101
|
Lujambio A. To clear, or not to clear (senescent cells)? That is the question. Bioessays 2017; 38 Suppl 1:S56-64. [PMID: 27417123 DOI: 10.1002/bies.201670910] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
Cellular senescence is an anti-proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell-autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non-cell-autonomous manner. These non-cell-autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence-associated secretory phenotype. One of the key functions of the senescence-associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti-cancer and anti-aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.
Collapse
Affiliation(s)
- Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
102
|
Kollek M, Voigt G, Molnar C, Murad F, Bertele D, Krombholz CF, Bohler S, Labi V, Schiller S, Kunze M, Geley S, Niemeyer CM, Garcia-Saez A, Erlacher M. Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. J Exp Med 2017; 214:2967-2983. [PMID: 28882984 PMCID: PMC5626392 DOI: 10.1084/jem.20161721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
During hematopoietic stem cell transplantation, a substantial number of donor cells are lost because of apoptotic cell death. Transplantation-associated apoptosis is mediated mainly by the proapoptotic BCL-2 family proteins BIM and BMF, and their proapoptotic function is conserved between mouse and human stem and progenitor cells. Permanent inhibition of apoptosis in donor cells caused by the loss of these BH3-only proteins improves transplantation outcome, but recipients might be exposed to increased risk of lymphomagenesis or autoimmunity. Here, we address whether transient inhibition of apoptosis can serve as a safe but efficient alternative to improve the outcome of stem cell transplantation. We show that transient apoptosis inhibition by short-term overexpression of prosurvival BCL-XL, known to block BIM and BMF, is not only sufficient to increase the viability of hematopoietic stem and progenitor cells during engraftment but also improves transplantation outcome without signs of adverse pathologies. Hence, this strategy represents a promising and novel therapeutic approach, particularly under conditions of limited donor stem cell availability.
Collapse
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gesina Voigt
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Molnar
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Daniela Bertele
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Felix Krombholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schiller
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
103
|
Tumor Regulation of Lymph Node Lymphatic Sinus Growth and Lymph Flow in Mice and in Humans. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:403-415. [PMID: 28955180 PMCID: PMC5612184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lymphatic vasculature collects and drains fluid and cells from the periphery through lymph nodes (LNs) for immune monitoring, and then returns lymph to the bloodstream. During immune responses LNs enlarge and remodel, featuring extensive growth of lymphatic sinuses (lymphangiogenesis). This LN lymphangiogenesis also arises in cancer, and is associated with altered lymph drainage through LNs. Studies of mouse solid tumor models identified lymphatic sinus growth throughout tumor-draining LNs (TDLNs), and increased lymph flow through the expanded sinuses. Mice developing B cell lymphomas also feature LN lymphangiogenesis and increased lymph flow, indicating that these changes occur in lymphoma as well as in solid tumors. These LN alterations may be key to promote tumor growth and metastasis to draining LNs and distant organs. Lymphatic sinus growth within the TDLN may suppress anti-tumor-immune responses, and/or the increased lymph drainage could promote metastasis to draining LNs and distant organs. Investigations of human cancers and lymphomas are now identifying TDLN lymphatic sinus growth and increased lymph flow, that correlate with metastasis and poor prognosis. Pathology assessment of TDLN lymphangiogenesis or noninvasive imaging of tumor lymph drainage thus could potentially be useful to assist with diagnosis and treatment decisions. Moreover, the expanded lymphatic sinuses and increased lymph flow could facilitate vaccine or drug delivery, to manipulate TDLN immune functioning or to treat metastases. The insights obtained thus far should encourage further investigation of the mechanisms and consequences of TDLN lymphatic sinus growth and lymph flow alterations in mouse cancer models, and in human cancer patients.
Collapse
|
104
|
miR-146a- Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A 2017; 114:E7140-E7149. [PMID: 28784800 DOI: 10.1073/pnas.1706833114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
microRNA-146a (miR-146a) has been previously implicated as an essential molecular brake, preventing immune overreaction and malignant transformation by attenuating NF-κB signaling, putatively via repression of the Traf6 and Irak1 genes. The exact contribution of miR-146a-mediated silencing of these genes to the control of immune activation is currently unknown. Therefore, we defined the role of the miR-146a-Traf6 signaling axis in the regulation of immune homeostasis using a genetic epistasis analysis in miR-146a-/- mice. We have uncovered a surprising separation of functions at the level of miR-146a targets. Lowering the Traf6 gene dose and consequent attenuation of NF-κB activation rescued several significant miR-146a-/- phenotypes, such as splenomegaly, aberrant myeloproliferation, and excessive inflammatory responses. In contrast, decreasing Traf6 expression had no effect on the development of the progressive bone marrow failure phenotype, as well as lymphomagenesis in miR-146a-/- mice, indicating that miR-146a controls these biological processes through different molecular mechanisms.
Collapse
|
105
|
Neves AA, Xie B, Fawcett S, Alam IS, Witney TH, de Backer MM, Summers J, Hughes W, McGuire S, Soloviev D, Miller J, Howat WJ, Hu DE, Rodrigues TB, Lewis DY, Brindle KM. Rapid Imaging of Tumor Cell Death In Vivo Using the C2A Domain of Synaptotagmin-I. J Nucl Med 2017; 58:881-887. [PMID: 28209913 DOI: 10.2967/jnumed.116.183004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Cell death is an important target for imaging the early response of tumors to treatment. We describe here the validation of a phosphatidylserine-binding agent for detecting tumor cell death in vivo based on the C2A domain of synaptotagmin-I. Methods: The capability of near-infrared fluorophore-labeled and 99mTc- and 111In-labeled derivatives of C2Am for imaging tumor cell death, using planar near-infrared fluorescence imaging and SPECT, respectively, was evaluated in implanted and genetically engineered mouse models of lymphoma and in a human colorectal xenograft. Results: The fluorophore-labeled C2Am derivative showed predominantly renal clearance and high specificity and sensitivity for detecting low levels of tumor cell death (2%-5%). There was a significant correlation (R > 0.9, P < 0.05) between fluorescently labeled C2Am binding and histologic markers of cell death, including cleaved caspase-3, whereas there was no such correlation with a site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-C2Am and 111In-C2Am also showed favorable biodistribution profiles, with predominantly renal clearance and low nonspecific retention in the liver and spleen at 24 h after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle ratios in drug-treated tumors of 4.3× and 2.2×, respectively, at 2 h and 7.3× and 4.1×, respectively, at 24 h after administration. Conclusion: Given the favorable biodistribution profile of 99mTc- and 111In-labeled C2Am, and their ability to produce rapid and cell death-specific image contrast, these agents have potential for clinical translation.
