101
|
Arnold DL, Jackson RW, Waterfield NR, Mansfield JW. Evolution of microbial virulence: the benefits of stress. Trends Genet 2007; 23:293-300. [PMID: 17434232 DOI: 10.1016/j.tig.2007.03.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/23/2007] [Indexed: 12/13/2022]
Abstract
Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.
Collapse
Affiliation(s)
- Dawn L Arnold
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, UK
| | | | | | | |
Collapse
|
102
|
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 2007; 447:284-8. [PMID: 17450127 DOI: 10.1038/nature05737] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 03/08/2007] [Indexed: 11/09/2022]
Abstract
The bacterial plant pathogen Pseudomonas syringae injects effector proteins into host cells through a type III protein secretion system to cause disease. The enzymatic activities of most of P. syringae effectors and their targets remain obscure. Here we show that the type III effector HopU1 is a mono-ADP-ribosyltransferase (ADP-RT). HopU1 suppresses plant innate immunity in a manner dependent on its ADP-RT active site. The HopU1 substrates in Arabidopsis thaliana extracts were RNA-binding proteins that possess RNA-recognition motifs (RRMs). A. thaliana knockout lines defective in the glycine-rich RNA-binding protein GRP7 (also known as AtGRP7), a HopU1 substrate, were more susceptible than wild-type plants to P. syringae. The ADP-ribosylation of GRP7 by HopU1 required two arginines within the RRM, indicating that this modification may interfere with GRP7's ability to bind RNA. Our results suggest a pathogenic strategy where the ADP-ribosylation of RNA-binding proteins quells host immunity by affecting RNA metabolism and the plant defence transcriptome.
Collapse
Affiliation(s)
- Zheng Qing Fu
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Sorg I, Wagner S, Amstutz M, Müller SA, Broz P, Lussi Y, Engel A, Cornelis GR. YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 2007; 26:3015-24. [PMID: 17510628 PMCID: PMC1894769 DOI: 10.1038/sj.emboj.7601731] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/27/2007] [Indexed: 12/28/2022] Open
Abstract
YscU is an essential component of the export apparatus of the Yersinia injectisome. It consists of an N-terminal transmembrane domain and a long cytoplasmic C-terminal domain, which undergoes auto-cleavage at a NPTH site. Substitutions N263A and P264A prevented cleavage of YscU and abolished export of LcrV, YopB and YopD but not of Yop effectors. As a consequence, yscU(N263A) mutant bacteria made needles without the LcrV tip complex and they could not form translocation pores. The graft of the export signal of the effector YopE, at the N-terminus of LcrV, restored LcrV export and assembly of the tip complex. Thus, YscU cleavage is required to acquire the conformation allowing recognition of translocators, which represent an individual category of substrates in the hierarchy of export. In addition, yscU(N263A) mutant bacteria exported reduced amounts of the YscP ruler and made longer needles. Increasing YscP export resulted in needles with normal size, depending on the length of the ruler. Hence, the effect of the yscU(N263A) mutation on needle length was the consequence of a reduced YscP export.
Collapse
Affiliation(s)
- Isabel Sorg
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | - Shirley A Müller
- Biozentrum der Universität Basel, Basel, Switzerland
- ME Müller Institute for Structural Biology, Basel, Switzerland
| | - Petr Broz
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Yvonne Lussi
- Biozentrum der Universität Basel, Basel, Switzerland
| | - Andreas Engel
- Biozentrum der Universität Basel, Basel, Switzerland
- ME Müller Institute for Structural Biology, Basel, Switzerland
| | - Guy R Cornelis
- Biozentrum der Universität Basel, Basel, Switzerland
- Biozentrum, Universität Basel, Infection Biology, Klingelbergstrasse 50-70, Basel, CH 4056, Switzerland. Tel.: +41 61 267 21 10; Fax: +41 61 267 21 18; E-mail:
| |
Collapse
|
104
|
Peters J, Wilson DP, Myers G, Timms P, Bavoil PM. Type III secretion à la Chlamydia. Trends Microbiol 2007; 15:241-51. [PMID: 17482820 DOI: 10.1016/j.tim.2007.04.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 04/23/2007] [Indexed: 01/08/2023]
Abstract
Type III secretion (T3S) is a mechanism that is central to the biology of the Chlamydiaceae and many other pathogens whose virulence depends on the translocation of toxic effector proteins to cytosolic targets within infected eukaryotic cells. Biomathematical simulations, using a previously described model of contact-dependent, T3S-mediated chlamydial growth and late differentiation, suggest that chlamydiae contained in small non-fusogenic inclusions will persist. Here, we further discuss the model in the context of in vitro-persistent, stress-induced aberrantly enlarged forms and of recent studies using small molecule inhibitors of T3S. A general mechanism is emerging whereby both early- and mid-cycle T3S-mediated activities and late T3S inactivation upon detachment of chlamydiae from the inclusion membrane are crucial for chlamydial intracellular development.
