101
|
Cogliati S, Herranz F, Ruiz-Cabello J, Enríquez JA. Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148332. [PMID: 33129827 DOI: 10.1016/j.bbabio.2020.148332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
The BlueNative page (BNGE) gel has been the reference technique for studying the electron transport chain organization since it was established 20 years ago. Although the migration of supercomplexes has been demonstrated being real, there are still several concerns about its ability to reveal genuine interactions between respiratory complexes. Moreover, the use of different solubilization conditions generates conflicting interpretations. Here, we thoroughly compare the impact of different digitonin concentrations on the liquid dispersions' physical properties and correlate with the respiratory complexes' migration pattern and supercomplexes. Our results demonstrate that digitonin concentration generates liquid dispersions with specific size and variability critical to distinguish between a real association of complexes from being trapped in the same micelle.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE, 2014), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; CIBERFES, Madrid, Spain.
| |
Collapse
|
102
|
Versantvoort W, Pol A, Jetten MSM, van Niftrik L, Reimann J, Kartal B, Op den Camp HJM. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc Natl Acad Sci U S A 2020; 117:24459-24463. [PMID: 32913059 PMCID: PMC7533708 DOI: 10.1073/pnas.2011299117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aerobic and nitrite-dependent methanotrophs make a living from oxidizing methane via methanol to carbon dioxide. In addition, these microorganisms cometabolize ammonia due to its structural similarities to methane. The first step in both of these processes is catalyzed by methane monooxygenase, which converts methane or ammonia into methanol or hydroxylamine, respectively. Methanotrophs use methanol for energy conservation, whereas toxic hydroxylamine is a potent inhibitor that needs to be rapidly removed. It is suggested that many methanotrophs encode a hydroxylamine oxidoreductase (mHAO) in their genome to remove hydroxylamine, although biochemical evidence for this is lacking. HAOs also play a crucial role in the metabolism of aerobic and anaerobic ammonia oxidizers by converting hydroxylamine to nitric oxide (NO). Here, we purified an HAO from the thermophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV and characterized its kinetic properties. This mHAO possesses the characteristic P460 chromophore and is active up to at least 80 °C. It catalyzes the rapid oxidation of hydroxylamine to NO. In methanotrophs, mHAO efficiently removes hydroxylamine, which severely inhibits calcium-dependent, and as we show here, lanthanide-dependent methanol dehydrogenases, which are more prevalent in the environment. Our results indicate that mHAO allows methanotrophs to thrive under high ammonia concentrations in natural and engineered ecosystems, such as those observed in rice paddy fields, landfills, or volcanic mud pots, by preventing the accumulation of inhibitory hydroxylamine. Under oxic conditions, methanotrophs mainly oxidize ammonia to nitrite, whereas in hypoxic and anoxic environments reduction of both ammonia-derived nitrite and NO could lead to nitrous oxide (N2O) production.
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
103
|
Zulkifli M, Neff JK, Timbalia SA, Garza NM, Chen Y, Watrous JD, Murgia M, Trivedi PP, Anderson SK, Tomar D, Nilsson R, Madesh M, Jain M, Gohil VM. Yeast homologs of human MCUR1 regulate mitochondrial proline metabolism. Nat Commun 2020; 11:4866. [PMID: 32978391 PMCID: PMC7519068 DOI: 10.1038/s41467-020-18704-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - John K Neff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shrishiv A Timbalia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yingqi Chen
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35121, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Prachi P Trivedi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Steven K Anderson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
104
|
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW. Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I. EMBO Mol Med 2020; 12:e12619. [PMID: 32969598 PMCID: PMC7645371 DOI: 10.15252/emmm.202012619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, most commonly observed in paediatric mitochondrial disease, and is often associated with pathogenic variants in complex I structural subunits or assembly factors resulting in isolated respiratory chain complex I deficiency. Clinical heterogeneity has been reported, but key diagnostic findings are developmental regression, elevated lactate and characteristic neuroimaging abnormalities. Here, we describe three affected children from two unrelated families who presented with Leigh syndrome due to homozygous variants (c.346_*7del and c.173A>T p.His58Leu) in NDUFC2, encoding a complex I subunit. Biochemical and functional investigation of subjects’ fibroblasts confirmed a severe defect in complex I activity, subunit expression and assembly. Lentiviral transduction of subjects’ fibroblasts with wild‐type NDUFC2 cDNA increased complex I assembly supporting the association of the identified NDUFC2 variants with mitochondrial pathology. Complexome profiling confirmed a loss of NDUFC2 and defective complex I assembly, revealing aberrant assembly intermediates suggestive of stalled biogenesis of the complex I holoenzyme and indicating a crucial role for NDUFC2 in the assembly of the membrane arm of complex I, particularly the ND2 module.
Collapse
Affiliation(s)
- Ahmad Alahmad
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Kuwait Medical Genetics Centre, Al-Sabah Medical Area, Kuwait
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Juliana Heidler
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jana Meisterknecht
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany
| | - Manuela Spagnolo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Seham Alameer
- Pediatric Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fahad Hakami
- Section of Molecular Medicine, King Abdulaziz Medical City-WR, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Abeer Almehdar
- Department of Medical Imaging, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City-WR, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Anna Ardissone
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ilka Wittig
- SFB815 Core Unit, Functional Proteomics, Medical School, Goethe-Universität, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
105
|
Current pivotal strategies leading a difficult target protein to a sample suitable for crystallographic analysis. Biochem Soc Trans 2020; 48:1661-1673. [PMID: 32677661 DOI: 10.1042/bst20200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Crystallographic structural analysis is an essential method for the determination of protein structure. However, crystallization of a protein of interest is the most difficult process in the analysis. The process is often hampered during the sample preparation, including expression and purification. Even after a sample has been purified, not all candidate proteins crystallize. In this mini-review, the current methodologies used to overcome obstacles encountered during protein crystallization are sorted. Specifically, the strategy for an effective crystallization is compared with a pipeline where various expression hosts and constructs, purification and crystallization conditions, and crystallization chaperones as target-specific binder proteins are assessed by a precrystallization screening. These methodologies are also developed continuously to improve the process. The described methods are useful for sample preparation in crystallographic analysis and other structure determination techniques, such as cryo-electron microscopy.
Collapse
|
106
|
Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nat Commun 2020; 11:4245. [PMID: 32843629 PMCID: PMC7447783 DOI: 10.1038/s41467-020-18011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Diheme-containing succinate:menaquinone oxidoreductases (Sdh) are widespread in Gram-positive bacteria but little is known about the catalytic mechanisms they employ for succinate oxidation by menaquinone. Here, we present the 2.8 Å cryo-electron microscopy structure of a Mycobacterium smegmatis Sdh, which forms a trimer. We identified the membrane-anchored SdhF as a subunit of the complex. The 3 kDa SdhF forms a single transmembrane helix and this helix plays a role in blocking the canonically proximal quinone-binding site. We also identified two distal quinone-binding sites with bound quinones. One distal binding site is formed by neighboring subunits of the complex. Our structure further reveals the electron/proton transfer pathway for succinate oxidation by menaquinone. Moreover, this study provides further structural insights into the physiological significance of a trimeric respiratory complex II. The structure of the menaquinone binding site could provide a framework for the development of Sdh-selective anti-mycobacterial drugs. Diheme-containing succinate:menaquinone oxidoreductases (Sdh) are members of the complex II superfamily. Here, the authors present the 2.8 Å cryo-EM structure of Mycobacterium smegmatis Sdh2, which reveals membrane-anchored SdhF as a component of the complex and they discuss the electron/proton transfer pathway in the Sdh2 trimer.