Collapse
Affiliation(s)
- André A Neves
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Bangwen Xie
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Sarah Fawcett
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Israt S Alam
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Timothy H Witney
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maaike M de Backer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julia Summers
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - William Hughes
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Sarah McGuire
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Dmitry Soloviev
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Jodi Miller
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - William J Howat
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - De-En Hu
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Tiago B Rodrigues
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - David Y Lewis
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Kevin M Brindle
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
106
|
Apoorva F, Tian YF, Pierpont TM, Bassen DM, Cerchietti L, Butcher JT, Weiss RS, Singh A. Award Winner in the Young Investigator Category, 2017 Society for Biomaterials Annual Meeting and Exposition, Minneapolis, MN, April 05-08, 2017: Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expr. J Biomed Mater Res A 2017; 105:1833-1844. [DOI: 10.1002/jbm.a.36031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Affiliation(s)
- F.N.U. Apoorva
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Ye F. Tian
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Timothy M. Pierpont
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - David M. Bassen
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology; Weill Cornell Medical College of Cornell University; New York New York
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Robert S. Weiss
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| |
Collapse
|
107
|
Camarda R, Williams J, Goga A. In vivo Reprogramming of Cancer Metabolism by MYC. Front Cell Dev Biol 2017; 5:35. [PMID: 28443280 PMCID: PMC5386977 DOI: 10.3389/fcell.2017.00035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
The past few decades have welcomed tremendous advancements toward understanding the functional significance of altered metabolism during tumorigenesis. However, many conclusions drawn from studies of cancer cells in a dish (i.e., in vitro) have been put into question as multiple lines of evidence have demonstrated that the metabolism of cells can differ significantly from that of primary tumors (in vivo). This realization, along with the need to identify tissue-specific vulnerabilities of driver oncogenes, has led to an increased focus on oncogene-dependent metabolic programming in vivo. The oncogene c-MYC (MYC) is overexpressed in a wide variety of human cancers, and while its ability to alter cellular metabolism is well-established, translating the metabolic requirements, and vulnerabilities of MYC-driven cancers to the clinic has been hindered by disparate findings from in vitro and in vivo models. This review will provide an overview of the in vivo strategies, mechanisms, and conclusions generated thus far by studying MYC's regulation of metabolism in various cancer models.
Collapse
Affiliation(s)
- Roman Camarda
- Department of Cell and Tissue Biology, University of California, San FranciscoSan Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan Francisco, CA, USA
| | - Jeremy Williams
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San FranciscoSan Francisco, CA, USA
- Department of Medicine, University of California, San FranciscoSan Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan Francisco, CA, USA
| |
Collapse
|
108
|
Lefebure M, Tothill RW, Kruse E, Hawkins ED, Shortt J, Matthews GM, Gregory GP, Martin BP, Kelly MJ, Todorovski I, Doyle MA, Lupat R, Li J, Schroeder J, Wall M, Craig S, Poortinga G, Cameron D, Bywater M, Kats L, Gearhart MD, Bardwell VJ, Dickins RA, Hannan RD, Papenfuss AT, Johnstone RW. Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene. Nat Commun 2017; 8:14581. [PMID: 28262675 PMCID: PMC5343491 DOI: 10.1038/ncomms14581] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023] Open
Abstract
The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eμ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis. The Eμ-Myc lymphoma mouse model has been invaluable in the study of this disease. Here, the authors use multiple sequencing strategies to analyse the tumours in these mice and find recurrent inactivating mutations in Bcor, suggesting that this gene has a negative role in Myc signalling.
Collapse
Affiliation(s)
- Marcus Lefebure
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Richard W Tothill
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elizabeth Kruse
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Edwin D Hawkins
- The Walter Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Jake Shortt
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing &Health Sciences, Clayton, Victoria 3168, Australia
| | | | - Gareth P Gregory
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Benjamin P Martin
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Madison J Kelly
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | | | - Maria A Doyle
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Richard Lupat
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Jan Schroeder
- The Walter Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart Craig
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | | | - Don Cameron
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Megan Bywater
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lev Kats
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Micah D Gearhart
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, AMREP Building, Commercial Road, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Ross D Hannan
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Cancer Biology and Therapeutics Department, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Anthony T Papenfuss
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia.,The Walter Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
109
|
Schenk RL, Strasser A, Dewson G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem Biophys Res Commun 2017; 482:459-469. [PMID: 28212732 DOI: 10.1016/j.bbrc.2016.10.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 02/09/2023]
Abstract
In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients.
Collapse
Affiliation(s)
- Robyn L Schenk
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
110
|
Adams CM, Kim AS, Mitra R, Choi JK, Gong JZ, Eischen CM. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest 2017; 127:635-650. [PMID: 28094768 DOI: 10.1172/jci89486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Burkitt Lymphoma/diagnosis
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mice
- Mice, Knockout
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
Collapse
|
111
|
Johnston HE, Carter MJ, Cox KL, Dunscombe M, Manousopoulou A, Townsend PA, Garbis SD, Cragg MS. Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures. Mol Cell Proteomics 2017; 16:386-406. [PMID: 28062796 DOI: 10.1074/mcp.m116.063511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eμ-myc and Eμ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (q<0.01) of which 8270 cellular and 2095 plasma proteins were quantitatively profiled. A common B-cell tumor signature of 695 overexpressed proteins highlighted ribosome biogenesis, cell-cycle promotion and chromosome segregation. Eμ-myc tumors overexpressed several methylating enzymes and underexpressed many cytoskeletal components. Eμ-TCL1 tumors specifically overexpressed ER stress response proteins and signaling components in addition to both subunits of the interleukin-5 (IL5) receptor. IL5 treatment promoted Eμ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eμ-myc plasma, whereas Eμ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.
Collapse
Affiliation(s)
- Harvey E Johnston
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK.,§Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Matthew J Carter
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Kerry L Cox
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Melanie Dunscombe
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Antigoni Manousopoulou
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul A Townsend
- ‖Molecular and Clinical Cancer Sciences, Paterson Building, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4BX
| | - Spiros D Garbis
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mark S Cragg
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
112
|
A CRISPR/Cas9 Functional Screen Identifies Rare Tumor Suppressors. Sci Rep 2016; 6:38968. [PMID: 27982060 PMCID: PMC5159885 DOI: 10.1038/srep38968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 11/08/2022] Open
Abstract
An enormous amount of tumor sequencing data has been generated through large scale sequencing efforts. The functional consequences of the majority of mutations identified by such projects remain an open, unexplored question. This problem is particularly complicated in the case of rare mutations where frequency of occurrence alone or prediction of functional consequences are insufficient to distinguish driver from passenger or bystander mutations. We combine genome editing technology with a powerful mouse cancer model to uncover previously unsuspected rare oncogenic mutations in Burkitt's lymphoma. We identify two candidate tumor suppressors whose loss cooperate with MYC over-expression to accelerate lymphomagenesis. Our results highlight the utility of in vivo CRISPR/Cas9 screens combined with powerful mouse models to identify and validate rare oncogenic modifier events from tumor mutational data.