Collapse
Affiliation(s)
- Jan Peters
- Department of Biomedical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
105
|
Abstract
Helicobacter pylori is a spiral-shaped, flagellated, microaerophilic Gram-negative bacterium that colonizes the gastric epithelium of humans. All persons infected with H. pylori have gastritis, and some will develop severe disease such as peptic ulcers or gastric cancer. A characteristic feature of this infection is the pronounced accumulation of phagocytes, particularly neutrophils, in the gastric mucosa. H. pylori thrives in a phagocyte-rich environment, and we describe here how this organism uses an array of novel virulence factors to manipulate chemotaxis, phagocytosis, membrane trafficking and the respiratory burst as a means to evade elimination by the innate immune response.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Department of Medicine, University of Iowa and the VA Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
106
|
Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2007; 127:1425-37. [PMID: 17190605 PMCID: PMC1865096 DOI: 10.1016/j.cell.2006.10.046] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/23/2006] [Accepted: 10/27/2006] [Indexed: 12/15/2022]
Abstract
The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host. Here, we report that GNBP3 is a pattern recognition receptor that is required for the detection of fungal cell wall components. Strikingly, we find that there is a second, parallel pathway acting jointly with GNBP3. The Drosophila Persephone protease activates the Toll pathway when proteolytically matured by the secreted fungal virulence factor PR1. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host.
Collapse
Affiliation(s)
- Marie Gottar
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
| | - Vanessa Gobert
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
| | - Alexey A. Matskevich
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
| | - Jean-Marc Reichhart
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
| | - Chengshu Wang
- Department of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
| | - Tariq M. Butt
- Department of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
| | - Marcia Belvin
- Exelixis, Inc. South San Francisco, California 94083
| | - Jules A. Hoffmann
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
| | - Dominique Ferrandon
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, F67084 Strasbourg Cedex France
- Correspondence :
| |
Collapse
|
107
|
Phalipon A, Sansonetti PJ. Shigella’
s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 2007; 85:119-29. [PMID: 17213832 DOI: 10.1038/sj.icb7100025] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent pro-inflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH(2)-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, INSERM U786, Institut Pasteur 25, Rue du Dr Roux, Paris, France.
| | | |
Collapse
|
108
|
|
109
|
Joseph SS, Plano GV. Identification of TyeA Residues Required to Interact with YopN and to Regulate Yop Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:235-45. [DOI: 10.1007/978-0-387-72124-8_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
110
|
Stavrinides J, Ma W, Guttman DS. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2006; 2:e104. [PMID: 17040127 PMCID: PMC1599762 DOI: 10.1371/journal.ppat.0020104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/28/2006] [Indexed: 12/23/2022] Open
Abstract
Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called “terminal reassortment.” In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents. Many pathogenic bacteria rely on specialized virulence proteins to cause disease. These proteins, known as type III secreted effectors (T3SEs), are directly injected into the host's cells and facilitate the disease process by interacting with host proteins and interfering with the defense response. Although most T3SEs lack any sequence similarity, several T3SEs share a common terminus, suggesting that part of these proteins was derived from the same sequence. The authors propose an evolutionary mechanism, called “terminal reassortment,” in which the termini of T3SEs reassort with other genetic information to create new chimeric proteins. This study shows that this process has given rise to T3SEs with new virulence functions and that it may influence bacterial host specificity. Chimeric T3SEs are present in eight different genera and in some cases are present in as many as 32% of known T3SE families. This is significantly more than what is found in other protein families, suggesting that terminal reassortment plays a disproportionately important role in the evolution of T3SE. Terminal reassortment may lead to the very rapid evolution of new T3SEs, thereby contributing to the emergence of new infectious diseases.