Collapse
|
107
|
Oppermann S, Höfflin S, Friedrich T. ErpA is important but not essential for the Fe/S cluster biogenesis of Escherichia coli NADH:ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148286. [PMID: 32777304 DOI: 10.1016/j.bbabio.2020.148286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. The complex comprises a peripheral arm catalyzing electron transfer and a membrane arm involved in proton-translocation. In Escherichia coli, the peripheral arm features a non-covalently bound flavin mononucleotide and nine iron-sulfur (Fe/S)-clusters. Very little is known about the incorporation of the Fe/S-clusters into the E. coli complex I. ErpA, an A-type carrier protein is discussed to act as a Fe/S-cluster carrier protein. To contribute to the understanding of ErpA for the assembly of E. coli complex I, we analyzed an erpA knock-out strain. Deletion of erpA decreased the complex I content in cytoplasmic membranes to approximately one third and the NADH oxidase activity to one fifth. EPR spectroscopy showed the presence of all Fe/S-clusters of the complex in the membrane but only in minor quantities. Sucrose gradient centrifugation and native PAGE revealed the presence of a marginal amount of a stable and fully assembled complex extractable from the membrane. Thus, ErpA is not essential for the assembly of complex I but its absence leads to a strong decrease of a functional complex in the cytoplasmic membrane due to a major lack of all EPR-detectable Fe/S-clusters.
Collapse
Affiliation(s)
- Sabrina Oppermann
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Simon Höfflin
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany.
| |
Collapse
|
108
|
Pecinová A, Alán L, Brázdová A, Vrbacký M, Pecina P, Drahota Z, Houštěk J, Mráček T. Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer. Cells 2020; 9:cells9081764. [PMID: 32717855 PMCID: PMC7464303 DOI: 10.3390/cells9081764] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is one of the most prominent cancers diagnosed in males. Contrasting with other cancer types, glucose utilization is not increased in prostate carcinoma cells as they employ different metabolic adaptations involving mitochondria as a source of energy and intermediates required for rapid cell growth. In this regard, prostate cancer cells were associated with higher activity of mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key rate limiting component of the glycerophosphate shuttle, which connects mitochondrial and cytosolic processes and plays significant role in cellular bioenergetics. Our research focused on the role of mGPDH biogenesis and regulation in prostate cancer compared to healthy cells. We show that the 42 amino acid presequence is cleaved from N-terminus during mGPDH biogenesis. Only the processed form is part of the mGPDH dimer that is the prominent functional enzyme entity. We demonstrate that mGPDH overexpression enhances the wound healing ability in prostate cancer cells. As mGPDH is at the crossroad of glycolysis, lipogenesis and oxidative metabolism, regulation of its activity by intramitochondrial processing might represent rapid means of cellular metabolic adaptations.
Collapse
|
109
|
Roehrkasse AM, Warner ML, Booe JM, Pioszak AA. Biochemical characterization of G protein coupling to calcitonin gene-related peptide and adrenomedullin receptors using a native PAGE assay. J Biol Chem 2020; 295:9736-9751. [PMID: 32487746 PMCID: PMC7363127 DOI: 10.1074/jbc.ra120.013854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) have overlapping and unique functions in the nervous and circulatory systems including vasodilation, cardioprotection, and pain transmission. Their actions are mediated by the class B calcitonin-like G protein-coupled receptor (CLR), which heterodimerizes with three receptor activity-modifying proteins (RAMP1-3) that determine its peptide ligand selectivity. How the three agonists and RAMPs modulate CLR binding to transducer proteins remains poorly understood. Here, we biochemically characterized agonist-promoted G protein coupling to each CLR·RAMP complex. We adapted a native PAGE method to assess the formation and thermostabilities of detergent-solubilized fluorescent protein-tagged CLR·RAMP complexes expressed in mammalian cells. Addition of agonist and the purified Gs protein surrogate mini-Gs (mGs) yielded a mobility-shifted agonist·CLR·RAMP·mGs quaternary complex gel band that was sensitive to antagonists. Measuring the apparent affinities of the agonists for the mGs-coupled receptors and of mGs for the agonist-occupied receptors revealed that both ligand and RAMP control mGs coupling and defined how agonist engagement of the CLR extracellular and transmembrane domains affects transducer recruitment. Using mini-Gsq and -Gsi chimeras, we observed a coupling rank order of mGs > mGsq > mGsi for each receptor. Last, we demonstrated the physiological relevance of the native gel assays by showing that they can predict the cAMP-signaling potencies of AM and AM2/IMD chimeras. These results highlight the power of the native PAGE assay for membrane protein biochemistry and provide a biochemical foundation for understanding the molecular basis of shared and distinct signaling properties of CGRP, AM, and AM2/IMD.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
110
|
Lotz C, Stumpner J, Smul TM. Sevoflurane as opposed to propofol anesthesia preserves mitochondrial function and alleviates myocardial ischemia/reperfusion injury. Biomed Pharmacother 2020; 129:110417. [PMID: 32574972 DOI: 10.1016/j.biopha.2020.110417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pharmacological interventions reducing myocardial ischemia and reperfusion (I/R) injury include the administration of anesthetics. Both sevoflurane as well as propofol have been shown to elicit cardiac protection via distinct molecular mechanisms. We investigated the hypothesis that sevoflurane in contrary to propofol anesthesia elicits cardiac protection against I/R-injury via mitochondrial mechanisms of disease. METHODS Male New Zealand white rabbits (n = 42) were subjected 30 min of coronary artery occlusion followed by 3 h of reperfusion. After induction with pentobarbital, the animals either received sevoflurane or propofol to maintain general anesthesia. Infarct size was determined gravimetrically after triphenyltetrazolium chlorid-staining. Cardiac mitochondria were isolated and mitochondrial oxygen consumption was measured using a Clark electrode. Mitochondrial respiratory chain complex activities (I-IV) were analyzed utilizing specific assays. Data are mean ± SD. RESULTS Sevoflurane anesthesia significantly decreased the resulting myocardial infarct size compared to propofol anesthesia (p = 0.0275 vs. propofol). Mitochondria from animals receiving propofol anesthesia showed a significantly reduced mitochondrial respiratory control ratio (p = 0.01909 vs. sham) and impaired activities of respiratory complex I (p = 0.0147 vs. sham; p < 0.01 vs. sevoflurane) as well as respiratory complex IV (p = 0.0181 vs. sham). Mitochondrial dysfunction was absent in sevoflurane anesthesized animals. Furthermore, a significantly higher portion of complex I was found to be in its deactive form during I/R-injury in animals receiving sevoflurane anesthesia (p = 0.0123 vs. propofol). CONCLUSIONS Sevoflurane as opposed to propofol anesthesia preserved mitochondrial respiration and elicited cardiac protection against I/R-injury.
Collapse
Affiliation(s)
- Christopher Lotz
- Department of Anesthesia and Critical Care, University of Würzburg, Germany.
