101
|
Hégarat N, Cardoso GM, Rusconi F, François JC, Praseuth D. Analytical biochemistry of DNA--protein assemblies from crude cell extracts. Nucleic Acids Res 2007; 35:e92. [PMID: 17617645 PMCID: PMC1935021 DOI: 10.1093/nar/gkm490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purification of specific DNA-protein complexes is a challenging task, as the involved interactions can be both electrostatic/H-bond and hydrophobic. The chromatographic stringency needed to obtain reasonable purifications uses salts and detergents. However, these components elicit the removal of proteins unspecifically bound to the chromatographic support itself, thus contaminating the purification products. In this work, a photocleavable linker connected the target oligonucleotidic sequence to the chromatographic beads so as to allow the irradiation-based release of the purified DNA-protein complexes off the beads. Our bioanalytical conditions were validated by purifying the tetracycline repressor protein onto a specific oligonucleotide. The purification factor was unprecedented, with a single contaminant. The robustness of our method was challenged by applying it to the purification of multiprotein assemblies forming onto DNA damage-mimicking oligonucleotides. The purified components were identified as well-known DNA repair proteins, and were shown to retain their enzymatic activities, as seen by monitoring DNA ligation products. Remarkably, kinase activities, also monitored, were found to be distinct on the beads and on the purified DNA-protein complexes, showing the benefits to uncouple the DNA-protein assemblies from the beads for a proper understanding of biochemical regulatory mechanisms involved in the DNA-protein assemblies.
Collapse
Affiliation(s)
- Nadia Hégarat
- INSERM, U565 and MNHN, USM503, Département de ‘Régulations, développement et diversité moléculaire’, Laboratoire des Régulations et dynamique des génomes, CNRS, UMR5153, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 57 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | - Gildas Mouta Cardoso
- INSERM, U565 and MNHN, USM503, Département de ‘Régulations, développement et diversité moléculaire’, Laboratoire des Régulations et dynamique des génomes, CNRS, UMR5153, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 57 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | - Filippo Rusconi
- INSERM, U565 and MNHN, USM503, Département de ‘Régulations, développement et diversité moléculaire’, Laboratoire des Régulations et dynamique des génomes, CNRS, UMR5153, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 57 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | - Jean-Christophe François
- INSERM, U565 and MNHN, USM503, Département de ‘Régulations, développement et diversité moléculaire’, Laboratoire des Régulations et dynamique des génomes, CNRS, UMR5153, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 57 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | - Danièle Praseuth
- INSERM, U565 and MNHN, USM503, Département de ‘Régulations, développement et diversité moléculaire’, Laboratoire des Régulations et dynamique des génomes, CNRS, UMR5153, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 57 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
- *To whom correspondence should be addressed. +33 1 40 79 37 10+33 1 40 79 37 05 Correspondence may also be addressed to Dr. Jean-Christophe François, +33 1 40 79 38 01+33 1 40 79 37 05
| |
Collapse
|
102
|
Abstract
Most established cancer therapy regimes involve DNA-damaging chemotherapy or radiotherapy. The DNA repair capacity of the tumour, therefore, represents a mechanism of therapeutic resistance. Drugs to inhibit DNA repair pathways have been developed and they demonstrate good chemosensitisation and radiosensitisation activity in preclinical models. Two classes of DNA repair inhibitors have entered clinical trial and show promising activity. Genetic instability in tumours may be at least partially due to defects in DNA repair pathways; such defects may underlie the inherent sensitivity of some tumours to certain classes of anticancer agent. DNA repair defects may also make the tumour dependent on complimentary or back-up pathways; laboratory evidence shows that targeting these complimentary pathways results in tumour-selective therapy.
Collapse
Affiliation(s)
- Nicola Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
103
|
Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007; 13:1383-8. [PMID: 17332279 DOI: 10.1158/1078-0432.ccr-06-2260] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that signals the presence of DNA damage by catalyzing the addition of ADP-ribose units to DNA, histones, and various DNA repair enzymes and by facilitating DNA repair. PARP has been gaining increasing interest as a therapeutic target for many diseases and especially for cancer. Inhibition of PARP potentiates the activity of DNA-damaging agents, such as alkylators, platinums, topoisomerase inhibitors, and radiation in in vitro and in vivo models. In addition, tumors with DNA repair defects, such as those arising from patients with BRCA mutations, may be more sensitive to PARP inhibition. At least five different companies have now initiated oncology clinical trials with PARP inhibitors, ranging in stage from phase 0 to phase 2. This review summarizes the preclinical and clinical data currently available for these agents and some of the challenges facing the clinical development of these agents.
Collapse
|
104
|
Maruyama T, Nara K, Yoshikawa H, Suzuki N. Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1alpha and regulates interferon-gamma gene transcription in Th1 cells. Clin Exp Immunol 2007; 147:164-75. [PMID: 17177976 PMCID: PMC1810450 DOI: 10.1111/j.1365-2249.2006.03249.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have found previously that Txk, a member of the Tec family tyrosine kinases, is involved importantly in T helper 1 (Th1) cytokine production. However, how Txk regulates interferon (IFN)-gamma gene transcription in human T lymphocytes was not fully elucidated. In this study, we identified poly(ADP-ribose) polymerase 1 (PARP1) and elongation factor 1alpha (EF-1alpha) as Txk-associated molecules that bound to the Txk responsive element of the IFN-gamma gene promoter. Txk phosphorylated EF-1alpha and PARP1 formed a complex with them, and bound to the IFN-gamma gene promoter in vitro. In particular, the N terminal region containing the DNA binding domain of PARP1 was important for the trimolecular complex formation involving Txk, EF-1alpha and PARP1. Several mutant Txk which lacked kinase activity were unable to form the trimolecular complex. A PARP1 inhibitor, PJ34, suppressed IFN-gamma but not interleukin (IL)-4 production by normal peripheral blood lymphocytes (PBL). Multi-colour confocal analysis revealed that Txk and EF-1alpha located in the cytoplasm in the resting condition. Upon activation, a complex involving Txk, EF-1alpha and PARP1 was formed and was located in the nucleus. Collectively, Txk in combination with EF-1alpha and PARP1 bound to the IFN-gamma gene promoter, and exerted transcriptional activity on the IFN-gamma gene.
Collapse
Affiliation(s)
- T Maruyama
- Departments of Immunology and Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
105
|
Ishiguro A, Ideta M, Mikoshiba K, Chen DJ, Aruga J. ZIC2-dependent Transcriptional Regulation Is Mediated by DNA-dependent Protein Kinase, Poly(ADP-ribose) Polymerase, and RNA Helicase A. J Biol Chem 2007; 282:9983-9995. [PMID: 17251188 DOI: 10.1074/jbc.m610821200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zic family of zinc finger proteins is essential for animal development, as demonstrated by the holoprosencephaly caused by mammalian Zic2 mutation. To determine the molecular mechanism of Zic-mediated developmental control, we characterized two types of high molecular weight complexes, including Zic2. Complex I was composed of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku70/80, and poly(ADP-ribose) polymerase; complex II contained Ku70/80 and RNA helicase A; all the components interacted directly with Zic2 protein. Immunoprecipitation, subnuclear localization, and in vitro phosphorylation analyses revealed that the DNA-PKcs in complex I played an essential role in the assembly of complex II. Stepwise exchange from complex I to complex II depended on phosphorylation of Zic2 by DNA-PK and poly-(ADP-ribose) polymerase. Phosphorylated Zic2 protein made a stable complex with RNA helicase A, and complex II could interact with RNA polymerase II. Phosphorylation-dependent transformation of Zic2-containing molecular complexes may occur in transcriptional regulation.
Collapse
Affiliation(s)
- Akira Ishiguro
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | - Maki Ideta
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratory of Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - David J Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
106
|
Rouleau M, McDonald D, Gagné P, Ouellet ME, Droit A, Hunter JM, Dutertre S, Prigent C, Hendzel MJ, Poirier GG. PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 2007; 100:385-401. [PMID: 16924674 DOI: 10.1002/jcb.21051] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(ADP-ribose) polymerase 3 (PARP-3) is a novel member of the PARP family of enzymes that synthesize poly(ADP-ribose) on themselves and other acceptor proteins. Very little is known about this PARP, which is closely related to PARP-1 and PARP-2. By sequence analysis, we find that PARP-3 may be expressed in two isoforms which we studied in more detail to gain insight into their possible functions. We find that both PARP-3 isoforms, transiently expressed as GFP or FLAG fusions, are nuclear. Detection of endogenous PARP-3 with a specific antibody also shows a widespread nuclear distribution, appearing in numerous small foci and a small number of larger foci. Through co-localization experiments and immunoprecipitations, the larger nuclear foci were identified as Polycomb group bodies (PcG bodies) and we found that PARP-3 is part of Polycomb group protein complexes. Furthermore, using a proteomics approach, we determined that both PARP-3 isoforms are part of complexes comprising DNA-PKcs, PARP-1, DNA ligase III, DNA ligase IV, Ku70, and Ku80. Our findings suggest that PARP-3 is a nuclear protein involved in transcriptional silencing and in the cellular response to DNA damage.
