101
|
Thiriot A, Perdomo C, Cheng G, Novitzky-Basso I, McArdle S, Kishimoto JK, Barreiro O, Mazo I, Triboulet R, Ley K, Rot A, von Andrian UH. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol 2017; 15:45. [PMID: 28526034 PMCID: PMC5438556 DOI: 10.1186/s12915-017-0381-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intravascular leukocyte recruitment in most vertebrate tissues is restricted to postcapillary and collecting venules, whereas capillaries and arterioles usually support little or no leukocyte adhesion. This segmental restriction is thought to be mediated by endothelial, rather than hemodynamic, differences. The underlying mechanisms are largely unknown, in part because effective tools to distinguish, isolate, and analyze venular endothelial cells (V-ECs) and non-venular endothelial cells (NV-ECs) have been unavailable. We hypothesized that the atypical chemokine receptor DARC (Duffy Antigen Receptor for Chemokines, a.k.a. ACKR1 or CD234) may distinguish V-ECs versus NV-ECs in mice. METHODS We generated a rat-anti-mouse monoclonal antibody (MAb) that specifically recognizes the erythroid and endothelial forms of native, surface-expressed DARC. Using this reagent, we characterized DARC expression and distribution in the microvasculature of murine tissues. RESULTS DARC was exquisitely restricted to post-capillary and small collecting venules and completely absent from arteries, arterioles, capillaries, veins, and most lymphatics in every tissue analyzed. Accordingly, intravital microscopy showed that adhesive leukocyte-endothelial interactions were restricted to DARC+ venules. DARC was detectable over the entire circumference of V-ECs, but was more concentrated at cell-cell junctions. Analysis of single-cell suspensions suggested that the frequency of V-ECs among the total microvascular EC pool varies considerably between different tissues. CONCLUSIONS Immunostaining of endothelial DARC allows the identification and isolation of intact V-ECs from multiple murine tissues. This strategy may be useful to dissect the mechanisms underlying segmental microvascular specialization in healthy and diseased tissues and to characterize the role of EC subsets in tissue-homeostasis, immune surveillance, infection, inflammation, and malignancies.
Collapse
Affiliation(s)
- Aude Thiriot
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Carolina Perdomo
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Guiying Cheng
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Igor Novitzky-Basso
- Center for Immunology and Infection, Department of Biology, University of York, YO10 5DD, Heslington, York, UK
- Present address: Blood and Marrow Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sara McArdle
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jamie K Kishimoto
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Olga Barreiro
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Irina Mazo
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Antal Rot
- Center for Immunology and Infection, Department of Biology, University of York, YO10 5DD, Heslington, York, UK
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology & HMS Center for Immune Imaging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
102
|
Weber EW, Muller WA. Roles of transient receptor potential channels in regulation of vascular and epithelial barriers. Tissue Barriers 2017; 5:e1331722. [PMID: 28581893 DOI: 10.1080/21688370.2017.1331722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential (TRP) channels are a ubiquitously expressed multi-family group of cation channels that are critical to signaling events in many tissues. Their roles have been documented in many physiologic and pathologic conditions. Nevertheless, direct studies of their roles in maintain barrier function in endothelial and epithelia are relatively infrequent. This seems somewhat surprising considering that calcium ion concentrations are known to regulate barrier function. This short review provides an introduction to TRP channels and reviews some of the work in which investigators directly studied the role of TRP channels in endothelial permeability to electric current, solute, or leukocytes during the inflammatory response.
Collapse
Affiliation(s)
- Evan W Weber
- a Stanford Cancer Institute, Stanford University School of Medicine, Lokey Stem Cell Research Building , Stanford , CA , USA
| | - William A Muller
- b Northwestern University , Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
103
|
Andrews RN, Metheny-Barlow LJ, Peiffer AM, Hanbury DB, Tooze JA, Bourland JD, Hampson RE, Deadwyler SA, Cline JM. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 2017; 187:599-611. [PMID: 28398880 PMCID: PMC5508216 DOI: 10.1667/rr14616.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman's test), with effects most prominent within cerebral white matter.
Collapse
Affiliation(s)
- Rachel N. Andrews
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Linda J. Metheny-Barlow
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Ann M. Peiffer
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - David B. Hanbury
- Department of Psychology, Averett University, Danville, Virginia 24541
| | - Janet A. Tooze
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert E. Hampson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Samuel A. Deadwyler
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
104
|
Tchalla AE, Wellenius GA, Sorond FA, Gagnon M, Iloputaife I, Travison TG, Dantoine T, Lipsitz LA. Elevated Soluble Vascular Cell Adhesion Molecule-1 Is Associated With Cerebrovascular Resistance and Cognitive Function. J Gerontol A Biol Sci Med Sci 2017; 72:560-566. [PMID: 27317684 PMCID: PMC5861880 DOI: 10.1093/gerona/glw099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/13/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Elevated plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) is a presumed marker of endothelial dysfunction, both in the brain and systemic circulation. Impairments in memory and cognition have been associated with cardiovascular diseases, but little is known about their relationships to abnormal cerebral endothelial function. METHODS We studied the cross-sectional association between sVCAM-1 and markers of cerebrovascular hemodynamics and cognitive function in 680 community-dwelling participants in the MOBILIZE Boston Study, aged 65 years and older. Cognitive function was assessed using the Hopkins Verbal Learning Memory Test and Trail Making Tests (TMTs) A and B. Global cognitive impairment was defined as Mini-Mental State Examination (MMSE) score less than 24. sVCAM-1 was measured by ELISA assay. Beat-to-beat blood flow velocity (BFV) and cerebrovascular resistance (CVR = mean arterial pressure / BFV) in the middle cerebral artery were assessed at rest by transcranial Doppler ultrasound. RESULTS sVCAM-1 concentrations were higher among participants with an MMSE score <24 versus ≥24 (1,201±417 vs 1,122±494ng/mL). In regression models adjusted for sociodemographic characteristics and health conditions, increasing levels of sVCAM-1 were linearly associated with higher resting CVR (p = .006) and lower performance on the Hopkins Verbal Learning Memory (immediate recall and delayed recall) and adjusted TMT B tests (p < .05). Higher levels of sVCAM-1 were also associated with global cognitive impairment on the MMSE (odds ratio = 3.9; 95% confidence interval: 1.4-10.9; p = .011). CONCLUSIONS In this cohort of elderly participants, we observed a cross-sectional association between elevated sVCAM-1 levels and both cognitive impairment and increased cerebrovascular resistance. Longitudinal studies are needed to determine whether elevated sVCAM-1 is a cause or consequence of cerebrovascular damage.