| | - Jan Stumpner
- Department of Anesthesia and Critical Care, University of Würzburg, Germany
| | - Thorsten M Smul
- Department of Anesthesia and Critical Care, University of Würzburg, Germany
| |
Collapse
|
111
|
Steunou AS, Durand A, Bourbon ML, Babot M, Tambosi R, Liotenberg S, Ouchane S. Cadmium and Copper Cross-Tolerance. Cu + Alleviates Cd 2 + Toxicity, and Both Cations Target Heme and Chlorophyll Biosynthesis Pathway in Rubrivivax gelatinosus. Front Microbiol 2020; 11:893. [PMID: 32582041 PMCID: PMC7283390 DOI: 10.3389/fmicb.2020.00893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Cadmium, although not redox active is highly toxic. Yet, the underlying mechanisms driving toxicity are still to be characterized. In this study, we took advantage of the purple bacterium Rubrivivax gelatinosus strain with defective Cd2 +-efflux system to identify targets of this metal. Exposure of the ΔcadA strain to Cd2 + causes a decrease in the photosystem amount and in the activity of respiratory complexes. As in case of Cu+ toxicity, the data indicated that Cd2 + targets the porphyrin biosynthesis pathway at the level of HemN, a S-adenosylmethionine and CxxxCxxC coordinated [4Fe-4S] containing enzyme. Cd2 + exposure therefore results in a deficiency in heme and chlorophyll dependent proteins and metabolic pathways. Given the importance of porphyrin biosynthesis, HemN represents a key metal target to account for toxicity. In the environment, microorganisms are exposed to mixture of metals. Nevertheless, the biological effects of such mixtures, and the toxicity mechanisms remain poorly addressed. To highlight a potential cross-talk between Cd2 + and Cu+ -efflux systems, we show (i) that Cd2 + induces the expression of the Cd2 +-efflux pump CadA and the Cu+ detoxification system CopA and CopI; and (ii) that Cu+ ions improve tolerance towards Cd2 +, demonstrating thus that metal mixtures could also represent a selective advantage in the environment.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marie-Line Bourbon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marion Babot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Reem Tambosi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylviane Liotenberg
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
112
|
Franco LVR, Su CH, Burnett J, Teixeira LS, Tzagoloff A. Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase. PLoS One 2020; 15:e0233177. [PMID: 32413073 PMCID: PMC7228087 DOI: 10.1371/journal.pone.0233177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Julia Burnett
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lorisa Simas Teixeira
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
113
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
114
|
Luévano-Martínez LA, Girard RMBM, Alencar MB, Silber AM. ATP regulates the activity of an alternative oxidase in Trypanosoma brucei. FEBS Lett 2020; 594:2150-2158. [PMID: 32279308 DOI: 10.1002/1873-3468.13790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023]
Abstract
The reduced mitochondrial respiratory chain from the bloodstream forms of Trypanosoma brucei is composed of only a membrane-bound glycerol-3-phosphate dehydrogenase and an alternative oxidase. Since these enzymes are not proton pumps, their functions are restricted to the maintenance of the redox balance in the glycosome by means of the dihydroxyacetone phosphate/glycerol-3-phosphate shuttle. Additionally, an F1 Fo -ATP synthase functions as an ATP-hydrolysing enzyme to establish the proton motive force necessary to maintain the basic functions of mitochondria. In this report, we studied the interplay between the alternative oxidase and ATP synthase, and we found that, in addition to its role as a proton pump, ATP synthase contributes to maintain safe levels of ATP to prevent the inhibition of the alternative oxidase by ATP.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Richard M B M Girard
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
115
|
Chaves G, Bungert-Plümke S, Franzen A, Mahorivska I, Musset B. Zinc modulation of proton currents in a new voltage-gated proton channel suggests a mechanism of inhibition. FEBS J 2020; 287:4996-5018. [PMID: 32160407 PMCID: PMC7754295 DOI: 10.1111/febs.15291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 02/03/2023]
Abstract
The HV1 voltage‐gated proton (HV1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best‐described physiological inhibitor of HV1 is Zn2+. Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV1 from Nicoletia phytophila, NpHV1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 μm. Zn2+ inhibition in NpHV1 was quantified by the slowing of the activation time constant and a positive shift of the conductance–voltage curve. Replacing aspartate in the S3‐S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage–conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3‐S4 linker. A simple Hodgkin Huxley model of NpHV1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high‐resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
Collapse
Affiliation(s)
- Gustavo Chaves
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Iryna Mahorivska
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| |
Collapse
|
116
|
High-Throughput Nano-Scale Characterization of Membrane Proteins Using Fluorescence-Detection Size-Exclusion Chromatography. Methods Mol Biol 2020. [PMID: 31267462 DOI: 10.1007/978-1-4939-9624-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Structural biology has revealed predicting heterologous expression levels, homogeneity, and stability of a protein from its primary structure are exceedingly difficult. Membrane proteins, in particular, present numerous challenges that make obtaining milligram quantities of quality samples problematic. For structural and functional investigation of these molecules, however, this is what is required. Fluorescence size-exclusion chromatography (F-SEC), a technique where a protein of biological interest is fused to green fluorescent protein (GFP) and monitored, circumvents many bottlenecks inherent to membrane protein structural biology. In vivo expression yields, as well as in vitro homogeneity and stability, can be rapidly evaluated utilizing nanogram quantities of unpurified protein. In this chapter we describe our most current protocols for expression screening and biochemical characterization of membrane proteins using F-SEC, as it pertains to a high-throughput (HTP) crystallographic pipeline. Therein, the methods and workflow were designed and optimized for structure-function elucidation of eukaryotic integral membrane proteins, but may be applied to prokaryotic or water-soluble proteins with minor modifications, thus making it a useful general approach.
Collapse
|
117
|
Cobley J, Noble A, Bessell R, Guille M, Husi H. Reversible Thiol Oxidation Inhibits the Mitochondrial ATP Synthase in Xenopus Laevis Oocytes. Antioxidants (Basel) 2020; 9:antiox9030215. [PMID: 32150908 PMCID: PMC7139892 DOI: 10.3390/antiox9030215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Oocytes are postulated to repress the proton pumps (e.g., complex IV) and ATP synthase to safeguard mitochondrial DNA homoplasmy by curtailing superoxide production. Whether the ATP synthase is inhibited is, however, unknown. Here we show that: oligomycin sensitive ATP synthase activity is significantly greater (~170 vs. 20 nmol/min-1/mg-1) in testes compared to oocytes in Xenopus laevis (X. laevis). Since ATP synthase activity is redox regulated, we explored a regulatory role for reversible thiol oxidation. If a protein thiol inhibits the ATP synthase, then constituent subunits must be reversibly oxidised. Catalyst-free trans-cyclooctene 6-methyltetrazine (TCO-Tz) immunocapture coupled to redox affinity blotting reveals several subunits in F1 (e.g., ATP-α-F1) and Fo (e.g., subunit c) are reversibly oxidised. Catalyst-free TCO-Tz Click PEGylation reveals significant (~60%) reversible ATP-α-F1 oxidation at two evolutionary conserved cysteine residues (C244 and C294) in oocytes. TCO-Tz Click PEGylation reveals ~20% of the total thiols in the ATP synthase are substantially oxidised. Chemically reversing thiol oxidation significantly increased oligomycin sensitive ATP synthase activity from ~12 to 100 nmol/min-1/mg-1 in oocytes. We conclude that reversible thiol oxidation inhibits the mitochondrial ATP synthase in X. laevis oocytes.
Collapse
Affiliation(s)
- James Cobley
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK; (R.B.); (H.H.)
- Correspondence:
| | - Anna Noble
- School of Biological Sciences, European Xenopus Resource Centre, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK; (A.N.); (M.G.)
| | - Rachel Bessell
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK; (R.B.); (H.H.)
| | - Matthew Guille
- School of Biological Sciences, European Xenopus Resource Centre, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK; (A.N.); (M.G.)
| | - Holger Husi
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK; (R.B.); (H.H.)
| |
Collapse
|
118
|
Trinugroho JP, Bečková M, Shao S, Yu J, Zhao Z, Murray JW, Sobotka R, Komenda J, Nixon PJ. Chlorophyll f synthesis by a super-rogue photosystem II complex. NATURE PLANTS 2020; 6:238-244. [PMID: 32170286 DOI: 10.1038/s41477-020-0616-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 05/21/2023]
Abstract
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
Collapse
Affiliation(s)
- Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
119
|
Rosas‐Lemus M, Minasov G, Shuvalova L, Wawrzak Z, Kiryukhina O, Mih N, Jaroszewski L, Palsson B, Godzik A, Satchell KJF. Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Protein Sci 2020; 29:711-722. [PMID: 31811683 PMCID: PMC7021002 DOI: 10.1002/pro.3796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Abstract
Galactarate dehydratase (GarD) is the first enzyme in the galactarate/glucarate pathway and catalyzes the dehydration of galactarate to 3-keto-5-dehydroxygalactarate. This protein is known to increase colonization fitness of intestinal pathogens in antibiotic-treated mice and to promote bacterial survival during stress. The galactarate/glucarate pathway is widespread in bacteria, but not in humans, and thus could be a target to develop new inhibitors for use in combination therapy to combat antibiotic resistance. The structure of almost all the enzymes of the galactarate/glucarate pathway were solved previously, except for GarD, for which only the structure of the N-terminal domain was determined previously. Herein, we report the first crystal structure of full-length GarD solved using a seleno-methoionine derivative revealing a new protein fold. The protein consists of three domains, each presenting a novel twist as compared to their distant homologs. GarD in the crystal structure forms dimers and each monomer consists of three domains. The N-terminal domain is comprised of a β-clip fold, connected to the second domain by a long unstructured linker. The second domain serves as a dimerization interface between two monomers. The C-terminal domain forms an unusual variant of a Rossmann fold with a crossover and is built around a seven-stranded parallel β-sheet supported by nine α-helices. A metal binding site in the C-terminal domain is occupied by Ca2+ . The activity of GarD was corroborated by the production of 5-keto-4-deoxy-D-glucarate under reducing conditions and in the presence of iron. Thus, GarD is an unusual enolase with a novel protein fold never previously seen in this class of enzymes.