Collapse
Affiliation(s)
- M Rouleau
- Health and Environment Unit, Laval University Medical Research Centre, CHUQ, Faculty of Medicine, Laval University, 2705 Blvd Laurier, Sainte-Foy, Québec, G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Jeyakumar M, Liu XF, Erdjument-Bromage H, Tempst P, Bagchi MK. Phosphorylation of thyroid hormone receptor-associated nuclear receptor corepressor holocomplex by the DNA-dependent protein kinase enhances its histone deacetylase activity. J Biol Chem 2007; 282:9312-9322. [PMID: 17242407 DOI: 10.1074/jbc.m609009200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well documented that unliganded thyroid hormone receptor (TR) functions as a transcriptional repressor of specific cellular target genes by acting in concert with a corepressor complex harboring histone deacetylase (HDAC) activity. To fully explore the cofactors that interact with the transcriptionally repressive form of TR, we biochemically isolated a multiprotein complex that assembles on a TR.retinoid X receptor (RXR) heterodimer in HeLa nuclear extracts and identified its polypeptide components by mass spectrometry. A subset of TR.RXR-associated polypeptides included NCoR, SMRT, TBL1, and HDAC3, which represent the core components of a previously described NCoR/SMRT corepressor complex. We also identified several polypeptides that constitute a DNA-dependent protein kinase (DNA-PK) enzyme complex, a regulator of DNA repair, recombination, and transcription. These polypeptides included the catalytic subunit DNA-PKcs, the regulatory subunits Ku70 and Ku86, and the poly(ADP-ribose) polymerase 1. Density gradient fractionation and immunoprecipitation analyses provided evidence for the existence of a high molecular weight TR.RXR.corepressor holocomplex containing both NCoR/SMRT and DNA-PK complexes. Chromatin immunoprecipitation studies confirmed that unliganded TR.RXR recruits both complexes to the triiodothyronine-responsive region of growth hormone gene in vivo. Interestingly, DNA-PKcs, a member of the phosphatidylinositol 3-kinase family, was found to phosphorylate HDAC3 when the purified TR.RXR.corepressor holocomplex was incubated with ATP. This phosphorylation was accompanied by a significant enhancement of the HDAC activity of this complex. Collectively, our results indicated that DNA-PK promotes the establishment of a repressive chromatin at a TR target promoter by enhancing the HDAC activity of the receptor-bound NCoR/SMRT corepressor complex.
Collapse
Affiliation(s)
- M Jeyakumar
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | - Xue-Feng Liu
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | | | - Paul Tempst
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
108
|
Abstract
Half a century ago, when the free radical theory of aging was first proposed, the damaging effects of reactive oxygen species (ROS) were in the focus of attention and considered the single most important determinant of aging. Two decades later, however, the disposable soma theory of aging redirected the attention to the potential impact of cellular maintenance and repair pathways that are both genetically and environmentally determined and are counteracting the damaging effects of ROS. In the present paper, recent experimental data linking DNA repair pathways with the aging process are summarised. Special attention is paid to poly(ADP-ribosyl)ation, a DNA-damage driven posttranslational modification of proteins.
Collapse
Affiliation(s)
- Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Box X911, D-78457, Konstanz, Germany.
| |
Collapse
|
109
|
Wacker DA, Frizzell KM, Zhang T, Kraus WL. Regulation of chromatin structure and chromatin-dependent transcription by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies. Subcell Biochem 2007; 41:45-69. [PMID: 17484123 DOI: 10.1007/1-4020-5466-1_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poly(ADP-ribose) Polymerase-1 (PARP-1) is the prototypical and most abundantly expressed member of a family of PARPs that catalyze the polymerization of ADP-ribose (ADPR) units from donor NAD' molecules on target proteins. PARP-1 plays roles in a variety of genomic processes, including the regulation of chromatin structure and transcription in response to specific cellular signals. PARP-1 also plays important roles in many stress-induced disease states. In this chapter, we review the molecular and cellular aspects of PARP-1's chromatin-modulating activities, as well as the impact that these chromatin-modulating activities have on the regulation of gene expression. In addition, we highlight the potential therapeutic use of drugs that target PARP-1's enzymatic activity for the treatment of human diseases
Collapse
Affiliation(s)
- David A Wacker
- Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
110
|
Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34:6170-82. [PMID: 17088286 PMCID: PMC1693894 DOI: 10.1093/nar/gkl840] [Citation(s) in RCA: 613] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Huichen Wang
- Center for Neurovirology, Temple University1900 North 12th, Philadelphia, PA 19122, USA
| | - George Iliakis
- To whom correspondence should be addressed. Tel: +49 201 723 4152; Fax: +49 201 723 5966;
| |
Collapse
|
111
|
Wojewódzka M, Kruszewski M, Ołdak T, Bartłomiejczyk T, Goździk A, Szumiel I. Inhibition of poly(ADP-ribose)polymerase does not affect the recombination events in CHO xrs6 and wild type cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:277-87. [PMID: 16967295 DOI: 10.1007/s00411-006-0064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/22/2006] [Indexed: 05/11/2023]
Abstract
Activation of poly (ADP-ribose) polymerase -1 (PARP-1) is an early DNA damage response event that, together with phosphorylation of p53, prompts various cellular functions important in the maintenance of the genome stability. In mammalian cells, DSB are repaired by nonhomologous end-joining (NHEJ) and by homologous recombination (HR). To investigate the role of PARP-1 in HR, CHO-K1 wild type and xrs-6 mutant cell line were transfected with pLrec plasmids which carry two nonfunctional copies of the beta-galactosidase (lacZ) gene in a tandem array. In result of HR they can give rise to a functional copy of beta-galactosidase. To test whether PARP-1 affects the frequency of spontaneous and induced recombination repair, we treated CHO-K1 and xrs6 clones carrying chromosomally integrated pLrec with the PARP-1 inhibitor 3-aminobenzamide (3AB). Our results show that the spontaneous homologous intrachromosomal recombination frequency between the two lacZ copies was almost two orders of magnitude higher in xrs6 cells than in CHO-K1 cells, but that it was not affected by 3AB treatment. Induction of DNA damage by irradiation or electroporation of restriction enzymes did not significantly increase the recombination frequency. Furthermore, in both the cell lines, the effect of PARP-1 inhibition on DSB repair was examined using the neutral comet assay. There was no effect of 3AB treatment on DSB rejoining after 10 Gy irradiation. The results presented support the conclusion that PARP-1 is not directly involved in HR.
Collapse
Affiliation(s)
- Maria Wojewódzka
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Dorodna 16, Warszawa, Poland.
| | | | | | | | | | | |
Collapse
|
112
|
Heale JT, Ball AR, Schmiesing JA, Kim JS, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K. Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 2006; 21:837-48. [PMID: 16543152 PMCID: PMC7115950 DOI: 10.1016/j.molcel.2006.01.036] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/24/2005] [Accepted: 01/31/2006] [Indexed: 12/22/2022]
Abstract
Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair.
