101
|
Oguro Y, Yamazaki H, Takagi M, Takaku H. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr Genet 2013; 60:89-97. [PMID: 24253293 DOI: 10.1007/s00294-013-0416-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 01/03/2023]
Abstract
An antifungal defensin, AFP1, of Brassica juncea inhibits the growth of various microorganisms. The molecular details of this inhibition remain largely unknown. Herein, we reveal that a specific structure of fungal sphingolipid glucosylceramide (GlcCer) is critical for the sensitivity of Candida albicans cells to AFP1. Our results revealed that AFP1 induces plasma membrane permeabilization and the production of reactive oxygen species (ROS) in wild-type C. albicans cells, but not in cells lacking the ninth methyl residue of the GlcCer sphingoid base moiety, which is a characteristic feature of fungi. AFP1-induced ROS production is responsible for its antifungal activity, with a consequent loss of yeast cell viability. These findings suggest that AFP1 specifically recognizes the structural difference of GlcCer for targeting of the fungal pathogens.
Collapse
Affiliation(s)
- Yoshifumi Oguro
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | | | | | | |
Collapse
|
102
|
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2013; 59:181-96. [PMID: 24092498 PMCID: PMC3971460 DOI: 10.1007/s12223-013-0280-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
103
|
van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 2013; 70:3545-70. [PMID: 23381653 PMCID: PMC11114075 DOI: 10.1007/s00018-013-1260-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.
Collapse
|
104
|
Souza GS, do Nascimento VV, de Carvalho LP, de Melo EJT, Fernandes KV, Machado OLT, Retamal CA, Gomes VM, Carvalho ADO. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. Exp Parasitol 2013; 135:116-25. [DOI: 10.1016/j.exppara.2013.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/27/2013] [Accepted: 06/12/2013] [Indexed: 01/18/2023]
|
105
|
Harries E, Carmona L, Muñoz A, Ibeas JI, Read ND, Gandía M, Marcos JF. Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 58-59:105-15. [DOI: 10.1016/j.fgb.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
|
106
|
Torcato IM, Huang YH, Franquelim HG, Gaspar DD, Craik DJ, Castanho MARB, Henriques ST. The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability. Chembiochem 2013; 14:2013-22. [PMID: 24038773 DOI: 10.1002/cbic.201300274] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Indexed: 12/21/2022]
Abstract
Because of their high activity against microorganisms and low cytotoxicity, cationic antimicrobial peptides (AMPs) have been explored as the next generation of antibiotics. Although they have common structural features, the modes of action of AMPs are extensively debated, and a single mechanism does not explain the activity of all AMPs reported so far. Here we investigated the mechanism of action of Sub3, an AMP previously designed and optimised from high-throughput screening with bactenecin as the template. Sub3 has potent activity against Gram-negative and Gram-positive bacteria as well as against fungi, but its mechanism of action has remained elusive. By using AFM imaging, ζ potential, flow cytometry and fluorescence methodologies with model membranes and bacterial cells, we found that, although the mechanism of action involves membrane targeting, Sub3 internalises inside bacteria at lethal concentrations without permeabilising the membrane, thus suggesting that its antimicrobial activity might involve both the membrane and intracellular targets. In addition, we found that Sub3 can be internalised into human cells without being toxic. As some bacteria are able to survive intracellularly and consequently evade host defences and antibiotic treatment, our findings suggest that Sub3 could be useful as an intracellular antimicrobial agent for infections that are notoriously difficult to treat.
Collapse
Affiliation(s)
- Inês M Torcato
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon (Portugal)
| | | | | | | | | | | | | |
Collapse
|
107
|
Hayes BME, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 2013; 57:3667-75. [PMID: 23689717 PMCID: PMC3719733 DOI: 10.1128/aac.00365-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.