Collapse
Affiliation(s)
- Achille E Tchalla
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Geriatric Medicine, Limoges University, Limoges, France
| | | | - Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Margaret Gagnon
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
| | | | - Thomas G Travison
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Thierry Dantoine
- Department of Geriatric Medicine, Limoges University, Limoges, France
| | - Lewis A Lipsitz
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
105
|
Dual role of ALCAM in neuroinflammation and blood-brain barrier homeostasis. Proc Natl Acad Sci U S A 2017; 114:E524-E533. [PMID: 28069965 DOI: 10.1073/pnas.1614336114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity.
Collapse
|
106
|
Rao J, Ye Z, Tang H, Wang C, Peng H, Lai W, Li Y, Huang W, Lou T. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells. Sci Rep 2017; 7:39727. [PMID: 28054559 PMCID: PMC5215591 DOI: 10.1038/srep39727] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.
Collapse
Affiliation(s)
- Jialing Rao
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Zengchun Ye
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Hua Tang
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Hui Peng
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Weiyan Lai
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Yin Li
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Wanbing Huang
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| | - Tanqi Lou
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to describe the function of the vascular cell adhesion and signaling molecule, platelet/endothelial cell adhesion molecule-1 (PECAM-1), in endothelial cells, with special emphasis on its role in maintaining and restoring the vascular permeability barrier following disruption of the endothelial cell junction. RECENT FINDINGS In addition to its role as an inhibitory receptor in circulating platelets and leukocytes, PECAM-1 is highly expressed at endothelial cell-cell junctions, where it functions as an adhesive stress-response protein to both maintain endothelial cell junctional integrity and speed restoration of the vascular permeability barrier following inflammatory or thrombotic challenge. SUMMARY Owing to the unique ability of antibodies that bind the membrane proximal region of the extracellular domain to trigger conformational changes leading to affinity modulation and homophilic adhesion strengthening, PECAM-1 might be an attractive target for treating vascular permeability disorders.
Collapse
|
108
|
Lertkiatmongkol P, Paddock C, Newman DK, Zhu J, Thomas MJ, Newman PJ. The Role of Sialylated Glycans in Human Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1)-mediated Trans Homophilic Interactions and Endothelial Cell Barrier Function. J Biol Chem 2016; 291:26216-26225. [PMID: 27793989 DOI: 10.1074/jbc.m116.756502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Indexed: 11/06/2022] Open
Abstract
Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) is a major component of the endothelial cell intercellular junction. Previous studies have shown that PECAM-1 homophilic interactions, mediated by amino-terminal immunoglobulin homology domain 1, contribute to maintenance of the vascular permeability barrier and to its re-establishment following inflammatory or thrombotic insult. PECAM-1 glycans account for ∼30% of its molecular mass, and the newly solved crystal structure of human PECAM-1 immunoglobulin homology domain 1 reveals that a glycan emanating from the asparagine residue at position 25 (Asn-25) is located within the trans homophilic-binding interface, suggesting a role for an Asn-25-associated glycan in PECAM-1 homophilic interactions. In support of this possibility, unbiased molecular docking studies revealed that negatively charged α2,3 sialic acid moieties bind tightly to a groove within the PECAM-1 homophilic interface in an orientation that favors the formation of an electrostatic bridge with positively charged Lys-89, mutation of which has been shown previously to disrupt PECAM-1-mediated homophilic binding. To verify the contribution of the Asn-25 glycan to endothelial barrier function, we generated an N25Q mutant form of PECAM-1 that is not glycosylated at this position and examined its ability to contribute to vascular integrity in endothelial cell-like REN cells. Confocal microscopy showed that although N25Q PECAM-1 concentrates normally at cell-cell junctions, the ability of this mutant form of PECAM-1 to support re-establishment of a permeability barrier following disruption with thrombin was significantly compromised. Taken together, these data suggest that a sialic acid-containing glycan emanating from Asn-25 reinforces dynamic endothelial cell-cell interactions by stabilizing the PECAM-1 homophilic binding interface.
Collapse
Affiliation(s)
- Panida Lertkiatmongkol
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,the Departments of Pharmacology
| | - Cathy Paddock
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| | - Debra K Newman
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,the Departments of Pharmacology
| | - Jieqing Zhu
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and.,Biochemistry, and
| | | | - Peter J Newman
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and .,the Departments of Pharmacology.,Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
109
|
Mason JC, Haskard DO. The Clinical Importance of Leucocyte and Endothelial Cell Adhesion Molecules in Inflammation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358863x9400500306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
110
|
Abstract
The entry of leukocytes into tissues requires well-coordinated interactions between the immune cells and endothelial cells which form the inner lining of blood vessels. The molecular basis for recognition, capture, and adhesion of leukocytes to the endothelial apical surface is well studied. This review will focus on recent advances in our understanding of events following the firm interaction of leukocytes with the inner surface of the blood vessel wall. We will discuss how leukocytes initiate the transmigration (diapedesis) process, trigger the opening of gaps in the endothelial barrier, and eventually move through this boundary.
Collapse
|
111
|
Sullivan DP, Watson RL, Muller WA. 4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis. Am J Physiol Heart Circ Physiol 2016; 311:H621-32. [PMID: 27422987 DOI: 10.1152/ajpheart.00289.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Leukocyte transendothelial migration (TEM) is an essential component of the inflammatory response. In vitro studies with human cells have demonstrated that platelet/endothelial cell adhesion molecule (PECAM) functions upstream of CD99 during TEM; however, results in vivo with mice have been apparently contradictory. In this study we use four-dimensional (4D) intravital microscopy to demonstrate that the site and order of function of PECAM and CD99 in vivo are dependent on the strain of mice. In FVB/n mice, PECAM functions upstream of CD99, as in human cells in vitro, and blocking antibodies against either molecule arrest neutrophils before they traverse the endothelium. However, in C57BL/6 mice, PECAM and CD99 appear to function at a different step, as the same antibodies arrest leukocyte migration through the endothelial basement membrane. These results are the first direct comparison of PECAM and CD99 function in different murine strains as well as the first demonstration of the sequential function of PECAM and CD99 in vivo.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| | - Richard L Watson
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
112
|
Popović D, Nikolajević Starčević J, Šantl Letonja M, Makuc J, Cokan Vujkovac A, Reschner H, Bregar D, Petrovič D. PECAM-1 gene polymorphism (rs668) and subclinical markers of carotid atherosclerosis in patients with type 2 diabetes mellitus. Balkan J Med Genet 2016; 19:63-70. [PMID: 27785409 PMCID: PMC5026281 DOI: 10.1515/bjmg-2016-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The platelet endothelial cell adhesion molecule 1 (PECAM-1) plays an important role in many inflammatory processes, including the development of atherosclerosis. Polymorphism rs668 of the PECAM-1 gene (373C/G) is functional, and it was reported to be associated with increased serum levels of PECAM-1. We investigated the association between the rs668 polymorphism of PECAM-1 and subclinical markers of carotid atherosclerosis in subjects with type 2 diabetes mellitus (T2DM). Five hundred and ninety-five T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Geno-typing of the PECAM-1 gene polymorphism (rs668) was performed using KASPar assays. The control examinations were performed 3.8 ± 0.5 years after the initial examination. Higher CIMT was found in patients with T2DM in comparison with subjects without T2DM. Statistically sig-nificantly faster progression of the atherosclerotic markers was shown in subjects with T2DM in comparison with the control group. When adjusted to other risk factors, the rs668 GG genotype was associated with an increased risk of carotid plaques in subjects with T2DM. We concluded that our study demonstrated a minor effect of the rs668 PECAM-1 on markers of carotid atherosclerosis in subjects with T2DM.
