | |
Collapse
|
134
|
Kang Y, Chen X, Lary JW, Cole JL, Walters KJ. Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J Mol Biol 2007; 369:168-76. [PMID: 17408689 PMCID: PMC3864866 DOI: 10.1016/j.jmb.2007.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/10/2007] [Accepted: 03/05/2007] [Indexed: 11/18/2022]
Abstract
Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.
Collapse
Affiliation(s)
- Yang Kang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Oral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiang Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeffrey W. Lary
- Analytical Ultracentrifugation Facility, Biotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269-3149, USA
| | - James L. Cole
- Analytical Ultracentrifugation Facility, Biotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269-3149, USA
| | - Kylie J. Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
135
|
Haririnia A, D'Onofrio M, Fushman D. Mapping the interactions between Lys48 and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a. J Mol Biol 2007; 368:753-66. [PMID: 17368669 PMCID: PMC1941660 DOI: 10.1016/j.jmb.2007.02.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
Numerous cellular processes are regulated by (poly)ubiquitin-mediated signaling events, which involve a covalent modification of the substrate protein by a single ubiquitin or a chain of ubiquitin molecules linked via a specific lysine. Remarkably, the outcome of polyubiquitination is linkage-dependent. For example, Lys48-linked chains are the principal signal for proteasomal degradation, while Lys63-linked chains act as nonproteolytic signals. Despite significant progress in characterization of various cellular pathways involving ubiquitin, understanding of the structural details of polyubiquitin chain recognition by downstream cellular effectors is missing. Here we use NMR to study the interaction of a ubiquitin-interacting motif (UIM) of the proteasomal subunit S5a with di-ubiquitin, the simplest model for polyubiquitin chain, to gain insights into the mechanism of polyubiquitin recognition by the proteasome. We have mapped the binding interface and characterized the stoichiometry and the process of UIM binding to Lys48- and Lys63-linked di-ubiquitin chains. Our data provide the first direct evidence that UIM binding involves a conformational transition in Lys48-linked di-ubiquitin, which opens the hydrophobic interdomain interface. This allows UIM to enter the interface and bind directly to the same ubiquitin hydrophobic-patch surface as utilized in UIM:monoubiquitin complexes. The results indicate that up to two UIM molecules can bind di-ubiquitin, and the binding interface between UIM and ubiquitin units in di-ubiquitin is essentially the same for both Lys48- and Lys63-linked chains. Our data suggest possible structural models for the binding of UIM and of full-length S5a to di-ubiquitin.
Collapse
Affiliation(s)
| | | | - David Fushman
- *Address all correspondence to: David Fushman, 1115 Biomolecular Sciences Bldg (#296), Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742-3360, Tel: (301) 405 3461, Fax: (301) 314 0386, E-mail:
| |
Collapse
|
136
|
Yan J, Kim YS, Yang XP, Albers M, Koegl M, Jetten AM. Ubiquitin-interaction motifs of RAP80 are critical in its regulation of estrogen receptor alpha. Nucleic Acids Res 2007; 35:1673-86. [PMID: 17311814 PMCID: PMC1865050 DOI: 10.1093/nar/gkl1112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we demonstrate that receptor-associated protein 80 (RAP80) interacts with estrogen receptor alpha (ERα) in an agonist-dependent manner. The interaction is specific for ERα as ERβ and several other nuclear receptors tested did not interact with RAP80. Interaction between RAP80 and ERα was supported by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation analyses. The hinge/ligand-binding domain of ERα is sufficient for interaction with RAP80. RAP80 overexpression reduces ERα polyubiquitination, increases the level of ERα protein, and enhances ERα-mediated transactivation. Knockdown of endogenous RAP80 expression by small-interfering RNA (siRNA) reduced ERα protein level and the E2-dependent induction of pS2. In this study, we also demonstrate that RAP80 contains two functional ubiquitin-interaction motifs (UIMs) that are able to bind ubiquitin and to direct monoubiquitination of RAP80. Deletion of these UIMs does not affect the ability of RAP80 to interact with ERα, but eliminates the effects of RAP80 on ERα polyubiquitination, the level of ERα protein, and ERα-mediated transcription. These data indicate that the UIMs in RAP80 are critical for the function of RAP80. Our study identifies ERα as a new RAP80-interacting protein and suggests that RAP80 may be an important modulator of ERα activity.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Michael Albers