Collapse
Affiliation(s)
| | - Mark R. Bleackley
- La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | | | | | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
108
|
Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1615-23. [PMID: 23665069 DOI: 10.1016/j.bbapap.2013.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zhang B, Dong C, Shang Q, Han Y, Li P. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2230-7. [PMID: 23756779 DOI: 10.1016/j.bbamem.2013.05.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R. solani hyphae by bacillomycin L was investigated and compared with that by amphotericin B, a polyene antibiotic which is thought to act primarily through membrane disruption. Our results derived from electron microscopy, various fluorescent techniques and gel retardation experiments revealed that the antifungal activity of bacillomycin L may be not solely a consequence of fungal membrane permeabilization, but related to the interaction of it with intracellular targets. Our findings provide more insights into the mode of action of bacillomycin L and other iturins, which could in turn help to develop new or improved antifungal formulations or result in novel strategies to prevent fungal spoilage.
Collapse
Affiliation(s)
- Bao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
110
|
Protective role of murine β-defensins 3 and 4 and cathelin-related antimicrobial peptide in Fusarium solani keratitis. Infect Immun 2013; 81:2669-77. [PMID: 23670560 DOI: 10.1128/iai.00179-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (AMPs), such as β-defensins and cathelicidins, are essential components of innate and adaptive immunity owing to their extensive multifunctional activities. However, their role in fungal infection in vivo remains elusive. In this study, we investigated the protective effect of murine β-defensin 3 (mBD3), mBD4, and the cathelicidin cathelin-related antimicrobial peptide (CRAMP) in a murine model of Fusarium solani keratitis. C57BL/6 mice showed significant corneal disease 1 and 3 days after infection, which was accompanied by enhanced expression of β-defensins and CRAMP. Disease severity was significantly improved 7 days after infection, at which time AMP expression was returning to baseline. Mice deficient in mBD3 (genetic knockout), mBD4 (short interfering RNA knockdown), or CRAMP (genetic knockout) exhibited enhanced disease severity and progression, increased neutrophil recruitment, and delayed pathogen elimination compared to controls. Taken together, these data suggest a vital role for AMPs in defense against F. solani keratitis, a potentially blinding corneal disease.
Collapse
|
111
|
Muñoz A, Harries E, Contreras-Valenzuela A, Carmona L, Read ND, Marcos JF. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells. PLoS One 2013; 8:e54813. [PMID: 23349973 PMCID: PMC3549957 DOI: 10.1371/journal.pone.0054813] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW) is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW) and PAF96 (RKKAAA), were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i) its interaction with the cell envelope; (ii) its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii) its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the cytoplasm, which coincides with cell death. Peptide containment within vacuoles preserves fungal cells from peptide toxicity.
Collapse
Affiliation(s)
- Alberto Muñoz
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleonora Harries
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Lourdes Carmona
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (JFM); (NDR)
| | - Jose F. Marcos
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
- * E-mail: (JFM); (NDR)
| |
Collapse
|
112
|
Muñoz A, Gandía M, Harries E, Carmona L, Read ND, Marcos JF. Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
113
|
|
114
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
115
|
Gopal R, Na H, Seo CH, Park Y. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum. Int J Mol Sci 2012; 13:15042-53. [PMID: 23203110 PMCID: PMC3509626 DOI: 10.3390/ijms131115042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/14/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW)(n)-NH(2), where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides (n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4-32 μM. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs). However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents.
Collapse
Affiliation(s)
- Ramamourthy Gopal
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mail:
| | - Hyungjong Na
- Department of Biotechnology, Chosun University, Gwangju 501-759, Korea; E-Mail:
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea; E-Mail:
| | - Yoonkyung Park
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mail:
- Department of Biotechnology, Chosun University, Gwangju 501-759, Korea; E-Mail:
| |
Collapse
|
116
|
Egorov TA, Odintsova TI. [Defense peptides of plant immune system]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:7-17. [PMID: 22792701 DOI: 10.1134/s1068162012010062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms to combat pathogens. They are important effector molecules of the immune system both in animals and plants. AMPs are diverse in structure and mode of action. Based on homology of amino acid sequences and 3D structures several AMP families have been distinguished. They are defensins, thionins, lipid transfer proteins, hevein- and knottin-like peptides, and cyclotides. AMPs display broad-spectrum antimicrobial activity and thus show promise for the development of disease- resistant crops by genetic engineering and for the production of new-generation drugs. In this paper, the properties of the main AMP families (defensins and hevein-like peptides) and of a new 4-Cys plant AMP family are reviewed.
