101
|
Kono H, Fujii H, Suzuki-Inoue K, Inoue O, Furuya S, Hirayama K, Akazawa Y, Nakata Y, Sun C, Tsukiji N, Shirai T, Ozaki Y. The platelet-activating receptor C-type lectin receptor-2 plays an essential role in liver regeneration after partial hepatectomy in mice. J Thromb Haemost 2017; 15:998-1008. [PMID: 28294559 DOI: 10.1111/jth.13672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/22/2023]
Abstract
Essentials Regeneration role of C-type lectin receptor-2 (CLEC-2) after 70% hepatectomy (HPx) was investigated. Wild-type or CLEC-2 deleted from platelets of chimeric mice (flKO) underwent HPx. The liver/body weight ratio was significantly lower in the flKO than in the wild-type. CLEC-2 plays an essential role in liver regeneration after HPx. SUMMARY Background and aim The aim of the present study was to investigate the role of C-type lectin receptor (CLEC)-2 in liver regeneration following partial liver resection in mice. Materials and methods Irradiated chimeric mice transplanted with fetal liver cells from wild-type (WT) mice, CLEC-2-deleted (KO) mice or mice with CLEC-2 deleted specifically from platelets (flKO) were generated. Mice underwent 70% partial hepatectomy (PH). Immunohistochemical staining was performed to investigate the expression of the endogenous ligand for CLEC-2, podoplanin. The accumulation of platelets in the liver was also quantified. The hepatic expression of the IL-6/gp130 and STAT3, Akt and ERK1/2 was also examined. Results The liver/body weight ratio and expression of all cell proliferation markers were significantly lower in the flKO group than in the WT group. The expression of phosphorylated (p) Akt and pERK1/2 was similar in the WT and flKO groups. On the other hand, the expression of pSTAT3 and IL-6 was significantly stronger in the WT group than in the flKO group. The expression of podoplanin was detected in the hepatic sinusoids of both groups. However, the extent to which platelets accumulated in hepatic sinusoids was significantly less in the flKO group than in the WT group. Conclusion CLEC-2 was involved in hepatic regeneration after liver resection and CLEC-2-related liver regeneration was attributed to the interaction between platelets and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- H Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - H Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - O Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - S Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Sun
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - N Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - T Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
102
|
Shirai T, Inoue O, Tamura S, Tsukiji N, Sasaki T, Endo H, Satoh K, Osada M, Sato-Uchida H, Fujii H, Ozaki Y, Suzuki-Inoue K. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemost 2017; 15:513-525. [PMID: 28028907 DOI: 10.1111/jth.13604] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/01/2023]
Abstract
Essentials The role of C-type lectin-like receptor-2 (CLEC-2) in cancer progression is unclear. CLEC-2-depleted mouse model is generated by using a rat anti-mouse CLEC-2 monoclonal antibody. CLEC-2 depletion inhibits hematogenous tumor metastasis of podoplanin-expressing B16F10 cells. CLEC-2 depletion prolongs cancer survival by suppressing thrombosis and inflammation. SUMMARY Background C-type lectin-like receptor 2 (CLEC-2) is a platelet activation receptor of sialoglycoprotein podoplanin, which is expressed on the surface of certain types of tumor cells. CLEC-2-podoplanin interactions facilitate hematogenous tumor metastasis. However, direct evidence of the role of CLEC-2 in hematogenous metastasis and cancer progression is lacking. Objective and methods We generated immunological CLEC-2-depleted mice by using anti-mouse CLEC-2 monoclonal antibody 2A2B10 and investigated whether CLEC-2 promoted hematogenous tumor metastasis and tumor growth and exacerbated the prognosis of mice bearing podoplanin-expressing B16F10 melanoma cells. Results Our results showed that hematogenous metastasis was significantly inhibited in CLEC-2-depleted mice. B16F10 cells co-cultured with wild-type platelets, but not with CLEC-2-deficient platelets, showed increased proliferation. However, B16F10 cell proliferation was not inhibited in CLEC-2-depleted mice. Histological analysis showed that thrombus formation in tumor vessels was significantly inhibited and functional vessel density was significantly increased in CLEC-2-depleted mice. These data suggest that CLEC-2 deficiency may inhibit thrombus formation in tumor vessels and increase the density of functional vessels, thus improving oxygen and nutrient supply to tumors, indirectly promoting tumor proliferation. Furthermore, the overall survival of CLEC-2-depleted mice was significantly prolonged, which may be due to the suppression of thrombus formation in the lungs and subsequent inhibition of systemic inflammation and cachexia. Conclusions These data provide a rationale for the targeted inhibition of CLEC-2 as a new strategy for preventing hematogenous tumor metastasis and for inhibiting cancer-related thromboembolism.
Collapse
Affiliation(s)
- T Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - O Inoue
- Infection Control Office, Yamanashi University Hospital, Yamanashi, Japan
| | - S Tamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - T Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - H Endo
- Department of Food Science and Nutrition, School of Human Cultures, University of Shiga Prefecture, Shiga, Japan
| | - K Satoh
- Division of Laboratory Medicine, Yamanashi University Hospital, Yamanashi, Japan
| | - M Osada
- Division of Laboratory Medicine, Yamanashi University Hospital, Yamanashi, Japan
- School of Medical Technology, Faculty of Health Science, Gumma Paz College, Takasaki, Japan
| | - H Sato-Uchida
- Department of Clinical Nursing, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - H Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
103
|
Hyslop SR, Josefsson EC. Undercover Agents: Targeting Tumours with Modified Platelets. Trends Cancer 2017; 3:235-246. [PMID: 28718434 DOI: 10.1016/j.trecan.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Abstract
Platelets have long been recognised to colocalise with tumour cells throughout haematogenous metastasis. Interactions between these cells contribute to tumour cell survival and motility through the vasculature into other tissues. Now, the research focus is shifting towards developing means to exploit this relationship to provide accurate diagnostics and therapies. Alterations to platelet count, RNA profile, and platelet ultrastructure are associated with the presence of certain malignancies, and may be used for cancer detection. Additionally, nanoparticle-based drug delivery systems are enhanced through the use of platelet membranes to specifically target cancer cells and camouflage the foreign particles from the immune system. This review discusses the development of platelets into highly powerful tools for cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Stephanie R Hyslop
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia
| | - Emma C Josefsson
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia.
| |
Collapse
|
104
|
Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017; 15:219-229. [PMID: 27960039 DOI: 10.1111/jth.13590] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 08/31/2023]
Abstract
A platelet activation receptor, C-type lectin-like receptor 2 (CLEC-2), has been identified as a receptor for a platelet-activating snake venom, rhodocytin. CLEC-2 protein is highly expressed in platelets/megakaryocytes, and at lower levels in liver Kupffer cells. Recently, podoplanin has been revealed as an endogenous ligand for CLEC-2. Podoplanin is expressed in certain types of tumor cells, fibroblastic reticular cells (FRCs) in lymph nodes, kidney podocytes, and lymphatic endothelial cells, but not in vascular endothelial cells. CLEC-2 in platelets cannot have access to podoplanin under normal conditions, but they interact with each other under pathologic conditions or during developmental stages, and play various pathophysiologic roles. CLEC-2 facilitates hematogenous metastasis of podoplanin-expressing tumors. During development, the interaction between CLEC-2 and podoplanin in lymphatic endothelial cells or neuroepithelial cells facilitates blood-lymphatic vessel separation and cerebrovascular patterning and integrity, respectively. In adulthood, platelet CLEC-2 binding to FRCs is crucial for maintenance of the integrity of high endothelial venules in lymph nodes. Podoplanin-expressing FRC-like cells have recently been identified in the bone marrow, and facilitate megakaryocyte proliferation and proplatelet formation by binding to megakaryocyte CLEC-2. Podoplanin is inducibly expressed in liver monocytes and keratinocytes during Salmonella infection and wound healing, and regulates thrombus formation in the liver and controlled wound healing, respectively. By binding to unknown ligands, platelet CLEC-2 regulates the maintenance of vascular integrity during inflammation, thrombus stability under flow, and maintenance of quiescence of hematopoietic stem cells. Podoplanin is expressed in various cells, and additional roles of the CLEC-2-podoplanin interaction will be revealed in the future.