Collapse
Affiliation(s)
- John Stavrinides
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
111
|
Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 2006; 60:425-49. [PMID: 16753033 DOI: 10.1146/annurev.micro.60.080805.142251] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse gram-negative bacteria deliver effector proteins into the cells of their eukaryotic hosts using the type III secretion system. Collectively, these type III effector proteins function to optimize the host cell environment for bacterial growth. Type III effector proteins are essential for the virulence of Pseudomonas syringae, Xanthomonas spp., Ralstonia solanacearum and Erwinia species. Type III secretion systems are also found in nonpathogenic pseudomonads and in species of symbiotic nitrogen-fixing Rhizobium. We discuss the functions of type III effector proteins of plant-associated bacteria, with an emphasis on pathogens. Plant pathogens tend to carry diverse collections of type III effectors that likely share overlapping functions. Several effectors inhibit host defense responses. The eukaryotic host targets of only a few type III effector proteins are currently known. We also discuss possible mechanisms for diversification of the suite of type III effector proteins carried by a given bacterial strain.
Collapse
Affiliation(s)
- Sarah R Grant
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
112
|
Abstract
The type III secretion injectisome is a complex nanomachine that allows bacteria to deliver protein effectors across eukaryotic cellular membranes. In recent years, significant progress has been made in our understanding of its structure, assembly and mode of operation. The principal structural components of the injectisome, from the base located in the bacterial cytosol to the tip of the needle protruding from the cell surface, have been investigated in detail. The structures of several constituent proteins were solved at the atomic level and important insights into the assembly process have been gained. However, despite the ongoing concerted efforts of molecular and structural biologists, the role of many of the constituent components of this nanomachine remain unknown.
Collapse
Affiliation(s)
- Guy R Cornelis
- Biozentrum der Universität Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
113
|
Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. EUKARYOTIC CELL 2006; 6:73-83. [PMID: 17085638 PMCID: PMC1800361 DOI: 10.1128/ec.00309-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.
Collapse
Affiliation(s)
- Luke A Gilbert
- Department of Microbiology, Immunology and Molecular Genetics, University of California--Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
114
|
Ma W, Dong FFT, Stavrinides J, Guttman DS. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2006; 2:e209. [PMID: 17194219 PMCID: PMC1713259 DOI: 10.1371/journal.pgen.0020209] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/25/2006] [Indexed: 11/21/2022] Open
Abstract
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. Pathogens and their hosts impose reciprocal selective pressures on each other, such that the improvement of one selects for the improvement of the other. Pathogens that are able to evolve increasingly effective methods of attacking their hosts select for hosts that are able to mount increasingly effective defenses against pathogen attack. This coevolutionary interaction is commonly referred to as an arms race, or the Red Queen Principle, taken from Lewis Carroll's Through the Looking Glass, and What Alice Found There, in which Alice and the Red Queen had to run as fast as they could simply to stay in the same place. Many pathogenic bacteria rely on specialized virulence proteins, called type III secreted effectors (T3SEs), to cause disease. These proteins are injected into the cells of the host, and often act to disrupt the host defense response. This study shows how the HopZ family of T3SEs in the pathogen Pseudomonas syringae evolves in response to coevolutionary selective pressures imposed by its plant hosts. The authors identify the version of the hopZ gene that is most similar to the one carried by the ancestral strain, and then show how this version has been modified by mutation and selection in response to the host defense systems. They also identify genes related to hopZ from other species that were brought into P. syringae presumably in response to this same host-imposed selective pressure. Finally, the authors show how the genetic diversity in this gene family permits the pathogen to avoid host defenses while still maintaining an important virulence-associated function. This study provides a clearer picture of the molecular interactions that drive coevolutionary interactions, and insight into how ecological processes play out at the molecular and evolutionary scale.