Collapse
Affiliation(s)
- Monica Rosas‐Lemus
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - George Minasov
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Ludmilla Shuvalova
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center–LS‐CATNorthwestern UniversityArgonneIllinois
| | - Olga Kiryukhina
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Nathan Mih
- Department of BioengineeringUniversity of California San DiegoLa JollaCalifornia
| | - Lukasz Jaroszewski
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Department of Biomedical SciencesUniversity of California at RiversideRiversideCalifornia
| | - Bernhard Palsson
- Department of BioengineeringUniversity of California San DiegoLa JollaCalifornia
- Systems Biology Center for Antibiotic ResistanceUniversity of California San DiegoLa JollaCalifornia
| | - Adam Godzik
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Department of Biomedical SciencesUniversity of California at RiversideRiversideCalifornia
| | - Karla J. F. Satchell
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| |
Collapse
|
120
|
Lewis CJ, Dixit B, Batiuk E, Hall CJ, O'Connor MS, Boominathan A. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol 2020; 30:101429. [PMID: 31981894 PMCID: PMC6976934 DOI: 10.1016/j.redox.2020.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Elizabeth Batiuk
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Carter J Hall
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| |
Collapse
|
121
|
Szibor M, Gainutdinov T, Fernandez-Vizarra E, Dufour E, Gizatullina Z, Debska-Vielhaber G, Heidler J, Wittig I, Viscomi C, Gellerich F, Moore AL. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148137. [PMID: 31825809 DOI: 10.1016/j.bbabio.2019.148137] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.
Collapse
Affiliation(s)
- Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; Department of Cardiothoracic Surgery, Jena University Hospital, D-07747 Jena, Germany.
| | - Timur Gainutdinov
- Department of Neurology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany; Research Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciences, Kazan 420087, Russian Federation
| | | | - Eric Dufour
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Zemfira Gizatullina
- Department of Neurology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
| | | | - Juliana Heidler
- Functional Proteomics, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner site RheinMain, D-60590 Frankfurt am Main, Germany
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Frank Gellerich
- Department of Neurology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Falmer BN19QG, Brighton, UK
| |
Collapse
|
122
|
Native aggregation is a common feature among triosephosphate isomerases of different species. Sci Rep 2020; 10:1338. [PMID: 31992784 PMCID: PMC6987189 DOI: 10.1038/s41598-020-58272-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Triosephosphate isomerase (TIM) is an enzyme of the glycolysis pathway which exists in almost all types of cells. Its structure is the prototype of a motif called TIM-barrel or (α/β)8 barrel, which is the most common fold of all known enzyme structures. The simplest form in which TIM is catalytically active is a homodimer, in many species of bacteria and eukaryotes, or a homotetramer in some archaea. Here we show that the purified homodimeric TIMs from nine different species of eukaryotes and one of an extremophile bacterium spontaneously form higher order aggregates that can range from 3 to 21 dimers per macromolecular complex. We analysed these aggregates with clear native electrophoresis with normal and inverse polarity, blue native polyacrylamide gel electrophoresis, liquid chromatography, dynamic light scattering, thermal shift assay and transmission electron and fluorescence microscopies, we also performed bioinformatic analysis of the sequences of all enzymes to identify and predict regions that are prone to aggregation. Additionally, the capacity of TIM from Trypanosoma brucei to form fibrillar aggregates was characterized. Our results indicate that all the TIMs we studied are capable of forming oligomers of different sizes. This is significant because aggregation of TIM may be important in some of its non-catalytic moonlighting functions, like being a potent food allergen, or in its role associated with Alzheimer’s disease.
Collapse
|
123
|
Hara T, Shibata Y, Amagai R, Okado-Matsumoto A. Use of in-gel peroxidase assay for cytochrome c to visualize mitochondrial complexes III and IV. Biol Open 2020; 9:bio.047936. [PMID: 31852667 PMCID: PMC6955206 DOI: 10.1242/bio.047936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in-gel activity assay (IGA) is a powerful technique that uses enzymatic activity and compares intensities of detected bands in mitochondrial respiratory chain supercomplexes, and it is applicable to eukaryotic organisms. However, no IGA has been established for complex III because of the difficulty of access by ubiquinol, a substrate for complex III. Herein, we demonstrate that cytochrome c (Cyt c) showed peroxidase activity on IGA as a component of complexes III and IV. We used pre-incubation with sodium dodecyl sulfate (SDS) before IGA to loosen complexes in the gel after high-resolution clear native polyacrylamide gel electrophoresis (hrCN-PAGE), a refinement of blue native PAGE. The signals of IGA based on peroxidase activity were obtained using enhanced chemiluminescence solution. Then, the gel was directly used in western blotting or hrCN/SDS two-dimensional PAGE. Our findings indicate that IGA for Cyt c reflected the indirect activity of complexes III and IV. Summary: An improved in-gel activity assay visualized respiratory chain complexes III, IV and supercomplexes through cytochrome c. Pre-incubation of detergents enhanced the in-gel activity assay.
Collapse
Affiliation(s)
- Tsukasa Hara
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yuma Shibata
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ryosuke Amagai
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ayako Okado-Matsumoto
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
124
|
Fine-tuning of the respiratory complexes stability and supercomplexes assembly in cells defective of complex III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148133. [PMID: 31825807 DOI: 10.1016/j.bbabio.2019.148133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
The respiratory complexes are organized in supramolecular assemblies called supercomplexes thought to optimize cellular metabolism under physiological and pathological conditions. In this study, we used genetically and biochemically well characterized cells bearing the pathogenic microdeletion m.15,649-15,666 (ΔI300-P305) in MT-CYB gene, to investigate the effects of an assembly-hampered CIII on the re-organization of supercomplexes. First, we found that this mutation also affects the stability of both CI and CIV, and evidences the occurrence of a preferential structural interaction between CI and CIII2, yielding a small amount of active CI+CIII2 supercomplex. Indeed, a residual CI+CIII combined redox activity, and a low but detectable ATP synthesis driven by CI substrates are detectable, suggesting that the assembly of CIII into the CI+CIII2 supercomplex mitigates the detrimental effects of MT-CYB deletion. Second, measurements of oxygen consumption and ATP synthesis driven by NADH-linked and FADH2-linked substrates alone, or in combination, indicate a common ubiquinone pool for the two respiratory pathways. Finally, we report that prolonged incubation with rotenone enhances the amount of CI and CIII2, but reduces CIV assembly. Conversely, the antioxidant N-acetylcysteine increases CIII2 and CIV2 and partially restores respirasome formation. Accordingly, after NAC treatment, the rate of ATP synthesis increases by two-fold compared with untreated cell, while the succinate level, which is enhanced by the homoplasmic mutation, markedly decreases. Overall, our findings show that fine-tuning the supercomplexes stability improves the energetic efficiency of cells with the MT-CYB microdeletion.
Collapse
|
125
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
126
|
Salewskij K, Rieger B, Hager F, Arroum T, Duwe P, Villalta J, Colgiati S, Richter CP, Psathaki OE, Enriquez JA, Dellmann T, Busch KB. The spatio-temporal organization of mitochondrial F 1F O ATP synthase in cristae depends on its activity mode. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148091. [PMID: 31669489 DOI: 10.1016/j.bbabio.2019.148091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.