Collapse
|
117
|
Astafieva AA, Rogozhin EA, Odintsova TI, Khadeeva NV, Grishin EV, Egorov TA. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers. Peptides 2012; 36:266-71. [PMID: 22640720 DOI: 10.1016/j.peptides.2012.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.
Collapse
Affiliation(s)
- A A Astafieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
118
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 2012; 7:e39557. [PMID: 22745785 PMCID: PMC3382125 DOI: 10.1371/journal.pone.0039557] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Upendra K. Singh Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
119
|
Lay FT, Mills GD, Poon IKH, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 2012; 287:19961-72. [PMID: 22511788 PMCID: PMC3370180 DOI: 10.1074/jbc.m111.331009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/16/2012] [Indexed: 11/06/2022] Open
Abstract
The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys(4) as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys(4) that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys(4) mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Fung T. Lay
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Grant D. Mills
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Ivan K. H. Poon
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Nathan P. Cowieson
- the Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nigel Kirby
- the Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Amy A. Baxter
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Nicole L. van der Weerden
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Con Dogovski
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Matthew A. Perugini
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Marilyn A. Anderson
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| | - Marc Kvansakul
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Mark D. Hulett
- From the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
- Hexima Limited, Melbourne, Victoria 3000, and
| |
Collapse
|
120
|
Zhu S, Gao B, Harvey PJ, Craik DJ. Dermatophytic defensin with antiinfective potential. Proc Natl Acad Sci U S A 2012; 109:8495-500. [PMID: 22586077 PMCID: PMC3365176 DOI: 10.1073/pnas.1201263109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungi are a newly emerging source of peptide antibiotics with therapeutic potential. Here, we report 17 new fungal defensin-like peptide (fDLP) genes and the detailed characterization of a corresponding synthetic fDLP (micasin) from a dermatophyte in terms of its structure, activity and therapeutic potential. NMR analysis showed that synthetic micasin adopts a "hallmark" cysteine-stabilized α-helical and β-sheet fold. It was active on both gram-positive and gram-negative bacteria, and importantly it killed two clinical isolates of methicillin-resistant Staphylococcus aureus and the opportunistic pathogen Pseudomonas aeruginosa at low micromolar concentrations. Micasin killed approximately 100% of treated bacteria within 3 h through a membrane nondisruptive mechanism of action, and showed extremely low hemolysis and high serum stability. Consistent with these functional properties, micasin increases survival in mice infected by the pathogenic bacteria in a peritonitis model. Our work represents a valuable approach to explore novel peptide antibiotics from a large resource of fungal genomes.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China.
| | | | | | | |
Collapse
|
121
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
122
|
Gonçalves S, Teixeira A, Abade J, de Medeiros LN, Kurtenbach E, Santos NC. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1420-6. [PMID: 22373959 DOI: 10.1016/j.bbamem.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/04/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
123
|
Teng L, Gao B, Zhang S. The first chordate big defensin: identification, expression and bioactivity. FISH & SHELLFISH IMMUNOLOGY 2012; 32:572-577. [PMID: 22281606 DOI: 10.1016/j.fsi.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Defensins are broadly present in plants, invertebrates and vertebrates, but little information is available about it in amphioxus, a protochordate holding a key phylogenetic position. In this study, a big defensin cDNA was identified from the amphioxus Branchiostoma japonicum (termed Bjbd). The cDNA contained an open reading frame (ORF) of 354 bp encoding a 117 amino acid protein, which had an N-terminal signal sequence followed by a propeptide and the mature big defensin. The mature peptide had the hydrophobic region GAAAVT(A)AA at N-terminus and the consensus pattern C-X6-C-X3-C-X13(14)-C-X4-C-C at C-terminus as well as four α-helices, four β-sheets, and three disulfide bridges (C1-C5, C2-C4 and C3-C6) in the predicted tertiary structure. This is the first big defensin gene ever identified in the phylum Chordata. Quantitative real-time PCR analysis revealed that Bjbd was constitutively expressed in most of the tissues examined, and its expression was remarkably up-regulated following the challenge with LPS, LTA, Aeromonas hydrophila and Staphylococcus aureus. Moreover, the recombinant BjBD was shown to be able to inhibit the growth of S. aureus, Escherichia coli and A. hydrophila. Taken together, these suggest that BjBD is a molecule involved in the removal of invading pathogens.