Collapse
Affiliation(s)
- K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - M Osada
- School of Medical Technology, Faculty of Healthcare Science, Gunma Paz College, Gunma, Japan
| | - Y Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
105
|
Bianchi R, Russo E, Bachmann SB, Proulx ST, Sesartic M, Smaadahl N, Watson SP, Buckley CD, Halin C, Detmar M. Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes. Arterioscler Thromb Vasc Biol 2016; 37:108-117. [PMID: 27810998 DOI: 10.1161/atvbaha.116.308020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The lymphatic vascular system exerts major physiological functions in the transport of interstitial fluid from peripheral tissues back to the blood circulation and in the trafficking of immune cells to lymph nodes. Previous studies in global constitutive knockout mice for the lymphatic transmembrane molecule podoplanin reported perinatal lethality and a complex phenotype with lung abnormalities, cardiac defects, lymphedema, blood-filled lymphatic vessels, and lack of lymph node organization, reflecting the importance of podoplanin expression not only by the lymphatic endothelium but also by a variety of nonendothelial cell types. Therefore, we aimed to dissect the specific role of podoplanin expressed by adult lymphatic vessels. APPROACH AND RESULTS We generated an inducible, lymphatic-specific podoplanin knockout mouse model (PdpnΔLEC) and induced gene deletion postnatally. PdpnΔLEC mice were viable, and their lymphatic vessels appeared morphologically normal with unaltered fluid drainage function. Intriguingly, PdpnΔLEC mice had blood-filled lymph nodes and vessels, most frequently in the neck and axillary region, and displayed a blood-filled thoracic duct, suggestive of retrograde filling of blood from the blood circulation into the lymphatic system. Histological and fluorescence-activated cell sorter analyses revealed normal lymph node organization with the presence of erythrocytes within lymph node lymphatic vessels but not surrounding high endothelial venules. Moreover, fluorescein isothiocyanate painting experiments revealed reduced dendritic cell migration to lymph nodes in PdpnΔLEC mice. CONCLUSIONS These results reveal an important role of podoplanin expressed by lymphatic vessels in preventing postnatal blood filling of the lymphatic vascular system and in contributing to efficient dendritic cell migration to the lymph nodes.
Collapse
Affiliation(s)
- Roberta Bianchi
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Erica Russo
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Samia B Bachmann
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Steven T Proulx
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Marko Sesartic
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Nora Smaadahl
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Steve P Watson
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Christopher D Buckley
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Cornelia Halin
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom
| | - Michael Detmar
- From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom.
| |
Collapse
|
106
|
Ozaki Y, Tamura S, Suzuki-Inoue K. New horizon in platelet function: with special reference to a recently-found molecule, CLEC-2. Thromb J 2016; 14:27. [PMID: 27766053 PMCID: PMC5056494 DOI: 10.1186/s12959-016-0099-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platelets play a key role in the pathophysiological processes of hemostasis and thrombus formation. However, platelet functions beyond thrombosis and hemostasis have been increasingly identified in recent years. A large body of evidence now exists which suggests that platelets also play a key role in inflammation, immunity, malignancy, and furthermore in organ development and regeneration, such as the liver. We have recently identified CLEC-2 on the platelet membrane, which induces intracellular activation signals upon interaction of a snake venom, rhodocytin. Later we discovered that podoplanin, present in renal podocytes and lymphatic endothelial cells, both of which are not accessible to platelets in blood stream, is an endogenous ligand for CLEC-2. In accord with our expectation, platelet-specific CLEC-2 knockout mice have a phenotype of edema, lymphatic vessel dilatation, and the presence of blood cells in lymphatic vessels. It is suggested that lymphatic/blood vessel separation during the developmental stage is governed by cytokines released from platelets activated by the interaction between platelet CLEC-2 and podoplanin present on lymphatic endothelial cells. Recombinant CLEC-2 bound to early atherosclerotic lesions and normal arterial walls, co-localizing with vascular smooth muscle cells (VSMCs). Flow cytometry and immunocytochemistry showed that recombinant CLEC-2, but not an anti-podoplanin antibody, bound to VSMCs, suggesting that CLEC-2 ligands other than podoplanin are present in VSMCs. Protein arrays and Biacore analysis were used to identify S100A13 as a CLEC-2 ligand in VSMCs. S100A13 was released upon oxidative stress, and expressed in the luminal area of atherosclerotic lesions. Megakaryopoiesis is promoted through the CLEC-2/podoplanin interaction in the vicinity of arterioles, not sinusoids or lymphatic vessels. There exist podoplanin-expressing bone-marrow (BM) arteriolar stromal cells, tentatively termed as BM fibroblastic reticular cell (FRC)-like cells, and megakaryocyte colonies were co-localized with periarteriolar BM FRC-like cells in the BM. CLEC-2/podoplanin interaction induces BM FRC-like cells to secrete CCL5 to facilitate proplatelet formation. These observations indicate that a reciprocal interaction with between CLEC-2 on megakaryocytes and podoplanin on BM FRC-like cells contributes to the periarteriolar megakaryopoietic microenvironment in mouse BM.
Collapse
Affiliation(s)
- Yukio Ozaki
- Fuefuki Central Hospital, 47-1 Yokkaichiba, Isawa, Fuefuki, 406-0032 Yamanashi Japan
| | - Shogo Tamura
- Department of Laboratory Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898 Japan ; Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Oosachi Minami, Higashi, Nagoya, 461-8673 Aichi Japan
| | - Katsue Suzuki-Inoue
- Department of Laboratory Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898 Japan
| |
Collapse
|
107
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
108
|
Schaupper M, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:395-407. [DOI: 10.1089/ten.teb.2016.0034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mira Schaupper
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Jeltsch
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
109
|
Emerging roles of podoplanin in vascular development and homeostasis. Front Med 2016; 9:421-30. [PMID: 26498027 DOI: 10.1007/s11684-015-0424-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/24/2015] [Indexed: 02/03/2023]
Abstract
Podoplanin (PDPN) is a mucin-type O-glycoprotein expressed in diverse cell types, such as lymphatic endothelial cells (LECs) in the vascular system and fibroblastic reticular cells (FRCs) in lymph nodes. PDPN on LECs or FRCs activates CLEC-2 in platelets, triggering platelet activation and/or aggregation through downstream signaling events, including activation of Syk kinase. This mechanism is required to initiate and maintain separation of blood and lymphatic vessels and to stabilize high endothelial venule integrity within lymphnodes. In the vascular system, normal expression of PDPN at the LEC surface requires transcriptional activation of Pdpn by Prox1 and modification of PDPN with core 1-derived O-glycans. This review provides a comprehensive overview of the roles of PDPN in vascular development and lymphoid organ maintenance and discusses the mechanisms that regulate PDPN expression related to its function.