Collapse
|
113
|
McCormick DL, Kavet R. Animal Models for the Study of Childhood Leukemia: Considerations for Model Identification and Optimization to Identify Potential Risk Factors. Int J Toxicol 2016; 23:149-61. [PMID: 15204718 DOI: 10.1080/10915810490471325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leukemias are the most common pediatric malignancies diagnosed in western industrialized societies. In spite of the substantial incidence of childhood leukemia in the United States and other countries, neither epidemiology studies conducted in human populations nor hazard identification studies conducted using traditional animal models have identified environmental or other factors that are directly linked to increased risk of disease. Molecular biology data and mathematical modeling of incidence patterns suggest that pediatric leukemogenesis may occur through a multistage or “multihit” mechanism that involves both in utero and postnatal events. The authors propose that pediatric leukemias can be modeled experimentally using a “multihit” paradigm analogous to the “initiation-promotion” and “complete carcinogenesis” models developed for tumor induction in mouse skin and rat liver. In this model for childhood leukemia, an initial genetic alteration occurs during in utero or early postnatal development, but clinical disease develops only upon additional genetic or nongenetic events that occur during the postnatal period. Application of this multistage or “multihit” model to hazard assessment studies conducted in transgenic or knockout mice carrying relevant molecular lesions may provide a sensitive approach to the identification of environmental agents that are important risk factors for childhood leukemia.
Collapse
|
114
|
Pillonel V, Reichert N, Cao C, Heideman MR, Yamaguchi T, Matthias G, Tzankov A, Matthias P. Histone deacetylase 1 plays a predominant pro-oncogenic role in Eμ-myc driven B cell lymphoma. Sci Rep 2016; 6:37772. [PMID: 27886239 PMCID: PMC5122906 DOI: 10.1038/srep37772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/01/2016] [Indexed: 01/17/2023] Open
Abstract
The two histone deacetylases (Hdacs), Hdac1 and Hdac2, are erasers of acetylation marks on histone tails, and are important regulators of gene expression that were shown to play important roles in hematological malignancies. However, several recent studies reported opposing tumor-suppressive or tumor-promoting roles for Hdac1 and Hdac2. Here, we investigated the functional role of Hdac1 and Hdac2 using the Eμ-myc mouse model of B cell lymphoma. We demonstrate that Hdac1 and Hdac2 have a pro-oncogenic role in both Eμ-myc tumorigenesis and tumor maintenance. Hdac1 and Hdac2 promote tumorigenesis in a gene dose-dependent manner, with a predominant function of Hdac1. Our data show that Hdac1 and Hdac2 impact on Eμ-myc B cell proliferation and apoptosis and suggest that a critical level of Hdac activity may be required for Eμ-myc tumorigenesis and proper B cell development. This provides the rationale for utilization of selective Hdac1 and Hdac2 inhibitors in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Vincent Pillonel
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland.,Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Nina Reichert
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Chun Cao
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Marinus R Heideman
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Teppei Yamaguchi
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Gabriele Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Alexandar Tzankov
- Pathology Institute, University Hospital Basel, 4031 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland.,Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
115
|
England CG, Rui L, Cai W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging 2016; 44:517-532. [PMID: 27844106 DOI: 10.1007/s00259-016-3560-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Lymphoma is a complex disease that arises from cells of the immune system with an intricate pathology. While lymphoma may be classified as Hodgkin or non-Hodgkin, each type of tumor is genetically and phenotypically different and highly invasive tissue biopsies are the only method to investigate these differences. Noninvasive imaging strategies, such as immunoPET, can provide a vital insight into disease staging, monitoring treatment response in patients, and dose planning in radioimmunotherapy. ImmunoPET imaging with radiolabeled antibody-based tracers may also assist physicians in optimizing treatment strategies and enhancing patient stratification. Currently, there are two common biomarkers for molecular imaging of lymphoma, CD20 and CD30, both of which have been considered for investigation in preclinical imaging studies. In this review, we examine the current status of both preclinical and clinical imaging of lymphoma using radiolabeled antibodies. Additionally, we briefly investigate the role of radiolabeled antibodies in lymphoma therapy. As radiolabeled antibodies play critical roles in both imaging and therapy of lymphoma, the development of novel antibodies and the discovery of new biomarkers may greatly affect lymphoma imaging and therapy in the future.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
116
|
Zhao Q, Assimopoulou AN, Klauck SM, Damianakos H, Chinou I, Kretschmer N, Rios JL, Papageorgiou VP, Bauer R, Efferth T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget 2016; 6:38934-51. [PMID: 26472107 PMCID: PMC4770748 DOI: 10.18632/oncotarget.5380] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood. Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK. In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity.
Collapse
Affiliation(s)
- Qiaoli Zhao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Andreana N Assimopoulou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sabine M Klauck
- Working Group Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Ioanna Chinou
- Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - José-Luis Rios
- Department de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | | | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
117
|
Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:335-69. [PMID: 27165361 DOI: 10.1007/978-3-319-30654-4_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.
Collapse
|
118
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
119
|
CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells. Oncogene 2016; 36:933-941. [PMID: 27477692 PMCID: PMC5318661 DOI: 10.1038/onc.2016.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
Tumor surveillance of natural killer (NK) cells is mediated by the cytotoxicity receptor natural-killer group 2 member D (NKG2D). Ligands for NKG2D are generally not expressed on healthy cells, but induced on the surface of malignant cells. To date, NKG2D ligand (NKG2D-L) induction was mainly described to depend on the activation of the DNA damage response, although the molecular mechanisms that regulate NKG2D-L expression remain largely unknown. Here, we show that the acetyltransferases CBP (CREB-binding protein) and p300 play a crucial role in the regulation of NKG2D-L on tumor cells. Loss of CBP/p300 decreased the basal cell surface expression of human ligands and reduced the upregulation of MICA/B and ULBP2 in response to histone deacetylase inhibitors or DNA damage. Furthermore, CBP/P300 deficiency abrogated the sensitivity of stressed cells to NK cell-mediated killing. CBP/p300 were also identified as major regulators of mouse NKG2D ligand RAE-1 in vitro and in vivo using the Eμ-Myc lymphoma model. Mechanistically, we observed an enhanced activation of the CBP/p300 binding transcription factor CREB (cAMP response element-binding protein) correlating to the NKG2D-L upregulation. Moreover, increased binding of CREB and CBP/p300 to NKG2D-L promoters and elevated histone acetylation were detectable. This study provides strong evidence for a major role of CBP and p300 in orchestrating NKG2D-L induction and consequently immunosurveillance of tumors in mice and humans. These findings might help to develop novel immunotherapeutic approaches against cancer.
