101
|
Ma DL, Chan DSH, Lee P, Kwan MHT, Leung CH. Molecular modeling of drug–DNA interactions: Virtual screening to structure-based design. Biochimie 2011; 93:1252-66. [PMID: 21514356 DOI: 10.1016/j.biochi.2011.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | | | | | | | | |
Collapse
|
102
|
Sun H, Xiang J, Liu Y, Li L, Li Q, Xu G, Tang Y. A stabilizing and denaturing dual-effect for natural polyamines interacting with G-quadruplexes depending on concentration. Biochimie 2011; 93:1351-6. [DOI: 10.1016/j.biochi.2011.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/07/2011] [Indexed: 01/31/2023]
|
103
|
Mathad RI, Hatzakis E, Dai J, Yang D. c-MYC promoter G-quadruplex formed at the 5'-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res 2011; 39:9023-33. [PMID: 21795379 PMCID: PMC3203601 DOI: 10.1093/nar/gkr612] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5′ runs of guanines of c-MYC promoter NHE III1, which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solution structure of the 1:2:1 parallel-stranded loop isomer, one of the two major loop isomers formed in Myc1234 in K+ solution. This major loop isomer, although sharing the same folding structure, appears to be markedly less stable than the major loop isomer formed in the single-stranded c-MYC NHE III1 oligonucleotide, the Myc2345 G-quadruplex. Our NMR structures indicated that the different thermostabilities of the two 1:2:1 parallel c-MYC G-quadruplexes are likely caused by the different base conformations of the single nucleotide loops. The observation of the formation of the Myc1234 G-quadruplex in the supercoiled plasmid thus points to the potential role of supercoiling in the G-quadruplex formation in promoter sequences. We also performed a systematic thermodynamic analysis of modified c-MYC NHE III1 sequences, which provided quantitative measure of the contributions of various loop sequences to the thermostabilities of parallel-stranded G-quadruplexes. This information is important for understanding the equilibrium of promoter G-quadruplex loop isomers and for their drug targeting.
Collapse
|
104
|
Regulation of the equilibrium between G-quadruplex and duplex DNA in promoter of human c-myc oncogene by a pyrene derivative. Int J Biol Macromol 2011; 49:1173-6. [PMID: 21683090 DOI: 10.1016/j.ijbiomac.2011.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 05/21/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022]
Abstract
It has been established that the equilibrium between duplex and G-quadruplex of the nuclease hypersensitivity element III1 (NHE III1) in human c-myc promoter is linked with this gene's transcription. Using NMR and ESI-MS, we have found a pyrene derivative, DMAPP, is able to modulate this equilibrium and, thus, might have the potential to regulate this oncogene's transcription. DMAPP has shown as a G-quadruplex binding agent and could induce c-myc G-quadruplex formation out of duplex. These results provide new clue for rational drug design to target transcription control of c-myc.