Collapse
|
110
|
Venero Galanternik M, Stratman AN, Jung HM, Butler MG, Weinstein BM. Building the drains: the lymphatic vasculature in health and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:689-710. [PMID: 27576003 DOI: 10.1002/wdev.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Stratman
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Min Jung
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew G Butler
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brant M Weinstein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
111
|
Sato H, Higashiyama M, Hozumi H, Sato S, Furuhashi H, Takajo T, Maruta K, Yasutake Y, Narimatsu K, Yoshikawa K, Kurihara C, Okada Y, Watanabe C, Komoto S, Tomita K, Nagao S, Miura S, Hokari R. Platelet interaction with lymphatics aggravates intestinal inflammation by suppressing lymphangiogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G276-85. [PMID: 27313177 DOI: 10.1152/ajpgi.00455.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
Abstract
Lymphatic failure is a histopathological feature of inflammatory bowel disease (IBD). Recent studies show that interaction between platelets and podoplanin on lymphatic endothelial cells (LECs) suppresses lymphangiogenesis. We aimed to investigate the role of platelets in the inflammatory process of colitis, which is likely to be through modulation of lymphangiogenesis. Lymphangiogenesis in colonic mucosal specimens from patients with IBD was investigated by studying mRNA expression of lymphangiogenic factors and histologically by examining lymphatic vessel (LV) densities. Involvement of lymphangiogenesis in intestinal inflammation was studied by administering VEGF-receptor 3 (VEGF-R3) inhibitors to the mouse model of colitis using dextran sulfate sodium and evaluating platelet migration to LVs. The inhibitory effect of platelets on lymphangiogenesis was investigated in vivo by administering antiplatelet antibody to the colitis mouse model and in vitro by coculturing platelets with lymphatic endothelial cells. Although mRNA expressions of lymphangiogenic factors such as VEGF-R3 and podoplanin were significantly increased in the inflamed mucosa of patients with IBD compared with those with quiescent mucosa, there was no difference in LV density between them. In the colitis model, VEGF-R3 inhibition resulted in aggravated colitis, decreased lymphatic density, and increased platelet migration to LVs. Administration of an antiplatelet antibody increased LV densities and significantly ameliorated colitis. Coculture with platelets inhibited proliferation of LECs in vitro. Our data suggest that despite elevated lymphangiogenic factors during colonic inflammation, platelet migration to LVs resulted in suppressed lymphangiogenesis, leading to aggravation of colitis by blocking the clearance of inflammatory cells. Modulating the interaction between platelets and LVs could be a new therapeutic means for treating IBD.
Collapse
Affiliation(s)
- Hirokazu Sato
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Hideaki Hozumi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shingo Sato
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Hirotaka Furuhashi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Takeshi Takajo
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Koji Maruta
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Yuichi Yasutake
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kenichi Yoshikawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Chikako Watanabe
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shigeaki Nagao
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | | | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| |
Collapse
|
112
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
113
|
Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood 2016; 127:1701-10. [DOI: 10.1182/blood-2015-08-663708] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022] Open
Abstract
Key Points
BM FRC-like cells regulate megakaryocytic clonal expansion via CLEC-2/PDPN interactions. CLEC-2/PDPN binding stimulates BM FRC-like cells to secrete the proplatelet formation-promoting factor, CCL5.
Collapse
|
114
|
Ichise H, Ichise T, Yoshida N. Phospholipase Cγ2 Is Required for Luminal Expansion of the Epididymal Duct during Postnatal Development in Mice. PLoS One 2016; 11:e0150521. [PMID: 26950550 PMCID: PMC4780702 DOI: 10.1371/journal.pone.0150521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Phospholipase Cγ2 (PLCγ2)-deficient mice exhibit misconnections of blood and lymphatic vessels, and male infertility. However, the cell type responsible for vascular partitioning and the mechanism for male infertility remain unknown. Accordingly, we generated a mouse line that conditionally expresses endogenous Plcg2 in a Cre/loxP recombination-dependent manner, and found that Tie2-Cre- or Pf4-Cre-driven reactivation of Plcg2 rescues PLCγ2-deficient mice from the vascular phenotype. By contrast, male mice rescued from the vascular phenotype exhibited epididymal sperm granulomas. As judged from immunostaining, PLCγ2 was expressed in clear cells in the epididymis. PLCγ2 deficiency did not compromise differentiation of epididymal epithelial cells, including clear cells, and tube formation at postnatal week 2. However, luminal expansion of the epididymal duct was impaired during the prepubertal period, regardless of epithelial cell polarity and tube architecture. These results suggest that PLCγ2-deficient clear cells cause impaired luminal expansion, stenosis of the epididymal duct, attenuation of luminal flow, and subsequent sperm granulomas. Clear cell-mediated luminal expansion is also supported by the observation that PLCγ2-deficient males were rescued from infertility by epididymal epithelium-specific reactivation of Plcg2, although the edematous and hemorrhagic phenotype associated with PLCγ2 deficiency also caused spontaneous epididymal sperm granulomas in aging males. Collectively, our findings demonstrate that PLCγ2 in clear cells plays an essential role in luminal expansion of the epididymis during the prepubertal period in mice, and reveal an unexpected link between PLCγ2, clear cells, and epididymal development.
Collapse
Affiliation(s)
- Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| | - Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
115
|
Yang JF, Walia A, Huang YH, Han KY, Rosenblatt MI, Azar DT, Chang JH. Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv Ophthalmol 2015; 61:272-96. [PMID: 26706194 DOI: 10.1016/j.survophthal.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/05/2023]
Abstract
A major focus of cancer research for several decades has been understand the ability of tumors to induce new blood vessel formation, a process known as angiogenesis. Unfortunately, only limited success has been achieved in the clinical application of angiogenesis inhibitors. We now know that lymphangiogenesis, the growth of lymphatic vessels, likely also plays a major role in tumor progression. Thus, therapeutic strategies targeting lymphangiogenesis or both lymphangiogenesis and angiogenesis may represent promising approaches for treating cancer and other diseases. Importantly, research progress toward understanding lymphangiogenesis is significantly behind that related to angiogenesis. A PubMed search of "angiogenesis" returns nearly 80,000 articles, whereas a search of "lymphangiogenesis" returns 2,635 articles. This stark contrast can be explained by the lack of molecular markers for identifying the invisible lymphatic vasculature that persisted until less than 2 decades ago, combined with the intensity of research interest in angiogenesis during the past half century. Still, significant strides have been made in developing strategies to modulate lymphangiogenesis, largely using ocular disease models. Here we review the current knowledge of lymphangiogenesis in the context of knockout models, ocular diseases, the biology of activators and inhibitors, and the potential for therapeutic interventions targeting this process.
Collapse
Affiliation(s)
- Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
116
|
García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 2015; 27:65-79. [PMID: 26823333 DOI: 10.1016/j.cytogfr.2015.12.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
Collapse
Affiliation(s)
- Amaya García de Vinuesa
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease, Leuven, Belgium; KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale (INSERM, U1036), Grenoble F-38000, France; Commissariat à l'Énergie Atomique et aux Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Biologie du Cancer et de l'Infection, Grenoble F-38000, France; Université Grenoble-Alpes, Grenoble F-38000, France.
| |
Collapse
|
117
|
Asai J, Hirakawa S, Sakabe JI, Kishida T, Wada M, Nakamura N, Takenaka H, Mazda O, Urano T, Suzuki-Inoue K, Tokura Y, Katoh N. Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:101-8. [PMID: 26597882 DOI: 10.1016/j.ajpath.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 01/10/2023]
Abstract
Podoplanin is an endogenous ligand for C-type lectin-like receptor 2 (CLEC-2), which is expressed on platelets. Recent evidence indicates that this specific marker of lymphatic endothelial cells is also expressed by keratinocytes at the edge of wounds. However, whether podoplanin or platelets play a role in keratinocyte activity during wound healing remains unknown. We evaluated the effect of podoplanin expression levels on keratinocyte motility using cultured primary normal human epidermal keratinocytes (NHEKs). Down-regulation of podoplanin in NHEKs via transfection with podoplanin siRNA inhibited their migration, indicating that podoplanin plays a mandatory role in this process. In addition, down-regulation of podoplanin was correlated with up-regulation of E-cadherin, suggesting that podoplanin-mediated stimulation of keratinocyte migration is associated with a loss of E-cadherin. Both the addition of platelets and treatment with CLEC-2 inhibited the migration of NHEKs. The down-regulation of RhoA activity and the up-regulation of E-cadherin in keratinocytes were also induced by CLEC-2. In conclusion, these results suggest that podoplanin/CLEC-2 signaling regulates keratinocyte migration via modulating E-cadherin expression through RhoA signaling. Altering the regulation of keratinocyte migration by podoplanin might be a novel therapeutic approach to improve wound healing.