Collapse
Affiliation(s)
- D Popović
- General Hospital Rakican, Murska Sobota, Slovenia
| | - J Nikolajević Starčević
- Institute of Histology and Embryology, Faculty of Medicine, University in Ljubljana, Ljubljana, Slovenia
| | | | - J Makuc
- General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | | | - H Reschner
- Zdravstveni Zavod Reschner, Ljubljana, Slovenia
| | - D Bregar
- General Hospital Rakican, Murska Sobota, Slovenia
| | | |
Collapse
|
113
|
Rather RA, Malik VS, Trikha D, Bhat O, Dhawan V. Aqueous Terminalia arjuna extract modulates expression of key atherosclerosis-related proteins in a hypercholesterolemic rabbit: A proteomic-based study. Proteomics Clin Appl 2016; 10:750-759. [PMID: 26934842 DOI: 10.1002/prca.201500114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 07/07/2024]
Abstract
PURPOSE The present study evaluates the effect of an aqueous extract of Terminalia arjuna (aqTAE) on protein expression in aortic plaques of hypercholesterolemic rabbits using a proteomic approach. EXPERIMENTAL DESIGN Thirty male New Zealand rabbits (n = 6) were employed as Gp1 (stock diet); Gp2 (high-fat diet [HFD]); Gp3 (stock diet + aqTAE); Gp4 (HFD + aqTAE); and Gp5 (HFD + atorvastatin) and followed for 6 months. Protein lysates of aortic tissues were separated by 2DE and proteins were identified by MALDI-TOF/MS. RESULTS Serum lipids were found to be significantly increased by an HFD and reduced by aqTAE both at 3 and 6 months (Gp4 vs. Gp2; p < 0.05). Total 79 spots were differentially expressed, among which 60 individual proteins were identified, 31 grouped as atherosclerosis-related proteins and 29 classified as others. aqTAE significantly attenuated the protein expression of tumor necrosis factor α, cyclooxygenase-2, MMP-9, HSP60, ICAM-5, Endothelin-3, Vimentin, Protein S100-A9 besides others. Many of the observed proteins are known to be consistently associated with endothelial dysfunction, inflammation, plaque rupture, and immune imbalance. CONCLUSIONS AND CLINICAL RELEVANCE Strong hypolipidemic effects of aqTAE and attenuation of these signature atherogenic biomarkers using proteomics highlights the fact that aqTAE may be useful in the prevention and management of atherosclerosis.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Vivek Singh Malik
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Dimple Trikha
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Owais Bhat
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
114
|
L L, X W, Z Y. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. ACTA ACUST UNITED AC 2016; 5. [PMID: 29888120 DOI: 10.4172/2167-0501.1000213] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Lin L
- Institute of Molecular Pharmacology, Wenzhou Medical University, Wenzhou 325035, PR China.,Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang X
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Z
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
115
|
Şimşek Ş, Çetin İ, Çim A, Kaya S. Elevated levels of tissue plasminogen activator and E-selectin in male children with autism spectrum disorder. Autism Res 2016; 9:1241-1247. [DOI: 10.1002/aur.1638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Şeref Şimşek
- Department of Child Psychiatry; Dicle University, Medical School; Diyarbakır Turkey
| | - İhsan Çetin
- Department of Nutrition and Dietetics; Batman University, School of Health Sciences; Batman Turkey
| | - Abdullah Çim
- Department of Medical Genetics; Dicle University, Medical School; Diyarbakır Turkey
| | - Savaş Kaya
- Department of Immunology; Dicle University, Medical School; Diyarbakır Turkey
| |
Collapse
|
116
|
Cyrus BF, Muller WA. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1375-86. [PMID: 26994343 PMCID: PMC4861765 DOI: 10.1016/j.ajpath.2016.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 01/05/2023]
Abstract
A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Bita F Cyrus
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - William A Muller
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
117
|
No Significant Reduction of Circulating Endothelial-Derived and Platelet-Derived Microparticles in Patients with Psoriasis Successfully Treated with Anti-IL12/23. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3242143. [PMID: 27144162 PMCID: PMC4842038 DOI: 10.1155/2016/3242143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Psoriasis is associated with atherosclerosis, in which circulating microparticles play an important role. In severe psoriasis, there was an increase of endothelial- and platelet- microparticles which could be decreased by anti-TNFα. However, whether anti-IL-12/23 treatment would decrease the level of microparticles remains unknown. Our study showed that, despite the clinical improvement of psoriasis after IL-12/13 blockage, the increased levels of circulating CD41a and CD31 microparticles were unchanged after anti-IL-12/23. This result suggested that anti-IL12/23 treatment may not alter the development of cardiovascular disease in patients with psoriasis.