Collapse
|
105
|
Hatzakis E, Okamoto K, Yang D. Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes. Biochemistry 2010; 49:9152-60. [PMID: 20849082 DOI: 10.1021/bi100946g] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of the c-Myc proto-oncogene is associated with a broad spectrum of human cancers. Nuclease hypersensitivity element III(1) (NHE III(1)) of the c-Myc promoter can form transcriptionally active and silenced forms, and the formation of DNA G-quadruplex structures has been shown to be critical for c-Myc transcriptional silencing. The major G-quadruplex formed in c-Myc NHE III(1) is a mixture of four loop isomers, which have all been shown to be biologically relevant to c-Myc transcriptional control. In this study, we performed a thorough thermodynamic and kinetic study of the four c-Myc loop isomers in a K(+) solution. The four loop isomers all form parallel-stranded G-quadruplexes with short loop lengths. While the parallel-stranded G-quadruplex has been known to favor short loop lengths, our results show that the difference in thermodynamic and kinetic properties of the four loop isomers, and hence between the parallel G-quadruplexes with similar loop lengths, is more significant than previously recognized. At 20 mM K(+), the average difference in the T(m) values between the most stable loop isomer 14/23 and the least stable loop isomer 11/20 is more than 10 °C. In addition, the capping structures formed by the extended flanking segments are shown to contribute to a stabilization of 2-3 °C in T(m) for the c-Myc promoter G-quadruplex. Understanding the intrinsic thermodynamic stability and kinetic properties of the c-Myc G-quadruplex loop isomers can aid in our understanding of their biological roles and drug targeting.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
106
|
Lin J, Yan YY, Ou TM, Tan JH, Huang SL, Li D, Huang ZS, Gu LQ. Effective Detection and Separation Method for G-Quadruplex DNA Based on Its Specific Precipitation with Mg2+. Biomacromolecules 2010; 11:3384-9. [DOI: 10.1021/bm100862k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jing Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Yi-Yong Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Waihuan East Road 132, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
107
|
González V, Hurley LH. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 2010; 49:9706-14. [PMID: 20932061 PMCID: PMC2976822 DOI: 10.1021/bi100509s] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleolin, the most abundant nucleolar phosphoprotein of eukaryotic cells, is known primarily for its role in ribosome biogenesis and cell proliferation. It is, however, a multifunctional protein that, depending on the cellular context, can drive either cell proliferation or apoptosis. Our laboratory recently demonstrated that nucleolin can function as a repressor of c-MYC transcription by binding to and stabilizing the formation of a G-quadruplex structure in a region of the c-MYC promoter responsible for controlling 85-90% of c-MYC's transcriptional activity. In this study, we investigate the structural elements of nucleolin that are required for c-MYC repression. The effect of nucleolin deletion mutants on the formation and stability of the c-MYC G-quadruplex, as well as c-MYC transcriptional activity, was assessed by circular dichroism spectropolarimetry, thermal stability, and in vitro transcription. Here we report that nucleolin's RNA binding domains 3 and 4, as well as the arginine-glycine-glycine (RGG) domain, are required to repress c-MYC transcription.
Collapse
Affiliation(s)
- Verónica González
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Laurence H. Hurley
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
- University of Arizona, BIO5 Institute, Tucson, Arizona 85721
- University of Arizona, Arizona Cancer Center, Tucson, Arizona 85724
| |
Collapse
|
108
|
Selective recognition of oncogene promoter G-quadruplexes by Mg2+. Biochem Biophys Res Commun 2010; 402:614-8. [DOI: 10.1016/j.bbrc.2010.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/17/2010] [Indexed: 01/19/2023]
|
109
|
Dai J, Hatzakis E, Hurley LH, Yang D. I-motif structures formed in the human c-MYC promoter are highly dynamic--insights into sequence redundancy and I-motif stability. PLoS One 2010; 5:e11647. [PMID: 20657837 PMCID: PMC2906509 DOI: 10.1371/journal.pone.0011647] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/22/2010] [Indexed: 11/24/2022] Open
Abstract
The GC-rich nuclease hypersensitivity element III1 (NHE III1) of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3′ consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+–cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
| | - Emmanuel Hatzakis
- College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
| | - Laurence H. Hurley
- College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Arizona Cancer Center, The University of Arizona, Tucson, Arizona, United States of America
- Department of Chemistry, The University of Arizona, Tucson, Arizona, United States of America
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Arizona Cancer Center, The University of Arizona, Tucson, Arizona, United States of America
- Department of Chemistry, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
110
|
Kendrick S, Hurley LH. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. ACTA ACUST UNITED AC 2010; 82:1609-1621. [PMID: 21796223 DOI: 10.1351/pac-con-09-09-29] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nature of DNA has captivated scientists for more than fifty years. The discovery of the double-helix model of DNA by Watson and Crick in 1953 not only established the primary structure of DNA, but also provided the mechanism behind DNA function. Since then, researchers have continued to further the understanding of DNA structure and its pivotal role in transcription. The demonstration of DNA secondary structure formation has allowed for the proposal that the dynamics of DNA itself can function to modulate transcription. This review presents evidence that DNA can exist in a dynamic equilibrium between duplex and secondary conformations. In addition, data demonstrating that intracellular proteins as well as small molecules can shift this equilibrium in either direction to alter gene transcription will be discussed, with a focus on the modulation of proto-oncogene expression.