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, 2 Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Frederick F. T Dong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, 2 Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - John Stavrinides
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, 2 Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, 2 Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
115
|
Knodler LA, Bertero M, Yip C, Strynadka NCJ, Steele-Mortimer O. Structure-based mutagenesis of SigE verifies the importance of hydrophobic and electrostatic residues in type III chaperone function. Mol Microbiol 2006; 62:928-40. [PMID: 17038123 DOI: 10.1111/j.1365-2958.2006.05418.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite sharing little sequence identity, most type III chaperones display a similar homodimeric structure characterized by negative charges distributed broadly over their entire surface, interspersed with hydrophobic patches. Here we have used SigE from Salmonella as a model for class IA type III chaperones to investigate the role of these surface-exposed residues in chaperone function. SigE is essential for the stability, secretion and translocation of its cognate effector, SopB (SigD). We analysed the effect of mutating nine conserved hydrophobic and electronegative surface-exposed amino acids of SigE on SopB binding, stability, secretion and translocation. Six of these mutations affected some aspect of SigE function (Leu14, Asp20, Leu22, Leu23, Ile25 and Asp51) and three were without effect (Leu54, Glu92 and Glu99). Our results highlight that both hydrophobic and electronegative surfaces are required for the function of SigE and provide an important basis for the prediction of side-chain requirements for other chaperone-effector pairs.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | | | | | | | | |
Collapse
|
116
|
Stirling FR, Evans TJ. Effects of the type III secreted pseudomonal toxin ExoS in the yeast Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2006; 152:2273-2285. [PMID: 16849794 DOI: 10.1099/mic.0.28831-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa secretes a number of toxins by a type III system, and these are important in virulence. One of them, ExoS, is a bifunctional toxin, with a GTPase-activating protein domain, as well as ADP ribosyltransferase (ADPRT) activity. These two domains have numerous potential cellular targets, but the overall mechanism of ExoS action remains unclear. The effects of ExoS in a simple eukaryotic system, the yeast Saccharomyces cerevisiae, using a tetracycline-regulated expression system were studied. This system allowed controlled expression of ExoS in yeast, which was not possible using a galactose-induced system. ExoS was found to be an extremely potent inhibitor of yeast growth, and to be largely dependent on the activity of its ADPRT domain. ExoS produced a dramatic alteration in actin distribution, with the appearance of large aggregates of cortical actin, and thickened disorganized cables, entirely dependent on the ADPRT domain. This phenotype is suggestive of actin stabilization, which was verified by showing that the cortical aggregates of actin induced by ExoS were resistant to treatment with latrunculin A, an agent that prevents actin polymerization. ExoS increased the numbers of mating projections produced following growth arrest with mating pheromone, and prevented subsequent DNA replication, an effect that is again dependent on the ADPRT domain. Following pheromone removal, ExoS produced altered development of the mating projections, which became elongated with a swollen bud-like tip. These results suggest alternative pathways for ExoS action in eukaryotic cells that may result from activation of small GTPases, and this yeast expression system is well suited to explore these pathways.