Collapse
|
118
|
Hordijk PL. Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 2016; 73:1591-608. [PMID: 26794844 PMCID: PMC11108429 DOI: 10.1007/s00018-016-2136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
In the process of leukocyte migration from the circulation across the vascular wall, the crosstalk with endothelial cells that line the blood vessels is essential. It is now firmly established that in endothelial cells important signaling events are initiated upon leukocyte adhesion that impinge on the regulation of cell-cell contact and control the efficiency of transendothelial migration. In addition, several external factors such as shear force and vascular stiffness were recently identified as important regulators of endothelial signaling and, consequently, leukocyte transmigration. Here, I review recent insights into endothelial signaling events that are linked to leukocyte migration across the vessel wall. In this field, protein phosphorylation and Rho-mediated cytoskeletal dynamics are still widely studied using increasingly sophisticated mouse models. In addition, activation of tyrosine phosphatases, changes in endothelial cell stiffness as well as different vascular beds have all been established as important factors in endothelial signaling and leukocyte transmigration. Finally, I address less-well-studied but interesting components in the endothelium that also control transendothelial migration, such as the ephrins and their Eph receptors, that provide novel insights in the complexity associated with this process.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
119
|
Gonzalez AM, Cyrus BF, Muller WA. Targeted Recycling of the Lateral Border Recycling Compartment Precedes Adherens Junction Dissociation during Transendothelial Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1387-402. [PMID: 26968345 DOI: 10.1016/j.ajpath.2016.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
Leukocyte transendothelial migration (TEM) requires two major events: local dissociation of adherens junctions manifested as gaps in vascular endothelial (VE)-cadherin staining at the site of TEM and targeted trafficking of the lateral border recycling compartment (LBRC) to the site of TEM. However, the association between LBRC recycling and VE-cadherin gaps remains unknown. We found that when targeting of the LBRC is selectively inhibited using established methods, such as a function blocking anti-platelet endothelial cell adhesion molecule 1 antibody, depolymerizing microtubules, or microinjection of an antibody that inhibits kinesin, VE-cadherin gaps do not form around the blocked leukocyte. This is the first time that the LBRC has been implicated in this process. We obtained similar results for neutrophils and monocytes and in studies using live cell imaging microscopy conducted under fluid shear conditions. Depolymerizing microtubules did not affect the ability of leukocytes to induce tyrosine phosphorylation of VE-cadherin. A VE-cadherin double mutant (Y658F, Y731F) expressed in endothelial cells acted as a dominant negative and inhibited VE-cadherin gap formation and TEM, yet targeting of the LBRC still occurred. These data suggest that targeting of the LBRC to the site of TEM precedes VE-cadherin clearance. Recruitment of the LBRC may play a role in clearing VE-cadherin from the site of TEM.
Collapse
Affiliation(s)
- Annette M Gonzalez
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Bita F Cyrus
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - William A Muller
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois.
| |
Collapse
|
120
|
Newman DK, Fu G, Adams T, Cui W, Arumugam V, Bluemn T, Riese MJ. The adhesion molecule PECAM-1 enhances the TGF-β-mediated inhibition of T cell function. Sci Signal 2016; 9:ra27. [PMID: 26956486 DOI: 10.1126/scisignal.aad1242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the proinflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical TGF-β signaling results in the activation of Smad proteins, which are transcription factors that regulate target gene expression. We found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitated noncanonical (Smad-independent) TGF-β signaling in T cells. Subcutaneously injected tumor cells that are dependent on TGF-β-mediated suppression of immunity for growth grew more slowly in PECAM-1(-/-) mice than in their wild-type counterparts. T cells isolated from PECAM-1(-/-) mice demonstrated relative insensitivity to the TGF-β-dependent inhibition of interferon-γ (IFN-γ) production, granzyme B synthesis, and cellular proliferation. Similarly, human T cells lacking PECAM-1 demonstrated decreased sensitivity to TGF-β in a manner that was partially restored by reexpression of PECAM-1. Co-incubation of T cells with TGF-β and a T cell-activating antibody resulted in PECAM-1 phosphorylation on an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the recruitment of the inhibitory Src homology 2 (SH2) domain-containing tyrosine phosphatase-2 (SHP-2). Such conditions also induced the colocalization of PECAM-1 with the TGF-β receptor complex as identified by coimmunoprecipitation, confocal microscopy, and proximity ligation assays. These studies indicate a role for PECAM-1 in enhancing the inhibitory functions of TGF-β in T cells and suggest that therapeutic targeting of the PECAM-1-TGF-β inhibitory axis represents a means to overcome TGF-β-dependent immunosuppression within the tumor microenvironment.
Collapse
Affiliation(s)
- Debra K Newman
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Guoping Fu
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tamara Adams
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vidhyalakshmi Arumugam
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Theresa Bluemn
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
121
|
Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke CM, Jørgensen C. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal 2016; 9:ra15. [PMID: 26861043 PMCID: PMC6485367 DOI: 10.1126/scisignal.aac5820] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The exit of metastasizing tumor cells from the vasculature, extravasation, is regulated by their dynamic interactions with the endothelial cells that line the internal surface of vessels. To elucidate signals controlling tumor cell adhesion to the endothelium and subsequent transendothelial migration, we performed phosphoproteomic analysis to map cell-specific changes in protein phosphorylation that were triggered by contact between metastatic MDA-MB-231 breast cancer cells and endothelial cells. From the 2669 unique phosphorylation sites identified, 77 and 43 were differentially phosphorylated in the tumor cells and endothelial cells, respectively. The receptor tyrosine kinase ephrin type A receptor 2 (EPHA2) exhibited decreased Tyr(772) phosphorylation in the cancer cells upon endothelial contact. Knockdown of EPHA2 increased adhesion of the breast cancer cells to human umbilical vein endothelial cells (HUVECs) and their transendothelial migration in coculture cell assays, as well as early-stage lung colonization in vivo. EPHA2-mediated inhibition of transendothelial migration of breast cancer cells depended on interaction with the ligand ephrinA1 on HUVECs and phosphorylation of EPHA2-Tyr(772). When EPHA2 phosphorylation dynamics were compared between cell lines of different metastatic ability, EPHA2-Tyr(772) was rapidly dephosphorylated after ephrinA1 stimulation specifically in cells targeting the lung. Knockdown of the phosphatase LMW-PTP reduced adhesion and transendothelial migration of the breast cancer cells. Overall, cell-specific phosphoproteomic analysis provides a bidirectional map of contact-initiated signaling between tumor and endothelial cells that can be further investigated to identify mechanisms controlling the transendothelial cell migration of cancer cells.