Collapse
|
111
|
Abstract
Double-helical DNA has been shown to conduct both electrons and electron holes, the latter over distances of >20 nm. DNA is thus a material of significant interest for the bottom-up construction of nanocircuitry. Here, we describe a contractile DNA nanoswitch, which can toggle between a structurally extended "off" state and a contracted "on" state, with a 40-fold conductivity difference between the two. To turn on, two short motifs of guanine-guanine mismatches in an otherwise standard double helix synapse to form a conductive G-quadruplex, bypassing an insulating element within the helix. This switch can be turned repeatedly on by treatment with millimolar concentrations of K(+) and turned off by sequestration of the K(+) by a crown ether. Circular dichroism and thymine-thymine photocross-linking experiments reveal that strand orientations within the on state G-quadruplex are wholly antiparallel and that the two conductive double-helices interface with the same face of the quadruplex. Although this DNA nanoswitch is chemically gated, it should be adaptable to other kinds of gating and thus serve as a prototype for increasingly sophisticated and complex electronic devices made of DNA.
Collapse
Affiliation(s)
- Yu Chuan Huang
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
112
|
Monchaud D, Granzhan A, Saettel N, Guédin A, Mergny JL, Teulade-Fichou MP. "One ring to bind them all"-part I: the efficiency of the macrocyclic scaffold for g-quadruplex DNA recognition. J Nucleic Acids 2010; 2010. [PMID: 20725629 PMCID: PMC2915875 DOI: 10.4061/2010/525862] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023] Open
Abstract
Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects.
Collapse
Affiliation(s)
- David Monchaud
- Section Recherche, Institut Curie, CNRS UMR176, Centre Universitaire Paris XI, Batiment 110, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
c-MYC is an important regulator of a wide array of cellular processes necessary for normal cell growth and differentiation, and its dysregulation is one of the hallmarks of many cancers. Consequently, understanding c-MYC transcriptional activation is critical for understanding developmental and cancer biology, as well as for the development of new anticancer drugs. The nuclease hypersensitive element (NHE) III(1) region of the c-MYC promoter has been shown to be particularly important in regulating c-MYC expression. Specifically, the formation of a G-quadruplex structure appears to promote repression of c-MYC transcription. This review focuses on what is known about the formation of a G-quadruplex in the NHE III(1) region of the c-MYC promoter, as well as on those factors that are known to modulate its formation. Last, we discuss the development of small molecules that stabilize or induce the formation of G-quadruplex structures and could potentially be used as anticancer agents.
Collapse
|
114
|
Kendrick S, Akiyama Y, Hecht SM, Hurley LH. The i-motif in the bcl-2 P1 promoter forms an unexpectedly stable structure with a unique 8:5:7 loop folding pattern. J Am Chem Soc 2010; 131:17667-76. [PMID: 19908860 DOI: 10.1021/ja9076292] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation of the bcl-2 proto-oncogene is highly complex, with the majority of transcription driven by the P1 promoter site and the interaction of multiple regulatory proteins. A guanine- and cytosine-rich (GC-rich) region directly upstream of the P1 site has been shown to be integral to bcl-2 promoter activity, as deletion or mutation of this region significantly increases transcription. This GC-rich element consists of six contiguous runs of guanines and cytosines that have the potential to adopt DNA secondary structures, the G-quadruplex and i-motif, respectively. Our laboratory has previously demonstrated that the polypurine-rich strand of the bcl-2 promoter can form a mixture of three different G-quadruplex structures. In this current study, we demonstrate that the complementary polypyrimidine-rich strand is capable of forming one major intramolecular i-motif DNA secondary structure with a transition pH of 6.6. Characterization of the i-motif folding pattern using mutational studies coupled with circular dichroic spectra and thermal stability analyses revealed an 8:5:7 loop conformation as the predominant structure at pH 6.1. The folding pattern was further supported by chemical footprinting with bromine. In addition, a novel assay involving the sequential incorporation of a fluorescent thymine analog at each thymine position provided evidence of a capping structure within the top loop region of the i-motif. The potential of the GC-rich element within the bcl-2 promoter region to form DNA secondary structures suggests that the transition from the B-DNA to non-B-DNA conformation may play an important role in bcl-2 transcriptional regulation. Furthermore, the two adjacent large lateral loops in the i-motif structure provide an unexpected opportunity for protein and small molecule recognition.