Collapse
Affiliation(s)
- Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun-ichi Sakabe
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Wada
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naomi Nakamura
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideya Takenaka
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsumei Urano
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
118
|
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212:2133-46. [PMID: 26552707 PMCID: PMC4647260 DOI: 10.1084/jem.20150057] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Nakamura-Ishizu et al. report that megakaryocytes function as a niche to maintain HSC quiescence through CLEC-2–mediated production of Thpo and other key regulators of HSC function. These findings could enable manipulation of HSCs for clinical application. Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Keiyo Takubo
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| |
Collapse
|
119
|
Vascular Smooth Muscle Cells Stimulate Platelets and Facilitate Thrombus Formation through Platelet CLEC-2: Implications in Atherothrombosis. PLoS One 2015; 10:e0139357. [PMID: 26418160 PMCID: PMC4587843 DOI: 10.1371/journal.pone.0139357] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The platelet receptor CLEC-2 is involved in thrombosis/hemostasis, but its ligand, podoplanin, is expressed only in advanced atherosclerotic lesions. We investigated CLEC-2 ligands in vessel walls. Recombinant CLEC-2 bound to early atherosclerotic lesions and normal arterial walls, co-localizing with vascular smooth muscle cells (VSMCs). Flow cytometry and immunocytochemistry showed that recombinant CLEC-2, but not an anti-podoplanin antibody, bound to VSMCs, suggesting that CLEC-2 ligands other than podoplanin are present in VSMCs. VSMCs stimulated platelet granule release and supported thrombus formation under flow, dependent on CLEC-2. The time to occlusion in a FeCl3-induced animal thrombosis model was significantly prolonged in the absence of CLEC-2. Because the internal elastic lamina was lacerated in our FeCl3-induced model, we assume that the interaction between CLEC-2 and its ligands in VSMCs induces thrombus formation. Protein arrays and Biacore analysis were used to identify S100A13 as a CLEC-2 ligand in VSMCs. However, S100A13 is not responsible for the above-described VSMC-induced platelet activation, because S100A13 is not expressed on the surface of normal VSMCs. S100A13 was released upon oxidative stress and expressed in the luminal area of atherosclerotic lesions. Suspended S100A13 did not activate platelets, but immobilized S100A13 significantly increased thrombus formation on collagen-coated surfaces. Taken together, we proposed that VSMCs stimulate platelets through CLEC-2, possibly leading to thrombus formation after plaque erosion and stent implantation, where VSMCs are exposed to blood flow. Furthermore, we identified S100A13 as one of the ligands on VSMCs.
Collapse
|
120
|
Abstract
Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.
Collapse
|
121
|
Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S, Tsukiji N, Aida K, Kawaguchi A, Takizawa S, Kaneshige M, Tanaka S, Suzuki-Inoue K, Ozaki Y. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets 2015; 26:711-9. [PMID: 25856065 DOI: 10.3109/09537104.2015.1021319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detection of platelet activation in vivo is useful to identify patients at risk of thrombotic diseases. Platelet factor 4 (PF4) and β-thromboglobulin (β-TG) are used for this purpose; however, they are easily released upon the minimal platelet activation that occurs during sampling. Soluble forms of several platelet membrane proteins are released upon platelet activation; however, the soluble form of C-type lectin-like receptor 2 (sCLEC-2) has not yet been fully investigated. Western blotting with an anti-CLEC-2 antibody showed that sCLEC-2 was released from washed human platelets stimulated with collagen mimetics. To detect sCLEC-2 in plasma, we established a sandwich enzyme-linked immunosorbent assay (ELISA) using F(ab')2 anti-CLEC-2 monoclonal antibodies. Although plasma mixed with citrate, adenosine, theophylline and adenosine (CTAD) is needed for the PF4 and β-TG assays, effects of anti-coagulants (EDTA, citrate and CTAD) on the sCLEC-2 ELISA were negligible. Moreover, while special techniques are required for blood sampling and sample preparation for PF4 and β-TG assay, the standard blood collections procedures used in daily clinical laboratory tests have shown to suffice for sCLEC-2 analysis. In this study, we found that two forms of sCLEC-2 are released after platelet activation: a shed fragment and a microparticle-bound full-length protein, both of which are detected by the sCLEC-2 ELISA. The average concentration of sCLEC-2 in the plasma of 10 healthy individuals was 97 ± 55 pg/ml, whereas that in the plasma of 25 patients with diabetes mellitus (DM) was 149 ± 260 pg/ml. A trend towards an increase in sCLEC-2 concentration in the DM patients may reflect in vivo platelet activation in the patients, suggesting that sCLEC-2 may have clinical significance as a biomarker of in vivo platelet activation.
Collapse
Affiliation(s)
- Fuminori Kazama
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Junya Nakamura
- b Department of Antibody Group, Narita R&D Department, Research and Development Division , LSI Medicine Corporation , Takomachi, Katori-gun , Chiba , Japan
| | - Makoto Osada
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Osamu Inoue
- c Faculty of Medicine , Infection Control Office, University of Yamanashi Hospital, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Mitsuru Oosawa
- b Department of Antibody Group, Narita R&D Department, Research and Development Division , LSI Medicine Corporation , Takomachi, Katori-gun , Chiba , Japan
| | - Shogo Tamura
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan .,d Japan Society for the Promotion of Science , Tokyo , Japan , and
| | - Nagaharu Tsukiji
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Kaoru Aida
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Akio Kawaguchi
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Soichi Takizawa
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Masahiro Kaneshige
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Shoichiro Tanaka
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Katsue Suzuki-Inoue
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Yukio Ozaki
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| |
Collapse
|
122
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
123
|
Manne BK, Badolia R, Dangelmaier C, Eble JA, Ellmeier W, Kahn M, Kunapuli SP. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015; 290:11557-68. [PMID: 25767114 DOI: 10.1074/jbc.m114.629527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Rachit Badolia
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Johannes A Eble
- the Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Wilfried Ellmeier
- the Division of Immunobiology, Institution of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Mark Kahn
- the Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159
| | - Satya P Kunapuli
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140,
| |
Collapse
|
124
|
Bianchi R, Fischer E, Yuen D, Ernst E, Ochsenbein AM, Chen L, Otto VI, Detmar M. Mutation of threonine 34 in mouse podoplanin-Fc reduces CLEC-2 binding and toxicity in vivo while retaining antilymphangiogenic activity. J Biol Chem 2015; 289:21016-27. [PMID: 24907275 DOI: 10.1074/jbc.m114.550525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lymphatic system plays an important role in cancer metastasis and inhibition of lymphangiogenesis could be valuable in fighting cancer dissemination. Podoplanin (Pdpn) is a small, transmembrane glycoprotein expressed on the surface of lymphatic endothelial cells (LEC). During mouse development, binding of Pdpn to the C-type lectin-like receptor 2 (CLEC-2) on platelets is critical for the separation of the lymphatic and blood vascular systems. Competitive inhibition of Pdpn functions with a soluble form of the protein, Pdpn-Fc, leads to reduced lymphangiogenesis in vitro and in vivo. However, the transgenic overexpression of human Pdpn-Fc in mouse skin causes disseminated intravascular coagulation due to platelet activation via CLEC-2. In the present study, we produced and characterized a mutant form of mouse Pdpn-Fc, in which threonine 34, which is considered essential for CLEC-2 binding, was mutated to alanine (PdpnT34A-Fc). Indeed, PdpnT34A-Fc displayed a 30-fold reduced binding affinity for CLEC-2 compared with Pdpn-Fc. This also translated into fewer side effects due to platelet activation in vivo. Mice showed less prolonged bleeding time and fewer embolized vessels in the liver, when PdpnT34A-Fc was injected intravenously. However, PdpnT34A-Fc was still as active as wild-type Pdpn-Fc in inhibiting lymphangiogenesis in vitro and also inhibited lymphangiogenesis in vivo. These data suggest that the function of Pdpn in lymphangiogenesis does not depend on threonine 34 in the CLEC-2 binding domain and that PdpnT34A-Fc might be an improved inhibitor of lymphangiogenesis with fewer toxic side effects.