Collapse
Affiliation(s)
- Lei Teng
- Department of Biology, Medical College of Qingdao University, Qingdao 266071, China
| | | | | |
Collapse
|
124
|
Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci 2012; 13:3229-3244. [PMID: 22489150 PMCID: PMC3317711 DOI: 10.3390/ijms13033229] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 01/11/2023] Open
Abstract
Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications.
Collapse
|
125
|
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PWJ, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BPA. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 2012; 84:166-80. [PMID: 22384976 DOI: 10.1111/j.1365-2958.2012.08017.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Lay FT, Veneer PK, Hulett MD, Kvansakul M. Recombinant expression and purification of the tomato defensin TPP3 and its preliminary X-ray crystallographic analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:314-6. [PMID: 22442231 DOI: 10.1107/s1744309112001510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/13/2012] [Indexed: 03/07/2023]
Abstract
Class II defensins have been shown to have potent antifungal activity and are being exploited to protect agricultural crops against fungal pathogens. TPP3 is a poorly characterized member of the class II plant defensin family from tomato. To gain structural insight into the function of TPP3, soluble recombinant TPP3 was expressed and purified using the Pichia pastoris expression system, and the crystallization and preliminary X-ray crystallographic analysis of the protein are reported. Crystals of rTPP3 were obtained using the sitting-drop vapour-diffusion method at 293 K. Diffraction data were collected to 1.7 Å resolution. The crystals belonged to the hexagonal space group P6(1)22, with unit-cell parameters a = 64.97, b = 64.97, c = 82.40 Å, α = 90, β = 90, γ = 120°.
Collapse
Affiliation(s)
- Fung T Lay
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | | | | | | |
Collapse
|
127
|
|
128
|
Lay FT, Mills GD, Hulett MD, Kvansakul M. Crystallization and preliminary X-ray crystallographic analysis of the plant defensin NaD1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:85-8. [PMID: 22232180 PMCID: PMC3253843 DOI: 10.1107/s1744309111049530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/19/2011] [Indexed: 11/10/2022]
Abstract
Plant defensins are small (~5 kDa) basic cysteine-rich proteins that are being explored in important agricultural crops for their ability to confer enhanced disease resistance against fungal pathogens. NaD1, isolated from the flowers of the ornamental tobacco (Nicotiana alata), is a particularly well characterized antifungal defensin. Here, the crystallization and preliminary X-ray crystallographic analysis of NaD1 is reported. Crystals of NaD1 were crystallized using the sitting-drop vapour-diffusion method at 291 K. Data were collected from two crystal forms to 1.4 and 1.6 Å resolution, respectively. The crystals of form A belonged to the monoclinic space group P2(1), with unit-cell parameters a = 32.697, b = 32.685, c = 41.977 Å, α = 90, β = 100.828, γ = 90°, whereas crystals of form B belonged to the trigonal space group P3(2)21, with unit-cell parameters a = b = 33.091, c = 128.77 Å, α = β = 90, γ = 120°.