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Manfred Koegl
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
- *To whom correspondence should be addressed. 919-541-2768919-541-4133
| |
Collapse
|
137
|
Kirkin V, Dikic I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 2007; 19:199-205. [PMID: 17303403 DOI: 10.1016/j.ceb.2007.02.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
Besides tagging proteins for degradation, ubiquitin is now recognized as a signaling module for diverse cellular processes, including progression through the cell cycle, DNA repair, gene transcription, receptor trafficking and endocytosis. Recent advances have indicated the existence of a wide variety of ubiquitin-binding proteins that, upon recognition of conjugated ubiquitin moieties, can control assembly of complex signaling networks. Small ubiquitin-like proteins, like SUMO, emerge to play biological roles distinct from ubiquitin, and require specific recognition by a dedicated set of proteins. Identification and characterization of recognition motifs and domains for ubiquitin-like proteins have just begun, promising new insights into the diversity of functions ubiquitin family proteins have in physiological and pathological settings.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Institute of Biochemistry II, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
| | | |
Collapse
|
138
|
Ventadour S, Jarzaguet M, Wing SS, Chambon C, Combaret L, Béchet D, Attaix D, Taillandier D. A New Method of Purification of Proteasome Substrates Reveals Polyubiquitination of 20 S Proteasome Subunits. J Biol Chem 2007; 282:5302-9. [PMID: 17189251 DOI: 10.1074/jbc.m610005200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding domains of the S5a proteasome subunit bound to an affinity matrix and then deubiquitinated by the catalytic domain of the USP2 enzyme. This two step purification of proteasome substrates involving both protein-protein interactions and enzyme-mediated release allowed highly specific isolation of polyUb 26 S proteasome substrates, which were then resolved on two-dimensional gels post-deubiquitination. To establish our method, we focused on a gel area where spots were best resolved. Surprisingly, spot analysis by mass spectrometry identified alpha2, alpha6, alpha7, beta2, beta3, beta4, and beta5 20 S proteasome subunits as potential substrates. Western blots using an anti-beta3 proteasome subunit antibody confirmed that high molecular weight forms of beta3 were present, particularly in proteasome inhibitor-treated cells. Sucrose gradients of cell lysates suggested that the proteasome was first disassembled before subunits were polyubiquitinated. Altogether, we provide a technique that enables large scale identification of 26 S proteasome substrates that should contribute to a better understanding of this proteolytic machinery in any living cell and/or organ/tissue. Furthermore, the data suggest that proteasome homeostasis involves an autoregulatory mechanism.
Collapse
Affiliation(s)
- Sophie Ventadour
- Human Nutrition Unit UMR 1019 and Proteomic Core Facility, Human Nutrition Research Center and Institut National de la Recherche Agronomique, 63122 Ceyrat, France
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22:159-80. [PMID: 16753028 DOI: 10.1146/annurev.cellbio.22.010605.093503] [Citation(s) in RCA: 1194] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following the discovery of protein modification by the small, highly conserved ubiquitin polypeptide, a number of distinct ubiquitin-like proteins (Ubls) have been found to function as protein modifiers as well. These Ubls, which include SUMO, ISG15, Nedd8, and Atg8, function as critical regulators of many cellular processes, including transcription, DNA repair, signal transduction, autophagy, and cell-cycle control. A growing body of data also implicates the dysregulation of Ubl-substrate modification and mutations in the Ubl-conjugation machinery in the etiology and progression of a number of human diseases. The primary aim of this review is to summarize the latest developments in our understanding of the different Ubl-protein modification systems, including the shared and unique features of these related pathways.