Collapse
Affiliation(s)
- Samantha Kendrick
- Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
115
|
Wilson T, Williamson MP, Thomas JA. Differentiating quadruplexes: binding preferences of a luminescent dinuclear ruthenium(ii) complex with four-stranded DNA structures. Org Biomol Chem 2010; 8:2617-21. [DOI: 10.1039/b924263e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
116
|
Zhou XH, Kong DM, Shen HX. Ag+ and Cysteine Quantitation Based on G-Quadruplex−Hemin DNAzymes Disruption by Ag+. Anal Chem 2009; 82:789-93. [DOI: 10.1021/ac902421u] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xue-Hui Zhou
- Key Laboratory of Functional Polymer Materials (Nankai University), Ministry of Education, Nankai University, Tianjin 300071, P. R. China, and Tianjin Bohai Vocational Technical College, Tianjin 300221, P. R. China
| | - De-Ming Kong
- Key Laboratory of Functional Polymer Materials (Nankai University), Ministry of Education, Nankai University, Tianjin 300071, P. R. China, and Tianjin Bohai Vocational Technical College, Tianjin 300221, P. R. China
| | - Han-Xi Shen
- Key Laboratory of Functional Polymer Materials (Nankai University), Ministry of Education, Nankai University, Tianjin 300071, P. R. China, and Tianjin Bohai Vocational Technical College, Tianjin 300221, P. R. China
| |
Collapse
|
117
|
Du Z, Zhao Y, Li N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res 2009; 37:6784-98. [PMID: 19759215 PMCID: PMC2777415 DOI: 10.1093/nar/gkp710] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure.
Collapse
Affiliation(s)
- Zhuo Du
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, PR China
| | | | | |
Collapse
|
118
|
González V, Guo K, Hurley L, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 2009; 284:23622-35. [PMID: 19581307 PMCID: PMC2749137 DOI: 10.1074/jbc.m109.018028] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/02/2009] [Indexed: 11/06/2022] Open
Abstract
myc is a proto-oncogene that plays an important role in the promotion of cellular growth and proliferation. Understanding the regulation of c-myc is important in cancer biology, as it is overexpressed in a wide variety of human cancers, including most gynecological, breast, and colon cancers. We previously demonstrated that a guanine-rich region upstream of the P1 promoter of c-myc that controls 85-90% of the transcriptional activation of this gene can form an intramolecular G-quadruplex (G4) that functions as a transcriptional repressor element. In this study, we used an affinity column to purify proteins that selectively bind to the human c-myc G-quadruplex. We found that nucleolin, a multifunctional phosphoprotein, binds in vitro to the c-myc G-quadruplex structure with high affinity and selectivity when compared with other known quadruplex structures. In addition, we demonstrate that upon binding, nucleolin facilitates the formation and increases the stability of the c-myc G-quadruplex structure. Furthermore, we provide evidence that nucleolin overexpression reduces the activity of a c-myc promoter in plasmid presumably by inducing and stabilizing the formation of the c-myc G-quadruplex. Finally, we show that nucleolin binds to the c-myc promoter in HeLa cells, which indicates that this interaction occurs in vivo. In summary, nucleolin may induce c-myc G4 formation in vivo.