Collapse
Affiliation(s)
- Jason T. Heale
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
| | - Alexander R. Ball
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
| | - John A. Schmiesing
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
| | - Jong-Soo Kim
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
| | - Xiangduo Kong
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
| | - Sharleen Zhou
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Damien F. Hudson
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Kyoko Yokomori
- Department of Biological Chemistry School of Medicine, University of California, Irvine, Irvine, California 92697
- Correspondence:
| |
Collapse
|
113
|
Baumann C, Boehden GS, Bürkle A, Wiesmüller L. Poly(ADP-RIBOSE) polymerase-1 (Parp-1) antagonizes topoisomerase I-dependent recombination stimulation by P53. Nucleic Acids Res 2006; 34:1036-49. [PMID: 16473854 PMCID: PMC1363779 DOI: 10.1093/nar/gkj509] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PARP-1 interacts with and poly(ADP-ribosyl)ates p53 and topoisomerase I, which both participate in DNA recombination. Previously, we showed that PARP-1 downregulates homology-directed double-strand break (DSB) repair. We also discovered that, despite the well-established role of p53 as a global suppressor of error-prone recombination, p53 enhances homologous recombination (HR) at the RARα breakpoint cluster region (bcr) comprising topoisomerase I recognition sites. Using an SV40-based assay and isogenic cell lines differing in the p53 and PARP-1 status we demonstrate that PARP-1 counteracts HR enhancement by p53, although DNA replication was largely unaffected. When the same DNA element was integrated in an episomal recombination plasmid, both p53 and PARP-1 exerted anti-recombinogenic rather than stimulatory activities. Strikingly, with DNA substrates integrated into cellular chromosomes, enhancement of HR by p53 and antagonistic PARP-1 action was seen, very similar to the HR of viral minichromosomes. siRNA-mediated knockdown revealed the essential role of topoisomerase I in this regulatory mechanism. However, after I-SceI-meganuclease-mediated cleavage of the chromosomally integrated substrate, no topoisomerase I-dependent effects by p53 and PARP-1 were observed. Our data further indicate that PARP-1, probably through topoisomerase I interactions rather than poly(ADP-ribosyl)ation, prevents p53 from stimulating spontaneous HR on chromosomes via topoisomerase I activity.
Collapse
Affiliation(s)
- Cindy Baumann
- Universitätsfrauenklinik, Prittwitzstrasse 43D-89075 Ulm, Germany
| | - Gisa S. Boehden
- Universitätsfrauenklinik, Prittwitzstrasse 43D-89075 Ulm, Germany
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität HamburgMartinistraße 52, D-20251 Hamburg, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of KonstanzD-78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Universitätsfrauenklinik, Prittwitzstrasse 43D-89075 Ulm, Germany
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität HamburgMartinistraße 52, D-20251 Hamburg, Germany
- To whom correspondence should be addressed. Tel: +49 731 500 27640; Fax: +49 731 500 26674;
| |
Collapse
|
114
|
Smith LM, Willmore E, Austin CA, Curtin NJ. The novel poly(ADP-Ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res 2006; 11:8449-57. [PMID: 16322308 DOI: 10.1158/1078-0432.ccr-05-1224] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors enhance DNA topoisomerase I (topo I) poison-induced cytotoxicity and antitumor activity in vitro and in vivo, but the mechanism has not been defined. We investigated the role of PARP-1 in the response to topo I poisons using PARP-1-/- and PARP-1+/+ mouse embryonic fibroblasts and the potent PARP-1 inhibitor, AG14361 (Ki < 5 nmol/L). PARP-1-/- mouse embryonic fibroblasts were 3-fold more sensitive to topotecan than PARP-1+/+ mouse embryonic fibroblasts (GI50, 21 and 65 nmol/L, respectively). AG14361 caused a >3-fold sensitization of PARP-1+/+ cells to topotecan compared with a <1.4-fold sensitization in PARP-1-/- cells. In human leukemia K562 cells, AG14361 caused a 2-fold sensitization to camptothecin-induced cytotoxicity. AG14361 did not affect the cellular activity of topo I as determined by measurement of cleavable complexes and topo I relaxation activity, showing that sensitization was not due to topo I activation. In contrast, repair of DNA following camptothecin removal, normally very rapid, was significantly retarded by AG14361, resulting in a 62% inhibition of repair 10 minutes after camptothecin removal. This led to a 20% increase in the net accumulation of camptothecin-induced DNA strand break levels in cells coexposed to AG14361 for 16 hours. We investigated the DNA repair mechanism involved using a panel of DNA repair-deficient Chinese hamster ovary cells. AG14361 significantly potentiated camptothecin-mediated cytotoxicity in all cells, except the base excision repair-deficient EM9 cells. Therefore, the most likely mechanism for the potentiation of topo I poison-mediated cytotoxicity by AG14361 is via PARP-1-dependent base excision repair.
Collapse
Affiliation(s)
- Lisa M Smith
- Northern Institute for Cancer Research and Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
115
|
Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev 2005; 19:1951-67. [PMID: 16140981 DOI: 10.1101/gad.1331805] [Citation(s) in RCA: 660] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) (PAR) and the PAR polymerases (PARPs) that catalyze its synthesis from donor nicotinamide adenine dinucleotide (NAD+) molecules have received considerable attention in the recent literature. Poly(ADP-ribosyl)ation (PARylation) plays diverse roles in many molecular and cellular processes, including DNA damage detection and repair, chromatin modification, transcription, cell death pathways, insulator function, and mitotic apparatus function. These processes are critical for many physiological and pathophysiological outcomes, including genome maintenance, carcinogenesis, aging, inflammation, and neuronal function. This review highlights recent work on the biochemistry, molecular biology, physiology, and pathophysiology of PARylation, focusing on the activity of PARP-1, the most abundantly expressed member of a family of PARP proteins. In addition, connections between nuclear NAD+ metabolism and nuclear signaling through PARP-1 are discussed.
Collapse
Affiliation(s)
- Mi Young Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
116
|
Zorbas H, Keppler BK. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem 2005; 6:1157-66. [PMID: 15934047 DOI: 10.1002/cbic.200400427] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haralabos Zorbas
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | |
Collapse
|
117
|
Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG. Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol Med 2005; 11:456-63. [PMID: 16154385 DOI: 10.1016/j.molmed.2005.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/10/2005] [Accepted: 08/26/2005] [Indexed: 11/29/2022]
Abstract
Recent progress in the field of DNA repair has demonstrated that transient inhibition of DNA damage detection or repair using potent poly(ADP-ribose) polymerase (PARP) inhibitors could improve the efficacy of cancer treatments. Although more study is needed, recent publications lead to optimism that the inhibition of poly(ADP-ribose) synthesis could selectively kill cancer cells when used to treat tumours with defective BRCA proteins. These reports and others shed some light on the DNA damage signalling and repair processes involving PARPs. However, a better understanding of the molecular mechanisms regulated by poly(ADP-ribose) metabolism will be essential before optimism can be replaced by clinical realization.
Collapse
Affiliation(s)
- Jean-François Haince
- Health and Environment Unit, Laval University Hospital Research Center, CHUQ, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
118
|
Abstract
Poly(ADP-ribosyl)ation, which is the posttranslational modification of proteins with poly(ADP-ribose), is catalysed by poly(ADP-ribose) polymerases. DNA-strand break induced catalytic activation of two PARP isoforms, namely PARP-1 and -2, are in involved in DNA base-excision repair and other repair pathways. A body of correlative data suggests a link between DNA-damage induced poly(ADP-ribosyl)ation and mammalian longevity. This notion was reinforced by recently published evidence for interactions between PARP-1 and the Werner syndrome protein, deficiency of which causes premature ageing in humans. Recent research on PARPs and poly(ADP-ribose) provides several candidate mechanisms through which poly(ADP-ribosyl)ation might contribute to keeping the ageing process at slow pace.
Collapse
Affiliation(s)
- Alexander Bürkle
- Molecular Toxicology Group, Box X911, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
119
|
Meder VS, Boeglin M, de Murcia G, Schreiber V. PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 2005; 118:211-22. [PMID: 15615785 DOI: 10.1242/jcs.01606] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The DNA damage-dependent poly(ADP-ribose) polymerases-1 and -2 (PARP-1 and PARP-2) are survival factors that share overlapping functions in the detection, signaling and repair of DNA strand breaks resulting from genotoxic lesions in mammalian cells. Here we show that PARP-1 and PARP-2 subnuclear distributions partially overlap, with both proteins accumulating within the nucleolus independently of each other. PARP-2 is enriched within the whole nucleolus and partially colocalizes with the nucleolar factor nucleophosmin/B23. We have identified a nuclear localization signal and a nucleolar localization signal within the N-terminal domain of PARP-2. PARP-2, like PARP-1, interacts with B23 through its N-terminal DNA binding domain. This association is constitutive and does not depend on either PARP activity or ribosomal transcription, but is prevented by mutation of the nucleolar localization signal of PARP-2. PARP-1 and PARP-2, together with B23, are delocalized from the nucleolus upon RNA polymerase I inhibition whereas the nucleolar accumulation of all three proteins is only moderately affected upon oxidative or alkylated DNA damage. Finally, we show that murine fibroblasts deficient in PARP-1 or PARP-2 are not affected in the transcription of ribosomal RNAs. Taken together, these results suggest that the biological role of PARP-1 and PARP-2 within the nucleolus relies on functional nucleolar transcription, without any obvious implication of either PARP on this major nucleolar process.
