101
|
Van Welden S, Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 2017; 14:596-611. [PMID: 28853446 DOI: 10.1038/nrgastro.2017.101] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.
Collapse
Affiliation(s)
- Sophie Van Welden
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| | - Andrew C Selfridge
- Robarts Clinical Trials West, 4350 Executive Drive 210, San Diego, California 92121, USA
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| |
Collapse
|
102
|
Müller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Ayata CK, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Lazarowski ER, Blackburn MR, Idzko M. P2Y 6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis. Front Immunol 2017; 8:1028. [PMID: 28878780 PMCID: PMC5572280 DOI: 10.3389/fimmu.2017.01028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5'-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.
Collapse
Affiliation(s)
- Tobias Müller
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susanne Fay
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
| | - Giuseppe Lungarella
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | - Davide Ferrari
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bernard Robaye
- IRIBHM and Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Eduardo R. Lazarowski
- Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
103
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
104
|
Hall CH, Campbell EL, Colgan SP. Neutrophils as Components of Mucosal Homeostasis. Cell Mol Gastroenterol Hepatol 2017; 4:329-337. [PMID: 28884136 PMCID: PMC5581871 DOI: 10.1016/j.jcmgh.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Inflammatory responses in the intestinal mucosa inevitably result in the recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]). Epithelial cells that line the mucosa play an integral role in the recruitment, maintenance, and clearance of PMNs at sites of inflammation. The consequences of such PMN-epithelial interactions often determine tissue responses and, ultimately, organ function. For this reason, there is significant interest in understanding how PMNs function in the mucosa during inflammation. Recent studies have shown that PMNs play a more significant role in molding of the immune response than previously thought. Here, we review the recent literature regarding the contribution of PMNs to the development and resolution of inflammation, with an emphasis on the role of the tissue microenvironment and pathways for promoting epithelial restitution. These studies highlight the complex nature of inflammatory pathways and provide important insight into the difficulties of treating mucosal inflammation.
Collapse
Key Words
- ATP, adenosine triphosphatase
- CGD, chronic granulomatous disease
- DMOG, dimethyloxalylglycine
- Epithelium
- GI, gastrointestinal
- HIF, hypoxia-inducible factor
- Hypoxia-Inducible Factor
- IBD, inflammatory bowel disease
- ICAM-1, intracellular adhesion molecule-1
- IL, interleukin
- Inflammation
- Metabolism
- Microbiota
- NADPH, reduced nicotinamide adenine dinucleotide phosphate
- PHD, prolyl-hydroxylase
- PMN, polymorphonuclear leukocyte
- SIRPα, signal-regulatory protein-α
Collapse
Affiliation(s)
- Caroline H.T. Hall
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric L. Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Centre for Experimental Medicine, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Sean P. Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Correspondence Address correspondence to: Sean P. Colgan, PhD, University of Colorado School of Medicine, 12700 East 19th Avenue, Room 10025, Aurora, Colorado 80045. fax: (303) 724-7243.University of Colorado School of Medicine12700 East 19th AvenueRoom 10025AuroraColorado 80045
| |
Collapse
|
105
|
Campbell EL, Kao DJ, Colgan SP. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunol Rev 2017; 273:112-20. [PMID: 27558331 DOI: 10.1111/imr.12456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in the discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
Affiliation(s)
- Eric L Campbell
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P Colgan
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
106
|
Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and Mucosal Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:77-100. [PMID: 27193451 DOI: 10.1146/annurev-pathol-012615-044231] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called "inflammatory hypoxia," which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Eric L Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
107
|
Cho K, Min SI, Ahn S, Min SK, Ahn C, Yu KS, Jang IJ, Cho JY, Ha J. Integrative Analysis of Renal Ischemia/Reperfusion Injury and Remote Ischemic Preconditioning in Mice. J Proteome Res 2017. [PMID: 28627174 DOI: 10.1021/acs.jproteome.7b00167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Remote ischemic preconditioning (RIPC) is a strategy to induce resistance in a target organ against the oxidative stress and injury caused by ischemia and reperfusion (IR). RIPC harnesses the body's endogenous protective capabilities through brief episodes of IR applied in organs remote from the target. Few studies have analyzed this phenomenon in the kidney. Furthermore, the window of protection representing RIPC efficacy has not been fully elucidated. Here, we performed a multiomics study to specify those associated with protective effects of RIPC against the IR injury. A total of 30 mice were divided to four groups: sham, IR only, late RIPC + IR, and early RIPC + IR. We found that IR clearly led to tubular injury, whereas both preconditioning groups exhibited attenuated injury after the insult. In addition, renal IR injury produced changes of the metabolome in kidney, serum, and urine specimens. Furthermore, distinctive mRNA and associated protein expression changes supported potential mechanisms. Our findings revealed that RIPC effectively reduces renal damage after IR and that the potential mechanisms differed between the two time windows of protection. These results may potentially be extended to humans to allow non- or minimally invasive diagnosis of renal IR injury and RIPC efficacy.