Collapse
|
125
|
Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol 2014; 36:30-9. [PMID: 25499856 DOI: 10.1016/j.it.2014.11.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity.
Collapse
Affiliation(s)
- Jonathan E Chang
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
126
|
Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014; 22:1711-1721. [PMID: 25458834 DOI: 10.1016/j.str.2014.09.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Podoplanin is a transmembrane O-glycoprotein that binds to C-type lectin-like receptor 2 (CLEC-2). The O-glycan-dependent interaction seems to play crucial roles in various biological processes, such as platelet aggregation. Rhodocytin, a snake venom, also binds to CLEC-2 and aggregates platelets in a glycan-independent manner. To elucidate the structural basis of the glycan-dependent and independent interactions, we performed comparative crystallographic studies of podoplanin and rhodocytin in complex with CLEC-2. Both podoplanin and rhodocytin bind to the noncanonical "side" face of CLEC-2. There is a common interaction mode between consecutive acidic residues on the ligands and the same arginine residues on CLEC-2. Other interactions are ligand-specific. Carboxyl groups from the sialic acid residue on podoplanin and from the C terminus of the rhodocytin α subunit interact differently at this "second" binding site on CLEC-2. The unique and versatile binding modes open a way to understand the functional consequences of CLEC-2-ligand interactions.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Morita-Matsumoto
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Kato
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
127
|
Pollitt AY, Poulter NS, Gitz E, Navarro-Nuñez L, Wang YJ, Hughes CE, Thomas SG, Nieswandt B, Douglas MR, Owen DM, Jackson DG, Dustin ML, Watson SP. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 2014; 289:35695-710. [PMID: 25368330 PMCID: PMC4276840 DOI: 10.1074/jbc.m114.584284] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.
Collapse
Affiliation(s)
- Alice Y Pollitt
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom,
| | - Natalie S Poulter
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eelo Gitz
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom, the University Medical Center Utrecht, Department of Clinical Chemistry and Haematology, 3584 CX, Utrecht, The Netherlands
| | - Leyre Navarro-Nuñez
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ying-Jie Wang
- the Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Craig E Hughes
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Steven G Thomas
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bernhard Nieswandt
- the Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg 97080, Germany
| | - Michael R Douglas
- the School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom, the Department of Neurology, Dudley Group National Health Service Foundation Trust, Dudley DY1 2HQ, United Kingdom
| | - Dylan M Owen
- the Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - David G Jackson
- the Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael L Dustin
- the Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Diseases, University of Oxford, Headington OX3 7FY, United Kingdom, and the Department of Molecular Pathogenesis, New York University, Skirball Institute of Biomolecular Medicine, School of Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Steve P Watson
- From the University of Birmingham, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
128
|
Tomita A, Tamura N, Nanazawa Y, Shiozaki S, Goto S. Development of virtual platelets implementing the functions of three platelet membrane proteins with different adhesive characteristics. J Atheroscler Thromb 2014; 22:201-10. [PMID: 25284441 DOI: 10.5551/jat.26203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Computer simulation is a new method for understanding biological phenomena. In this report, we developed a simple platelet simulator representing platelet adhesion under blood flow conditions. METHODS We generated virtual platelets based on the functions of three key adhesive proteins: glycoprotein (GP) Ibα, GPIIb/IIIa and collagen receptors. The adhesive force between GPIbα and von Willebrand factor (VWF) was set to increase in association with increments in the fluid shear stress. GPIIb/IIIa acquires an adhesive force to bind with ligands only when platelets are activated following multiple GPIbα stimulation by VWF or collagen receptors. RESULTS Upon perfusion over the area of virtual endothelial injury, the virtual platelets adhered and became activated to form platelet thrombi. A total of 286/mm(2) of activated platelets was found to have accumulated downstream of the flow obstacle within 30 seconds, with 59/mm(2) platelets adhering upstream. The results obtained with the virtual model were consistent with those for real platelets in human blood in the presence of similarly shaped flow obstacles. CONCLUSIONS Our computer platelet simulator, which employs the functions of three key platelet membrane proteins, shows similar findings for adhesion in the presence and absence of blood flow obstacles.
Collapse
Affiliation(s)
- Aiko Tomita
- Department of Medicine (Cardiology), Tokai University School of Medicine
| | | | | | | | | |
Collapse
|
129
|
Seretis C, Youssef H, Chapman M. Hypercoagulation in colorectal cancer: what can platelet indices tell us? Platelets 2014; 26:114-8. [PMID: 25192361 DOI: 10.3109/09537104.2014.894969] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer, as all solid malignancies, is accompanied by changes in the haemostatic mechanism favoring the establishment of a thrombotic potential, with platelets playing a key-role in this framework; they further link colorectal cancer progression and hypercoagulation with the immune-response against the neoplastic spread. Under this rationale, various studies have assessed the use of platelet indices as prognostic markers of the biological behavior of colorectal cancer, demonstrating significant results. We herein attempt to summarize in a narrative and critical approach the relevant available data and the underlying pathophysiology, stressing the necessity of a more thorough understanding and future implementation of platelet indices in all stages of care we deliver to colorectal cancer patients.
Collapse
Affiliation(s)
- Charalampos Seretis
- Department of Colorectal Surgery, Good Hope Hospital, Heart of England NHS Foundation Trust , Birmingham , UK
| | | | | |
Collapse
|
130
|
Dyer LA, Pi X, Patterson C. The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 2014; 25:472-80. [PMID: 24908616 PMCID: PMC4149816 DOI: 10.1016/j.tem.2014.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. In embryonic development, BMPs promote endothelial specification and subsequent venous differentiation. The BMP pathway also plays important roles in the adult vascular endothelium, promoting angiogenesis and mediating shear and oxidative stress. The canonical BMP pathway functions through the Smad transcription factors; however, other intracellular signaling cascades can be activated, and receptor complexes beyond the traditional type I and type II receptors add additional layers of regulation. Dysregulated BMP signaling has been linked to vascular diseases including pulmonary hypertension and atherosclerosis. This review addresses recent advances in the roles of BMP signaling in the endothelium and how BMPs affect endothelial dysfunction and human disease.
Collapse
MESH Headings
- Animals
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Bone Morphogenetic Protein Receptors/agonists
- Bone Morphogenetic Protein Receptors/genetics
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Hypertension/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Mice, Transgenic
- Models, Biological
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Oxidative Stress
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Shear Strength
- Signal Transduction
- Stress, Physiological
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
Collapse
Affiliation(s)
- Laura A Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Xinchun Pi
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| | - Cam Patterson
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
131
|
Shi DS, Smith MCP, Campbell RA, Zimmerman PW, Franks ZB, Kraemer BF, Machlus KR, Ling J, Kamba P, Schwertz H, Rowley JW, Miles RR, Liu ZJ, Sola-Visner M, Italiano JE, Christensen H, Kahr WHA, Li DY, Weyrich AS. Proteasome function is required for platelet production. J Clin Invest 2014; 124:3757-66. [PMID: 25061876 DOI: 10.1172/jci75247] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023] Open
Abstract
The proteasome inhibiter bortezomib has been successfully used to treat patients with relapsed multiple myeloma; however, many of these patients become thrombocytopenic, and it is not clear how the proteasome influences platelet production. Here we determined that pharmacologic inhibition of proteasome activity blocks proplatelet formation in human and mouse megakaryocytes. We also found that megakaryocytes isolated from mice deficient for PSMC1, an essential subunit of the 26S proteasome, fail to produce proplatelets. Consistent with decreased proplatelet formation, mice lacking PSMC1 in platelets (Psmc1(fl/fl) Pf4-Cre mice) exhibited severe thrombocytopenia and died shortly after birth. The failure to produce proplatelets in proteasome-inhibited megakaryocytes was due to upregulation and hyperactivation of the small GTPase, RhoA, rather than NF-κB, as has been previously suggested. Inhibition of RhoA or its downstream target, Rho-associated protein kinase (ROCK), restored megakaryocyte proplatelet formation in the setting of proteasome inhibition in vitro. Similarly, fasudil, a ROCK inhibitor used clinically to treat cerebral vasospasm, restored platelet counts in adult mice that were made thrombocytopenic by tamoxifen-induced suppression of proteasome activity in megakaryocytes and platelets (Psmc1(fl/fl) Pdgf-Cre-ER mice). These results indicate that proteasome function is critical for thrombopoiesis, and suggest inhibition of RhoA signaling as a potential strategy to treat thrombocytopenia in bortezomib-treated multiple myeloma patients.