Collapse
Affiliation(s)
- Véronique S Meder
- UPR 9003 du Centre National de la Recherche Scientifique, Laboratoire conventionné avec le Commissariat à l'Energie Atomique, Université Louis Pasteur, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
120
|
The role of nitric oxide and PARP in neuronal cell death. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
121
|
Vidaković M, Poznanović G, Bode J. DNA break repair: refined rules of an already complicated game. Biochem Cell Biol 2005; 83:365-73. [PMID: 15959562 DOI: 10.1139/o05-044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Of the many types of DNA-damage repair, this review concentrates on the aspects of DNA single- and double-strand break repair. Originally considered to represent separate routes based on distinct enzymatic machineries, it has recently been shown that these pathways converge and are interlinked at a number of points. Poly(ADP-ribose) polymerase-1 (PARP-1) is a central player in this complicated game. We present new data and our view on the mechanisms by which PARP-1 is guided to its respective interaction partners to coordinate or participate in repair or apoptosis.Key words: DNA strand break repair (DSBR), non-homologous end joining (NHEJ), nuclear architecture, nuclear matrix, PARP-1.
Collapse
Affiliation(s)
- Melita Vidaković
- Molecular Biology Laboratory, Institute for Biological Research, Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
122
|
Oliveira NG, Castro M, Rodrigues AS, Gonçalves IC, Martins C, Toscano Rico JM, Rueff J. Effect of poly(ADP-ribosyl)ation inhibitors on the genotoxic effects of the boron neutron capture reaction. Mutat Res 2005; 583:36-48. [PMID: 15866464 DOI: 10.1016/j.mrgentox.2005.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 01/20/2005] [Accepted: 01/31/2005] [Indexed: 05/02/2023]
Abstract
The boron neutron capture (BNC) reaction results from the interaction of 10B with low-energy thermal neutrons and gives rise to highly damaging lithium and alpha-particles. In this work the genotoxicity caused by the BNC reaction in V79 Chinese hamster cells was evaluated in the presence of poly(ADP-ribosyl)ation inhibitors. Poly(ADP-ribose) polymerase-1 (PARP-1), the most important member of the PARP enzyme family, is considered to be a constitutive factor of the DNA damage surveillance network present in eukaryotic cells, acting through a DNA break sensor function. Inhibition of poly(ADP-ribosyl)ation was achieved with the classical compound 3-aminobenzamide (3-AB), and with two novel and very potent inhibitors, 5-aminoisoquinolinone (5-AIQ) and PJ-34. Dose-response increases in the frequencies of aberrant cells excluding gaps (%ACEG) and chromosomal aberrations excluding gaps per cell (CAEG/cell) were observed for increasing exposures to the BNC reaction. The presence of 3-AB did not increase the %ACEG or CAEG/cell, nor did it change the pattern of the induced chromosomal aberrations. Results with 5-AIQ and PJ-34 were in agreement with the results obtained with 3-AB. We further studied the combined effect of a PARP inhibitor and a DNA-dependent protein kinase (DNA-PK) inhibitors (3-AB and wortmannin, respectively) on the genotoxicity of the BNC reaction, by use of the cytokinesis-block micronucleus assay. DNA-PK is also activated by DNA breaks and binds DNA ends, playing a role of utmost importance in the repair of double-strand breaks. Our results show that the inhibition of poly(ADP-ribosyl)ation does not particularly modify the genotoxicity of the BNC reaction, and that PARP inhibition together with a concomitant inhibition of DNA-PK revealed barely the same sensitizing effect as DNA-PK inhibition per se.
Collapse
Affiliation(s)
- Nuno G Oliveira
- Department of Genetics, Faculty of Medical Sciences, New University of Lisbon, R. da Junqueira 96, P 1349-008 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
123
|
Nguewa PA, Fuertes MA, Valladares B, Alonso C, Pérez JM. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:143-72. [PMID: 15561303 DOI: 10.1016/j.pbiomolbio.2004.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes, which show differences in structure, cellular location and functions. However, all these enzymes possess poly(ADP-ribosyl)ation activity. Overactivation of PARP enzymes has been implicated in the pathogenesis of several diseases, including stroke, myocardial infarction, diabetes, shock, neurodegenerative disorder and allergy. The best studied of these enzymes (PARP-1) is involved in the cellular response to DNA damage so that in the event of irreparable DNA damage overactivation of PARP-1 leads to necrotic cell death. Inhibitors of PARP-1 activity in combination with DNA-binding antitumor drugs may constitute a suitable strategy in cancer chemotherapy. In addition, PARP inhibitors may be also useful to restore cellular functions in several pathophysiological states and diseases. This review gives an update of the state-of-the-art concerning PARP enzymes and their exploitation as pharmacological targets in several illnesses.
Collapse
Affiliation(s)
- Paul A Nguewa
- Departamento de Parasitología, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
124
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
125
|
Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stöger T, Poirier GG, Dawson VL, Dawson TM. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 2004; 101:17699-704. [PMID: 15591342 PMCID: PMC539714 DOI: 10.1073/pnas.0406182101] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolism of poly(ADP-ribose) (PAR) is critical for genomic stability in multicellular eukaryotes. Here, we show that the failure to degrade PAR by means of disruption of the murine poly(ADP-ribose) glycohydrolase (PARG) gene unexpectedly causes early embryonic lethality and enhanced sensitivity to genotoxic stress. This lethality results from the failure to hydrolyze PAR, because PARG null embryonic day (E) 3.5 blastocysts accumulate PAR and concurrently undergo apoptosis. Moreover, embryonic trophoblast stem cell lines established from early PARG null embryos are viable only when cultured in medium containing the poly(ADP-ribose) polymerase inhibitor benzamide. Cells lacking PARG also show reduced growth, accumulation of PAR, and increased sensitivity to cytotoxicity induced by N-methyl-N'-nitro-N-nitrosoguanidine and menadione after benzamide withdrawal. These results provide compelling evidence that the failure to degrade PAR has deleterious consequences. Further, they define a role for PARG in embryonic development and a protective role in the response to genotoxic stress.
Collapse
Affiliation(s)
- David W Koh
- Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) catalyze the poly(ADP-ribosyl)ation of proteins. This posttranslational modification, as generated by the DNA damage-activated enzymes PARP-1 and -2, has long been known to be involved in DNA repair. Correlative data have suggested an association between DNA damage-induced poly(ADP-ribosyl)ation and mammalian longevity, and this link has recently been strengthened by the discovery of interactions between PARP-1 and the Werner syndrome protein. Emerging additional members of the PARP family display different cellular localizations and are involved in diverse processes such as the regulation of telomere or centrosome function, thereby providing further, independent links between poly(ADP-ribosyl)ation and the aging process.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
127
|
Audebert M, Salles B, Calsou P. Involvement of Poly(ADP-ribose) Polymerase-1 and XRCC1/DNA Ligase III in an Alternative Route for DNA Double-strand Breaks Rejoining. J Biol Chem 2004; 279:55117-26. [PMID: 15498778 DOI: 10.1074/jbc.m404524200] [Citation(s) in RCA: 523] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than a single end-joining mechanism. While searching for a DNA-PK-independent end-joining activity, we found that the pretreatment of DNA-PK-proficient and -deficient rodent cells with an inhibitor of the poly(ADP-ribose) polymerase-1 enzyme (PARP-1) led to increased cytotoxicity of the highly efficient DNA double-strand breaking compound calicheamicin gamma1. In addition, the repair kinetics of the DSBs induced by calicheamicin gamma1 was delayed both in PARP-1-proficient cells pretreated with the PARP-1 inhibitor and in PARP-1-deficient cells. In order to get new insights into the mechanism of an alternative route for DSBs repair, we have established a new synapsis and end-joining two-step assay in vitro, operating on DSBs with either nuclear protein extracts or recombinant proteins. We found an end-joining activity independent of the DNA-PK/XRCC4-ligase IV complex but that actually required a novel synapsis activity of PARP-1 and the ligation activity of the XRCC1-DNA ligase III complex, proteins otherwise involved in the base excision repair pathway. Taken together, these results strongly suggest that a PARP-1-dependent DSBs end-joining activity may exist in mammalian cells. We propose that this mechanism could act as an alternative route of DSBs repair that complements the DNA-PK/XRCC4/ligase IV-dependent nonhomologous end-joining.