Collapse
Affiliation(s)
- Oliver Kerscher
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
140
|
Shimada M, Kanematsu K, Tanaka K, Yokosawa H, Kawahara H. Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans. Mol Biol Cell 2006; 17:5356-71. [PMID: 17050737 PMCID: PMC1687211 DOI: 10.1091/mbc.e06-05-0437] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/06/2006] [Accepted: 10/06/2006] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryotes is still enigmatic. We report herein that knockdown of the rpn-10 gene, but not any other proteasome subunit genes, sexually transforms hermaphrodites to females by eliminating hermaphrodite spermatogenesis in Caenorhabditis elegans. The feminization phenotype induced by deletion of the rpn-10 gene was rescued by knockdown of tra-2, one of sexual fate decision genes promoting female development, and its downstream target tra-1, indicating that the TRA-2-mediated sex determination pathway is crucial for the Delta rpn-10-induced sterile phenotype. Intriguingly, we found that co-knockdown of rpn-10 and functionally related ubiquitin ligase ufd-2 overcomes the germline-musculinizing effect of fem-3(gf). Furthermore, TRA-2 proteins accumulated in rpn-10-defective worms. Our results show that the RPN-10-mediated ubiquitin pathway is indispensable for control of the TRA-2-mediated sex-determining pathway.
Collapse
Affiliation(s)
- Masumi Shimada
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Kenji Kanematsu
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Keiji Tanaka
- Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Sciences, Tokyo 113-8613, Japan
| | - Hideyoshi Yokosawa
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Hiroyuki Kawahara
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| |
Collapse
|
141
|
Jennische E, Johansson E, Hansson HA, Jonson I. Immunohistochemical staining patterns using epitope-specific antibodies indicate conformation variants of antisecretory factor/S5a in the CNS. APMIS 2006; 114:529-38. [PMID: 16907859 DOI: 10.1111/j.1600-0463.2006.apm_464.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antisecretory factor (AF/S5a/Rpn10) was originally identified through its ability to counteract pathological secretion. AF is also a potent anti-inflammatory agent, a neuromodulator, and an important component of the proteasome. Human AF has a calculated molecular mass of 41 kDa and a pI of 4.7. No family of AF-like proteins has been identified. AF has multiple functions in the cell, and different functional forms could exist as a result of post-translational modifications. Epitope-specific antibodies covering the entire length of AF were used to investigate whether modified forms of AF could be detected in the porcine spinal cord by Western blots, 2D gels, and immunohistochemistry (IHC). Western blot and 2D gels showed that all antisera detected a single protein with very similar molecular mass and pI. However, IHC resulted in an epitope-specific subcellular staining pattern. Antisera recognizing epitopes in the N-terminal part of AF, containing the antisecretory activity, showed a more restricted localisation than antisera directed at the C-terminal part, containing the ubiquitin-binding sites. We suggest that AF can exist in several conformational variants, perhaps due to differences in redox state and/or pH in the various cellular compartments. Such conformational changes could be of functional importance.