Collapse
Affiliation(s)
- Fiona R Stirling
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | - Tom J Evans
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| |
Collapse
|
117
|
Velan B, Bar-Haim E, Zauberman A, Mamroud E, Shafferman A, Cohen S. Discordance in the effects of Yersinia pestis on the dendritic cell functions manifested by induction of maturation and paralysis of migration. Infect Immun 2006; 74:6365-76. [PMID: 16923789 PMCID: PMC1695518 DOI: 10.1128/iai.00974-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The encounter between invading microorganisms and dendritic cells (DC) triggers a series of events which include uptake and degradation of the microorganism, induction of a maturation process, and enhancement of DC migration to the draining lymph nodes. Various pathogens have developed strategies to counteract these events as a measure to evade the host defense. In the present study we found that interaction of the Yersinia pestis EV76 strain with DC has no effect on cell viability and is characterized by compliance with effective maturation, which is manifested by surface display of major histocompatibility complex class II, of costimulatory markers, and of the chemokine receptor CCR7. This is in contrast to maturation inhibition and cell death induction exerted by the related species Yersinia enterocolitica WA O:8. Y. pestis interactions with DC were found, however, to impair functions related to cytoskeleton rearrangement. DC pulsed with Y. pestis failed to adhere to solid surfaces and to migrate toward the chemokine CCL19 in an in vitro transmembrane assay. Both effects were dependent on the presence of the pCD1 virulence plasmid and on a bacterial growth shift to 37 degrees C prior to infection. Moreover, while instillation of a pCD1-cured Y. pestis strain into mouse airways triggered effective transport of alveolar DC to the mediastinal lymph node, instillation of Y. pestis harboring the plasmid failed to do so. Taken together, these results suggest that virulence plasmid-dependent impairment of DC migration is the major mechanism utilized by Y. pestis to subvert DC function.
Collapse
Affiliation(s)
- Baruch Velan
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | | | | | | | | | | |
Collapse
|
118
|
Stirling FR, Cuzick A, Kelly SM, Oxley D, Evans TJ. Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol 2006; 8:1294-309. [PMID: 16882033 DOI: 10.1111/j.1462-5822.2006.00710.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III secretion is a widespread method whereby Gram-negative bacteria introduce toxins into eukaryotic cells. These toxins mimic or subvert a normal cellular process by interacting with a specific target, although how toxins reach their site of action is unclear. We set out to investigate the intracellular localization of a type III toxin of Pseudomonas aeruginosa called ExoU, which has phospholipase activity and requires a eukaryotic factor for activity. We found that ExoU is localized to the plasma membrane and undergoes modification within the cell by addition of two ubiquitin molecules at lysine-178. A region of five amino acids at position 679-683 near the C-terminus of the ExoU protein controls both membrane localization and ubiquitinylation. Site-directed mutagenesis identified a tryptophan at position 681 as crucial for these effects. We found that the same region at position 679-683 was also required for cell toxicity produced by ExoU as well as in vitro phospholipase activity. Localization of the phospholipase ExoU to the plasma membrane is thus required for activation and allows efficient utilization of adjacent substrate phospholipids.
Collapse
Affiliation(s)
- Fiona R Stirling
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
119
|
Thomas JH. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res 2006; 16:1017-30. [PMID: 16825662 PMCID: PMC1524861 DOI: 10.1101/gr.5089806] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Host-pathogen arms races can result in adaptive evolution (positive selection) of host genes that mediate pathogen recognition and defense. To identify such genes in nematodes, I used maximum-likelihood analysis of codon evolution to survey all paralogous gene groups in Caenorhabditis elegans. This survey found robust evidence of positive selection in two classes of genes not previously implicated in pathogen defense. Both classes of genes encode ubiquitin-dependent proteasome adapters, which recruit diverse substrate proteins for poly-ubiquitination and proteolysis by Cullin-E3 ubiquitin-ligase complexes. The adapter proteins are members of the F-box superfamily and the MATH-BTB family, which consist of a conserved Cullin-binding domain and a variable substrate-binding domain. Further analysis showed that most of the approximately 520 members of the F-box superfamily and approximately 50 members of the MATH-BTB family in C. elegans are under strong positive selection at sites in their substrate-binding domains but not in their Cullin-binding domains. Structural modeling of positively selected sites in MATH-BTB proteins suggests that they are concentrated in the MATH peptide-binding cleft. Comparisons among three Caenorhabditis species also indicate an extremely high rate of gene duplication and deletion (birth-death evolution) in F-box and MATH-BTB families. Finally, I found strikingly similar patterns of positive selection and birth-death evolution in the large F-box superfamily in plants. Based on these patterns of molecular evolution, I propose that most members of the MATH-BTB family and the F-box superfamily are adapters that target foreign proteins for proteolysis. I speculate that this system functions to combat viral pathogens or bacterial protein toxins.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
120
|
Abstract