Collapse
Affiliation(s)
- Marc Audebert
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, F-31077 Toulouse Cedex, France
| | | | | |
Collapse
|
128
|
Espejel S, Klatt P, Ménissier-de Murcia J, Martín-Caballero J, Flores JM, Taccioli G, de Murcia G, Blasco MA. Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. ACTA ACUST UNITED AC 2004; 167:627-38. [PMID: 15545322 PMCID: PMC2172587 DOI: 10.1083/jcb.200407178] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA repair proteins poly(ADP-ribose) polymerase-1 (PARP-1), Ku86, and catalytic subunit of DNA-PK (DNA-PKcs) have been involved in telomere metabolism. To genetically dissect the impact of these activities on telomere function, as well as organismal cancer and aging, we have generated mice doubly deficient for both telomerase and any of the mentioned DNA repair proteins, PARP-1, Ku86, or DNA-PKcs. First, we show that abrogation of PARP-1 in the absence of telomerase does not affect the rate of telomere shortening, telomere capping, or organismal viability compared with single telomerase-deficient controls. Thus, PARP-1 does not have a major role in telomere metabolism, not even in the context of telomerase deficiency. In contrast, mice doubly deficient for telomerase and either Ku86 or DNA-PKcs manifest accelerated loss of organismal viability compared with single telomerase-deficient mice. Interestingly, this loss of organismal viability correlates with proliferative defects and age-related pathologies, but not with increased incidence of cancer. These results support the notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis.
Collapse
Affiliation(s)
- Silvia Espejel
- Molecular Oncology Program, Spanish National Cancer Center (CNIO), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Wojewódzka M, Kruszewski M, Sochanowicz B, Szumiel I. Differential DNA double strand break fixation dependence on poly(ADP-ribosylation) in L5178Y and CHO cells. Int J Radiat Biol 2004; 80:473-82. [PMID: 15360085 DOI: 10.1080/09553000410001724216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To investigate the role of poly(ADP-ribosylation) in DNA double-strand break repair and fixation in murine lymphoma L5178Y (LY) sublines, LY-R and LY-S, and a pair of Chinese hamster ovary lines: wild-type and mutant xrs6 cells, that have differences in repair competence and degree of radiosensitization with poly(ADP-ribosylation) inhibitors. MATERIALS AND METHODS Cells (asynchronous, logarithmic phase) were pre-incubated with 2 mM aminobenzamide at 37 or 25 degrees C, X-irradiated with 10 Gy and allowed to repair DNA breaks for 15, 60 and 120 min at 37 or 25 degrees C. The remaining double-strand break were estimated by the neutral comet assay. RESULTS At 37 degrees C, no effect of AB treatment on the repair kinetics was observed either in xrs6 or Chinese hamster ovary (wild-type) cells. In contrast, aminobenzamide decreased the repair of double-strand break in the LY-S line but not the LY-R line, in agreement with the previously observed radiosensitization of LY cells by poly(ADP-ribosylation) inhibition. However, double-strand break rejoining in the repair competent cell lines, Chinese hamster ovary and LY-R, also was affected by aminobenzamide when the post-irradiation incubation was carried out at 25 degrees C. Analysis of these results together with earlier data on LY-S cells have been interpreted in terms of Radford's model of radiation damage fixation. CONCLUSION The reported results indicate that poly(ADP-ribosylation) can be an important modulator of the conversion of DNA damage to lethal events.
Collapse
Affiliation(s)
- M Wojewódzka
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Dorodna 16, PL-03-195 Warsaw, Poland
| | | | | | | |
Collapse
|
130
|
von Kobbe C, Harrigan JA, Schreiber V, Stiegler P, Piotrowski J, Dawut L, Bohr VA. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 2004; 32:4003-14. [PMID: 15292449 PMCID: PMC506806 DOI: 10.1093/nar/gkh721] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Werner syndrome (WS) is a genetic premature aging disorder in which patients appear much older than their chronological age. The gene mutated in WS encodes a nuclear protein (WRN) which possesses 3'-5' exonuclease and ATPase-dependent 3'-5' helicase activities. The genomic instability associated with WS cells and the biochemical characteristics of WRN suggest that WRN plays a role in DNA metabolic pathways such as transcription, replication, recombination and repair. Recently we have identified poly(ADP-ribose) polymerase-1 (PARP-1) as a new WRN interacting protein. In this paper, we further mapped the interacting domains. We found that PARP-1 bound to the N-terminus of WRN and to the C-terminus containing the RecQ-conserved (RQC) domain. WRN bound to the N-terminus of PARP-1 containing DNA binding and BRCA1 C-terminal (BRCT) domains. We show that unmodified PARP-1 inhibited both WRN exonuclease and helicase activities, and to our knowledge is the only known WRN protein partner that inactivates both of the WRN's catalytic activities suggesting a biologically significant regulation. Moreover, this dual inhibition seems to be specific for PARP-1, as PARP-2 did not affect WRN helicase activity and only slightly inhibited WRN exonuclease activity. The differential effect of PARP-1 and PARP-2 on WRN catalytic activity was not due to differences in affinity for WRN or the DNA substrate. Finally, we demonstrate that the inhibition of WRN by PARP-1 was influenced by the poly(ADP-ribosyl)ation state of PARP-1. The biological relevance of the specific modulation of WRN catalytic activities by PARP-1 are discussed in the context of pathways in which these proteins may function together, namely in the repair of DNA strand breaks.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Dr, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Veuger SJ, Curtin NJ, Smith GCM, Durkacz BW. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 2004; 23:7322-9. [PMID: 15286704 DOI: 10.1038/sj.onc.1207984] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) and poly (ADP-ribose) polymerase-1 (PARP-1) participate in nonhomologous end joining and base excision repair, respectively, and are key determinants of radio- and chemo-resistance. Both PARP-1 and DNA-PK have been identified as therapeutic targets for anticancer drug development. Here we investigate the effects of specific inhibitors on enzyme activities and DNA double-strand break (DSB) repair. The enzyme activities were investigated using purified enzymes and in permeabilized cells. Inhibition, or loss of activity, was compared using potent inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361), and cell lines proficient or deficient for DNA-PK or PARP-1. Inactive DNA-PK suppressed the activity of PARP-1 and vice versa. This was not the consequence of simple substrate competition, since DNA ends were provided in excess. The inhibitory effect of DNA-PK on PARP activity was confirmed in permeabilized cells. Both inhibitors prevented ionizing radiation-induced DSB repair, but only AG14361 prevented single-strand break repair. An increase in DSB levels caused by inhibition of PARP-1 was shown to be caused by a decrease in DSB repair, and not by the formation of additional DSBs. These data point to combined inhibition of PARP-1 and DNA-PK as a powerful strategy for tumor radiosensitization.
Collapse
Affiliation(s)
- Stephany J Veuger
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
132
|
Li B, Navarro S, Kasahara N, Comai L. Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 2004; 279:13659-67. [PMID: 14734561 DOI: 10.1074/jbc.m311606200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner's syndrome (WS) is an inherited disease characterized by genomic instability and premature aging. The WS gene encodes a protein (WRN) with helicase and exonuclease activities. We have previously reported that WRN interacts with Ku70/80 and this interaction strongly stimulates WRN exonuclease activity. To gain further insight on the function of WRN and its relationship with the Ku heterodimer, we established a cell line expressing tagged WRN(H), a WRN point mutant lacking helicase activity, and used affinity purification, immunoblot analysis and mass spectroscopy to identify WRN-associated proteins. To this end, we identified three proteins that are stably associated with WRN in nuclear extracts. Two of these proteins, Ku70 and Ku80, were identified by immunoblot analysis. The third polypeptide, which was identified by mass spectrometry analysis, is identical to poly(ADP-ribose) polymerase-1(PARP-1), a 113-kDa enzyme that functions as a sensor of DNA damage. Biochemical fractionation studies and immunoprecipitation assays and studies confirmed that endogenous WRN is associated with subpopulations of PARP-1 and Ku70/80 in the cell. Protein interaction assays with purified proteins further indicated that PARP-1 binds directly to WRN and assembles in a complex with WRN and Ku70/80. In the presence of DNA and NAD(+), PARP-1 poly(ADP-ribosyl)ates itself and Ku70/80 but not WRN, and gel-shift assays showed that poly-(ADP-ribosyl)ation of Ku70/80 decreases the DNA-binding affinity of this factor. Significantly, (ADP-ribosyl)ation of Ku70/80 reduces the ability of this factor to stimulate WRN exonuclease, suggesting that covalent modification of Ku70/80 by PARP-1 may play a role in the regulation of the exonucleolytic activity of WRN.