Collapse
Affiliation(s)
- Fung T. Lay
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Limited, Melbourne, VIC 3000, Australia
| | - Grant D. Mills
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark D. Hulett
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Hexima Limited, Melbourne, VIC 3000, Australia
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
129
|
Sagaram US, Kaur J, Shah D. Antifungal Plant Defensins: Structure-Activity Relationships, Modes of Action, and Biotech Applications. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| | - Dilip Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| |
Collapse
|
130
|
Tomasinsig L, Skerlavaj B, Scarsini M, Guida F, Piccinini R, Tossi A, Zanetti M. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp. J Pept Sci 2011; 18:105-13. [PMID: 22083804 DOI: 10.1002/psc.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/09/2022]
Abstract
The yeast-like algae of the genus Prototheca are ubiquitous saprophytes causing infections in immunocompromised patients and granulomatous mastitis in cattle. Few available therapies and the rapid spread of resistant strains worldwide support the need for novel drugs against protothecosis. Host defence antimicrobial peptides inactivate a wide array of pathogens and are a rich source of leads, with the advantage of being largely unaffected by microbial resistance mechanisms. Three structurally diverse bovine peptides [BMAP-28, Bac5 and lingual antimicrobial peptide (LAP)] have thus been tested for their capacity to inactivate Prototheca spp. In minimum inhibitory concentration (MIC) assays, they were all effective in the micromolar range against clinical mastitis isolates as well as a Prototheca wickerhamii reference strain. BMAP-28 sterilized Prototheca cultures within 30-60 min at its MIC, induced cell permeabilization with near 100% release of cellular adenosine triphosphate and resulted in extensive surface blebbing and release of intracellular material as observed by scanning electron microscopy. Bac5 and LAP inactivated Prototheca following 3-6 h incubation at fourfold their MIC and did not result in detectable surface damage despite 70-90% killing, suggesting they act via non-lytic mechanisms. In circular dichroism studies, the conformation of BMAP-28, but not that of Bac5 or LAP, was affected by interaction with liposomes mimicking algal membranes. Our results indicate that BMAP-28, Bac5 and LAP kill Prototheca with distinct potencies, killing kinetics, and modes of action and may be appropriate for protothecal mastitis treatment. In addition, the ability of Bac5 and LAP to act via non-lytic mechanisms may be exploited for the development of target-selective drugs.
Collapse
Affiliation(s)
- Linda Tomasinsig
- Department of Medical and Biological Sciences, University of Udine, piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
131
|
de Beer A, Vivier MA. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 2011; 4:459. [PMID: 22032337 PMCID: PMC3213222 DOI: 10.1186/1756-0500-4-459] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/28/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from Heliophila coronopifolia, a native South African Brassicaceae species. RESULTS Four defensin genes (Hc-AFP1-4) were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from Arabidopsis and Raphanus. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC50 values of 5-20 μg ml-1 against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against Botrytis cinerea was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen Fusarium solani, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. Hc-AFP1 and 3 expressed in mature leaves, stems and flowers, whereas Hc-AFP2 and 4 exclusively expressed in seedpods and seeds. CONCLUSIONS Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant H. coronopifolia. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.
Collapse
Affiliation(s)
- Abré de Beer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
132
|
Kaur J, Sagaram US, Shah D. Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
133
|
Rahnamaeian M. Antimicrobial peptides: modes of mechanism, modulation of defense responses. PLANT SIGNALING & BEHAVIOR 2011; 6:1325-32. [PMID: 21847025 PMCID: PMC3258061 DOI: 10.4161/psb.6.9.16319] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 05/20/2023]
Abstract
Complicated schemes of classical breeding and their drawbacks, environmental risks imposed by agrochemicals, decrease of arable land, and coincident escalating damages of pests and pathogens have accentuated the necessity for highly efficient measures to improve crop protection. During co-evolution of host-microbe interactions, antimicrobial peptides (AMPs) have exhibited a brilliant history in protecting host organisms against devastation by invading pathogens. Since the 1980s, a plethora of AMPs has been isolated from and characterized in different organisms. Nevertheless the AMPs expressed in plants render them more resistant to diverse pathogens, a more orchestrated approach based on knowledge of their mechanisms of action and cellular targets, structural toxic principle, and possible impact on immune system of corresponding transgenic plants will considerably improve crop protection strategies against harmful plant diseases. This review outlines the current knowledge on different modes of action of AMPs and then argues the waves of AMPs’ ectopic expression on transgenic plants’ immune system.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University, Kerman, Iran.
| |
Collapse
|
134
|
Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 2011; 50:8005-17. [PMID: 21861459 DOI: 10.1021/bi201043j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human α-defensin 5 (HD5, HD5(ox) to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys(3)-Cys(31), Cys(5)-Cys(20), Cys(10)-Cys(30)) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Ser(hexa)], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S-S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5(ox) against this Gram-positive bacterial strain. This observation supports the notion that the HD5(ox) mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem. 284, 29180-29192] and that the native disulfide array is a requirement for its activity against S. aureus.