Collapse
Affiliation(s)
- Kumsun Cho
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital , Seoul 03080, Republic of Korea
| | - Sang-Il Min
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Sanghyun Ahn
- Department of Surgery, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Kyung-Sang Yu
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital , Seoul 03080, Republic of Korea
| | - In-Jin Jang
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital , Seoul 03080, Republic of Korea
| | - Joo-Youn Cho
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital , Seoul 03080, Republic of Korea
| | - Jongwon Ha
- Metabolomics Medical Research Center (MMRC), Seoul National University College of Medicine , Seoul 03080, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| |
Collapse
|
108
|
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55:62-74. [DOI: 10.1016/j.mam.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
109
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|
110
|
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges. Molecules 2017; 22:molecules22050752. [PMID: 28481238 PMCID: PMC6154114 DOI: 10.3390/molecules22050752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A, A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors’ activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Collapse
|
111
|
Bartman CM, Oyama Y, Brodsky K, Khailova L, Walker L, Koeppen M, Eckle T. Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms. PLoS One 2017; 12:e0176243. [PMID: 28448534 PMCID: PMC5407766 DOI: 10.1371/journal.pone.0176243] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
A wide search for ischemic preconditioning (IPC) mechanisms of cardioprotection identified the light elicited circadian rhythm protein Period 2 (Per2) to be cardioprotective. Studies on cardiac metabolism found a key role for light elicited Per2 in mediating metabolic dependence on carbohydrate metabolism. To profile Per2 mediated pathways following IPC of the mouse heart, we performed a genome array and identified 352 abundantly expressed and well-characterized Per2 dependent micro RNAs. One prominent result of our in silico analysis for cardiac Per2 dependent micro RNAs revealed a selective role for miR-21 in the regulation of hypoxia and metabolic pathways. Based on this Per2 dependency, we subsequently found a diurnal expression pattern for miR-21 with higher miR-21 expression levels at Zeitgeber time (ZT) 15 compared to ZT3. Gain or loss of function studies for miR-21 using miRNA mimics or miRNA inhibitors and a Seahorse Bioanalyzer uncovered a critical role of miR-21 for cellular glycolysis, glycolytic capacity, and glycolytic reserve. Exposing mice to intense light, a strategy to induce Per2, led to a robust induction of cardiac miR-21 tissue levels and decreased infarct sizes, which was abolished in miR-21-/- mice. Similarly, first translational studies in humans using intense blue light exposure for 5 days in healthy volunteers resulted in increased plasma miR-21 levels which was associated with increased phosphofructokinase activity, the rate-limiting enzyme in glycolysis. Together, we identified miR-21 as cardioprotective downstream target of Per2 and suggest intense light therapy as a potential strategy to enhance miR-21 activity and subsequent carbohydrate metabolism in humans.
Collapse
Affiliation(s)
- Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
| | - Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Kelley Brodsky
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
| | - Ludmila Khailova
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
| | - Lori Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
| | - Michael Koeppen
- Department of Anesthesiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- Division of Cardiology, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
112
|
Purinergic control of red blood cell metabolism: novel strategies to improve red cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:535-542. [PMID: 28488967 DOI: 10.2450/2017.0366-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023]
Abstract
Transfusion of stored blood is regarded as one of the great advances in modern medicine. However, during storage in the blood bank, red blood cells (RBCs) undergo a series of biochemical and biomechanical changes that affect cell morphology and physiology and potentially impair transfusion safety and efficacy. Despite reassuring evidence from clinical trials, it is universally accepted that the storage lesion(s) results in the altered physiology of long-stored RBCs and helps explain the rapid clearance of up to one-fourth of long-stored RBCs from the recipient's bloodstream at 24 hours after administration. These considerations explain the importance of understanding and mitigating the storage lesion. With the emergence of new technologies that have enabled large-scale and in-depth screening of the RBC metabolome and proteome, recent studies have provided novel insights into the molecule-level metabolic changes underpinning the accumulation of storage lesions to RBCs in the blood bank and alternative storage strategies to mitigate such lesion(s). These approaches borrow from recent insights on the biochemistry of RBC adaptation to high altitude hypoxia. We recently conducted investigations in genetically modified mice and revealed novel insights into the role of adenosine signalling in response to hypoxia as a previously unrecognised cascade regulating RBC glucose metabolism and increasing O2 release, while decreasing inflammation and tissue injuries in animal models. Here, we will discuss the molecular mechanisms underlying the role of purinergic molecules, including adenosine and adenosine triphosphate in manipulating RBCs and blood vessels in response to hypoxia. We will also speculate about new therapeutic possibilities to improve the quality of stored RBCs and the prognosis after transfusion.