Collapse
|
120
|
Wang Y, Wang X, Flores ER, Yu J, Chang S. Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell 2016; 15:646-60. [PMID: 27113195 PMCID: PMC4933665 DOI: 10.1111/acel.12476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with progressive telomere shortening, resulting in the formation of dysfunctional telomeres that compromise tissue proliferation. However, dysfunctional telomeres can limit tumorigenesis by activating p53-dependent cellular senescence and apoptosis. While activation of both senescence and apoptosis is required for repress tumor formation, it is not clear which pathway is the major tumor suppressive pathway in vivo. In this study, we generated Eμ-myc; Pot1b(∆/∆) mouse to directly compare tumor formation under conditions in which either p53-dependent apoptosis or senescence is activated by telomeres devoid of the shelterin component Pot1b. We found that activation of p53-dependent apoptosis plays a more critical role in suppressing lymphoma formation than p53-dependent senescence. In addition, we found that telomeres in Pot1b(∆/∆) ; p53(-/-) mice activate an ATR-Chk1-dependent DNA damage response to initiate a robust p53-independent, p73-dependent apoptotic pathway that limited stem cell proliferation but suppressed B-cell lymphomagenesis. Our results demonstrate that in mouse models, both p53-dependent and p53-independent apoptosis are important to suppressing tumor formation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Laboratory Medicine Yale University School of Medicine New Haven CT USA
| | - Xinwei Wang
- University of Pittsburgh School of Medicine University of Pittsburgh Cancer Institute Hillman Cancer Center Research Pavilion Pittsburgh PA USA
| | - Elsa R. Flores
- Department of Molecular & Cellular Oncology Department of Translational Molecular Pathology Graduate School of Biomedical Sciences U.T. MD Anderson Cancer Center Houston TX USA
| | - Jian Yu
- University of Pittsburgh School of Medicine University of Pittsburgh Cancer Institute Hillman Cancer Center Research Pavilion Pittsburgh PA USA
| | - Sandy Chang
- Department of Laboratory Medicine Yale University School of Medicine New Haven CT USA
- Departments of Pathology and Molecular Biophysics and Biochemistry Yale University School of Medicine New Haven CT USA
| |
Collapse
|
121
|
Hunter JE, Butterworth JA, Zhao B, Sellier H, Campbell KJ, Thomas HD, Bacon CM, Cockell SJ, Gewurz BE, Perkins ND. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene 2016; 35:3476-84. [PMID: 26522720 PMCID: PMC4853301 DOI: 10.1038/onc.2015.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel-/- TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel-/- mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer.
Collapse
Affiliation(s)
- J E Hunter
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - J A Butterworth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - B Zhao
- Brigham and Women's Hospital, Boston, MA, USA
| | - H Sellier
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - K J Campbell
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - H D Thomas
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - C M Bacon
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - S J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - B E Gewurz
- Brigham and Women's Hospital, Boston, MA, USA
| | - N D Perkins
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| |
Collapse
|
122
|
Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol 2016; 18:814-21. [PMID: 27240320 DOI: 10.1038/ncb3369] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation. Docking of Dlg1-Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9-Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression.
Collapse
|
123
|
Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J, Serrano M. G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 2016; 7:10894. [PMID: 26976705 PMCID: PMC4796314 DOI: 10.1038/ncomms10894] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS. The enzyme G6PD generates the reductive metabolite NADPH, which has antioxidant effects, but has also been linked to tumour growth. Here the authors generate mice that modestly overexpress G6PD and report increased lifespan in females, and no negative effects on tumour formation in various genetic models.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pablo J Fernandez-Marcos
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.,Bioactive Products and Metabolic Syndrome Group, Madrid Institute of Advanced Studies (IMDEA) Food, Madrid E28049, Spain
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR866, Dynamique Musculaire et Métabolisme, F-34060 Montpellier, France
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Andrea Salvador-Pascual
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid E28040, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia and Investigaciòn Hospital Clínico Universitario (INCLIVA), Valencia E46010, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| |
Collapse
|
124
|
Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis. Cell Death Dis 2016; 7:e2132. [PMID: 26962682 PMCID: PMC4823944 DOI: 10.1038/cddis.2016.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 02/02/2023]
Abstract
Evasion of apoptosis is critical for tumorigenesis, and sustained survival of nascent neoplastic cells may depend upon the endogenous levels of pro-survival BCL-2 family members. Indeed, previous studies using gene-targeted mice revealed that BCL-XL, but surprisingly not BCL-2, is critical for the development of c-MYC-induced pre-B/B lymphomas. However, it remains unclear whether another pro-survival BCL-2 relative contributes to their development. MCL-1 is an intriguing candidate, because it is required for cell survival during early B-lymphocyte differentiation. It is expressed abnormally high in several types of human B-cell lymphomas and is implicated in their resistance to chemotherapy. To test the B-cell intrinsic requirement for endogenous MCL-1 in lymphoma development, we conditionally deleted Mcl-1 in B-lymphoid cells of Eμ-Myc transgenic mice. We found that MCL-1 loss in early B-lymphoid progenitors delayed MYC-driven lymphomagenesis. Moreover, the lymphomas that arose when MCL-1 levels were diminished appeared to have been selected for reduced levels of BIM and/or increased levels of BCL-XL. These results underscore the importance of MCL-1 in lymphoma development and show that alterations in the levels of other cell death regulators can compensate for deficiencies in MCL-1 expression.
Collapse
|
125
|
Xu Z, Sharp PP, Yao Y, Segal D, Ang CH, Khaw SL, Aubrey BJ, Gong J, Kelly GL, Herold MJ, Strasser A, Roberts AW, Alexander WS, Burns CJ, Huang DCS, Glaser SP. BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells. Leukemia 2016; 30:1531-41. [PMID: 27055867 DOI: 10.1038/leu.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 02/04/2023]
Abstract
The BET (bromodomain and extraterminal domain) bromodomain-containing proteins, such as BRD4, are highly promising targets for treating lymphoid and myeloid malignancies. They act to modulate the expression of multiple genes that control diverse cellular processes including proliferation, survival and differentiation that are consequentially disrupted by small-molecule BET bromodomain inhibitors such as JQ1. By assessing the impact of these inhibitors on normal mouse hematopoietic cells or their transformed counterparts, we establish definitively that their cytotoxic action in vitro and in vivo relies predominantly on the activation of BAX/BAK-dependent mitochondrial (intrinsic) apoptosis. In large part, this is triggered by marked upregulation of the BH3-only protein BIM when the BET inhibitors suppress miR-17-92, a key post-transcriptional repressor of BIM expression. Thus, our study strongly suggests that mutations that permit the evasion of apoptosis (for example, BCL2 overexpression, BIM inactivation) are likely to blunt the activity of the BET bromodomain inhibitors and should be anticipated when therapy resistance develops. Strikingly, we also found that certain normal hematopoietic cells, especially those of lymphoid origin, are as prone to apoptosis induced by the BET inhibitors as their transformed counterparts, indicating that their susceptibility to BET inhibitors did not arise from oncogenic transformation.