Collapse
Affiliation(s)
- Marie Locard-Paulet
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Lindsay Lim
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Giulia Veluscek
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Kelly McMahon
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - John Sinclair
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Antoinette van Weverwijk
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jonathan D Worboys
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer and Centre for Molecular Pathology, Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Clare M Isacke
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Claus Jørgensen
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
122
|
Di Liddo R, Bridi D, Gottardi M, De Angeli S, Grandi C, Tasso A, Bertalot T, Martinelli G, Gherlinzoni F, Conconi MT. Adrenomedullin in the growth modulation and differentiation of acute myeloid leukemia cells. Int J Oncol 2016; 48:1659-69. [PMID: 26847772 DOI: 10.3892/ijo.2016.3370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
Abstract
Adrenomedullin (ADM) is a regulatory peptide endowed with multiple biological effects, including the regulation of blood pressure, cell growth and innate host defence. In the present study, we demonstrated that ADM signaling could be involved in the impaired cellular differentiation of myeloid leukemia cells to mature granulocytes or monocytes by modulating RAMPs/CRLR expression, PI3K/Akt cascade and the ERK/MAPK signaling pathway. When exogenously administered to in vitro cultures of HL60 promyelocytic leukemia cells, ADM was shown to exert a strong proliferative effect with minimal upregulation in the expression level of monocyte antigen CD14. Notably, the experimental inhibition of ADM signaling with inhibitor ADM22-52 promoted a differentiative stimulation towards monocytic and granulocytic lineages. Moreover, based on the expression of CD31 relative to CD38, we hypothesized that an excess of ADM in bone marrow (BM) niche could increase the transendothelial migration of leukemia cells while any inhibitory event of ADM activity could raise cell retention in hyaluronate matrix by upregulating CD38. Taken into consideration the above evidence, we concluded that ADM and ADM22-52 could differently affect the growth of leukemia cells by autocrine/paracrine mechanisms and may have clinical relevance as biological targets for the intervention of tumor progression.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Deborah Bridi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Sergio De Angeli
- Treviso Cord Blood Bank and Hematopoietic Cell Culture Laboratory, Transfusional Center, General Hospital, Treviso, Italy
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giovanni Martinelli
- Institute of Haematology 'L. and A. Seràgnoli', Department of Experimental, Diagnostic and Specialty Medicine, 'S. Orsola-Malpighi' University Hospital, University of Bologna, Bologna, Italy
| | | | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
123
|
Timmerman I, Daniel AE, Kroon J, van Buul JD. Leukocytes Crossing the Endothelium: A Matter of Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:281-329. [PMID: 26940521 DOI: 10.1016/bs.ircmb.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocytes cross the endothelial vessel wall in a process called transendothelial migration (TEM). The purpose of leukocyte TEM is to clear the causing agents of inflammation in underlying tissues, for example, bacteria and viruses. During TEM, endothelial cells initiate signals that attract and guide leukocytes to sites of tissue damage. Leukocytes react by attaching to these sites and signal their readiness to move back to endothelial cells. Endothelial cells in turn respond by facilitating the passage of leukocytes while retaining overall integrity. In this review, we present recent findings in the field and we have endeavored to synthesize a coherent picture of the intricate interplay between endothelial cells and leukocytes during TEM.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
124
|
Structural basis for PECAM-1 homophilic binding. Blood 2015; 127:1052-61. [PMID: 26702061 DOI: 10.1182/blood-2015-07-660092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa member of the immunoglobulin gene superfamily (IgSF) that is present on the surface of circulating platelets and leukocytes, and highly expressed at the junctions of confluent endothelial cell monolayers. PECAM-1-mediated homophilic interactions, known to be mediated by its 2 amino-terminal immunoglobulin homology domains, are essential for concentrating PECAM-1 at endothelial cell intercellular junctions, where it functions to facilitate diapedesis, maintain vascular integrity, and transmit survival signals into the cell. Given the importance of PECAM-1-mediated homophilic interactions in mediating each of these cell physiological events, and to reveal the nature and orientation of the PECAM-1-PECAM-1 homophilic-binding interface, we undertook studies aimed at determining the crystal structure of the PECAM-1 homophilic-binding domain, which is composed of amino-terminal immunoglobulin homology domains 1 and 2 (IgD1 and IgD2). The crystal structure revealed that both IgD1 and IgD2 exhibit a classical IgSF fold, having a β-sandwich topology formed by 2 sheets of antiparallel β strands stabilized by the hallmark disulfide bond between the B and F strands. Interestingly, despite previous assignment to the C2 class of immunoglobulin-like domains, the structure of IgD1 reveals that it actually belongs to the I2 set of IgSF folds. Both IgD1 and IgD2 participate importantly in the formation of the trans homophilic-binding interface, with a total buried interface area of >2300 Å(2). These and other unique structural features of PECAM-1 allow for the development of an atomic-level model of the interactions that PECAM-1 forms during assembly of endothelial cell intercellular junctions.
Collapse
|
125
|
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 2015; 35:96-107. [PMID: 25795503 DOI: 10.1016/j.semnephrol.2015.01.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances.
Collapse
Affiliation(s)
- Sudhanshu Kumar Verma
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, The Roudebush VA Medical Center, Indiana Center for Biological Microscopy, Indianapolis, IN.
| |
Collapse
|
126
|
Altmann J, Sharma S, Lang IM. Advances in our understanding of mechanisms of venous thrombus resolution. Expert Rev Hematol 2015; 9:69-78. [PMID: 26629617 DOI: 10.1586/17474086.2016.1112264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traditionally, venous thrombosis has been seen as the consequence of a regulated cascade of proteolytic steps leading to the polymerization of fibrinogen and fibrin crosslinking that is facilitated by platelets. A new view of thrombosis is providing a more integrated concept, with components of the vascular wall contributing to the vascular remodeling of thrombosis. Angiogenesis and inflammation are two key mechanisms that safeguard venous thrombus resolution and restitution of vascular patency after thrombosis. Disturbance of these processes leads to thrombus persistence and has potentially severe consequences for affected patients. Examples for clinical conditions associated with recurrent or persisting venous thrombosis are post-thrombotic syndrome or chronic thromboembolic pulmonary hypertension. Recently, studies using animal models of venous thrombosis have contributed to a better understanding of thrombus non-resolution that will eventually lead to modification of current treatment concepts. For example, recent data suggest that innate immunity is involved in the modification of thrombosis.
Collapse
Affiliation(s)
- Johanna Altmann
- a Division of Cardiology, Department of Internal Medicine II , Vienna General Hospital, Medical University of Vienna , Vienna , Austria
| | - Smriti Sharma
- a Division of Cardiology, Department of Internal Medicine II , Vienna General Hospital, Medical University of Vienna , Vienna , Austria
| | - Irene M Lang
- a Division of Cardiology, Department of Internal Medicine II , Vienna General Hospital, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
127
|
Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells. Mediators Inflamm 2015; 2015:737310. [PMID: 26663990 PMCID: PMC4664814 DOI: 10.1155/2015/737310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023] Open
Abstract
An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP) calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions.
Collapse
|
128
|
Muller WA. Localized signals that regulate transendothelial migration. Curr Opin Immunol 2015; 38:24-9. [PMID: 26584476 DOI: 10.1016/j.coi.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
Abstract
Transendothelial migration (TEM) of leukocytes is the step in leukocyte emigration in which the leukocyte actually leaves the blood vessel to carry out its role in the inflammatory response. It is therefore, arguably the most critical step in emigration. This review focuses on two of the many aspects of this process that have seen important recent developments. The adhesion molecules, PECAM (CD31) and CD99 that regulate two major steps in TEM, do so by regulating specific signals. PECAM initiates the signaling pathway responsible for the calcium flux that is required for TEM. Calcium enters through the cation channel TRPC6 and recruits the first wave of trafficking of membrane from the lateral border recycling compartment (LBRC). CD99 signals through soluble adenylate cyclase to activate protein kinase A to recruit a second wave of LBRC trafficking. Another process that is critical for TEM is transient removal of VE-cadherin from the site of TEM. However, the local signaling pathways that are responsible for this appear to be different from those that open the junctions to increase vascular permeability.