Collapse
Affiliation(s)
- Kirill Salewskij
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Bettina Rieger
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Frances Hager
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Tasnim Arroum
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Patrick Duwe
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Jimmy Villalta
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Sara Colgiati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Catania, Spain; Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Andalusia, Spain
| | - Christian P Richter
- University of Osnabrück, School of Biology, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany; Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - Olympia E Psathaki
- University of Osnabrück, School of Biology, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany; Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - José A Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Catania, Spain
| | - Timo Dellmann
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany
| | - Karin B Busch
- University Münster, Department of Biology, Institute of Molecular Cell Biology, 48149 Münster, North Rhine-Westphalia, Germany.
| |
Collapse
|
127
|
Kumar M, Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial dysfunctions in brain. Mitochondrion 2019; 50:158-169. [PMID: 31751655 DOI: 10.1016/j.mito.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/04/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Hyperhomocysteinemia (HHcy) has been implicated in the development of neurodegenerative conditions and mild cognitive disorders. Mitochondrial dysfunctions are the major mechanisms involved in homocysteine (Hcy)-induced neurotoxicity. Although, hydrogen sulfide has been reported as potent antioxidant, its effects on Hcy-induced mitochondrial dysfunctions have not been studied. Therefore, the present study has been designed to evaluate the protective effect of NaHS on Hcy-induced mitochondrial dysfunctions in brain. NaHS supplementation decreased reactive oxygen species and nitrite levels in the cortex and hippocampus of animals with HHcy. NaHS supplementation increased the activity of mitochondrial electron transport chain components; NADH dehydrogenase, cytochrome c oxidase and F0-F1 ATPase in the cortex and hippocampus of HHcy animals along with in-gel activity of complex I - complex V in the mitochondria isolated from the cortex and hippocampus of HHcy animals. Moreover, NaHS supplementation also increased the mitochondrial complex I, II and IV mediated oxygen consumption rate in Hcy treated mitochondria. NaHS administration prevented the Hcy-induced mitochondrial damage as suggested by the decreased mitochondrial swelling in the cortex and hippocampus of HHcy animals. NaHS supplementation decreased the activity of lactate dehydrogenase isozymes (1-5) in the brain regions of HHcy animals. The expression of protein kinase c δ was also decreased in the brain regions of HHcy animals following NaHS supplementation. This was accompanied by reduced activity of caspase-3 indicating anti-apoptotic effect of H2S. Taken together, the findings suggest that H2S supplementation ameliorates Hcy-induced oxidative stress and mitochondrial dysfunctions suggesting H2S releasing drugs may be a novel therapeutic approach to treat HHcy associated neurological disorders.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
128
|
Macedo F, Martins GL, Luévano-Martínez LA, Viana GM, Riske KA, Inague A, Yoshinaga MY, Aguilaniu H, Miyamoto S, Glezer I, da Cunha FM. Lipase-like 5 enzyme controls mitochondrial activity in response to starvation in Caenorhabditis elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158539. [PMID: 31676440 DOI: 10.1016/j.bbalip.2019.158539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
The C. elegans lipase-like 5 (lipl-5) gene is predicted to code for a lipase homologous to the human gastric acid lipase. Its expression was previously shown to be modulated by nutritional or immune cues, but nothing is known about its impact on the lipid landscape and ensuing functional consequences. In the present work, we used mutants lacking LIPL-5 protein and found that lipl-5 is important for normal lipidome composition as well as its remodeling in response to food deprivation. Particularly, lipids with signaling functions such as ceramides and mitochondrial lipids were affected by lipl-5 silencing. In comparison with wild type worms, animals lacking LIPL-5 were enriched in cardiolipins linked to polyunsaturated C20 fatty acids and coenzyme Q-9. Differences in mitochondrial lipid composition were accompanied by differences in mitochondrial activity as mitochondria from well-fed lipl-5 mutants were significantly more able to oxidize respiratory substrates when compared with mitochondria from well-fed wild type worms. Strikingly, starvation elicited important changes in mitochondrial activity in wild type worms, but not in lipl-5 worms. This indicates that this lipase is a determinant of mitochondrial functional remodeling in response to food withdrawal.
Collapse
Affiliation(s)
- Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil
| | - Gabriel Loureiro Martins
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil; Escola de Educação Física e Esporte, Universidade de São Paulo, Avenida Professor Mello Moraes, 65, CEP 05508-030, Cidade Universitária, São Paulo, SP, Brazil
| | - Luis A Luévano-Martínez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1374, CEP 05508-900, Cidade Universitária, São Paulo, SP, Brazil
| | - Gustavo Monteiro Viana
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, Rua Pedro de Toledo, 669, CEP 04039-032, Vila Clementino, São Paulo, SP, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, CEP 05508-000, Cidade Universitária, São Paulo, SP, Brazil
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, CEP 05508-000, Cidade Universitária, São Paulo, SP, Brazil
| | - Hugo Aguilaniu
- CNRS, France; Instituto Serrapilheira-Rua Dias Ferreira, 78 s202, CEP 22431-050, Leblon, Rio de Janeiro, RJ, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, CEP 05508-000, Cidade Universitária, São Paulo, SP, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, CEP 04044-020, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
129
|
A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc Natl Acad Sci U S A 2019; 116:21907-21913. [PMID: 31594847 DOI: 10.1073/pnas.1909644116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In oxygenic photosynthetic organisms, photosystem II (PSII) is a unique membrane protein complex that catalyzes light-driven oxidation of water. PSII undergoes frequent damage due to its demanding photochemistry. It must undergo a repair and reassembly process following photodamage, many facets of which remain unknown. We have discovered a PSII subcomplex that lacks 5 key PSII core reaction center polypeptides: D1, D2, PsbE, PsbF, and PsbI. This pigment-protein complex does contain the PSII core antenna proteins CP47 and CP43, as well as most of their associated low molecular mass subunits, and the assembly factor Psb27. Immunoblotting, mass spectrometry, and ultrafast spectroscopic results support the absence of a functional reaction center in this complex, which we call the "no reaction center" complex (NRC). Analytical ultracentrifugation and clear native PAGE analysis show that NRC is a stable pigment-protein complex and not a mixture of free CP47 and CP43 proteins. NRC appears in higher abundance in cells exposed to high light and impaired protein synthesis, and genetic deletion of PsbO on the PSII luminal side results in an increased NRC population, indicative that NRC forms in response to photodamage as part of the PSII repair process. Our finding challenges the current model of the PSII repair cycle and implies an alternative PSII repair strategy. Formation of this complex may maximize PSII repair economy by preserving intact PSII core antennas in a single complex available for PSII reassembly, minimizing the risk of randomly diluting multiple recycling components in the thylakoid membrane following a photodamage event.
Collapse
|
130
|
Purified F-ATP synthase forms a Ca 2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019; 10:4341. [PMID: 31554800 PMCID: PMC6761146 DOI: 10.1038/s41467-019-12331-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device. The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. Here authors demonstrate that the membrane embedded bovine F-ATP synthase elicits Ca2 + -dependent currents matching those of the MMC/PTP.