Collapse
Affiliation(s)
- Z Xu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - P P Sharp
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Y Yao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - D Segal
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - C H Ang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - S L Khaw
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Children's Cancer Centre, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - B J Aubrey
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Haematology and Bone Marrow Transplantation, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - J Gong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - G L Kelly
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - M J Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A W Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Haematology and Bone Marrow Transplantation, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - W S Alexander
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - C J Burns
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - D C S Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - S P Glaser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
126
|
Grabow S, Delbridge ARD, Aubrey BJ, Vandenberg CJ, Strasser A. Loss of a Single Mcl-1 Allele Inhibits MYC-Driven Lymphomagenesis by Sensitizing Pro-B Cells to Apoptosis. Cell Rep 2016; 14:2337-47. [PMID: 26947081 DOI: 10.1016/j.celrep.2016.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
MCL-1 is critical for progenitor cell survival during emergency hematopoiesis, but its role in sustaining cells undergoing transformation and in lymphomagenesis is only poorly understood. We investigated the importance of MCL-1 in the survival of B lymphoid progenitors undergoing MYC-driven transformation and its functional interactions with pro-apoptotic BIM and PUMA and the tumor suppressor p53 in lymphoma development. Loss of one Mcl-1 allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma initiating pre-B cells. Although loss of the p53 target PUMA had minor impact, loss of one p53 allele substantially accelerated lymphoma development when MCL-1 was limiting, most likely because p53 loss also causes defects in non-apoptotic tumor suppressive processes. Remarkably, loss of BIM restored the survival of lymphoma initiating cells and rate of tumor development. Thus, MCL-1 has a major role in lymphoma initiating pro-B cells to oppose BIM, which is upregulated in response to oncogenic stress.
Collapse
Affiliation(s)
- Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology and Bone Marrow Transplant Service, the Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
127
|
Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms. Blood 2016; 127:1886-95. [PMID: 26888257 DOI: 10.1182/blood-2015-11-681130] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is the most commonly diagnosed hematologic cancer of adults in the United States, with the vast majority of NHLs deriving from malignant B lymphocytes that express cell surface CD20. CD20 immunotherapy (rituximab) is widely used to treat NHL, even though the initial effectiveness of rituximab varies widely among patients and typically wanes over time. The mechanisms through which lymphomas initially resist or gain resistance to immunotherapy are not well established. To address this, a preclinical mouse model system was developed to comprehensively identify lymphoma transcriptomic changes that confer resistance to CD20 immunotherapy. The generation of spontaneous primary and familial lymphomas revealed that sensitivity to CD20 immunotherapy was not regulated by differences in CD20 expression, prior exposure to CD20 immunotherapy, or serial in vivo passage. An unbiased forward exome screen of these primary lymphomas was used to validate the utility of this expansive lymphoma cohort, which revealed that increased lymphoma galectin-1 (Gal-1) expression strongly correlated with resistance to immunotherapy. Genetically induced lymphoma Gal-1 expression ablated antibody-dependent lymphoma phagocytosis in vitro and lymphoma sensitivity to CD20 immunotherapy in vivo. Human NHLs also express elevated Gal-1 compared with nonmalignant lymphocytes, demonstrating the ability of this preclinical model system to identify molecular targets that could be relevant to human therapy. This study therefore established a powerful preclinical model system that permits the comprehensive identification of the dynamic lymphoma molecular network that drives resistance to immunotherapy.
Collapse
|
128
|
Wong D, Li L, Jurado S, King A, Bamford R, Wall M, Walia M, Kelly G, Walkley C, Tarlinton D, Strasser A, Heierhorst J. The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Rep 2016; 14:1488-1499. [DOI: 10.1016/j.celrep.2016.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
|
129
|
Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, Box G, Boxall KJ, Tall M, Swales K, Matthews TP, McHardy T, Lainchbury M, Osborne J, Hunter JE, Perkins ND, Aherne GW, Reader JC, Raynaud FI, Eccles SA, Collins I, Garrett MD. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma. Oncotarget 2016; 7:2329-42. [PMID: 26295308 PMCID: PMC4823038 DOI: 10.18632/oncotarget.4919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/11/2015] [Indexed: 12/17/2022] Open
Abstract
CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.
Collapse
Affiliation(s)
- Mike I. Walton
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paul D. Eve
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Alan T. Henley
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Melanie R. Valenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Alexis K. De Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Kathy J. Boxall
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matthew Tall
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Karen Swales
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Thomas P. Matthews
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Tatiana McHardy
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Michael Lainchbury
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - James Osborne
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jill E. Hunter
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Neil D. Perkins
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - G. Wynne Aherne
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | - Florence I. Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Suzanne A. Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Michelle D. Garrett
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
130
|
Abstract
This study demonstrates, for the first time, that loss of a single forkhead box class O (FoxO) transcription factor, can promote lymphomagenesis. Using two different mouse models, we show that FoxO3 has a significant tumour-suppressor function in the context of Myc-driven lymphomagenesis. Loss of FoxO3 significantly accelerated myeloid tumorigenesis in vavP-MYC10 transgenic mice and B lymphomagenesis in Eμ-myc transgenic mice. Tumour analysis indicated that the selective pressure for mutation of the p53 pathway during Eμ-myc lymphomagenesis was not altered. Frank tumours were preceded by elevated macrophage numbers in FoxO3(-/-) vavP-MYC10 mice but, surprisingly, pre-B-cell numbers were relatively normal in healthy young FoxO3(-/-)Eμ-myc mice. In vitro assays revealed enhanced survival capacity of Myc-driven cells lacking FoxO3, but no change in cell cycling was detected. The loss of FoxO3 may also be affecting other tumour-suppressive functions for which FoxO1/4 cannot fully compensate.
Collapse
|
131
|
Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53. Oncogene 2015; 35:3866-71. [PMID: 26640149 DOI: 10.1038/onc.2015.457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA-mediated apoptosis and p21-induced cell cycle arrest.
Collapse
|
132
|
Specks J, Nieto-Soler M, Lopez-Contreras AJ, Fernandez-Capetillo O. Modeling the study of DNA damage responses in mice. Methods Mol Biol 2015; 1267:413-37. [PMID: 25636482 DOI: 10.1007/978-1-4939-2297-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.
Collapse
Affiliation(s)
- Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
133
|
Richards KL, Suter SE. Man's best friend: what can pet dogs teach us about non-Hodgkin's lymphoma? Immunol Rev 2015; 263:173-91. [PMID: 25510277 DOI: 10.1111/imr.12238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Animal models are essential for understanding lymphoma biology and testing new treatments prior to human studies. Spontaneously arising lymphomas in pet dogs represent an underutilized resource that could be used to complement current mouse lymphoma models, which do not adequately represent all aspects of the human disease. Canine lymphoma resembles human lymphoma in many important ways, including characteristic translocations and molecular abnormalities and similar therapeutic responses to chemotherapy, radiation, and newer targeted therapies (e.g. ibrutinib). Given the large number of pet dogs and high incidence of lymphoma, particularly in susceptible breeds, dogs represent a largely untapped resource for advancing the understanding and treatment of human lymphoma. This review highlights similarities in molecular biology, diagnosis, treatment, and outcomes between human and canine lymphoma. It also describes resources that are currently available to study canine lymphoma, advantages to be gained by exploiting the genetic breed structure in dogs, and current and future challenges and opportunities to take full advantage of this resource for lymphoma studies.