Collapse
Affiliation(s)
- William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60201, USA.
| |
Collapse
|
129
|
Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. Mediators Inflamm 2015; 2015:946509. [PMID: 26568666 PMCID: PMC4629053 DOI: 10.1155/2015/946509] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022] Open
Abstract
Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.
Collapse
|
130
|
Abstract
The neutrophil transmigration across the blood endothelial cell barrier represents the prerequisite step of innate inflammation. Neutrophil recruitment to inflamed tissues occurs in a well-defined stepwise manner, which includes elements of neutrophil rolling, firm adhesion, and crawling onto the endothelial cell surface before transmigrating across the endothelial barrier. This latter step known as diapedesis can occur at the endothelial cell junction (paracellular) or directly through the endothelial cell body (transcellular). The extravasation cascade is controlled by series of engagement of various adhesive modules, which result in activation of bidirectional signals to neutrophils and endothelial cells for adequate cellular response. This review will focus on recent advances in our understanding of mechanism of leukocyte crawling and diapedesis, with an emphasis on leukocyte-endothelial interactions and the signaling pathways they transduce to determine the mode of diapedesis, junctional or nonjunctional. I will also discuss emerging evidence highlighting key differences in the two modes of diapedesis and why it is clinically important to understand specificity in the regulation of diapedesis.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
131
|
Ampofo E, Rudzitis-Auth J, Dahmke IN, Rössler OG, Thiel G, Montenarh M, Menger MD, Laschke MW. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2123-36. [DOI: 10.1016/j.bbadis.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
|
132
|
Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. ACTA ACUST UNITED AC 2015; 212:1883-99. [PMID: 26392222 PMCID: PMC4612081 DOI: 10.1084/jem.20150353] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Weber et al. identify TRPC6 as the calcium channel mediating the transient increase in endothelial cytosolic free calcium concentration required for transendothelial migration of leukocytes during the inflammatory response. Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions.
Collapse
Affiliation(s)
- Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Fei Han
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
133
|
Abstract
AbstractThe bovine mammary gland is a dynamic and complex organ composed of various cell types that work together for the purpose of milk synthesis and secretion. A layer of endothelial cells establishes the blood–milk barrier, which exists to facilitate the exchange of solutes and macromolecules necessary for optimal milk production. During bacterial challenge, however, endothelial cells divert some of their lactation function to protect the underlying tissue from damage by initiating inflammation. At the onset of inflammation, endothelial cells tightly regulate the movement of plasma components and leukocytes into affected tissue. Unfortunately, endothelial dysfunction as a result of exacerbated or sustained inflammation can negatively affect both barrier integrity and the health of surrounding extravascular tissue. The objective of this review is to highlight the role of endothelial cells in supporting milk production and regulating optimal inflammatory responses. The consequences of endothelial dysfunction and sustained inflammation on milk synthesis and secretion are discussed. Given the important role of endothelial cells in orchestrating the inflammatory response, a better understanding of endothelial function during mastitis may support development of targeted therapies to protect bovine mammary tissue and mammary endothelium.
Collapse
|
134
|
Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res 2015; 107:310-20. [PMID: 25987544 PMCID: PMC4592322 DOI: 10.1093/cvr/cvv145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leucocyte transendothelial migration (TEM) involves a co-operative series of interactions between surface molecules on the leucocyte and cognate counter-ligands on the endothelial cell. These interactions set up a cascade of signalling events inside the endothelial cell that both allow for the junctions to loosen and for membrane to be recruited from the lateral border recycling compartment (LBRC). The LBRC is thought to provide an increased surface area and unligated receptors to the leucocyte to continue the process. The relative importance of the individual adhesion/signalling molecules that promote transmigration may vary depending on the type of leucocyte, the vascular bed, the inflammatory stimulus, and the stage of the inflammatory response. However, the molecular interactions between leucocyte and endothelial cell activate signalling pathways that disengage the adherens and tight junctions and recruit the LBRC to the site of transmigration. With the exception of disengaging the junctions, similar molecules and mechanisms promote transcellular migration as paracellular migration of leucocytes. This review will discuss the molecular interactions and signalling pathways that regulate transmigration, and the common themes that emerge from studying TEM of different leucocyte subsets under different inflammatory conditions. We will also raise some unanswered questions in need of future research.
Collapse
Affiliation(s)
- William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 3-140, 303 East Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
135
|
Tchalla AE, Wellenius GA, Travison TG, Gagnon M, Iloputaife I, Dantoine T, Sorond FA, Lipsitz LA. Circulating vascular cell adhesion molecule-1 is associated with cerebral blood flow dysregulation, mobility impairment, and falls in older adults. Hypertension 2015; 66:340-6. [PMID: 26056332 PMCID: PMC4807019 DOI: 10.1161/hypertensionaha.115.05180] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022]
Abstract
Soluble vascular cell adhesion molecule-1 (sVCAM-1) is associated with hypertension, vascular inflammation, and systemic endothelial dysfunction. We evaluated whether elevated plasma sVCAM-1 is associated with impaired cerebrovascular function and mobility impairments in elderly people. We studied the cross-sectional relationships between plasma sVCAM-1 level, gait speed, and cerebrovascular hemodynamics, and its longitudinal relationship with falls in 680 community-dwelling participants aged ≥65 years in the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) Boston Study. Falls were recorded prospectively for 1 year on daily calendars. sVCAM-1 was measured by ELISA assay and beat-to-beat blood flow velocity in the middle cerebral artery during rest and in response to changes in end-tidal CO2 was measured by transcranial Doppler ultrasound. sVCAM-1 concentration was 1094±340 ng/mL in normotensives, 1195±438 ng/mL in controlled hypertensives, and 1250±445 ng/mL in uncontrolled hypertensives (P=0.008). The mean resting blood flow velocity and cerebral vasomotor range were, respectively, 41.0±10.3 cm/s and 1.3±0.4 cm/s per millimeter of mercury. Elevated sVCAM-1 levels indicative of endothelial dysfunction were associated with reduced resting blood flow velocity (P=0.017) and cerebral vasomotor range (P=0.0048). Elevated sVCAM-1 levels were associated with slower gait speed (<0.8 m/s; odds ratio, 3.01; 95% confidence interval, 1.56-5.83; P=0.0011) and an increased odds of injurious falls (odds ratio, 2.4; 95% confidence interval, 1.4-4.2; P=0.0028). An elevated sVCAM-1 level may be a marker of cerebral blood flow dysregulation because of endothelial damage from hypertension. It may also signal the presence of cerebral microvascular disease and its clinical consequences, including slow gait speed and falls.