Collapse
|
132
|
Ferrer-Acosta Y, González M, Fernández M, Valance WA. Emerging Roles for Platelets in Inflammation and Disease. ACTA ACUST UNITED AC 2014; 2. [PMID: 28758142 PMCID: PMC5531291 DOI: 10.4172/2332-0877.1000149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Platelets and their interaction with cells of the immune system contribute through a variety of molecular mechanisms to support hemostasis and inflammation. These simple yet essential cells exert their effects in lymphocytes, monocytes, and neutrophils, both recruiting and modulating their function after activation. Emerging evidence is starting to define the mechanisms that allow platelets to also play pivotal roles in host defense. For example, platelet cell-surface expression of toll-like receptors allows platelets to direct neutrophil activation toward extracellular trap formation and facilitate the elimination of blood pathogens. In addition to these well-known receptors, two of the most recently discovered platelet receptors, C-type lectin receptor 2 (CLEC-2), and TREM-like transcript-1 (TLT-1), have been shown to modulate hemostatic and inflammation-related roles in platelets. This review will discuss the evolution of our understanding of platelet functions from hemostasis to inflammation, and highlight novel mechanisms that platelets use to mediate hemostasis under inflammatory pressure.
Collapse
Affiliation(s)
| | | | - Mónica Fernández
- University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico, USA
| | - Washington A Valance
- University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, USA.,Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| |
Collapse
|
133
|
Del Rey MJ, Faré R, Izquierdo E, Usategui A, Rodríguez-Fernández JL, Suárez-Fueyo A, Cañete JD, Pablos JL. Clinicopathological correlations of podoplanin (gp38) expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk. PLoS One 2014; 9:e99607. [PMID: 24932813 PMCID: PMC4059710 DOI: 10.1371/journal.pone.0099607] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Synovial fibroblasts (SF) undergo phenotypic changes in rheumatoid arthritis (RA) that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38) expression by RA SF. METHODS Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls. Correlation between gp38 expression and RA clinicopathological variables was analyzed. In patients rebiopsied after anti-TNF-α therapy, changes in gp38 expression were determined. Platelet-SF coculture and gp38 silencing in SF were used to analyze the functional contribution of gp38 to SF migratory and invasive properties, and to SF platelet crosstalk. RESULTS gp38 was abundantly but variably expressed in RA, and it was undetectable in normal synovial tissues. Among clinicopathologigal RA variables, significantly increased gp38 expression was only found in patients with lymphoid neogenesis (LN), and RF or ACPA autoantibodies. Cultured synovial but not dermal fibroblasts showed strong constitutive gp38 expression that was further induced by TNF-α. In RA patients, anti-TNF-α therapy significantly reduced synovial gp38 expression. In RA synovium, CLEC2 receptor expression was only observed in platelets. gp38 silencing in cultured SF did not modify their migratory and invasive properties but reduced the expression of IL-6 and IL-8 genes induced by SF-platelet interaction. CONCLUSIONS In RA, synovial expression of gp38 is strongly associated to LN and it is reduced after anti-TNF-α therapy. Interaction between gp38 and CLEC2 platelet receptor is feasible in RA synovium in vivo and can specifically contribute to gene expression by SF.
Collapse
Affiliation(s)
- Manuel J. Del Rey
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Regina Faré
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Elena Izquierdo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | - Abel Suárez-Fueyo
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan D. Cañete
- Unitat d’Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d’Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - José L. Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- * E-mail:
| |
Collapse
|
134
|
Etulain J, Schattner M. Glycobiology of platelet-endothelial cell interactions. Glycobiology 2014; 24:1252-9. [DOI: 10.1093/glycob/cwu056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
135
|
Chen H, Griffin C, Xia L, Srinivasan RS. Molecular and cellular mechanisms of lymphatic vascular maturation. Microvasc Res 2014; 96:16-22. [PMID: 24928499 DOI: 10.1016/j.mvr.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
Abstract
Lymphatic vasculature is necessary for maintaining fluid homeostasis in vertebrates. During embryogenesis lymphatic endothelial cells originate from the veins as a homogeneous population. These cells undergo a series of changes at the morphological and molecular levels to become mature lymphatic vasculature that consists of lymphatic capillaries, collecting lymphatic vessels and valves. In this article we summarize our current knowledge about these steps and highlight some black boxes that require further clarification.
Collapse
Affiliation(s)
- Hong Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
136
|
Abstract
Functionally, platelets are primarily recognized as key regulators of thrombosis and hemostasis. Upon vessel injury, the typically quiescent platelet interacts with subendothelial matrix to regulate platelet adhesion, activation and aggregation, with subsequent induction of the coagulation cascade forming a thrombus. Recently, however, newly described roles for platelets in the regulation of angiogenesis have emerged. Platelets possess an armory of pro- and anti-angiogenic proteins, which are actively sequestered and highly organized in α-granule populations. Platelet activation facilitates their release, eliciting potent angiogenic responses through mechanisms that appear to be tightly regulated. In conjunction, the release of platelet-derived phospholipids and microparticles has also earned merit as synergistic regulators of angiogenesis. Consequently, platelets have been functionally implicated in a range of angiogenesis-dependent processes, including physiological roles in wound healing, vascular development and blood/lymphatic vessel separation, whilst facilitating aberrant angiogenesis in a range of diseases including cancer, atherosclerosis and diabetic retinopathy. Whilst the underlying mechanisms are only starting to be elucidated, significant insights have been established, suggesting that platelets represent a promising therapeutic strategy in diseases requiring angiogenic modulation. Moreover, anti-platelet therapies targeting thrombotic complications also exert protective effects in disorders characterized by persistent angiogenesis.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology and Pharmacology, University of Bristol , Bristol , UK and
| | | | | |
Collapse
|
137
|
Lauzon MA, Daviau A, Drevelle O, Marcos B, Faucheux N. Identification of a growth factor mimicking the synergistic effect of fetal bovine serum on BMP-9 cell response. Tissue Eng Part A 2014; 20:2524-35. [PMID: 24593122 DOI: 10.1089/ten.tea.2014.0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are potent osteogenic molecules that are used for bone repair in delivery systems and in regenerative medicine. We studied the responses of murine MC3T3-E1 preosteoblasts to doses of recombinant human (rh)BMP-9 with and without fetal bovine serum (FBS). rhBMP-2 was used as a control since it is currently approved by the Food and Drug Administration for bone application. We analyzed the major cell signaling pathways and the expression of osteogenic markers. Without FBS, BMP-9 had a similar effect on MC3T3-E1 preosteoblast differentiation in comparison to BMP-2. In contrast, FBS reduced the EC50 of BMP-9 fourfold to sixfold, as determined by osterix gene expression and alkaline phosphatase (ALP) activity, while it had no influence on EC50 of BMP-2. As suggested by MAPK inhibitor assays, FBS could induce an intracellular signaling environment that favors cell response to BMP-9 by inhibiting ERK1/2 activation and increasing p38 phosphorylation. Finally, IGF-2 (100 ng/mL) could mimic the effect of FBS on BMP-9 cell response in terms of MAPK signaling and ALP activity. Thus, the action of BMP-9 on preosteoblast differentiation can be greatly improved by IGF-2. This finding may well be critical for developing optimal growth factor delivery systems and bone tissue engineering strategies.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- 1 Canada Research Chair on Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke , Sherbrooke, Canada