Collapse
Affiliation(s)
- Kristy L Richards
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
134
|
Weiland J, Elder A, Forster V, Heidenreich O, Koschmieder S, Vormoor J. CD19: A multifunctional immunological target molecule and its implications for Blineage acute lymphoblastic leukemia. Pediatr Blood Cancer 2015; 62:1144-8. [PMID: 25755168 DOI: 10.1002/pbc.25462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/16/2015] [Indexed: 02/02/2023]
Abstract
Over the last 20-30 years CD19 has gained attention as a potential target in the therapy of B-cell malignancies. In particular, targeting CD19 with the bispecific T-cell engager (BiTE) antibody Blinatumomab and T-cells modified by chimeric antigen receptors (CAR) has shown promising efficacy in early phase clinical trials for adults and children with precursor B-cell ALL (BCP-ALL). This review will discuss the rationale behind targeting CD19 in BCP-ALL and its potential importance in BCP-ALL signaling pathways.
Collapse
Affiliation(s)
- Judith Weiland
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alex Elder
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Victoria Forster
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Josef Vormoor
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.,Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
135
|
Scribble acts as an oncogene in Eμ-myc-driven lymphoma. Oncogene 2015; 35:1193-7. [PMID: 25982280 DOI: 10.1038/onc.2015.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 02/08/2015] [Accepted: 03/03/2015] [Indexed: 11/08/2022]
Abstract
Scribble complex proteins maintain apicobasal polarity, regulate cell fate determination and function as tumour suppressors in epithelial tissue. Despite evidence that the function of Scribble is maintained in the lymphocyte lineage, we still understand little about its role as a tumour suppressor in haematological malignancies. Using the Eμ-myc model of Burkitt's lymphoma we investigated the role of Scribble in lymphomagenesis. We found that contrary to its well-documented tumour suppressor role in epithelial tissue, loss of Scribble expression delayed the expansion of peripheral B cells and delayed the onset of Eμ-myc-driven lymphoma. This was despite upregulated ERK phosphorylation levels in Scribble-deficient tumours, which are associated with loss of Scribble expression and the development of more aggressive Burkitt's lymphoma. Interestingly, the developmental stage of lymphoma was unaffected by Scribble expression challenging any role for Scribble in fate determination in the haematopoetic lineage. These data provide evidence for oncogenic properties of Scribble in Myc-driven B-cell lymphomagenesis, reinforcing recent findings that overexpression of a mutant form of Scribble can act as an oncogene in epithelial cells. Our results support the growing appreciation that the tumour regulatory functions of Scribble, and other polarity protein family members, are context dependent.
Collapse
|
136
|
Koh CM, Bezzi M, Low DHP, Ang WX, Teo SX, Gay FPH, Al-Haddawi M, Tan SY, Osato M, Sabò A, Amati B, Wee KB, Guccione E. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 2015; 523:96-100. [PMID: 25970242 DOI: 10.1038/nature14351] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Abstract
Deregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly upregulates the transcription of the core small nuclear ribonucleoprotein particle assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for the core biogenesis of small nuclear ribonucleoprotein particles, effective pre-messenger-RNA splicing, cell survival and proliferation. Our results demonstrate that MYC maintains the splicing fidelity of exons with a weak 5' donor site. Additionally, we identify pre-messenger-RNAs that are particularly sensitive to the perturbation of the MYC-PRMT5 axis, resulting in either intron retention (for example, Dvl1) or exon skipping (for example, Atr, Ep400). Using antisense oligonucleotides, we demonstrate the contribution of these splicing defects to the anti-proliferative/apoptotic phenotype observed in PRMT5-depleted Eµ-myc B cells. We conclude that, in addition to its well-documented oncogenic functions in transcription and translation, MYC also safeguards proper pre-messenger-RNA splicing as an essential step in lymphomagenesis.
Collapse
Affiliation(s)
- Cheryl M Koh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Marco Bezzi
- 1] Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore [2] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Diana H P Low
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Wei Xia Ang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Shun Xie Teo
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Florence P H Gay
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Muthafar Al-Haddawi
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Soo Yong Tan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore (CSI), National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Bruno Amati
- 1] Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy [2] Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Keng Boon Wee
- 1] Institute of High Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), Connexis, Singapore 138632, Singapore [2] Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore
| | - Ernesto Guccione
- 1] Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore [2] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore [3] Cancer Science Institute of Singapore (CSI), National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| |
Collapse
|
137
|
Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 2015; 22:1071-80. [PMID: 25952548 DOI: 10.1038/cdd.2015.50] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The 'BCL-2-regulated' or 'intrinsic' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, 'BH3-mimetics', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.
Collapse
Affiliation(s)
- A R D Delbridge
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
138
|
Peintner L, Dorstyn L, Kumar S, Aneichyk T, Villunger A, Manzl C. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd. Cell Death Differ 2015; 22:1803-11. [PMID: 25857265 PMCID: PMC4648327 DOI: 10.1038/cdd.2015.31] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022] Open
Abstract
The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd−/− mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context.
Collapse
Affiliation(s)
- L Peintner
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - L Dorstyn
- Centre for Cancer Biology - An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology - An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - T Aneichyk
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - A Villunger
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - C Manzl
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Department of General Pathology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
139
|
Farria A, Li W, Dent SYR. KATs in cancer: functions and therapies. Oncogene 2015; 34:4901-13. [PMID: 25659580 PMCID: PMC4530097 DOI: 10.1038/onc.2014.453] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Collapse
Affiliation(s)
- A Farria
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - W Li
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - S Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| |
Collapse
|
140
|
The mouse NKR-P1B:Clr-b recognition system is a negative regulator of innate immune responses. Blood 2015; 125:2217-27. [PMID: 25612621 DOI: 10.1182/blood-2014-02-556142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
NKR-P1B is a homodimeric type II transmembrane C-type lectinlike receptor that inhibits natural killer (NK) cell function upon interaction with its cognate C-type lectin-related ligand, Clr-b. The NKR-P1B:Clr-b interaction represents a major histocompatibility complex class I (MHC-I)-independent missing-self recognition system that monitors cellular Clr-b levels. We have generated NKR-P1B(B6)-deficient (Nkrp1b(-/-)) mice to study the role of NKR-P1B in NK cell development and function in vivo. NK cell inhibition by Clr-b is abolished in Nkrp1b(-/-) mice, confirming the inhibitory nature of NKR-P1B(B6). Inhibitory receptors also promote NK cell tolerance and responsiveness to stimulation; hence, NK cells expressing NKR-P1B(B6) and Ly49C/I display augmented responsiveness to activating signals vs NK cells expressing either or none of the receptors. In addition, Nkrp1b(-/-) mice are defective in rejecting cells lacking Clr-b, supporting a role for NKR-P1B(B6) in MHC-I-independent missing-self recognition of Clr-b in vivo. In contrast, MHC-I-dependent missing-self recognition is preserved in Nkrp1b(-/-) mice. Interestingly, spontaneous myc-induced B lymphoma cells may selectively use NKR-P1B:Clr-b interactions to escape immune surveillance by wild-type, but not Nkrp1b(-/-), NK cells. These data provide direct genetic evidence of a role for NKR-P1B in NK cell tolerance and MHC-I-independent missing-self recognition.
Collapse
|
141
|
MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 2015; 125:1910-21. [PMID: 25605372 DOI: 10.1182/blood-2014-08-594655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eμ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells.