Collapse
Affiliation(s)
- Achille E Tchalla
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Gregory A Wellenius
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Thomas G Travison
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Margaret Gagnon
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Ikechukwu Iloputaife
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Thierry Dantoine
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Farzaneh A Sorond
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.)
| | - Lewis A Lipsitz
- From the Institute for Aging Research, Hebrew SeniorLife, Boston, MA (A.E.T., T.G.T., M.G., L.A.L); Beth Israel Deaconess Medical Center, Boston, MA (A.E.T., T.G.T., L.A.L.); Harvard Medical School, Boston, MA (A.E.T., T.G.T., L.A.L.); Limoges University, Limoges, France (A.E.T., T.D.); IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Geriatric Medicine Department, CHU Limoges, Limoges, France (A.E.T., T.D.); Brown University School of Public Health, Providence, MA (G.A.W.); and Stroke Division, Department of Neurology, Brigham and Women's Hospital, Boston, MA (F.A.S.).
| |
Collapse
|
136
|
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107:321-30. [PMID: 25990461 PMCID: PMC4592323 DOI: 10.1093/cvr/cvv147] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Monocytes fundamentally contribute to immune surveillance and the inflammatory response in immunoinflammatory diseases like atherosclerosis. Recruitment of these cells to the site of injury requires their trafficking across the blood vessel wall. A series of events, including capture, rolling, slow rolling, arrest, adhesion strengthening, and lateral locomotion, precede monocyte transmigration. Recent investigations have revealed new aspects of this cascade. This article revisits some conventional paradigms and selectively highlights new findings, including novel insights into monocyte differentiation and recently identified functional mediators, signalling pathways, and new structural aspects of monocyte extravasation. The emerging roles of endothelial junctional molecules like vascular endothelial-cadherin and the junctional adhesion molecule family, adhesion molecules such as intercellular adhesion molecule-1, molecules localized to the lateral border recycling compartment like cluster of differentiation 99, platelet/endothelial cell adhesion molecule-1, and poliovirus receptor (CD155), as well as other cell surface molecules such as cluster of differentiation 146 and ephrins in transendothelial migration are discussed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| |
Collapse
|
137
|
Huang J, Kast J. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5. J Proteome Res 2015; 14:3015-26. [PMID: 26159767 DOI: 10.1021/acs.jproteome.5b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Collapse
Affiliation(s)
- Jiqing Huang
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| | - Juergen Kast
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| |
Collapse
|
138
|
Chacko AM, Han J, Greineder CF, Zern BJ, Mikitsh JL, Nayak M, Menon D, Johnston IH, Poncz M, Eckmann DM, Davies PF, Muzykantov VR. Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS NANO 2015; 9:6785-6793. [PMID: 26153796 PMCID: PMC4761649 DOI: 10.1021/nn505672x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jingyan Han
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin F. Greineder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John L. Mikitsh
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Madhura Nayak
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Divya Menon
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian H. Johnston
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Mortimer Poncz
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - David M. Eckmann
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Peter F. Davies
- Department of Pathology and Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
139
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
140
|
Tchalla AE, Wellenius GA, Sorond FA, Travison TG, Dantoine T, Lipsitz LA. Elevated circulating vascular cell Adhesion Molecule-1 (sVCAM-1) is associated with concurrent depressive symptoms and cerebral white matter Hyperintensities in older adults. BMC Geriatr 2015; 15:62. [PMID: 26040277 PMCID: PMC4453284 DOI: 10.1186/s12877-015-0063-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating vascular adhesion molecule-1 (sVCAM-1) is a presumed marker of endothelial activation and dysfunction, but little is known about its association with mood. We hypothesized that elevated plasma concentrations of sVCAM-1 may be a marker of depressive symptoms due to cerebral vascular disease. METHODS We studied 680 community-dwelling participants in the MOBILIZE Boston Study, aged 65 years and older. sICAM-1 and sVCAM-1 were measured by ELISA assay and depressive symptoms were assessed during home interviews using the Revised Center for Epidemiological Studies Depression Scale (CESD-R). Cerebral White Matter Hyperintensities (WMHs) were quantified by MRI in a subgroup of 25 participants. RESULTS One hundred seventy nine (27 %) subjects had a CESD-R Score ≥ 16, indicative of depressive symptoms. The mean sVCAM-1 concentration (±SD) was 1176 ± 417 ng/mL in a group with CESD-R Scores <16 and 1239 ± 451 ng/mL in those with CESD-R Scores ≥16 (p = 0.036). CESD-R Score was positively associated with sVCAM-1 (r = 0.11, p = 0.004). The highest quintile of sVCAM-1, which is indicative of endothelial dysfunction, was significantly associated with depressive symptoms compared to the lowest quintile (OR = 1.97 (1.14-3.57) p = 0.015). In a subset of subjects, sVCAM-1 concentration was positively correlated with cerebral WMHs volume (p = 0.018). CONCLUSIONS The association between high levels of sVCAM-1 and depressive symptoms may be due to endothelial dysfunction from cerebral microvascular damage. Future longitudinal studies are needed to determine whether sVCAM-1 can serve as a biomarker for cerebrovascular causes of depression.
Collapse
Affiliation(s)
- Achille E Tchalla
- Institute for Aging Research, Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
- Harvard Medical School, Boston, Massachusetts, USA.
- Geriatric Medicine Department, IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Limoges University, CHU Limoges, Limoges, F-87025, France.
| | | | - Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, 45 Francis St, Boston, MA, 02115, USA.
| | - Thomas G Travison
- Institute for Aging Research, Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Thierry Dantoine
- Geriatric Medicine Department, IFR 145 GEIST; EA 6310 HAVAE (Disability, Activity, Aging, Autonomy and Environment), Limoges University, CHU Limoges, Limoges, F-87025, France.
| | - Lewis A Lipsitz
- Institute for Aging Research, Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
- Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
141
|
Totonchy JE, Clepper L, Phillips KG, McCarty OJT, Moses AV. CXCR7 expression disrupts endothelial cell homeostasis and causes ligand-dependent invasion. Cell Adh Migr 2015; 8:165-76. [PMID: 24710021 DOI: 10.4161/cam.28495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The homeostatic function of endothelial cells (EC) is critical for a number of physiological processes including vascular integrity, immunity, and wound healing. Indeed, vascular abnormalities resulting from EC dysfunction contribute to the development and spread of malignancies. The alternative SDF-1/CXCL12 receptor CXCR7 is frequently and specifically highly expressed in tumor-associated vessels. In this study, we investigate whether CXCR7 contributes to vascular dysfunction by specifically examining the effect of CXCR7 expression on EC barrier function and motility. We demonstrate that CXCR7 expression in EC results in redistribution of CD31/PECAM-1 and loss of contact inhibition. Moreover, CXCR7+ EC are deficient in barrier formation. We show that CXCR7-mediated motility has no influence on angiogenesis but contributes to another motile process, the invasion of CXCR7+ EC into ligand-rich niches. These results identify CXCR7 as a novel manipulator of EC barrier function via alteration of PECAM-1 homophilic junctions. As such, aberrant expression of CXCR7 in the vasculature has the potential to disrupt vascular homeostasis and could contribute to vascular dysfunction in cancer systems.