Collapse
Affiliation(s)
| | - Kexiao Guo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721
| | - Laurence Hurley
- From the College of Pharmacy and
- BIO5 Institute, Tucson, Arizona 85721, and
- Arizona Cancer Center, Tucson, Arizona 85724
| | | |
Collapse
|
119
|
Sakai N, Sakamoto KQ, Fujita S, Ishizuka M. The importance of heterogeneous nuclear ribonucleoprotein K on cytochrome P450 2D2 gene regulation: its binding is reduced in Dark Agouti rats. Drug Metab Dispos 2009; 37:1703-10. [PMID: 19420131 DOI: 10.1124/dmd.109.027284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (P450) 2D2 (CYP2D2) enzyme is known to metabolize the majority of typical substrates of the human CYP2D6 enzyme, which is the most extensively characterized polymorphic drug-metabolizing enzyme. Despite its impact on drug metabolism in rats, the transcriptional regulation of CYP2D2 remains to be elucidated. We clarified the molecular mechanism of CYP2D2 gene expression. The CYP2D2 gene was positively regulated by the poly(C)-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) through a transcriptional regulatory element located in the 5'-flanking region from -94 to -113. To date, nothing is known about the potential role of hnRNP K in P450 gene regulation. Thus, this is the first report that hnRNP K protein is involved in CYP2D2 gene regulation. Furthermore, we elucidated the genetic basis of the extremely low expression of CYP2D2 mRNA in Dark Agouti (DA) rats. Because of its relatively low abundance, DA rats have been frequently used for the study of CYP2D substrate metabolism as the animal model of the poor metabolizer phenotype for CYP2D6 compared with Sprague-Dawley rats as an extensive metabolizer phenotype. We found a single substitution within the transcriptional regulatory element of the CYP2D2 gene in DA rats. The mutation was detected in the polypyrimidine sequence that is the preferred binding site for hnRNP K protein. The mutation within the transcriptional regulatory element attenuated the binding of hnRNP K protein. In conclusion, decreased recruitment of hnRNP K protein to the mutated sequence causes the low expression of CYP2D2 mRNA in DA rats.
Collapse
Affiliation(s)
- Noriaki Sakai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
120
|
Kong DM, Ma YE, Guo JH, Yang W, Shen HX. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Anal Chem 2009; 81:2678-84. [PMID: 19271760 DOI: 10.1021/ac802558f] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-rich sequences with the potential for quadruplex formation are common in genomic DNA. Considering that the biological functions of G-quadruplexes may well depend on their structures, the development of a sensitive structural probe for distinguishing different types of quadruplexes has received great attention. Crystal violet (CV) is a triphenylmethane dye, which can stack onto the two external G-quartets of a G-quadruplex. The ability of CV to discriminate G-quadruplexes from duplex and single-stranded DNAs has been reported by us. Herein, the ability of CV to discriminate parallel from antiparallel structures of a G-quadruplex was studied. The binding of CV to an antiparallel G-quadruplex can make its fluorescence intensity increase to a high level because of the protection of bound CV from the solvent by quadruplex end loops. The presence of side loops in parallel G-quadruplexes cannot provide bound CV such protection, causing the fluorescence intensity of CV/G-quadruplex mixture to be obviously weaker when the G-quadruplex adopts a parallel structure than that when the G-quadruplex adopts an antiparallel structure. Therefore, CV can be developed as a sensitive fluorescent biosensor for the discrimination of antiparallel G-quadruplexes from parallel G-quadruplexes and for monitoring the structural interconversion of G-quadruplexes. In addition, considering that some G-rich DNA sequences can adopt different G-quadruplex structures under Na(+) or K(+) ion conditions, a novel, cheap and simple K(+) ion detection method was developed. This method displays a high K(+) ion selectivity against Na(+) ion, the change of 200 mM in Na(+) ion concentration only causes a similar fluorescent signal change to 0.3 mM K(+) ion.