| | | | | | | | | |
Collapse
|
138
|
Borgognone A, Navarro‐Núñez L, Correia JN, Pollitt AY, Thomas SG, Eble JA, Pulcinelli FM, Madhani M, Watson SP. CLEC-2-dependent activation of mouse platelets is weakly inhibited by cAMP but not by cGMP. J Thromb Haemost 2014; 12:550-9. [PMID: 24460629 PMCID: PMC4138994 DOI: 10.1111/jth.12514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND The activation of platelet CLEC-2 by podoplanin on lymphatic endothelial cells (LECs) has a critical role in prevention of mixing of lymphatic and blood vasculatures during embryonic development. Paradoxically, LECs release cAMP and cGMP-elevating agents, prostacyclin (PGI2 ) and nitric oxide (NO), respectively, which are powerful inhibitors of platelet activation. This raises the question of how podoplanin is able to activate CLEC-2 in the presence of the inhibitory cyclic nucleotides. OBJECTIVES We investigated the influence of cyclic nucleotides on CLEC-2 signaling in platelets. METHODS We used rhodocytin, CLEC-2 monoclonal antibody, LECs and recombinant podoplanin as CLEC-2 agonists on mouse platelets. The effects of the cyclic nucleotide-elevating agents PGI2 , forskolin and the NO-donor GSNO were assessed with light transmission aggregometry, flow cytometry, protein phosphorylation and fluorescent imaging of platelets on LECs. RESULTS We show that platelet aggregation induced by CLEC-2 agonists is resistant to GSNO but inhibited by PGI2 . The effect of PGI2 is mediated through decreased phosphorylation of CLEC-2, Syk and PLCγ2. In contrast, adhesion and spreading of platelets on recombinant podoplanin, CLEC-2 antibody and LECs is not affected by PGI2 and GSNO. Consistent with this, CLEC-2 activation of Rac, which is required for platelet spreading, is not altered in the presence of PGI2 . CONCLUSIONS The present results demonstrate that platelet adhesion and activation on CLEC-2 ligands or LECs is maintained in the presence of PGI2 and NO.
Collapse
Affiliation(s)
- A. Borgognone
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Department of Experimental Medicine‘Sapienza’ University of RomeRomeItaly
| | - L. Navarro‐Núñez
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - J. N. Correia
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - A. Y. Pollitt
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - S. G. Thomas
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - J. A. Eble
- Institute for Physiological Chemistry and PathobiochemistryMünster University HospitalMünsterGermany
| | - F. M. Pulcinelli
- Department of Experimental Medicine‘Sapienza’ University of RomeRomeItaly
| | - M. Madhani
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - S. P. Watson
- Centre for Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
139
|
Boulaftali Y, Hess PR, Kahn ML, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 2014; 114:1174-84. [PMID: 24677237 PMCID: PMC4000726 DOI: 10.1161/circresaha.114.301611] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/18/2014] [Indexed: 01/27/2023]
Abstract
Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.
Collapse
Affiliation(s)
- Yacine Boulaftali
- From the McAllister Heart Institute (Y.B., W.B.) and Department of Biochemistry and Biophysics (W.B.), University of North Carolina, Chapel Hill; and Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia (P.R.H., M.L.K.)
| | | | | | | |
Collapse
|
140
|
Abstract
The two vascular systems of our body are the blood and lymphatic vasculature. Our understanding of the cellular and molecular processes controlling the development of the lymphatic vasculature has progressed significantly in the last decade. In mammals, this is a stepwise process that starts in the embryonic veins, where lymphatic EC (LEC) progenitors are initially specified. The differentiation and maturation of these progenitors continues as they bud from the veins to produce scattered primitive lymph sacs, from which most of the lymphatic vasculature is derived. Here, we summarize our current understanding of the key steps leading to the formation of a functional lymphatic vasculature.
Collapse
|
141
|
Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, Herzog B, Lu M, Nieswandt B, Oliver G, Makinen T, Xia L, Kahn ML. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014; 124:273-84. [PMID: 24292710 DOI: 10.1172/jci70422] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life.
Collapse
|
142
|
Platelets in lymph vessel development and integrity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:93-105. [PMID: 24276889 DOI: 10.1007/978-3-7091-1646-3_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Blood platelets have recently been proposed to play a critical role in the development and repair of the lymphatic system. The platelet C-type lectin receptor CLEC-2 and its ligand, the transmembrane protein Podoplanin, which is expressed at high levels on lymphatic endothelial cells (LECs), are required to prevent mixing of the blood and lymphatic vasculatures during mid-gestation. A similar defect is seen in mice deficient in the tyrosine kinase Syk, which plays a vital role in mediating platelet activation by CLEC-2. Furthermore, blood-lymphatic mixing is also present in mice with platelet-/megakaryocyte-specific deletions of CLEC-2 and Syk, suggesting that the phenotype is platelet in origin. The molecular basis of this effect is not known, but it is independent of the major platelet receptors that support hemostasis, including integrin αIIbβ3 (GPIIb-IIIa). Radiation chimeric mice reconstituted with CLEC-2-deficient or Syk-deficient bone marrow exhibit blood-lymphatic mixing in the intestines, illustrating a role for platelets in repair and growth of the lymphatic system. In this review, we describe the events that led to the identification of this novel role of platelets and discuss possible molecular mechanisms and the physiological and pathophysiological significance.
Collapse
|
143
|
Schoppmann SF, Alidzanovic L, Schultheis A, Perkmann T, Brostjan C, Birner P. Thrombocytes Correlate with Lymphangiogenesis in Human Esophageal Cancer and Mediate Growth of Lymphatic Endothelial Cells In Vitro. PLoS One 2013; 8:e66941. [PMID: 23840559 PMCID: PMC3694157 DOI: 10.1371/journal.pone.0066941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/13/2013] [Indexed: 01/28/2023] Open
Abstract
Recent data provide evidence for an important role of thrombocytes in lymphangiogenesis within human malignant disease. The aim of this study was to investigate the role of thrombocytes in lymphangiogenesis in human esophageal cancer. Perioperative peripheral blood platelet counts (PBPC) were evaluated retrospectively in 320 patients with esophageal cancer, comprising 184 adenocarcinomas (AC), and 136 squamous cell carcinomas (SCC). Data on lymphangiogenesis evaluated by anti-podoplanin immunostaining were available from previous studies, platelets within the tumor tissue were assessed by CD61 immunostaining. For in vitro studies, human lymphatic endothelial cells (LECs) were isolated and co-cultured with peripheral blood platelets. Stromal thrombocytic clusters (STC) were evident in 82 samples (25.6%), and vascular thrombocytic clusters (VTC) in 56 (17.5%). STC and VTC were associated with a significantly higher PBPC at investigation of all cases. The presence of STC was associated with higher lymphatic microvessel density (p<0.001), PBPC and STC were associated with lymphovascular invasion of tumor cells in a regression model. The presence of STCs was associated with shorter DFS of all patients (p = 0.036, Breslow test), and VTC with shorter DFS in in SCC (p = 0.025, Breslow test). In cell culture, LEC proliferation was enhanced by co-culture with human platelets in a dose- and time-dependent manner mediated by the release of PDGF-BB and VEGF-C. Platelets play an important role in lymphangiogenesis and lymphovascular invasion in esophageal cancer, influencing prognosis. So the disruption of signaling pathways between platelets, tumor cells and lymphatic endothelium might be of benefit for patients.