Collapse
|
142
|
Stiedl P, Grabner B, Zboray K, Bogner E, Casanova E. Modeling cancer using genetically engineered mice. Methods Mol Biol 2015; 1267:3-18. [PMID: 25636462 DOI: 10.1007/978-1-4939-2297-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetically engineered mouse (GEM) models have proven to be a powerful tool to study tumorigenesis. The mouse is the preferred complex organism used in cancer studies due to the high number and versatility of genetic tools available for this species. GEM models can mimic point mutations, gene amplifications, short and large deletions, translocations, etc.; thus, most of the genetic aberrations found in human tumors can be modeled in GEM, making GEM models a very attractive system. Furthermore, recent developments in mouse genetics may facilitate the generation of GEM models with increased mutational complexity, therefore resembling human tumors better. Within this review, we will discuss the different possibilities of modeling tumorigenesis using GEM and the future developments within the field.
Collapse
Affiliation(s)
- Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Währinger Str. 13a, Vienna, 1090, Austria
| | | | | | | | | |
Collapse
|
143
|
Abstract
The PR-domain (PRDM) family of genes encodes transcriptional regulators, several of which are deregulated in cancer. By using a functional screening approach, we sought to identify novel tumor suppressors among the PRDMs. Here we demonstrate oncogenic collaboration between depletion of the previously uncharacterized PR-domain family member Prdm11 and overexpression of MYC. Overexpression of PRDM11 inhibits proliferation and induces apoptosis. Prdm11 knockout mice are viable, and loss of Prdm11 accelerates MYC-driven lymphomagenesis in the Eµ-Myc mouse model. Moreover, we show that patients with PRDM11-deficient diffuse large B-cell lymphomas (DLBCLs) have poorer overall survival and belong to the nongerminal center B-cell-like subtype. Mechanistically, genome-wide mapping of PRDM11 binding sites coupled with transcriptome sequencing in human DLBCL cells evidenced that PRDM11 associates with transcriptional start sites of target genes and regulates important oncogenes such as FOS and JUN. Hence, we characterize PRDM11 as a putative novel tumor suppressor that controls the expression of key oncogenes, and we add new mechanistic insight into B-cell lymphomagenesis.
Collapse
|
144
|
Uckun FM, Qazi S, Ma H, Yin L, Cheng J. A rationally designed nanoparticle for RNA interference therapy in B-lineage lymphoid malignancies. EBioMedicine 2014; 1:141-155. [PMID: 25599086 PMCID: PMC4292938 DOI: 10.1016/j.ebiom.2014.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of the present study was to further evaluate the biologic significance of the CD22ΔE12 molecular lesion and determine if it could serve as a molecular target for RNA interference (RNAi) therapy. We show that both pediatric and adult B-lineage lymphoid malignancies are characterized by a very high incidence of the CD22ΔE12 genetic defect. We provide unprecedented experimental evidence for a previously unrecognized causal link between CD22ΔE12 and aggressive biology of BPL cells by demonstrating that siRNA-mediated knockdown of CD22ΔE12 in primary BPL cells is associated with a marked inhibition of their clonogenicity. These findings provide the preclinical proof-of-concept that siRNA-mediated depletion of CD22ΔE12 may help develop effective treatments for high-risk and relapsed BPL patients who are in urgent need for therapeutic innovations. We also describe a unique polypeptide-based nanoparticle formulation of CD22ΔE12-siRNA as an RNAi therapeutic candidate targeting CD22ΔE12 that is capable of delivering its siRNA cargo into the cytoplasm of leukemia cells causing effective CD22ΔE12 depletion and marked inhibition of leukemic cell growth. Further development and optimization of this nanoparticle or other nanoformulation platforms for CD22ΔE12-siRNA may facilitate the development of an effective therapeutic RNAi strategy against paradigm shift in therapy of aggressive or chemotherapy-resistant B-lineage lymphoid malignancies.
Collapse
Affiliation(s)
- Fatih M Uckun
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles (CHLA), Los Angeles, CA 90027 ; Division of Hematology-Oncology, Department of Pediatrics, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027 ; Translational Oncology Program, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027
| | - Sanjive Qazi
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles (CHLA), Los Angeles, CA 90027 ; Bioinformatics Program, Gustavus Adolphus College, 800 W College Avenue, St. Peter, MN 56082
| | - Hong Ma
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles (CHLA), Los Angeles, CA 90027
| | - Lichen Yin
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010; University of Illinois at Urbana Champaign (UIUC) Bioengineering Department, Urbana, IL 61801
| | - Jianjun Cheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010; University of Illinois at Urbana Champaign (UIUC) Bioengineering Department, Urbana, IL 61801
| |
Collapse
|
145
|
Chiche J, Pommier S, Beneteau M, Mondragón L, Meynet O, Zunino B, Mouchotte A, Verhoeyen E, Guyot M, Pagès G, Mounier N, Imbert V, Colosetti P, Goncalvès D, Marchetti S, Brière J, Carles M, Thieblemont C, Ricci JE. GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia 2014; 29:1163-76. [PMID: 25394713 DOI: 10.1038/leu.2014.324] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
Abstract
Deregulated expression of glycolytic enzymes contributes not only to the increased energy demands of transformed cells but also has non-glycolytic roles in tumors. However, the contribution of these non-glycolytic functions in tumor progression remains poorly defined. Here, we show that elevated expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), but not of other glycolytic enzymes tested, increased aggressiveness and vascularization of non-Hodgkin's lymphoma. Elevated GAPDH expression was found to promote nuclear factor-κB (NF-κB) activation via binding to tumor necrosis factor receptor-associated factor-2 (TRAF2), enhancing the transcription and the activity of hypoxia-inducing factor-1α (HIF-1α). Consistent with this, inactive mutants of GAPDH failed to bind TRAF2, enhance HIF-1 activity or promote lymphomagenesis. Furthermore, elevated expression of gapdh mRNA in biopsies from diffuse large B-cell non-Hodgkin's lymphoma patients correlated with high levels of hif-1α, vegf-a, nfkbia mRNA and CD31 staining. Collectively, these data indicate that deregulated GAPDH expression promotes NF-κB-dependent induction of HIF-1α and has a key role in lymphoma vascularization and aggressiveness.