Collapse
Affiliation(s)
- De-Ming Kong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China.
| | | | | | | | | |
Collapse
|
121
|
Arora A, Nair DR, Maiti S. Effect of flanking bases on quadruplex stability and Watson-Crick duplex competition. FEBS J 2009; 276:3628-40. [PMID: 19490117 DOI: 10.1111/j.1742-4658.2009.07082.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Guanine-rich DNA sequences have the ability to fold into four-stranded structures called G-quadruplexes, and are considered as promising anticancer targets. Although the G-quadruplex structure is composed of quartets and interspersed loops, in the genome it is also flanked on each side by numerous bases. The effect of loop length and composition on quadruplex conformation and stability has been well investigated in the past, but the effect of flanking bases on quadruplex stability and Watson-Crick duplex competition has not been addressed. We have studied in detail the effect of flanking bases on quadruplex stability and on duplex formation by the G-quadruplex in the presence of complementary strands using the quadruplex-forming sequence located in the promoter region of the c-kit oncogene. The results obtained from CD, thermal difference spectrum and UV melting demonstrated the effect of flanking bases on quadruplex structure and stability. With the increase in flank length, the increase in the more favorable DeltaH(vH) is accompanied by a striking increase in the unfavorable DeltaS(vH), which resulted in a decrease in the overall DeltaG(vH) of quadruplex formation. Furthermore, CD, fluorescence and isothermal titration calorimetry studies demonstrated that the propensity to attain quadruplex structure decreases with increasing flank length.
Collapse
Affiliation(s)
- Amit Arora
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, Delhi, India
| | | | | |
Collapse
|
122
|
Kong DM, Ma YE, Wu J, Shen HX. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry 2009; 15:901-9. [PMID: 19053101 DOI: 10.1002/chem.200801441] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-rich nucleic acid sequences with the potential to form G-quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G-quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G-quadruplex, duplex, or single-stranded DNAs were studied by fluorescence spectroscopy and energy-transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single-stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy-transfer fluorescence spectra of CV and MG. In addition, by using energy-transfer fluorescence titrations of CV with G-quadruplexes, the binding-stoichiometry ratios of CV to G-quadruplexes can be determined. By using the fluorescence titrations of G-quadruplex-CV complexes with C-rich complementary strands, the fraction of G-rich oligonucleotide that engages in G-quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single-stranded DNAs and for measuring G-quadruplex percentages in the presence of the complementary C-rich sequences.
Collapse
Affiliation(s)
- De-Ming Kong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, China.
| | | | | | | |
Collapse
|
123
|
Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008; 135:1028-38. [PMID: 19070574 DOI: 10.1016/j.cell.2008.09.062] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 01/01/2023]
Abstract
Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitt's lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 2008; 36:5482-515. [PMID: 18718931 PMCID: PMC2553573 DOI: 10.1093/nar/gkn517] [Citation(s) in RCA: 587] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/26/2008] [Accepted: 07/29/2008] [Indexed: 12/30/2022] Open
Abstract
In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there are important differences in the balance of forces between these classes of folded oligonucleotides. We provide an overview of the principles of stability and where available the experimental data that report on these principles. Significant gaps in the literature have been identified, that should be filled by a systematic study of well-defined quadruplexes not only to provide the basic understanding of stability both for design purposes, but also as it relates to in vivo occurrence of quadruplexes. Techniques that are commonly applied to the determination of the structure, stability and folding are discussed in terms of information content and limitations. Quadruplex structures fold and unfold comparatively slowly, and DNA unwinding events associated with transcription and replication may be operating far from equilibrium. The kinetics of formation and resolution of quadruplexes, and methodologies are discussed in the context of stability and their possible biological occurrence.