Collapse
|
131
|
Isocitrate dehydrogenase type 2 (IDH2) is part of a multiprotein complex for placental steroidogenesis. Placenta 2019; 87:30-37. [PMID: 31542634 DOI: 10.1016/j.placenta.2019.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human syncytiotrophoblast mitochondria require the activity of the isocitrate dehydrogenase type 2 (IDH2) to obtain reduced coenzymes for progesterone (P4) synthesis. Data from the literature indicate that mitochondrial steroidogenic contact sites transform efficiently cholesterol into P4. In this research, we identified the IDH2 as a member of the steroidogenic contact site and analyzed the steroidogenic role of its activity. METHOD Human syncytiotrophoblast mitochondria were isolated by differential centrifugation, and steroidogenic contact sites were obtained by osmotic shock and sucrose gradient ultracentrifugation. In-gel native activity assay, mass spectroscopy, and western blot were used to identify the association of proteins and their activities. P4 was determined by immunofluorescence. RESULTS The IDH2 was mainly identified in steroidogenic contact sites, and its activity was associated with a complex of proteins with an apparent molecular mass of ~590 kDa. Mass spectroscopy showed many groups of proteins with several metabolic functions, including steroidogenesis and ATP synthesis. The IDH2 activity was coupled to P4 synthesis since in the presence of Ca2+ or Na2SeO3, inhibitors of the IDH2, the P4 production decreased. CONCLUSIONS The human syncytiotrophoblast mitochondria build contact sites for steroidogenesis. The IDH2, a non-membrane protein, supplies the NADPH required for the synthesis of P4 in a complex (steroidosome) that associate the proteins required to transform efficiently cholesterol into P4, which is necessary in pregnancy to maintain the relationship between mother and fetus. GENERAL SIGNIFICANCE The IDH2 is proposed as a check point in the regulation of placental steroidogenesis.
Collapse
|
132
|
Kondadi AK, Anand R, Reichert AS. Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. Int J Mol Sci 2019; 20:ijms20174311. [PMID: 31484398 PMCID: PMC6747513 DOI: 10.3390/ijms20174311] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are vital cellular organelles involved in a plethora of cellular processes such as energy conversion, calcium homeostasis, heme biogenesis, regulation of apoptosis and ROS reactive oxygen species (ROS) production. Although they are frequently depicted as static bean-shaped structures, our view has markedly changed over the past few decades as many studies have revealed a remarkable dynamicity of mitochondrial shapes and sizes both at the cellular and intra-mitochondrial levels. Aberrant changes in mitochondrial dynamics and cristae structure are associated with ageing and numerous human diseases (e.g., cancer, diabetes, various neurodegenerative diseases, types of neuro- and myopathies). Another unique feature of mitochondria is that they harbor their own genome, the mitochondrial DNA (mtDNA). MtDNA exists in several hundreds to thousands of copies per cell and is arranged and packaged in the mitochondrial matrix in structures termed mt-nucleoids. Many human diseases are mechanistically linked to mitochondrial dysfunction and alteration of the number and/or the integrity of mtDNA. In particular, several recent studies identified remarkable and partly unexpected links between mitochondrial structure, fusion and fission dynamics, and mtDNA. In this review, we will provide an overview about these recent insights and aim to clarify how mitochondrial dynamics, cristae ultrastructure and mtDNA structure influence each other and determine mitochondrial functions.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
133
|
Lacombe A, Maclean AE, Ovciarikova J, Tottey J, Mühleip A, Fernandes P, Sheiner L. Identification of the
Toxoplasma gondii
mitochondrial ribosome, and characterisation of a protein essential for mitochondrial translation. Mol Microbiol 2019; 112:1235-1252. [PMID: 31339607 PMCID: PMC6851545 DOI: 10.1111/mmi.14357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/20/2023]
Abstract
Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.
Collapse
Affiliation(s)
- Alice Lacombe
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Julie Tottey
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
- UMR 1282 ISP INRA‐Université François Rabelais de Tours Nouzilly France
| | - Alexander Mühleip
- Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
| | - Paula Fernandes
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| |
Collapse
|
134
|
SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1437-1445. [DOI: 10.1016/j.bbamem.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
|
135
|
Wang Y, Liu XY, Yang YZ, Huang J, Sun F, Lin J, Gu ZQ, Sayyed A, Xu C, Tan BC. Empty Pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genet 2019; 15:e1008305. [PMID: 31374076 PMCID: PMC6693784 DOI: 10.1371/journal.pgen.1008305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/14/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
C-to-U editing is an important event in post-transcriptional RNA processing, which converts a specific cytidine (C)-to-uridine (U) in transcripts of mitochondria and plastids. Typically, the pentatricopeptide repeat (PPR) protein, which specifies the target C residue by binding to its upstream sequence, is involved in the editing of one or a few sites. Here we report a novel PPR-DYW protein EMP21 that is associated with editing of 81 sites in maize. EMP21 is localized in mitochondria and loss of the EMP21 function severely inhibits the embryogenesis and endosperm development in maize. From a scan of 35 mitochondrial transcripts produced by the Emp21 loss-of-function mutant, the C-to-U editing was found to be abolished at five sites (nad7-77, atp1-1292, atp8-437, nad3-275 and rps4-870), while reduced at 76 sites in 21 transcripts. In most cases, the failure to editing resulted in the translation of an incorrect residue. In consequence, the mutant became deficient with respect to the assembly and activity of mitochondrial complexes I and V. As six of the decreased editing sites in emp21 overlap with the affected editing sites in emp5-1, and the editing efficiency at rpl16-458 showed a substantial reduction in the emp21-1 emp5-4 double mutant compared with the emp21-1 and emp5-4 single mutants, we explored their interaction. A yeast two hybrid assay suggested that EMP21 does not interact with EMP5, but both EMP21 and EMP5 interact with ZmMORF8. Together, these results indicate that EMP21 is a novel PPR-DYW protein required for the editing of ~17% of mitochondrial target Cs, and the editing process may involve an interaction between EMP21 and ZmMORF8 (and probably other proteins).
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Qun Gu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
136
|
Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, Tichý M, Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148053. [PMID: 31344362 DOI: 10.1016/j.bbabio.2019.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/03/2023]
Abstract
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
Collapse
Affiliation(s)
- A Strašková
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Steinbach
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Konert
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - E Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - J Komenda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - M Tichý
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - R Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
137
|
Rubalcava-Gracia D, García-Rincón J, Pérez-Montfort R, Hamel PP, González-Halphen D. Key within-membrane residues and precursor dosage impact the allotopic expression of yeast subunit II of cytochrome c oxidase. Mol Biol Cell 2019; 30:2358-2366. [PMID: 31318312 PMCID: PMC6741066 DOI: 10.1091/mbc.e18-12-0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimentally relocating mitochondrial genes to the nucleus for functional expression (allotopic expression) is a challenging process. The high hydrophobicity of mitochondria-encoded proteins seems to be one of the main factors preventing this allotopic expression. We focused on subunit II of cytochrome c oxidase (Cox2) to study which modifications may enable or improve its allotopic expression in yeast. Cox2 can be imported from the cytosol into mitochondria in the presence of the W56R substitution, which decreases the protein hydrophobicity and allows partial respiratory rescue of a cox2-null strain. We show that the inclusion of a positive charge is more favorable than substitutions that only decrease the hydrophobicity. We also searched for other determinants enabling allotopic expression in yeast by examining the COX2 gene in organisms where it was transferred to the nucleus during evolution. We found that naturally occurring variations at within-membrane residues in the legume Glycine max Cox2 could enable yeast COX2 allotopic expression. We also evidence that directing high doses of allotopically synthesized Cox2 to mitochondria seems to be counterproductive because the subunit aggregates at the mitochondrial surface. Our findings are relevant to the design of allotopic expression strategies and contribute to the understanding of gene retention in organellar genomes.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan García-Rincón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ruy Pérez-Montfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patrice Paul Hamel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
138
|