Collapse
Affiliation(s)
- Jennifer E Totonchy
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| | - Lisa Clepper
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| | - Kevin G Phillips
- Department of Biomedical Engineering; Oregon Health and Science University; Portland, OR USA
| | - Owen J T McCarty
- Department of Biomedical Engineering; Oregon Health and Science University; Portland, OR USA
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| |
Collapse
|
142
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
143
|
McCall AD, Baker OJ. Characterization of Angiogenesis and Lymphangiogenesis in Human Minor Salivary Glands with Sjögren's Syndrome. J Histochem Cytochem 2015; 63:340-9. [PMID: 25636309 DOI: 10.1369/0022155415573323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/21/2015] [Indexed: 01/30/2023] Open
Abstract
Angiogenesis has been proposed to play a role in the inflammation observed in Sjögren's Syndrome (SS). However, no studies have validated the degree of angiogenesis in salivary glands with SS. Therefore, the goal of this study was to determine the presence and localization of angiogenesis and lymphangiogenesis in salivary glands with SS. We used frozen tissue sections from human minor salivary glands (hMSG) with and without SS in our analyses. To investigate signs of angiogenesis, hMSG tissue lysates were used to detect levels of the pro-angiogenic protein vascular endothelial growth factor (VEGF) by western blot analyses. Additionally, we labeled blood vessels using antibodies specific to platelet endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand Factor (vWF) to determine blood vessel organization and volume fraction using fluorescence microscopy. Lymphatic vessel organization and volume fraction were determined using antibodies specific to lymphatic vessel endothelial hyaluronan receptor (LYVE-1). Our results suggest that expression levels of VEGF are decreased in hMSG with SS as compared with controls. Interestingly, there were no significant differences in blood or lymphatic vessel organization or volume fraction between hMSG with and without SS, suggesting that angiogenesis and lymphangiogenesis have little impact on the progression of SS.
Collapse
Affiliation(s)
- Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, The State University of New York at Buffalo, Buffalo, New York (ADM)
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah (OJB)
| |
Collapse
|
144
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
145
|
Abstract
There is no "response" in either the innate or adaptive immune response unless leukocytes cross blood vessels. They do this through the process of diapedesis, in which the leukocyte moves in ameboid fashion through tightly apposed endothelial borders (paracellular transmigration) and in some cases through the endothelial cell itself (transcellular migration). This review summarizes the steps leading up to diapedesis, then focuses on the molecules and mechanisms responsible for transendothelial migration. Surprisingly, many of the same molecules and mechanisms that regulate paracellular migration also control transcellular migration, including a major role for membrane from the recently described lateral border recycling compartment. A hypothesis that integrates the various known mechanisms of transmigration is proposed.
Collapse
Affiliation(s)
- W A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
146
|
Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 2014; 14:199-208. [PMID: 24467208 PMCID: PMC3929014 DOI: 10.2174/1566524014666140128104541] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The low molecular weight GTP-binding protein RhoA regulates many cellular events, including cell migration, organization of the cytoskeleton, cell adhesion, progress through the cell cycle and gene expression. Physical forces influence these cellular processes in part by regulating RhoA activity through mechanotransduction of cell adhesion molecules (e.g. integrins, cadherins, Ig superfamily molecules). RhoA activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that are themselves regulated by many different signaling pathways. Significantly, the engagement of many cell adhesion molecules can affect RhoA activity in both positive and negative ways. In this brief review, we consider how RhoA activity is regulated downstream from cell adhesion molecules and mechanical force. Finally, we highlight the importance of mechanotransduction signaling to RhoA in normal cell biology as well as in certain pathological states.
Collapse
Affiliation(s)
| | | | - K Burridge
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
147
|
Mooren OL, Li J, Nawas J, Cooper JA. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell 2014; 25:4115-29. [PMID: 25355948 PMCID: PMC4263454 DOI: 10.1091/mbc.e14-05-0976] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin assembly downstream of WAVE2 in endothelial cells is necessary to engage transmigrating lymphocytes, promote the transcellular route of migration, and close junctional pores after the lymphocyte moves away. In addition, WAVE2 is necessary for endothelial monolayer integrity. The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Jinmei Li
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - Julie Nawas
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110
| |
Collapse
|
148
|
|
149
|
Ao M, Miyauchi M, Inubushi T, Kitagawa M, Furusho H, Ando T, Ayuningtyas NF, Nagasaki A, Ishihara K, Tahara H, Kozai K, Takata T. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice. PLoS One 2014; 9:e110519. [PMID: 25334003 PMCID: PMC4204882 DOI: 10.1371/journal.pone.0110519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg), on pathogenesis of atherosclerosis in obesity. METHODS In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD) or normal chow diet (CD), as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1) were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA) induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.
Collapse
Affiliation(s)
- Min Ao
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nurina Febriyanti Ayuningtyas
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuhiro Nagasaki
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
150
|
Sumagin R, Sarelius IH. Emerging understanding of roles for arterioles in inflammation. Microcirculation 2014; 20:679-92. [PMID: 23701383 DOI: 10.1111/micc.12068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
Arterioles, capillaries, and venules all actively change their cellular functions and phenotypes during inflammation in ways that are essential for maintenance of homeostasis and self-defense, and are also associated with many inflammatory disorders. ECs, together with pericytes and ECM proteins, can regulate blood flow, the coagulation cascade, fluid and solute exchange, and leukocyte trafficking. While capillary and venular functions in inflammation are well characterized, the arteriolar contribution to inflammation has only recently come into focus. Arterioles differ from venules in structure, EC morphology, shear environment, expression, and distribution of surface ligands; hence, regulation and function of arteriolar wall cells during inflammation may also be distinct from venules. Recent work indicates that in response to proinflammatory stimuli, arterioles alter barrier function, and support leukocyte and platelet interactions through upregulation of adhesion molecules. This suggests that in addition to their role in blood flow regulation, arterioles may also participate in inflammatory responses. In this review, we will discuss mechanisms that characterize arteriolar responses to proinflammatory stimuli. We will detail how distinct arteriolar features contribute to regulation of barrier function and leukocyte-EC interactions in inflammation, and further highlight the potential priming effects of arteriolar responses on venular function and progression of inflammatory responses.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|