Collapse
|
113
|
Chun C, Zheng L, Colgan SP. Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radic Biol Med 2017; 105:86-92. [PMID: 27687211 PMCID: PMC5797701 DOI: 10.1016/j.freeradbiomed.2016.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023]
Abstract
In recent years, studies in the gastrointestinal (GI) mucosa have taught us a number of important lessons related to tissue oxygenation and metabolism in health and disease. The highly vascularized mucosa lies immediately adjacent to an anaerobic lumen containing trillions of metabolically active microbes (i.e. the microbiome) that results in one of the more austere tissue microenvironments in the body. These studies have also implicated a prominent role for oxygen metabolism and hypoxia in inflammation, so called "inflammatory hypoxia", that results from the activation of multiple oxygen consuming enzymes. Inflammation-associated shifts in the composition of the microbiome and microbial-derived metabolites have revealed a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of key target genes that promote inflammatory resolution. Analyses of these pathways have provided a multitude of opportunities for understanding basic mechanisms of both homeostasis and disease and have defined new targets for intervention. Here, we review recent advances in our understanding of metabolic influences on host-microbe interactions in the GI mucosa.
Collapse
Affiliation(s)
- Carlene Chun
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leon Zheng
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
114
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
115
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
116
|
Hypoxia and inflammatory bowel disease. Microbes Infect 2017; 19:210-221. [DOI: 10.1016/j.micinf.2016.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
|
117
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017; 276:121-144. [PMID: 28258700 PMCID: PMC5338647 DOI: 10.1111/imr.12528] [Citation(s) in RCA: 669] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - Simon C. Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
118
|
Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca 2+ influx through cyclic nucleotide-gated channels. J Physiol 2017; 595:2497-2517. [PMID: 28075020 DOI: 10.1113/jp273150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Willem Bintig
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anne Klett
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Ina G Siller
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Babette Weksler
- Weill Medical College of Cornell University, New York, NY, USA
| | - Ignacio Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
119
|
Vavricka S, Ruiz PA, Scharl S, Biedermann L, Scharl M, de Vallière C, Lundby C, Wenger RH, Held L, Merz TM, Gassmann M, Lutz T, Kunz A, Bron D, Fontana A, Strauss L, Weber A, Fried M, Rogler G, Zeitz J. Protocol for a prospective, controlled, observational study to evaluate the influence of hypoxia on healthy volunteers and patients with inflammatory bowel disease: the Altitude IBD Study. BMJ Open 2017; 7:e013477. [PMID: 28057654 PMCID: PMC5223677 DOI: 10.1136/bmjopen-2016-013477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic intestinal disorder, often leading to an impaired quality of life in affected patients. The importance of environmental factors in the pathogenesis of IBD, including their disease-modifying potential, is increasingly recognised. Hypoxia seems to be an important driver of inflammation, as has been reported by our group and others. The aim of the study is to evaluate if hypoxia can alter disease activity of IBD measured by Harvey-Bradshaw Activity Index in Crohn's disease (increase to ≥5 points) and the partial Mayo Score for ulcerative colitis (increase to ≥2 points). To test the effects of hypoxia under standardised conditions, we designed a prospective and controlled investigation in healthy controls and patients with IBD in stable remission. METHODS AND ANALYSIS This is a prospective, controlled and observational study. Participants undergo a 3-hour exposure to hypoxic conditions simulating an altitude of 4000 metres above sea level (m.a.s.l.) in a hypobaric pressure chamber. Clinical parameters, as well as blood and stool samples and biopsies from the sigmoid colon are collected at subsequent time points. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of the Kanton Zurich (reference KEK-ZH-number 2013-0284). The results will be published in a peer-reviewed journal and shared with the worldwide medical community. TRIALS REGISTRATION NUMBER NCT02849821; Pre-results.