Collapse
Affiliation(s)
- Andrew N Lane
- Structural Biology Program, JG Brown Cancer Center, University of Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
125
|
Perylene side chains modulate G-quadruplex conformation in biologically relevant DNA sequences. Bioorg Med Chem 2008; 16:9331-9. [PMID: 18819816 DOI: 10.1016/j.bmc.2008.08.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/21/2008] [Accepted: 08/28/2008] [Indexed: 11/24/2022]
Abstract
The stabilisation of different G-quadruplex intra- and intermolecular structures by a number of perylene derivatives characterised by side chains ending with linear or cyclic amines was investigated by electrophoretic (EMSA) and spectroscopic (CD) techniques. The G-rich sequences included the biologically relevant human telomeric TTAGGG runs and the NHE region of the c-myc oncogene. The test compounds could be subdivided into two families: derivatives carrying a cyclic amine in the side chains, which show a reduced binding to the G-quadruplex form, and linear amine congeners, exhibiting enhanced affinity. The latter efficiently induce pairing of multiple DNA chains, while the former are not able to overcome the original folding of the nucleic acid sequence which is preserved in the complex. Remarkably, addition of the perylenes to G-rich sequences paired in a double helical form results in G-quadruplex induction by weak binders only. This is likely related to the ability of strong G-quadruplex binders, but not of weak G-quadruplex binders, to efficiently intercalate into the double-stranded arrangement, which becomes stabilised and is not prone to undergo denaturation and subsequent G-quadruplex folding essentially for kinetic reasons. Hence, two apparently conflicting requirements emerge from this work. In fact, linear alkylamino terminals in the perylene side chains are capable of strong and selective G-quadruplex recognition, but only cyclic amine end groups favour duplex-quadruplex transitions that are likely crucial to produce biological and pharmacological effects in living systems.
Collapse
|
126
|
Dai J, Carver M, Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie 2008; 90:1172-83. [PMID: 18373984 PMCID: PMC2556180 DOI: 10.1016/j.biochi.2008.02.026] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. Knowledge of intramolecular human telomeric G-quadruplex structure(s) formed under physiological conditions is important for structure-based rational drug design and thus has been the subject of intense investigation. This review will give an overview of recent progress on the intramolecular human telomeric G-quadruplex structures formed in K+ solution. It will also give insight into the structure polymorphism of human telomeric sequences and its implications for drug targeting.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
127
|
Armas P, Nasif S, Calcaterra NB. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone. J Cell Biochem 2008; 103:1013-36. [PMID: 17661353 DOI: 10.1002/jcb.21474] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.
Collapse
Affiliation(s)
- Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Dpto. de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | |
Collapse
|
128
|
Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 2008; 90:1149-71. [PMID: 18355457 DOI: 10.1016/j.biochi.2008.02.020] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/22/2008] [Indexed: 12/16/2022]
Abstract
In its simplest form, a DNA G-quadruplex is a four-stranded DNA structure that is composed of stacked guanine tetrads. G-quadruplex-forming sequences have been identified in eukaryotic telomeres, as well as in non-telomeric genomic regions, such as gene promoters, recombination sites, and DNA tandem repeats. Of particular interest are the G-quadruplex structures that form in gene promoter regions, which have emerged as potential targets for anticancer drug development. Evidence for the formation of G-quadruplex structures in living cells continues to grow. In this review, we examine recent studies on intramolecular G-quadruplex structures that form in the promoter regions of some human genes in living cells and discuss the biological implications of these structures. The identification of G-quadruplex structures in promoter regions provides us with new insights into the fundamental aspects of G-quadruplex topology and DNA sequence-structure relationships. Progress in G-quadruplex structural studies and the validation of the biological role of these structures in cells will further encourage the development of small molecules that target these structures to specifically modulate gene transcription.
Collapse
Affiliation(s)
- Yong Qin
- College of Pharmacy, 1703 E. Mabel, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
129
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
130
|
|
131
|
Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res 2007; 35:7698-713. [PMID: 17984069 PMCID: PMC2190695 DOI: 10.1093/nar/gkm538] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proximal 5′-flanking region of the human platelet-derived growth factor A (PDGF-A) promoter contains one nuclease hypersensitive element (NHE) that is critical for PDGF-A gene transcription. On the basis of circular dichroism (CD) and electrophoretic mobility shift assay (EMSA), we have shown that the guanine-rich (G-rich) strand of the DNA in this region can form stable intramolecular parallel G-quadruplexes under physiological conditions. A Taq polymerase stop assay has shown that the G-rich strand of the NHE can form two major G-quadruplex structures, which are in dynamic equilibrium and differentially stabilized by three G-quadruplex-interactive drugs. One major parallel G-quadruplex structure of the G-rich strand DNA of NHE was identified by CD and dimethyl sulfate (DMS) footprinting. Surprisingly, CD spectroscopy shows a stable parallel G-quadruplex structure formed within the duplex DNA of the NHE at temperatures up to 100°C. This structure has been characterized by DMS footprinting in the double-stranded DNA of the NHE. In transfection experiments, 10 μM TMPyP4 reduced the activity of the basal promoter of PDGF-A ∼40%, relative to the control. On the basis of these results, we have established that ligand-mediated stabilization of G-quadruplex structures within the PDGF-A NHE can silence PDGF-A expression.