Collapse
Affiliation(s)
- Baomin Li
- Departments of Molecular Microbiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
133
|
Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 2004; 38:339-48. [PMID: 14566854 DOI: 10.1002/gcc.10250] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Poly(ADP-ribose) and poly(ADP-ribose) polymerase (PARP) were discovered about 40 years ago, but their significance was not well elucidated until recently. In the early stage of the history of PARP, the presence of antibodies in the sera of human patients with lupus erythematosus indicated its natural occurrence. PARP, as well as the degrading enzyme, poly(ADP-ribose) glycohydrolase (PARG), are present in most eukaryotes except for yeasts. Studies that used inhibitors of PARP indicated the involvement of PARP and poly(ADP-ribose) in DNA damage repair, and eventually PARP was purified and the gene was cloned. Molecular analysis then revealed various functional domains, such as the one for binding to strand breaks of DNA. Parp-1-deficient and Parg-deficient cells showed, in general, enhanced sensitivity to the lethal effects of ionizing radiation and alkylating agents. Parp-1 knockout mouse embryonic stem cells developed into teratocarcinoma-like tumors when injected subcutaneously into nude mice, these tumors featuring giant cells similar to syncytiotrophoblastic giant cells with hyperploidy. Parp-1 was also found in centrosomes, suggesting that poly(ADP-ribose) and PARP-1 are functionally involved in the maintenance of chromatin structure and the equal distribution of chromosomes into daughter cells. Intriguing findings on the real biological significance continue to be generated, with new light shed on mechanisms of carcinogenesis and pointing to novel cancer treatments. Highlights during the last four decades of studies by laboratories focusing on poly(ADP-ribose)/PARP, including our own, are condensed and summarized in this review.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | |
Collapse
|
134
|
Dorszewska J, Adamczewska-Goncerzewicz Z, Szczech J. Apoptotic proteins in the course of aging of central nervous system in the rat. Respir Physiol Neurobiol 2004; 139:145-55. [PMID: 15122998 DOI: 10.1016/j.resp.2003.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2003] [Indexed: 12/17/2022]
Abstract
Studies were performed on the level of cells with damaged DNA (TUNEL), the level of protein engaged in DNA repair (PARP) and the level of proteins indicating the extent of apoptosis (Bax:Bcl-2) (Western blot). The studies were performed on cerebral cortex (GM), white matter (WM), medulla oblongata (MO), cerebellum (C) of rats, 3.0-3.5-, 12-, 24-months of age. The highest levels of DNA injury in GM of 1-year-old rats and in MO of 2-year-old rats were accompanied by peak levels of PARP. In the remaining structures (WM, C) levels of DNA injury showed no correspondence with levels of PARP. Levels of Bax proteins exceeded levels of Blc-2 protein in all cerebral structures of young rats. In old animals, Bax protein continued to exceed Blc-2 levels both in GM and in MO, in which most pronounced fragmentation of DNA was observed. The data indicated that in spite of high level of TUNEL positive cells in aged brain PARP and Bcl-2 are probably engaged in protection of the cells against death.
Collapse
Affiliation(s)
- Jolanta Dorszewska
- Department of Clinical Neurochemistry, University of Medical Sciences in Poznan, 49 Przybyszewskiego St., PL 60-355 Poznan, Poland.
| | | | | |
Collapse
|
135
|
Zingarelli B, Hake PW, O'Connor M, Denenberg A, Wong HR, Kong S, Aronow BJ. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am J Physiol Heart Circ Physiol 2003; 286:H1408-15. [PMID: 14670820 DOI: 10.1152/ajpheart.00953.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme activated in response to DNA strand breaks, has been implicated in cell dysfunction in myocardial reperfusion injury. PARP-1 has also been shown to participate in transcription and regulation of gene expression. In this study, we investigated the role of PARP-1 on the signal transduction pathway of activator protein-1 (AP-1) and heat shock factor-1 (HSF-1) in myocardial reperfusion injury. Mice genetically deficient of PARP-1 (PARP-1(-/-) mice) exhibited a significant reduction of myocardial damage after occlusion and reperfusion of the left anterior descending branch of the coronary artery compared with their wild-type littermates. This cardioprotection was associated with a reduction of the phosphorylative activity of JNK and, subsequently, reduction of the DNA binding of the signal transduction factor AP-1. On the contrary, in PARP-1(-/-) mice, DNA binding of HSF-1 was enhanced and was associated with a significant increase of the cardioprotective heat shock protein (HSP)70 compared with wild-type mice. Microarray analysis revealed that expression of several AP-1-dependent genes of proinflammatory mediators and HSPs was altered in PARP-1(-/-) mice. The data indicate that PARP-1 may exert a pathological role in reperfusion injury by functioning as an enhancing factor of AP-1 activation and as a repressing factor of HSF-1 activation and HSP70 expression.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
136
|
Noël G, Giocanti N, Fernet M, Mégnin-Chanet F, Favaudon V. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC Cell Biol 2003; 4:7. [PMID: 12866953 PMCID: PMC179890 DOI: 10.1186/1471-2121-4-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 07/16/2003] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The cytotoxicity and the rejoining of DNA double-strand breaks induced by gamma-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. RESULTS PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by gamma-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose) synthesis following gamma-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as gamma-rays and H2O2. CONCLUSIONS The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to gamma-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose) synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.
Collapse
Affiliation(s)
- Georges Noël
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
- Centre de Protonthérapie d'Orsay, Bât. 101, Centre Universitaire, BP 65, 91402 Orsay Cedex, France
| | - Nicole Giocanti
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | - Marie Fernet
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
- Present address: DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Frédérique Mégnin-Chanet
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | - Vincent Favaudon
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| |
Collapse
|
137
|
Nozaki T, Fujihara H, Watanabe M, Tsutsumi M, Nakamoto K, Kusuoka O, Kamada N, Suzuki H, Nakagama H, Sugimura T, Masutani M. Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 2003; 94:497-500. [PMID: 12824873 PMCID: PMC11160212 DOI: 10.1111/j.1349-7006.2003.tb01472.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 03/24/2003] [Accepted: 04/02/2003] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (Parp-1) is activated by DNA strand breaks and functions in the maintenance of genomic integrity and cell death control. On the other hand, Parp-1 is also involved in transcriptional regulation of various genes, and the relationship between Parp-1 deficiency and susceptibility to tumorigenesis has not been fully elucidated. In the present study, Parp-1(-/-) mice, harboring exon 1 disruption in Parp-1, and Parp-1(+/+) animals were administered azoxymethane (AOM) at a dose of 10 mg/kg body weight once a week for 6 weeks. At 30 weeks after the first carcinogen treatment, mice were sacrificed. The incidence of animals bearing either adenomas or adenocarcinomas in the colon and the average number of colon tumors per mouse were significantly higher in Parp-1(-/-) mice than in Parp-1(+/+) animals. beta-Catenin accumulation was observed in 43/44 of Parp-1 (-/-) tumors and 19/21 of the Parp-1(+/+) tumors and was not statistically different between the genotypes. This suggests that most tumors developed through a pathway involving the alteration of Wnt-beta-catenin signaling in both Parp-1(-/-) and Parp-1(+/+) mice. In the liver, where AOM is primarily activated, the incidence of animals bearing nodules and the average number of nodules per section were significantly increased in Parp-1(-/-) mice compared with Parp-1(+/+) mice. Therefore, the results indicate that susceptibility to AOM-induced tumorigenesis in the colon and also in the liver is enhanced in Parp-1(-/-) mice, and Parp-1 could have a substantial role in colon and liver tumorigenesis.