Collapse
Affiliation(s)
- J Chiche
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - S Pommier
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Département d'Anesthésie Réanimation, Nice, France
| | - M Beneteau
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - L Mondragón
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - O Meynet
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - B Zunino
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - A Mouchotte
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - E Verhoeyen
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - M Guyot
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Institute for Research on Cancer and Aging, CNRS UMR 7284/U INSERM 1081, Centre A. Lacassagne, Nice, France
| | - G Pagès
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Institute for Research on Cancer and Aging, CNRS UMR 7284/U INSERM 1081, Centre A. Lacassagne, Nice, France
| | - N Mounier
- Centre Hospitalier Universitaire de Nice, Département d'Onco-Hématologie, Nice, France
| | - V Imbert
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'inflammation, cancer et cellules souches cancéreuses', Nice, France
| | - P Colosetti
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'mort cellulaire, différenciation, inflammation et cancer', Nice, France
| | - D Goncalvès
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'mort cellulaire, différenciation, inflammation et cancer', Nice, France
| | - S Marchetti
- 1] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [2] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'mort cellulaire, différenciation, inflammation et cancer', Nice, France
| | - J Brière
- AP-HP-Hôpital Saint-Louis, Service d'hémato-Oncologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France
| | - M Carles
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Département d'Anesthésie Réanimation, Nice, France
| | - C Thieblemont
- AP-HP-Hôpital Saint-Louis, Service d'hémato-Oncologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France
| | - J-E Ricci
- 1] Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', équipe 3, Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Département d'Anesthésie Réanimation, Nice, France
| |
Collapse
|
146
|
CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun 2014; 5:5384. [PMID: 25395170 PMCID: PMC4234183 DOI: 10.1038/ncomms6384] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRL) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signaling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated auto-ubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc. Csn6 haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eµ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN-Cullin-Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
Collapse
|
147
|
Rempel RE, Jiang X, Fullerton P, Tan TZ, Ye J, Lau JA, Mori S, Chi JT, Nevins JR, Friedman DR. Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response. Mol Cancer Ther 2014; 13:3219-29. [PMID: 25349303 DOI: 10.1158/1535-7163.mct-13-0044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human aggressive B-cell non-Hodgkin lymphomas (NHL) encompass the continuum between Burkitt lymphoma and diffuse large B-cell lymphoma (DLBCL), and display considerable clinical and biologic heterogeneity, most notably related to therapy response. We previously showed that lymphomas arising in the Eμ-Myc transgenic mouse are heterogeneous, mirroring genomic differences between Burkitt lymphoma and DLBCL. Given clinical heterogeneity in NHL and the need to develop strategies to match therapeutics with discrete forms of disease, we investigated the extent to which genomic variation in the Eμ-Myc model predicts response to therapy. We used genomic analyses to classify Eμ-Myc lymphomas, link Eμ-Myc lymphomas with NHL subtypes, and identify lymphomas with predicted resistance to conventional and NF-κB-targeted therapies. Experimental evaluation of these predictions links genomic profiles with distinct outcomes to conventional and targeted therapies in the Eμ-Myc model, and establishes a framework to test novel targeted therapies or combination therapies in specific genomically defined lymphoma subgroups. In turn, this will rationally inform the design of new treatment options for aggressive human NHL.
Collapse
Affiliation(s)
- Rachel E Rempel
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina
| | - Xiaolei Jiang
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina
| | - Paul Fullerton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jieying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Seiichi Mori
- The Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Jen-Tsan Chi
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph R Nevins
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Daphne R Friedman
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina. Department of Medicine, Duke University Medical Center, Durham, North Carolina. Durham Veterans Affairs Medical Center, Durham, North Carolina.
| |
Collapse
|
148
|
Park HY, Go H, Song HR, Kim S, Ha GH, Jeon YK, Kim JE, Lee H, Cho H, Kang HC, Chung HY, Kim CW, Chung DH, Lee CW. Pellino 1 promotes lymphomagenesis by deregulating BCL6 polyubiquitination. J Clin Invest 2014; 124:4976-88. [PMID: 25295537 DOI: 10.1172/jci75667] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022] Open
Abstract
The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs. PELI1 directly interacted with the oncoprotein B cell chronic lymphocytic leukemia (BCL6) and induced lysine 63-mediated BCL6 polyubiquitination. In samples from patients with diffuse large B cell lymphomas (DLBCLs), PELI1 expression levels positively correlated with BCL6 expression, and PELI1 overexpression was closely associated with poor prognosis in DLBCLs. Together, these results suggest that increased PELI1 expression and subsequent induction of BCL6 promotes lymphomagenesis and that this pathway may be a potential target for therapeutic strategies to treat B cell lymphomas.
Collapse
|
149
|
Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 2014; 157:1088-103. [PMID: 24855946 DOI: 10.1016/j.cell.2014.03.052] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Cancer cells must integrate multiple biosynthetic demands to drive indefinite proliferation. How these key cellular processes, such as metabolism and protein synthesis, crosstalk to fuel cancer cell growth is unknown. Here, we uncover the mechanism by which the Myc oncogene coordinates the production of the two most abundant classes of cellular macromolecules, proteins, and nucleic acids in cancer cells. We find that a single rate-limiting enzyme, phosphoribosyl-pyrophosphate synthetase 2 (PRPS2), promotes increased nucleotide biosynthesis in Myc-transformed cells. Remarkably, Prps2 couples protein and nucleotide biosynthesis through a specialized cis-regulatory element within the Prps2 5' UTR, which is controlled by the oncogene and translation initiation factor eIF4E downstream Myc activation. We demonstrate with a Prps2 knockout mouse that the nexus between protein and nucleotide biosynthesis controlled by PRPS2 is crucial for Myc-driven tumorigenesis. Together, these studies identify a translationally anchored anabolic circuit critical for cancer cell survival and an unexpected vulnerability for "undruggable" oncogenes, such as Myc. PAPERFLICK:
Collapse
Affiliation(s)
- John T Cunningham
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melissa V Moreno
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
150
|
Westwood JA, Matthews GM, Shortt J, Faulkner D, Pegram HJ, Duong CPM, Chesi M, Bergsagel PL, Sharp LL, Huhn RD, Darcy PK, Johnstone RW, Kershaw MH. Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers. Leuk Res 2014; 38:948-54. [PMID: 24934848 DOI: 10.1016/j.leukres.2014.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
In order to stimulate antigen presentation and T cell activity against cancer, we treated three different tumor models in mice with the monoclonal antibodies anti-CD40 plus anti-CD137 (BiMab). In a subcutaneous transplantable MC38 colon cancer model, there was significant enhancement in the survival of mice following BiMab treatment. Anti-CD40 has shown considerable success against lymphoma in previous studies by other investigators, and we also showed in this study that, in a model of Eμ-Myc lymphoma, there was a statistically significant enhancement of survival of mice following BiMab treatment. Following the success of the BiMab treatment in the previous two models, we wished to determine if it would be successful in a mouse model of multiple myeloma. Firstly, we tested a transplantable model of disease in which multiple myeloma cells derived from Vk*MYC mice were injected intravenously. A minor proportion of anti-CD137 and BiMab treated mice experienced prolongation of life beyond 250 days. Then we tested the therapy in a spontaneously occurring multiple myeloma model, in Vk*MYC transgenic mice. The majority of mice treated survived longer than control mice, although statistical significance was not demonstrated.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Geoffrey M Matthews
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Jake Shortt
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - David Faulkner
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | - Hollie J Pegram
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Connie P M Duong
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Leslie L Sharp
- Oncology Research Unit, Pfizer Inc., San Diego, CA 92121, USA
| | | | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia; Department of Immunology, Monash University, Prahran 3181, Australia
| | - Ricky W Johnstone
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Michael H Kershaw
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia; Department of Immunology, Monash University, Prahran 3181, Australia.
| |
Collapse
|