Collapse
Affiliation(s)
- Eva Jennische
- Institute of Anatomy and Cell Biology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
142
|
Sabherwal Y, Rothman VL, Dimitrov S, L'Heureux DZ, Marcinkiewicz C, Sharma M, Tuszynski GP. Integrin α2β1 mediates the anti-angiogenic and anti-tumor activities of angiocidin, a novel tumor-associated protein. Exp Cell Res 2006; 312:2443-53. [PMID: 16762342 DOI: 10.1016/j.yexcr.2006.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/16/2006] [Accepted: 04/17/2006] [Indexed: 11/26/2022]
Abstract
We recently characterized an anti-tumor protein termed angiocidin. Here, we report that angiocidin may inhibit angiogenesis by binding collagen and its receptors. Angiocidin bound purified type I collagen and alpha2beta1 with high affinity. K562 cells expressing alpha2beta1 bound and adhered to angiocidin while K562 cells which only expressed alpha5beta1 integrin showed no binding and adhesion. Binding was specific since a neutralizing antibody against alpha2beta1 inhibited binding but antibodies against alpha5beta1 had no effect. Additionally, angiocidin co-localized with alpha2beta1 on K562 alpha2beta1 transfected cells, pancreatic cancer colo 357 cells, breast cancer MB-231 cells and human umbilical endothelial vein (HUVE) cells. In an alpha2beta1-dependent collagen gel angiogenesis assay, angiocidin showed potent inhibitory activity. We identified a 20-amino-acid amino terminal peptide of angiocidin that bound both alpha2beta1 and type I collagen. This peptide promoted alpha2beta1-dependent cell adhesion and inhibited tumor growth and angiogenesis. Taken together, these results are consistent with the conclusion that the anti-tumor activity of angiocidin arises from its ability to ligate collagen and alpha2beta1 on endothelial cells and tumor cells. Our results provide support for the concept that targeting matrix-cell interactions is a viable strategy for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yamini Sabherwal
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Fallon L, Bélanger CML, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T, Brice A, van Bergen En Henegouwen PMP, Fon EA. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 2006; 8:834-42. [PMID: 16862145 DOI: 10.1038/ncb1441] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/15/2006] [Indexed: 01/07/2023]
Abstract
Mutations in the parkin gene are responsible for a common familial form of Parkinson's disease. As parkin encodes an E3 ubiquitin ligase, defects in proteasome-mediated protein degradation are believed to have a central role in the pathogenesis of Parkinson's disease. Here, we report a novel role for parkin in a proteasome-independent ubiquitination pathway. We have identified a regulated interaction between parkin and Eps15, an adaptor protein that is involved in epidermal growth factor (EGF) receptor (EGFR) endocytosis and trafficking. Treatment of cells with EGF stimulates parkin binding to both Eps15 and the EGFR and promotes parkin-mediated ubiquitination of Eps15. Binding of the parkin ubiquitin-like (Ubl) domain to the Eps15 ubiquitin-interacting motifs (UIMs) is required for parkin-mediated Eps15 ubiquitination. Furthermore, EGFR endocytosis and degradation are accelerated in parkin-deficient cells, and EGFR signalling via the phosphoinositide 3-kinase (PI(3)K)-Akt pathway is reduced in parkin knockout mouse brain. We propose that by ubiquitinating Eps15, parkin interferes with the ability of the Eps15 UIMs to bind ubiquitinated EGFR, thereby delaying EGFR internalization and degradation, and promoting PI(3)K-Akt signalling. Considering the role of Akt in neuronal survival, our results have broad new implications for understanding the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Lara Fallon
- Centre for Neuronal Survival and Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 2006; 7:262-81. [PMID: 16497222 DOI: 10.1111/j.1600-0854.2006.00383.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.
Collapse
Affiliation(s)
- Matthew J Hawryluk
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
145
|
Barriere H, Nemes C, Lechardeur D, Khan-Mohammad M, Fruh K, Lukacs GL. Molecular basis of oligoubiquitin-dependent internalization of membrane proteins in Mammalian cells. Traffic 2006; 7:282-97. [PMID: 16497223 DOI: 10.1111/j.1600-0854.2006.00384.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitination induced down-regulation of cell surface proteins by internalization and lysosomal targeting plays a fundamental role in cell physiology and pathogenesis of diseases. The molecular basis of a single ubiquitin (Ub) as an autonomous endocytic signal, the widely accepted mechanism, however, remains elusive in higher eukaryotes. Using Ub containing reporter proteins without signalling abilities, we present evidence that only multiple Ub moieties, linked either covalently or assembled as oligomers with an intact interface for recognition by Ub-interacting motifs (UIMs), are recognized by the endocytic machinery in vivo and associate with a subset of Ub-binding clathrin adaptors in vitro. Genetic and pharmacological approaches show that internalization of plasma membrane proteins harbouring multiple Ub moieties is clathrin-dependent, but caveolin-independent. Functional assays demonstrate the cargo-dependent involvement of eps15/15R and epsin, UIM containing clathrin adaptors, in the endocytosis of model proteins, CD4 and the activated beta(2)-adrenergic receptor complex, containing polymeric or oligomeric Ub. These results provide a paradigm for the clathrin-mediated uptake of ubiquitinated membrane proteins in mammalian cells, requiring the assembly of multiple UIM-Ub interactions to overcome the low affinity binding of mono-Ub to UIM.