Thomas LW, Esposito C, Stephen JM, Costa ASH, Frezza C, Blacker TS, Szabadkai G, Ashcroft M. CHCHD4 regulates tumour proliferation and EMT-related phenotypes, through respiratory chain-mediated metabolism. Cancer Metab 2019; 7:7. [PMID: 31346464 PMCID: PMC6632184 DOI: 10.1186/s40170-019-0200-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mitochondrial oxidative phosphorylation (OXPHOS) via the respiratory chain is required for the maintenance of tumour cell proliferation and regulation of epithelial to mesenchymal transition (EMT)-related phenotypes through mechanisms that are not fully understood. The essential mitochondrial import protein coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) controls respiratory chain complex activity and oxygen consumption, and regulates the growth of tumours in vivo. In this study, we interrogate the importance of CHCHD4-regulated mitochondrial metabolism for tumour cell proliferation and EMT-related phenotypes, and elucidate key pathways involved. RESULTS Using in silico analyses of 967 tumour cell lines, and tumours from different cancer patient cohorts, we show that CHCHD4 expression positively correlates with OXPHOS and proliferative pathways including the mTORC1 signalling pathway. We show that CHCHD4 expression significantly correlates with the doubling time of a range of tumour cell lines, and that CHCHD4-mediated tumour cell growth and mTORC1 signalling is coupled to respiratory chain complex I (CI) activity. Using global metabolomics analysis, we show that CHCHD4 regulates amino acid metabolism, and that CHCHD4-mediated tumour cell growth is dependent on glutamine. We show that CHCHD4-mediated tumour cell growth is linked to CI-regulated mTORC1 signalling and amino acid metabolism. Finally, we show that CHCHD4 expression in tumours is inversely correlated with EMT-related gene expression, and that increased CHCHD4 expression in tumour cells modulates EMT-related phenotypes. CONCLUSIONS CHCHD4 drives tumour cell growth and activates mTORC1 signalling through its control of respiratory chain mediated metabolism and complex I biology, and also regulates EMT-related phenotypes of tumour cells.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present Address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Ana S. H. Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Thomas S. Blacker
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
139
|
Lazar JT, Shuvalova L, Rosas-Lemus M, Kiryukhina O, Satchell KJF, Minasov G. Structural comparison of p-hydroxybenzoate hydroxylase (PobA) from Pseudomonas putida with PobA from other Pseudomonas spp. and other monooxygenases. Acta Crystallogr F Struct Biol Commun 2019; 75:507-514. [PMID: 31282871 PMCID: PMC6613441 DOI: 10.1107/s2053230x19008653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 11/10/2022] Open
Abstract
The crystal structure is reported of p-hydroxybenzoate hydroxylase (PobA) from Pseudomonas putida, a possible drug target to combat tetracycline resistance, in complex with flavin adenine dinucleotide (FAD). The structure was refined at 2.2 Å resolution with four polypeptide chains in the asymmetric unit. Based on the results of pairwise structure alignments, PobA from P. putida is structurally very similar to PobA from P. fluorescens and from P. aeruginosa. Key residues in the FAD-binding and substrate-binding sites of PobA are highly conserved spatially across the proteins from all three species. Additionally, the structure was compared with two enzymes from the broader class of oxygenases: 2-hydroxybiphenyl 3-monooxygenase (HbpA) from P. nitroreducens and 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO) from Mesorhizobium japonicum. Despite having only 14% similarity in their primary sequences, pairwise structure alignments of PobA from P. putida with HbpA from P. nitroreducens and MHPCO from M. japonicum revealed local similarities between these structures. Key secondary-structure elements important for catalysis, such as the βαβ fold, β-sheet wall and α12 helix, are conserved across this expanded class of oxygenases.
Collapse
Affiliation(s)
- John T. Lazar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Ludmilla Shuvalova
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monica Rosas-Lemus
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olga Kiryukhina
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J. F. Satchell
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - George Minasov
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
140
|
Mitochondrial respirasome works as a single unit and the cross-talk between complexes I, III 2 and IV stimulates NADH dehydrogenase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:618-627. [PMID: 31251900 DOI: 10.1016/j.bbabio.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/20/2022]
Abstract
Ustilago maydis is an aerobic basidiomycete that depends on oxidative phosphorylation for its ATP supply, pointing to the mitochondrion as a key player in its energy metabolism. Mitochondrial respiratory complexes I, III2, and IV occur in supramolecular structures named respirasome. In this work, we characterized the subunit composition and the kinetics of NADH:Q oxidoreductase activity of the digitonine-solubilized respirasome (1600 kDa) and the free-complex I (990 kDa). In the presence of 2,6-dimethoxy-1,4-benzoquinone (DBQ) and cytochrome c, both the respirasome NADH:O2 and the NADH:DBQ oxidoreductase activities were inhibited by rotenone, antimycin A or cyanide. A value of 2.4 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity, while ROS production was less than 0.001% of the oxygen consumption rate. Analysis of the NADH:DBQ oxidoreductase activity showed that respirasome was 3-times more active and showed higher affinity than free-complex I. The results suggest that the contacts between complexes I, III2 and IV in the respirasome increase the catalytic efficiency of complex I and regulate its activity to prevent ROS production.
Collapse
|
141
|
Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:573-581. [PMID: 31226318 DOI: 10.1016/j.bbabio.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Respiratory complex I catalyses the reduction of ubiquinone (Q) from NADH coupled to proton pumping across the inner membrane of mitochondria. The electrical charging of the inner mitochondrial membrane drives the synthesis of ATP, which is used to power biochemical reactions of the cell. The recent surge in structural data on complex I from bacteria and mitochondria have contributed to significant understanding of its molecular architecture. However, despite these accomplishments, the role of various subdomains in redox-coupled proton pumping remains entirely unclear. In this work, we have mutated conserved residues in the loop of the PSST subunit that faces the ~30 Å long unique Q-binding tunnel of respiratory complex I. The data show a drastic decrease in Q reductase activity upon mutating several residues despite full assembly of the complex. In-silico modeling and multiple microsecond long molecular dynamics simulations of wild-type and enzyme variants with exchanges of conserved arginine residues revealed remarkable ejection of the bound Q from the site near terminal electron donor N2. Based on experiments and long-time scale molecular simulations, we identify microscopic elements that dynamically control the diffusion of Q and are central to redox-coupled proton pumping in respiratory complex I.
Collapse
|
142
|
Guo L, Carraro M, Carrer A, Minervini G, Urbani A, Masgras I, Tosatto SCE, Szabò I, Bernardi P, Lippe G. Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. J Biol Chem 2019; 294:10987-10997. [PMID: 31160339 DOI: 10.1074/jbc.ra119.008775] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis, we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis, (i) the substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, WT dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in WT enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.
Collapse
Affiliation(s)
- Lishu Guo
- Departments of Biomedical Sciences and
| | | | | | | | | | | | - Silvio C E Tosatto
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and; Biology, University of Padova, 35131 Padova, Italy
| | - Paolo Bernardi
- Departments of Biomedical Sciences and; Consiglio Nazionale delle Ricerche Institute of Neuroscience, 35131 Padova, Italy, and.
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
143
|
Ran Z, Zhao J, Tong G, Gao F, Wei L, Ma W. Ssl3451 is Important for Accumulation of NDH-1 Assembly Intermediates in the Cytoplasm of Synechocystis sp. Strain PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:1374-1385. [PMID: 30847493 DOI: 10.1093/pcp/pcz045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Two mutants sensitive to high light for growth and impaired in NDH-1 activity were isolated from a transposon-tagged library of Synechocystis sp. strain PCC 6803. Both mutants were tagged in the ssl3451 gene encoding a hypothetical protein, which shares a significant homology with the Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION 42 (CRR42). In Arabidopsis, CRR42 associates only with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 400 kDa (NAI400), one of total three NAIs (NAI800, NAI500 and NAI400), and its deletion has little, if any, effect on accumulation of any NAIs in the stroma. In comparison, the ssl3451 product was localized mainly in the cytoplasm and associates with two NAIs of about 300 kDa (NAI300) and 130 kDa (NAI130). Deletion of Ssl3451 reduced the abundance of the NAI300 complex to levels no longer visible on gels and of the NAI130 complex to a low level, thereby impeding the assembly process of NDH-1 hydrophilic arm. Further, Ssl3451 interacts with another assembly factor Ssl3829 and they have a similar effect on accumulation of NAIs and NdhI maturation factor Slr1097 in the cytoplasm. We thus propose that Ssl3451 plays an important role in accumulation of the NAI300 and NAI130 complexes in the cytoplasm via its interacting protein Ssl3829.