Collapse
Affiliation(s)
- Tadashige Nozaki
- Biochemistry Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ko L, Chin WW. Nuclear receptor coactivator thyroid hormone receptor-binding protein (TRBP) interacts with and stimulates its associated DNA-dependent protein kinase. J Biol Chem 2003; 278:11471-9. [PMID: 12519782 DOI: 10.1074/jbc.m209723200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors mediate gene activation through ligand-dependent interaction with coactivators. We previously cloned and characterized thyroid hormone receptor-binding protein, TRBP (NcoA6: AIB3/ASC-2/RAP250/PRIP/TRBP/NRC), as an LXXLL-containing coactivator that associates with coactivator complexes through its C terminus. To search for protein factors involved in TRBP action, we identified a distinct set of proteins from HeLa nuclear extract that interacts with the C terminus of TRBP. Analysis by mass spectrometric protein sequencing revealed a DNA-dependent protein kinase (DNA-PK) complex including its catalytic subunit and regulatory subunits, Ku70 and Ku86. DNA-PK is a heterotrimeric nuclear phosphatidylinositol 3-kinase that functions in DNA repair, recombination, and transcriptional regulation. DNA-PK phosphorylates TRBP at its C-terminal region, which directly interacts with Ku70 but not Ku86 in vitro. In addition, in the absence of DNA, TRBP itself activates DNA-PK, and the TRBP-stimulated DNA-PK activity has an altered phosphorylation pattern from DNA-stimulated activity. An anti-TRBP antibody inhibits TRBP-induced kinase activity, suggesting that protein content of TRBP is responsible for the stimulation of DNA-independent kinase activity. Furthermore, in DNA-PK-deficient scid cells, TRBP-mediated transactivation is significantly impaired, and nuclear localization of TRBP is altered. The activation of DNA-PK in the absence of DNA ends by the coactivator TRBP suggests a novel mechanism of coactivator-stimulated DNA-PK phosphorylation in transcriptional regulation.
Collapse
Affiliation(s)
- Lan Ko
- Department of Gene Regulation, Bone and Inflammation Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
139
|
Calsou P, Delteil C, Frit P, Drouet J, Salles B. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 2003; 326:93-103. [PMID: 12547193 DOI: 10.1016/s0022-2836(02)01328-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repair of DNA double-strand breaks by the non-homologous end-joining pathway (NHEJ) requires a minimal set of proteins including DNA-dependent protein kinase (DNA-PK), DNA-ligase IV and XRCC4 proteins. DNA-PK comprises Ku70/Ku80 heterodimer and the kinase subunit DNA-PKcs (p460). Here, by monitoring protein assembly from human nuclear cell extracts on DNA ends in vitro, we report that recruitment to DNA ends of the XRCC4-ligase IV complex responsible for the key ligation step is strictly dependent on the assembly of both the Ku and p460 components of DNA-PK to these ends. Based on co-immunoprecipitation experiments, we conclude that interactions of Ku and p460 with components of the XRCC4-ligase IV complex are mainly DNA-dependent. In addition, under p460 kinase permissive conditions, XRCC4 is detected at DNA ends in a phosphorylated form. This phosphorylation is DNA-PK-dependent. However, phosphorylation is dispensable for XRCC4-ligase IV loading to DNA ends since stable DNA-PK/XRCC4-ligase IV/DNA complexes are recovered in the presence of the kinase inhibitor wortmannin. These findings extend the current knowledge of the assembly of NHEJ repair proteins on DNA termini and substantiate the hypothesis of a scaffolding role of DNA-PK towards other components of the NHEJ DNA repair process.
Collapse
Affiliation(s)
- Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077, Cedex 4, Toulouse, France.
| | | | | | | | | |
Collapse
|
140
|
Henrie MS, Kurimasa A, Burma S, Ménissier-de Murcia J, de Murcia G, Li GC, Chen DJ. Lethality in PARP-1/Ku80 double mutant mice reveals physiological synergy during early embryogenesis. DNA Repair (Amst) 2003; 2:151-8. [PMID: 12531386 DOI: 10.1016/s1568-7864(02)00199-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-/Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.
Collapse
Affiliation(s)
- Melinda S Henrie
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Mauldin SK, Getts RC, Liu W, Stamato TD. DNA-PK-dependent binding of DNA ends to plasmids containing nuclear matrix attachment region DNA sequences: evidence for assembly of a repair complex. Nucleic Acids Res 2002; 30:4075-87. [PMID: 12235392 PMCID: PMC137113 DOI: 10.1093/nar/gkf529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7-21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.
Collapse
Affiliation(s)
- Stanley K Mauldin
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA and Genisphere, Incorporated, 4170 City Avenue, Philadelphia, PA 19131-1694, USA
| | | | | | | |
Collapse
|
142
|
Lee D, Kim JW, Kim K, Joe CO, Schreiber V, Ménissier-De Murcia J, Choe J. Functional interaction between human papillomavirus type 18 E2 and poly(ADP-ribose) polymerase 1. Oncogene 2002; 21:5877-85. [PMID: 12185587 DOI: 10.1038/sj.onc.1205723] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 06/07/2002] [Accepted: 06/10/2002] [Indexed: 11/09/2022]
Abstract
Human papillomavirus E2 protein is a transcription factor of viral gene expression and DNA replication. Here we show that PARP is a positive regulator of the E2 protein of human papillomavirus type 18 (HPV-18). PARP interacted with the COOH terminal region of HPV-18 E2 in vitro. The E2 interaction domain within PARP is located in the NH(2)-terminal zinc finger motif and the BRCT motif included in the automodification domain. Overexpression of either wild type or the NH(2)-terminal region of PARP containing zinc finger and BRCT stimulated E2-dependent transcription. Gel retardation assay indicates that PARP augments DNA binding activity of E2 in vitro. We also show that PARP-1 is recruited to E2-dependent promoter in vivo using ChIP assay. These results suggest that PARP serves a transcriptional co-activator in E2-dependent transcription by interacting directly with the HPV E2 protein.
Collapse
Affiliation(s)
- Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
143
|
Nargi-Aizenman JL, Simbulan-Rosenthal CM, Kelly TA, Smulson ME, Griffin DE. Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. Virology 2002; 293:164-71. [PMID: 11853409 DOI: 10.1006/viro.2001.1253] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a chromatin-associated enzyme that is activated by DNA strand breaks and catalyzes the transfer of ADP-ribose groups from NAD to itself and other nuclear proteins. Although caspase-mediated PARP-1 cleavage occurs during almost all forms of apoptosis, the contribution of PARP-1 activation and cleavage to this cell death process remains unclear. Using immortalized fibroblasts from wild-type (PARP-1(+/+)) and PARP-1 knockout (PARP-1(-/-)) mice, and a mouse neuroblastoma cell line (N18), the role that poly(ADP-ribosyl)ation plays in Sindbis virus (SV)-induced apoptosis was examined. Robust PARP-1 activation occurred in SV-infected cells prior to morphologic changes associated with apoptotic cell death and PARP-1 activity ceased simultaneously with caspase-3 activation and PARP-1 proteolysis. PARP-1 activity was maximal before detectable DNA fragmentation, but was absent when DNA damage was most intense. SV and staurosporine-induced cell death was delayed in fibroblasts lacking PARP-1 activity, suggesting that PARP-1 activation contributes to apoptotic cell death induced by these stimuli. SV replication was not affected by lack of PARP-1 activity, but DNA fragmentation and caspase-3 activation were delayed and occurred at lower levels in PARP-1-deficient fibroblasts. Early virus-induced PARP-1 activation may represent a novel way by which cells signal to the nucleus to regulate protein function by poly(ADP-ribosyl)ation in response to virus infection.
Collapse
Affiliation(s)
- Jennifer L Nargi-Aizenman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
144
|
Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 2002; 45:73-85. [PMID: 11846617 DOI: 10.1006/phrs.2001.0935] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+)to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, that presently includes six members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress (oxygen radicals, ionizing radiations and monofunctional alkylating agents). Due to its involvement either in DNA repair or in cell death, PARP-1 is regarded as a double-edged regulator of cellular functions. In fact, when the DNA damage is moderate, PARP-1 participates in the DNA repair process. Conversely, in the case of massive DNA injury, elevated PARP-1 activation leads to rapid NAD(+)/ATP consumption and cell death by necrosis. Excessive PARP-1 activity has been implicated in the pathogenesis of numerous clinical conditions such as stroke, myocardial infarction, shock, diabetes and neurodegenerative disorders. PARP-1 could therefore be considered as a potential target for the development of pharmacological strategies to enhance the antitumor efficacy of radio- and chemotherapy or to treat a number of clinical conditions characterized by oxidative or NO-induced stress and consequent PARP-1 activation. Moreover, the discovery of novel functions for the multiple members of the PARP family might lead in the future to additional clinical indications for PARP inhibitors.