Collapse
Affiliation(s)
- Yoshitha A Wanniarachchi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
135
|
Wilmes M, Cammue BPA, Sahl HG, Thevissen K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 2011; 28:1350-8. [PMID: 21617811 DOI: 10.1039/c1np00022e] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defensins are small basic amphiphilic peptides (up to 5 kDa) that have been shown to be important effector molecules of the innate immune system of animals, plants and fungi. In addition to immune modulatory functions, they have potent direct antimicrobial activity against a broad spectrum of bacteria, fungi and/or viruses, which makes them promising lead compounds for the development of next-generation antiinfectives. The mode of antibiotic action of defensins was long thought to result from electrostatic interaction between the positively charged defensins and negatively charged microbial membranes, followed by unspecific membrane permeabilization or pore-formation. Microbial membranes are more negatively charged than human membranes, which may explain to some extent the specificity of defensin action against microbes and associated low toxicity for the host. However, research during the past decade has demonstrated that defensin activities can be much more targeted and that microbe-specific lipid receptors are involved in the killing activity of various defensins. In this respect, human, fungal and invertebrate defensins have been shown to bind to and sequester the bacterial cell wall building block lipid II, thereby specifically inhibiting cell wall biosynthesis. Moreover, plant and insect defensins were found to interact with fungal sphingolipid receptors, resulting in fungal cell death. This review summarizes the current knowledge on the mode of action and structure of defensins from different kingdoms, with specific emphasis on their interaction with microbial lipid receptors.
Collapse
Affiliation(s)
- Miriam Wilmes
- Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of Bonn, Meckenheimer Allee 168. 53115, Bonn. Germany
| | | | | | | |
Collapse
|
136
|
Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One 2011; 6:e18550. [PMID: 21533249 PMCID: PMC3076432 DOI: 10.1371/journal.pone.0018550] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/03/2011] [Indexed: 02/05/2023] Open
Abstract
Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel β-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of fungal hyphae, whereas MtDef4 does not. Both defensins contain a highly conserved γ-core motif (GXCX3–9C), a hallmark signature present in the disulfide-stabilized antimicrobial peptides, composed of β2 and β3 strands and the interposed loop. The γ-core motifs of these two defensins differ significantly in their primary amino acid sequences and in their net charge. In this study, we have found that the major determinants of the antifungal activity and morphogenicity of these defensins reside in their γ-core motifs. The MsDef1-γ4 variant in which the γ-core motif of MsDef1 was replaced by that of MtDef4 was almost as potent as MtDef4 and also failed to induce hyperbranching of fungal hyphae. Importantly, the γ-core motif of MtDef4 alone was capable of inhibiting fungal growth, but that of MsDef1 was not. The analysis of synthetic γ-core variants of MtDef4 indicated that the cationic and hydrophobic amino acids were important for antifungal activity. Both MsDef1 and MtDef4 induced plasma membrane permeabilization; however, kinetic studies revealed that MtDef4 was more efficient in permeabilizing fungal plasma membrane than MsDef1. Furthermore, the in vitro antifungal activity of MsDef1, MsDef1-γ4, MtDef4 and peptides derived from the γ-core motif of each defensin was not solely dependent on their ability to permeabilize the fungal plasma membrane. The data reported here indicate that the γ-core motif defines the unique antifungal properties of each defensin and may facilitate de novo design of more potent antifungal peptides.
Collapse
Affiliation(s)
- Uma Shankar Sagaram
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | | | - Jagdeep Kaur
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Thomas J. Smith
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Dilip M. Shah
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
137
|
Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 2010; 585:300-6. [DOI: 10.1016/j.febslet.2010.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/26/2023]
|