Collapse
Affiliation(s)
- Sebastian F. Schoppmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Gastroesophageal Unit, Medical University of Vienna, Vienna, Austria
| | - Lejla Alidzanovic
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Schultheis
- Department of Pathology, Hospital Rudolfsstiftung, Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Peter Birner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Gastroesophageal Unit, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
144
|
Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost 2013; 11 Suppl 1:330-9. [PMID: 23809136 DOI: 10.1111/jth.12235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While very different in structure, GPVI - the major collagen receptor on platelet membranes, the GPIb-IX-V complex - the receptor for von Willebrand factor, and CLEC-2, a novel platelet activation receptor for podoplanin, share several common features in terms of function and platelet activation signal transduction pathways. All employ Src family kinases (SFK), Syk, and other signaling molecules involving tyrosine phosphorylation, similar to those of immunoreceptors for T and B cells. There appear to be overlapping functional roles for these glycoproteins, and in some cases, they can compensate for each other, suggesting a degree of redundancy. New ligands for these receptors are being identified, which broadens their functional relevancy. This is particularly true for CLEC-2, whose functions beyond hemostasis are being explored. The common mode of signaling, clustering, and localization to glycosphingolipid-enriched microdomains (GEMs) suggest that GEMs are central to signaling function by ligand-dependent association of these receptors, SFK, Syk, phosphotyrosine phosphatases, and other signaling molecules.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | |
Collapse
|
145
|
Koltowska K, Betterman KL, Harvey NL, Hogan BM. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 2013; 140:1857-70. [DOI: 10.1242/dev.089565] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lymphatic vascular system develops from the pre-existing blood vasculature of the vertebrate embryo. New insights into lymphatic vascular development have recently been achieved with the use of alternative model systems, new molecular tools, novel imaging technologies and growing interest in the role of lymphatic vessels in human disorders. The signals and cellular mechanisms that facilitate the emergence of lymphatic endothelial cells from veins, guide migration through the embryonic environment, mediate interactions with neighbouring tissues and control vessel maturation are beginning to emerge. Here, we review the most recent advances in lymphatic vascular development, with a major focus on mouse and zebrafish model systems.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kelly L. Betterman
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Natasha L. Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Benjamin M. Hogan
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
146
|
The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2). Toxins (Basel) 2013; 5:665-74. [PMID: 23594438 PMCID: PMC3705285 DOI: 10.3390/toxins5040665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022] Open
Abstract
The snake venom, rhodocytin, from the Malayan viper, Calloselasma rhodostoma, and the endogenous podoplanin are identified as ligands for the C-type lectin-like receptor 2 (CLEC-2). The snakebites caused by Calloselasma rhodostoma cause a local reaction with swelling, bleeding and eventually necrosis, together with a systemic effect on blood coagulation with distant bleedings that can occur in many different organs. This clinical picture suggests that toxins in the venom have effects on endothelial cells and vessel permeability, extravasation and, possibly, activation of immunocompetent cells, as well as effects on platelets and the coagulation cascade. Based on the available biological studies, it seems likely that ligation of CLEC-2 contributes to local extravasation, inflammation and, possibly, local necrosis, due to microthrombi and ischemia, whereas other toxins may be more important for the distant hemorrhagic complications. However, the venom contains several toxins and both local, as well as distant, symptoms are probably complex reactions that cannot be explained by the effects of rhodocytin and CLEC-2 alone. The in vivo reactions to rhodocytin are thus examples of toxin-induced crosstalk between coagulation (platelets), endothelium and inflammation (immunocompetent cells). Very few studies have addressed this crosstalk as a part of the pathogenesis behind local and systemic reactions to Calloselasma rhodostoma bites. The author suggests that detailed biological studies based on an up-to-date methodology of local and systemic reactions to Calloselasma rhodostoma bites should be used as a hypothesis-generating basis for future functional studies of the CLEC-2 receptor. It will not be possible to study the effects of purified toxins in humans, but the development of animal models (e.g., cutaneous injections of rhodocytin to mimic snakebites) would supplement studies in humans.
Collapse
|
147
|
Navarro-Núñez L, Langan SA, Nash GB, Watson SP. The physiological and pathophysiological roles of platelet CLEC-2. Thromb Haemost 2013; 109:991-8. [PMID: 23572154 DOI: 10.1160/th13-01-0060] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/12/2013] [Indexed: 12/25/2022]
Abstract
CLEC-2 is a C-type lectin receptor which is highly expressed on platelets but also found at low levels on different immune cells. CLEC-2 elicits powerful platelet activation upon engagement by its endogenous ligand, the mucin-type glycoprotein podoplanin. Podoplanin is expressed in a variety of tissues, including lymphatic endothelial cells, kidney podocytes, type I lung epithelial cells, lymph node stromal cells and the choroid plexus epithelium. Animal models have shown that the correct separation of the lymphatic and blood vasculatures during embryonic development is dependent on CLEC-2-mediated platelet activation. Additionally, podoplanin-deficient mice show abnormalities in heart, lungs, and lymphoid tissues, whereas absence of CLEC-2 affects brain development. This review summarises the current understanding of the molecular pathways regulating CLEC-2 and podoplanin function and suggests other physiological and pathological processes where this molecular interaction might exert crucial roles.
Collapse
Affiliation(s)
- Leyre Navarro-Núñez
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
148
|
Bender M, May F, Lorenz V, Thielmann I, Hagedorn I, Finney BA, Vögtle T, Remer K, Braun A, Bösl M, Watson SP, Nieswandt B. Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2013; 33:926-34. [PMID: 23448972 DOI: 10.1161/atvbaha.112.300672] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelet inhibition is a major strategy to prevent acute ischemic cardiovascular and cerebrovascular events, which may, however, be associated with an increased bleeding risk. The (hem)immunoreceptor tyrosine activation motif-bearing platelet receptors, glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2), might be promising antithrombotic targets because they can be depleted from circulating platelets by antibody treatment, leading to sustained antithrombotic protection, but only moderately increased bleeding times in mice. APPROACH AND RESULTS We investigated whether both (hem)immunoreceptor tyrosine activation motif-bearing receptors can be targeted simultaneously and what the in vivo consequences of such a combined therapeutic GPVI/CLEC-2 deficiency are. We demonstrate that isolated targeting of either GPVI or CLEC-2 in vivo does not affect expression or function of the respective other receptor. Moreover, simultaneous treatment with both antibodies resulted in the sustained loss of both GPVI and CLEC-2, while leaving other activation pathways intact. However, GPVI/CLEC-2-depleted mice displayed a dramatic hemostatic defect and profound impairment of arterial thrombus formation. Furthermore, a strongly diminished hemostatic response could also be reproduced in mice genetically lacking GPVI and CLEC-2. CONCLUSIONS These results demonstrate that GPVI and CLEC-2 can be simultaneously downregulated in platelets in vivo and reveal an unexpected functional redundancy of the 2 receptors in hemostasis and thrombosis. These findings may have important implications of the potential use of anti-GPVI and anti-CLEC-2-based agents in the prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Markus Bender
- University Hospital Würzburg and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Higashiyama M, Hokari R, Miura S. Response to letter: cilostazol and its emerging benefits in gastroenterology besides its attenuating effect on indomethacin-induced small intestinal injury. Scand J Gastroenterol 2013; 48:125. [PMID: 23110426 DOI: 10.3109/00365521.2012.733070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
150
|
Effect of BMP-2 and/or BMP-9 on preosteoblasts attached to polycaprolactone functionalized by adhesive peptides derived from bone sialoprotein. Biomaterials 2013; 34:1051-62. [DOI: 10.1016/j.biomaterials.2012.10.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/27/2012] [Indexed: 11/22/2022]
|