Collapse
Affiliation(s)
- Lucio Tentori
- Pharmacology Section, Department of Neuroscience, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | | | | |
Collapse
|
145
|
Tong WM, Cortes U, Wang ZQ. Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1552:27-37. [PMID: 11781113 DOI: 10.1016/s0304-419x(01)00035-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage generated either exogenously or endogenously. This post-translational modification is catalyzed by poly(ADP-ribose) polymerase (PARP, PARP-1, EC 2.4.2.30). It is proposed that this protein plays a multifunctional role in many cellular processes, including DNA repair, recombination, cell proliferation and death, as well as genomic stability. Chemical inhibitors of the enzyme, dominant negative or null mutations of PARP-1 cause a high degree of genomic instability in cells. Inhibition of PARP activity by chemical inhibitors renders mice or rats susceptible to carcinogenic agents in various tumor models, indicating a role for PARP-1 in suppressing tumorigenesis. Despite the above observations, PARP-1 knockout mice are generally not prone to the development of tumors. An enhanced tumor development was observed, however, when the PARP-1 null mutation was introduced into severely compromised immune-deficient mice (a mutation in DNA-dependent protein kinase) or mice lacking other DNA repair or chromosomal guardian molecules, such as p53 or Ku80. These studies indicate that PARP-1 functions as a cofactor to suppress tumorigenesis via its role in stabilization of the genome, and/or by interacting with other DNA strand break-sensing molecules. Studies using PARP-1 mutants and chemical inhibitors have started to shed light on the role of this protein and of the specific protein post-translational modification in the control of genomic stability and hence its involvement in cancer.
Collapse
Affiliation(s)
- W M Tong
- International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | |
Collapse
|
146
|
Babiychuk E, Van Montagu M, Kushnir S. N-terminal domains of plant poly(ADP-ribose) polymerases define their association with mitotic chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:245-255. [PMID: 11722768 DOI: 10.1046/j.1365-313x.2001.01143.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Poly(ADP-ribos)ylation is a reversible protein modification that in higher plants is catalyzed by two structurally different poly(ADP-ribose) polymerases, App and Zap. In vivo imaging of green-fluorescent protein (GPF) fusions showed that both Zap and App were associated with chromatin through the cell cycle progression. The in vivo behaviour of the App-GFP protein fusions can be attributed to the activity of two NASA motifs that mediate protein-protein interactions and nucleic acid binding. Expression of Zap deletion variants revealed that both Zn fingers and helix-turn-helix domains contributed to the association with chromosomes, whereas the localization in the nucleoplasm was mostly determined by the Zn fingers. The results highlight novel properties of protein sequences found in plant poly(ADP-ribose) polymerases and suggest important functions for this class of nuclear enzymes in chromosome dynamics.
Collapse
Affiliation(s)
- E Babiychuk
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
147
|
Anisimov VN. Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Mech Ageing Dev 2001; 122:1221-55. [PMID: 11438116 DOI: 10.1016/s0047-6374(01)00262-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increased interest is emerging in using mouse models to assess the genetics of aging and age-related diseases, including cancer. However, only limited information is available regarding the relationship between aging and spontaneous tumor development in genetically modified mice. Analysis of various transgenic and knockout rodent models with either a shortened or an extended life span, provides a unique opportunity to evaluate interactions of genes involved in the aging process and carcinogenesis. There are only a few models which show life span extension. Ames dwarf mutant mice, p66(-/-) knockout mice, alpha MUPA and MGMT transgenic mice live longer than wild-type strains. The incidence of spontaneous tumors in these mutant mice was usually similar to those in controls, whereas the latent period of tumor development was increased. Practically all models of accelerated aging showed increased incidence and shorter latency of tumors. This phenomenon has been observed in animals which display a phenotype that more closely resembles natural aging, and in animals which manifest only some features of the normal aging process. These observations are in agreement with an earlier established positive correlation between tumor incidence and the rate of tumor incidence increase associated with aging and the aging rate in a population. Thus, genetically modified animals are a valuable tool in unravelling mechanisms underlying aging and cancer. Systemic evaluation of newly generated models should include onco-gerontological studies.
Collapse
Affiliation(s)
- V N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, 197758, St Petersburg, Russia.
| |
Collapse
|
148
|
Samper E, Goytisolo FA, Ménissier-de Murcia J, González-Suárez E, Cigudosa JC, de Murcia G, Blasco MA. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability. J Cell Biol 2001; 154:49-60. [PMID: 11448989 PMCID: PMC2196874 DOI: 10.1083/jcb.200103049] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP)-1, a detector of single-strand breaks, plays a key role in the cellular response to DNA damage. PARP-1-deficient mice are hypersensitive to genotoxic agents and display genomic instability due to a DNA repair defect in the base excision repair pathway. A previous report suggested that PARP-1-deficient mice also had a severe telomeric dysfunction consisting of telomere shortening and increased end-to-end fusions (d'Adda di Fagagna, F., M.P. Hande, W.-M. Tong, P.M. Lansdorp, Z.-Q. Wang, and S.P. Jackson. 1999. NAT: Genet. 23:76-80). In contrast to that, and using a panoply of techniques, including quantitative telomeric (Q)-FISH, we did not find significant differences in telomere length between wild-type and PARP-1(-/)- littermate mice or PARP-1(-/)- primary cells. Similarly, there were no differences in the length of the G-strand overhang. Q-FISH and spectral karyotyping analyses of primary PARP-1(-/)- cells showed a frequency of 2 end-to-end fusions per 100 metaphases, much lower than that described previously (d'Adda di Fagagna et al., 1999). This low frequency of end-to-end fusions in PARP-1(-/)- primary cells is accordant with the absence of severe proliferative defects in PARP-1(-/)- mice. The results presented here indicate that PARP-1 does not play a major role in regulating telomere length or in telomeric end capping, and the chromosomal instability of PARP-1(-/)- primary cells can be explained by the repair defect associated to PARP-1 deficiency. Finally, no interaction between PARP-1 and the telomerase reverse transcriptase subunit, Tert, was found using the two-hybrid assay.
Collapse
Affiliation(s)
- E Samper
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-CSIC, Campus Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
149
|
Ziegler M, Oei SL. A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001; 23:543-8. [PMID: 11385634 DOI: 10.1002/bies.1074] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification occurring in the nucleus. The most abundant and best-characterized enzyme catalyzing this reaction, poly(ADP-ribose) polymerase 1 (PARP1), participates in fundamental nuclear events. The enzyme functions as molecular "nick sensor". It binds with high affinity to DNA single-strand breaks resulting in the initiation of its catalytic activity. Activated PARP1 promotes base excision repair. In addition, PARP1 modifies several transcription factors and thereby precludes their binding to DNA. We propose that a major function of PARP1 includes the silencing of transcription preventing expression of damaged genes. Concomitant stimulation of DNA repair suggests that PARP1 acts as a switch between transcription and DNA repair. Another PARP-type enzyme, tankyrase, is involved in the regulation of telomere elongation. Tankyrase modifies a telomere-associated protein and thereby prevents it masking telomeric repeats providing access of telomerase for telomere elongation. Therefore, poly(ADP-ribosyl)ation reactions may act as molecular switches in DNA metabolism.
Collapse
Affiliation(s)
- M Ziegler
- Institut für Biochemie, Freie Universität Berlin, Germany.
| | | |
Collapse
|
150
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo RB, Samara R, Jung M, Dritschilo A, Spoonde A, Smulson ME. Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 2001; 3:179-88. [PMID: 11494111 PMCID: PMC1505598 DOI: 10.1038/sj.neo.7900155] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 03/13/2001] [Indexed: 11/08/2022] Open
Abstract
The tumor-suppressor p53 undergoes extensive poly(ADP-ribosyl)ation early during apoptosis in human osteosarcoma cells, and degradation of poly(ADP-ribose) (PAR) attached to p53 coincides with poly(ADP-ribose)polymerase-1, (PARP-1) cleavage, and expression of p53 target genes. The mechanism by which poly(ADP-ribosyl)ation may regulate p53 function has now been investigated. Purified wild-type PARP-1 catalyzed the poly(ADP-ribosyl) of full-length p53 in vitro. In gel supershift assays, poly(ADP-ribosyl)ation suppressed p53 binding to its DNA consensus sequence; however, when p53 remained unmodified in the presence of inactive mutant PARP-1, it retained sequence-specific DNA binding activity. Poly(ADP-ribosyl)ation of p53 by PARP-1 during early apoptosis in osteosarcoma cells also inhibited p53 interaction with its DNA consensus sequence; thus, poly(ADP-ribosyl)ation may represent a novel means for regulating transcriptional activation by p53 in vivo.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|