Protein degradation is required for homeostasis of all living organisms. Self-compartmentalized ATP-dependent proteases are required for virulence of several pathogenic bacteria. Among the proteases implicated are ClpP and Lon, as well as the more recently identified bacterial proteasome. It is generally assumed that when a pathogen invades a host, microbial proteins become irreversibly damaged and need to be degraded. However, recent data suggest that proteolysis is also essential for virulence gene regulation. In this review, we will discuss what is known about the relationship between ATP-dependent proteolysis and pathogenesis. In addition, we will propose other potential roles these chambered proteases may have in bacterial virulence. Importantly, these proteases show promise as targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Susan M Butler
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
121
|
Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 2006; 103:10503-10508. [PMID: 16798873 PMCID: PMC1502487 DOI: 10.1073/pnas.0604088103] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many bacterial diseases of plants depend on the interaction of type III effector genes of the pathogen and disease-susceptibility genes of the host. The host susceptibility genes are largely unknown. Here, we show that expression of the rice gene Os8N3, a member of the MtN3 gene family from plants and animals, is elevated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99(A) and depends on the type III effector gene pthXo1. Os8N3 resides near xa13, and PXO99(A) failed to induce Os8N3 in rice lines with xa13. Silencing of Os8N3 by inhibitory RNA produced plants that were resistant to infection by strain PXO99(A) yet remained susceptible to other strains of the pathogen. The effector gene avrXa7 from strain PXO86 enabled PXO99(A) compatibility on either xa13- or Os8N3-silenced plants. The findings indicate that Os8N3 is a host susceptibility gene for bacterial blight targeted by the type III effector PthXo1. The results support the hypothesis that X. oryzae pv. oryzae commandeers the regulation of otherwise developmentally regulated host genes to induce a state of disease susceptibility. Furthermore, the results support a model in which the pathogen induces disease susceptibility in a gene-for-gene manner.
Collapse
Affiliation(s)
- Bing Yang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Akiko Sugio
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
122
|
Zauberman A, Cohen S, Mamroud E, Flashner Y, Tidhar A, Ber R, Elhanany E, Shafferman A, Velan B. Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis. Infect Immun 2006; 74:3239-50. [PMID: 16714551 PMCID: PMC1479247 DOI: 10.1128/iai.00097-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Kimberley53 strain. Y. pestis exerts YopJ-dependent suppression of tumor necrosis factor alpha secretion and phosphorylation of mitogen-activated protein kinases and thus resembles enteropathogenic Yersinia. However, Y. pestis is less able to activate caspases, to suppress NF-kappaB activation, and to induce apoptosis in macrophages than the high-virulence Y. enterocolitica WA O:8 strain. These differences appear to be related to lower efficiency of YopJ effector translocation by Y. pestis. The efficiencies of effector translocation and of apoptosis induction can be enhanced either by using a high bacterial load in a synchronized infection or by overexpressing exogenous YopJ in Y. pestis. Replacing YopJ with the homologous Y. enterocolitica effector YopP can further enhance these effects. Overexpression of YopP in a yopJ-deleted Y. pestis background leads to rapid and effective translocation into target cells, providing Y. pestis with the high cytotoxic potential of Y. enterocolitica WA O:8. We suggest that the relative inferiority of Y. pestis in triggering cell death in macrophages may be advantageous for its in vivo propagation in the early stages of infection.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 74100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Darboe N, Kenjale R, Picking WL, Picking WD, Middaugh CR. Physical characterization of MxiH and PrgI, the needle component of the type III secretion apparatus from Shigella and Salmonella. Protein Sci 2006; 15:543-52. [PMID: 16501225 PMCID: PMC2249775 DOI: 10.1110/ps.051733506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and Salmonella use similar type III secretion systems for delivering effector proteins into host cells. This secretion system consists of a base anchored in both bacterial membranes and an extracellular "needle" that forms a rod-like structure exposed on the pathogen surface. The needle is composed of multiple subunits of a single protein and makes direct contact with host cells to facilitate protein delivery. The proteins that make up the needle of Shigella and Salmonella are MxiH and PrgI, respectively. These proteins are attractive vaccine candidates because of their essential role in virulence and surface exposure. We therefore isolated, purified, and characterized the monomeric forms of MxiH and PrgI. Their far-UV circular dichroism spectra show structural similarities with hints of subtle differences in their secondary structure. Both proteins are highly helical and thermally unstable, with PrgI having a midpoint of thermal unfolding (Tm) near 37 degrees C and MxiH having a value near 42 degrees C. The two proteins also have comparable intrinsic stabilities as measured by chemically induced (urea) unfolding. MxiH, however, with a free energy of unfolding (DeltaG degrees 0,un) of 1.6 kcal/mol, is slightly more stable than PrgI (1.2 kcal/mol). The relatively low m-values obtained for the urea-induced unfolding of the proteins suggest that they undergo only a small change in solvent-accessible surface area. This argues that when MxiH and PrgI are incorporated into the needle complex, they obtain a more stable structural state through the introduction of protein-protein interactions.