Collapse
Affiliation(s)
- Herve Barriere
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
Ubiquitin is an important tag in membrane transport. From studies in yeast, monoubiquitin has been considered sufficient to elicit uptake of cell surface transporters and receptors into endosomes. Two articles in the current issue of Traffic (Hawryluk et al. and Barriere et al.) indicate that stronger binding is required to retain and concentrate cargo in endocytic microdomains of the plasma membrane. High avidity interactions can be obtained by tandemly arrayed ubiquitin interaction motifs (UIM), in proteins such as the endocytic adaptors epsin and Eps15, interacting with polyubiquitin or by UIM-containing proteins binding several ubiquitins brought together through oligomerization of receptors. A controversial issue has been where such interactions take place. One view is that the association of epsin with ubiquitinated cargo is negatively regulated by its interaction with clathrin (Chen H and De Camilli P. Proc Natl Acad Sci USA 2005;102:2766-2771). This contention is now challenged by the articles of Hawryluk et al. and Barriere et al. Hawryluk et al. demonstrate that epsin and Eps15 consistently co-localize with clathrin but never with caveolin.
Collapse
|
147
|
|
148
|
Flick K, Raasi S, Zhang H, Yen JL, Kaiser P. A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat Cell Biol 2006; 8:509-15. [PMID: 16604062 DOI: 10.1038/ncb1402] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/07/2006] [Indexed: 01/11/2023]
Abstract
Covalent attachment of ubiquitin to proteins regulates a host of cellular events by proteolysis dependent and independent mechanisms. A variety of protein domains that bind non-covalently to ubiquitin have been described and functionally linked to diverse cellular processes. Overall, however, the understanding and knowledge of the mechanisms by which ubiquitin-binding domains (UBDs) regulate these processes is limited. Here, we describe identification of a UBD in the yeast transcription factor Met4. Met4 activity, but not its stability, is regulated by polyubiquitination. We found that the UBD restricts the length of the polyubiquitin chain that is assembled on Met4, and prevents proteasomal recognition and degradation of polyubiquitinated Met4. Inactivation of the UBD allowed synthesis of longer ubiquitin chains on Met4 and transformed the normally stable polyubiquitinated Met4 into a short-lived protein. Our results demonstrate a function for UBDs in ubiquitin-chain synthesis and regulation of protein degradation.
Collapse
Affiliation(s)
- Karin Flick
- University of California Irvine, Department of Biological Chemistry, School of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Ubiquitylation of membrane proteins has gained considerable interest in recent years. It has been recognized as a signal that negatively regulates the cell surface expression of many plasma membrane proteins both in yeast and in mammalian cells. Moreover, it is also involved in endoplasmic reticulum-associated degradation of membrane proteins, and it acts as a sorting signal both in the secretory pathway and in endosomes, where it targets proteins into multivesicular bodies in the lumen of vacuoles/lysosomes. In this review we discuss the progress in understanding these processes, achieved during the past several years.
Collapse
Affiliation(s)
- Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
150
|
Burz DS, Dutta K, Cowburn D, Shekhtman A. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 2006; 3:91-3. [PMID: 16432517 PMCID: PMC4447212 DOI: 10.1038/nmeth851] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 12/21/2005] [Indexed: 12/19/2022]
Abstract
We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution.
Collapse
Affiliation(s)
- David S Burz
- State University of New York at Albany, Department of Chemistry, 1400 Washington Ave., Albany, New York 12222, USA
| | | | | | | |
Collapse
|