Collapse
Affiliation(s)
- Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Jiaohong Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Guifang Tong
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Fudan Gao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Lanzhen Wei
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| |
Collapse
|
144
|
Shanati T, Lockie C, Beloti L, Grogan G, Ansorge-Schumacher MB. Two Enantiocomplementary Ephedrine Dehydrogenases from Arthrobacter sp. TS-15 with Broad Substrate Specificity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tarek Shanati
- Department of Molecular Biotechnology, Technische Universität Dresden, Dresden 01062, Germany
| | - Cameron Lockie
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lilian Beloti
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | |
Collapse
|
145
|
Elkholi R, Abraham-Enachescu I, Trotta AP, Rubio-Patiño C, Mohammed JN, Luna-Vargas MPA, Gelles JD, Kaminetsky JR, Serasinghe MN, Zou C, Ali S, McStay GP, Pfleger CM, Chipuk JE. MDM2 Integrates Cellular Respiration and Apoptotic Signaling through NDUFS1 and the Mitochondrial Network. Mol Cell 2019; 74:452-465.e7. [PMID: 30879903 PMCID: PMC6499641 DOI: 10.1016/j.molcel.2019.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Signaling diversity and subsequent complexity in higher eukaryotes is partially explained by one gene encoding a polypeptide with multiple biochemical functions in different cellular contexts. For example, mouse double minute 2 (MDM2) is functionally characterized as both an oncogene and a tumor suppressor, yet this dual classification confounds the cell biology and clinical literatures. Identified via complementary biochemical, organellar, and cellular approaches, we report that MDM2 negatively regulates NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1), leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis. MDM2 directly binds and sequesters NDUFS1, preventing its mitochondrial localization and ultimately causing complex I and supercomplex destabilization and inefficiency of oxidative phosphorylation. The MDM2 amino-terminal region is sufficient to bind NDUFS1, alter supercomplex assembly, and induce apoptosis. Finally, this pathway is independent of p53, and several mitochondrial phenotypes are observed in Drosophila and murine models expressing transgenic Mdm2.
Collapse
Affiliation(s)
- Rana Elkholi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ioana Abraham-Enachescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Camila Rubio-Patiño
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jarvier N Mohammed
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mark P A Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Joshua R Kaminetsky
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Cindy Zou
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Sumaira Ali
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Gavin P McStay
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Cathie M Pfleger
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
146
|
Newell C, Khan A, Sinasac D, Shoffner J, Friederich MW, Van Hove JLK, Hume S, Shearer J, Sosova I. Hybrid gel electrophoresis using skin fibroblasts to aid in diagnosing mitochondrial disease. NEUROLOGY-GENETICS 2019; 5:e336. [PMID: 31192304 PMCID: PMC6515941 DOI: 10.1212/nxg.0000000000000336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
Objective We developed a novel, hybrid method combining both blue-native (BN-PAGE) and clear-native (CN-PAGE) polyacrylamide gel electrophoresis, termed BCN-PAGE, to perform in-gel activity stains on the mitochondrial electron transport chain (ETC) complexes in skin fibroblasts. Methods Four patients aged 46–65 years were seen in the Metabolic Clinic at Alberta Children's Hospital and investigated for mitochondrial disease and had BN-PAGE or CN-PAGE on skeletal muscle that showed incomplete assembly of complex V (CV) in each patient. Long-range PCR performed on muscle-extracted DNA identified 4 unique mitochondrial DNA (mtDNA) deletions spanning the ATP6 gene of CV. We developed a BCN-PAGE method in skin fibroblasts taken from the patients at the same time and compared the findings with those in skeletal muscle. Results In all 4 cases, BCN-PAGE in skin fibroblasts confirmed the abnormal CV activity found from muscle biopsy, suggesting that the mtDNA deletions involving ATP6 were most likely germline mutations that are associated with a clinical phenotype of mitochondrial disease. Conclusions The BCN-PAGE method in skin fibroblasts has a potential to be a less-invasive tool compared with muscle biopsy to screen patients for abnormalities in CV and other mitochondrial ETC complexes.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Aneal Khan
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - David Sinasac
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - John Shoffner
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Marisa W Friederich
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Johan L K Van Hove
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Stacey Hume
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Jane Shearer
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Iveta Sosova
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| |
Collapse
|
147
|
Can K, Menzfeld C, Rinne L, Rehling P, Kügler S, Golubiani G, Dudek J, Müller M. Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O 2 Consumption and ROS Release. Front Physiol 2019; 10:479. [PMID: 31114506 PMCID: PMC6503037 DOI: 10.3389/fphys.2019.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y ) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.
Collapse
Affiliation(s)
- Karolina Can
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lena Rinne
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Peter Rehling
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Klinik für Neurologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gocha Golubiani
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Jan Dudek
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
148
|
Uribe‐Alvarez C, Chiquete‐Félix N, Morales‐García L, Bohórquez‐Hernández A, Delgado‐Buenrostro NL, Vaca L, Peña A, Uribe‐Carvajal S. Wolbachia pipientis grows in Saccharomyces cerevisiae evoking early death of the host and deregulation of mitochondrial metabolism. Microbiologyopen 2019; 8:e00675. [PMID: 29897678 PMCID: PMC6460262 DOI: 10.1002/mbo3.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Wolbachia sp. has colonized over 70% of insect species, successfully manipulating host fertility, protein expression, lifespan, and metabolism. Understanding and engineering the biochemistry and physiology of Wolbachia holds great promise for insect vector-borne disease eradication. Wolbachia is cultured in cell lines, which have long duplication times and are difficult to manipulate and study. The yeast strain Saccharomyces cerevisiae W303 was used successfully as an artificial host for Wolbachia wAlbB. As compared to controls, infected yeast lost viability early, probably as a result of an abnormally high mitochondrial oxidative phosphorylation activity observed at late stages of growth. No respiratory chain proteins from Wolbachia were detected, while several Wolbachia F1 F0 -ATPase subunits were revealed. After 5 days outside the cell, Wolbachia remained fully infective against insect cells.
Collapse
Affiliation(s)
- Cristina Uribe‐Alvarez
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Natalia Chiquete‐Félix
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Lilia Morales‐García
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Arlette Bohórquez‐Hernández
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Laura Delgado‐Buenrostro
- Unidad de Biomedicina UBIMEDFacultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlanepantlaEdo. de MéxicoMéxico
| | - Luis Vaca
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Antonio Peña
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Salvador Uribe‐Carvajal
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
149
|
Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteomics 2019; 198:1-10. [DOI: 10.1016/j.jprot.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
|
150
|
Preconditioning the rat heart with sodium thiosulfate preserved the mitochondria in response to ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:189-201. [PMID: 30929125 DOI: 10.1007/s10863-019-09794-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Sodium thiosulfate preconditioning (SIPC) was recently reported to be cardioprotective due to its ability to inhibit caspase-3 activation, chelate calcium ions and scavenge free radicals. However, the rationale behind its ability to improve the contractility of isolated rat heart challenged with ischemia-reperfusion injury (IR) is not well understood. As mitochondrial preservation is implicated in cardioprotection against IR, the present study was conceived to identify whether the cardioprotective effects of SIPC is associated with mitochondrial preservation. Using the isolated Langendorff rat heart model, 1 mM sodium thiosulfate (STS) was used to precondition the rat heart before IR and was used to study its effect on cardiac mitochondria. The IR heart experienced a ventricular contractile dysfunction that was improved by SIPC. Upon assessing in-gel the ATP synthetic capacity of mitochondria from IR heart, there was a significant decline, while in SIPC it was well preserved close to sham. As a sustained flow of electrons through the ETC and well-integrated mitochondria are the prerequisites for ATP synthesis, SIPC improved the activities of ETC complex enzymes (I-IV), which was reflected from the preserved ultrastructure of the mitochondria as analyzed from electron-microscopy in the treated rat hearts. This observation was coherent with the elevated expression of PGC1α (20%), a critical regulator of ATP production, which increased the mitochondrial copy number as well in the STS treated heart compared to IR. In conclusion, mitochondria might be a critical target for SIPC mediated cardioprotection against IR.
Collapse
|