Collapse
Affiliation(s)
- Yong Qin
- College of Pharmacy, 1703 E. Mabel, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
132
|
Affiliation(s)
- W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
133
|
Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 2007; 282:32433-41. [PMID: 17785457 DOI: 10.1074/jbc.m704618200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring DNA sequences that are able to form unusual DNA structures have been shown to be mutagenic, and in some cases the mutagenesis induced by these sequences is enhanced by their transcription. It is possible that transcription-coupled DNA repair induced at sites of transcription arrest might be involved in this mutagenesis. Thus, it is of interest to determine whether there are correlations between the mutagenic effects of such noncanonical DNA structures and their ability to arrest transcription. We have studied T7 RNA polymerase transcription through the sequence from the nuclease-sensitive element of the human c-MYC promoter, which is mutagenic in mammalian cells (Wang, G., and Vasquez, K. M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 13448-13453). This element has two mirror-symmetric homopurine-homopyrimidine blocks that potentially can form either DNA triplex (H-DNA) or quadruplex structures. We detected truncated transcription products indicating partial transcription arrest within and closely downstream of the element. The arrest required negative supercoiling and was much more pronounced when the pyrimidine-rich strand of the element served as the template. The exact positions of arrest sites downstream from the element depended upon the downstream flanking sequences. We made various nucleotide substitutions in the wild-type sequence from the c-MYC nuclease-sensitive element that specifically destabilize either the triplex or the quadruplex structure. When these substitutions were ranked for their effects on transcription, the results implicated the triplex structure in the transcription arrest. We suggest that transcription-induced triplex formation enhances pre-existing weak transcription pause sites within the flanking sequences by creating steric obstacles for the transcription machinery.
Collapse
|
134
|
Dai J, Carver M, Punchihewa C, Jones RA, Yang D. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 2007; 35:4927-40. [PMID: 17626043 PMCID: PMC1976458 DOI: 10.1093/nar/gkm522] [Citation(s) in RCA: 443] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T:A:T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3′-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724 and BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721, USA
| | - Megan Carver
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724 and BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721, USA
| | - Chandanamali Punchihewa
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724 and BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721, USA
| | - Roger A. Jones
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724 and BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721, USA
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724 and BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721, USA
- *To whom correspondence should be addressed.+1 520 626 5969+1 520 626 6988
| |
Collapse
|
135
|
Yin F, Liu J, Deng X, Wang J. Effects of Triethylene Tetraamine on the G-quadruplex Structure in the Human c-myc Promoter. ACTA ACUST UNITED AC 2007; 141:669-74. [PMID: 17339229 DOI: 10.1093/jb/mvm069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The increasing data show that a parallel G-quadruplex structure formed by the element of nuclease-hypersensitivity element III(1) (NHE III(1)) in the P1 promoter of c-myc functions as a transcriptional repressor. Triethylene tetraamine has exhibited interesting properties of stabilizing both inter- and intra-molecular G-quadruplex structures and telomerase-inhibitory potency. Here, we present evidences showing that triethylene tetraamine facilitates the formation of G-quadruplex structure by the NHE III(1) element, and inhibits the expression of c-myc in HeLa cells.
Collapse
Affiliation(s)
- Fei Yin
- Research Center of Pharmaceutical Chemistry & Chemobiology, Chongqing Technology and Business University, Chongqing 400067, China
| | | | | | | |
Collapse
|