Collapse
Affiliation(s)
- Numukunda Darboe
- Division of Biology, Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
124
|
Abstract
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.
Collapse
Affiliation(s)
- B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, B.C. V6T 1Z4 Canada.
| | | |
Collapse
|
125
|
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006; 103:1528-33. [PMID: 16432199 PMCID: PMC1345711 DOI: 10.1073/pnas.0510322103] [Citation(s) in RCA: 872] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The bacterium Vibrio cholerae, like other human pathogens that reside in environmental reservoirs, survives predation by unicellular eukaryotes. Strains of the O1 and O139 serogroups cause cholera, whereas non-O1/non-O139 strains cause human infections through poorly defined mechanisms. Using Dictyostelium discoideum as a model host, we have identified a virulence mechanism in a non-O1/non-O139 V. cholerae strain that involves extracellular translocation of proteins that lack N-terminal hydrophobic leader sequences. Accordingly, we have named these genes "VAS" genes for virulence-associated secretion, and we propose that these genes encode a prototypic "type VI" secretion system. We show that vas genes are required for cytotoxicity of V. cholerae cells toward Dictyostelium amoebae and mammalian J774 macrophages by a contact-dependent mechanism. A large number of Gram-negative bacterial pathogens carry genes homologous to vas genes and potential effector proteins secreted by this pathway (i.e., hemolysin-coregulated protein and VgrG). Mutations in vas homologs in other bacterial species have been reported to attenuate virulence in animals and cultured macrophages. Thus, the genes encoding the VAS-related, type VI secretion system likely play an important conserved function in microbial pathogenesis and represent an additional class of targets for vaccine and antimicrobial drug-based therapies.
Collapse
Affiliation(s)
- Stefan Pukatzki
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Among the multitude of soil-inhabiting, saprophytic Streptomyces species are a growing number of plant pathogens that cause economically important diseases, including potato scab. Streptomyces scabies is the dominant pathogenic species worldwide, but is only one of many that cause very similar disease symptoms on plants. Molecular genetic analysis is beginning to identify the mechanisms used by plant pathogenic species to manipulate their hosts. The nitrated dipeptide phytotoxin, thaxtomin, inhibits cellulose biosynthesis in expanding plant tissues, stimulates Ca2+ spiking, and causes cell death. A secreted necrogenic protein, Nec1, contributes to virulence on diverse plant species. The thaxtomin biosynthetic genes and nec1 lie on a large mobilizable PAI, along with other putative virulence genes including a cytokinin biosynthetic pathway and a saponinase homolog. The PAI is mobilized during conjugation and site-specifically inserts in the linear chromosome of recipient species, accounting for the emergence of new pathogens in agricultural systems. The recently available genome sequence of S. scabies will accelerate research on host-pathogen interactions.
Collapse
Affiliation(s)
- Rosemary Loria
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203, USA.
| | | | | |
Collapse
|