Collapse
Affiliation(s)
- Stephan Vavricka
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Division of Gastroenterology, Triemli Hospital, Zurich, Switzerland
| | - Pedro A Ruiz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Sylvie Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Leonhard Held
- Institute of Biostatistics, University of Zurich, Zurich, Switzerland
| | - Tobias M Merz
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Thomas Lutz
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich, Switzerland
| | - Andres Kunz
- Swiss Aeromedical Center, Dubendorf, Switzerland
| | - Denis Bron
- Swiss Aeromedical Center, Dubendorf, Switzerland
| | - Adriano Fontana
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Strauss
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Achim Weber
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
120
|
Liu H, Zhang Y, Wu H, D'Alessandro A, Yegutkin GG, Song A, Sun K, Li J, Cheng NY, Huang A, Edward Wen Y, Weng TT, Luo F, Nemkov T, Sun H, Kellems RE, Karmouty-Quintana H, Hansen KC, Zhao B, Subudhi AW, Jameson-Van Houten S, Julian CG, Lovering AT, Eltzschig HK, Blackburn MR, Roach RC, Xia Y. Beneficial Role of Erythrocyte Adenosine A2B Receptor-Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia. Circulation 2016; 134:405-21. [PMID: 27482003 DOI: 10.1161/circulationaha.116.021311] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.
Collapse
Affiliation(s)
- Hong Liu
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Yujin Zhang
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Hongyu Wu
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Angelo D'Alessandro
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Gennady G Yegutkin
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Anren Song
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Kaiqi Sun
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Jessica Li
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Ning-Yuan Cheng
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Aji Huang
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Yuan Edward Wen
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Ting Ting Weng
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Fayong Luo
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Travis Nemkov
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Hong Sun
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Rodney E Kellems
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Harry Karmouty-Quintana
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Kirk C Hansen
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Bihong Zhao
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Andrew W Subudhi
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Sonja Jameson-Van Houten
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Colleen G Julian
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Andrew T Lovering
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Holger K Eltzschig
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Michael R Blackburn
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Robert C Roach
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.)
| | - Yang Xia
- From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (A.D., T.N., K.C.H.); Medicity Research Laboratory, University of Turku, Turku, Finland (G.G.Y.); Altitude Research Center, Department of Emergency Medicine (A.W.S., S.J.-V.H., C.G.J., R.C.R.), and Organ Protection Program, Department of Anesthesiology (H.K.E.), University of Colorado School of Medicine, Aurora; and Department of Human Physiology, University of Oregon, Eugene (A.TL.).
| |
Collapse
|
121
|
Sepúlveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 2016; 166:92-99. [DOI: 10.1016/j.lfs.2016.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
|
122
|
Tak E, Jung DH, Kim SH, Park GC, Jun DY, Lee J, Jung BH, Kirchner VA, Hwang S, Song GW, Lee SG. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure. Toxicol Appl Pharmacol 2016; 314:72-81. [PMID: 27899277 DOI: 10.1016/j.taap.2016.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5'-nucleotidase, Ecto5'NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction of CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care.
Collapse
Affiliation(s)
- Eunyoung Tak
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo-Hyun Jung
- Department of Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
123
|
Kheshtchin N, Arab S, Ajami M, Mirzaei R, Ashourpour M, Mousavi N, Khosravianfar N, Jadidi-Niaragh F, Namdar A, Noorbakhsh F, Hadjati J. Inhibition of HIF-1α enhances anti-tumor effects of dendritic cell-based vaccination in a mouse model of breast cancer. Cancer Immunol Immunother 2016; 65:1159-67. [PMID: 27497816 PMCID: PMC11029746 DOI: 10.1007/s00262-016-1879-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023]
Abstract
Considerable evidence shows that the tumor microenvironment is an active participant in preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia is a prominent characteristic of the solid tumor microenvironment. The transcription factor hypoxia-inducible factor-1α (HIF-1α) is an important mediator of hypoxic response of tumor cells that modulates the expression of specific genes involved in tumor immunosuppression. Using a 4T1 breast cancer model, we show that in vivo administration of PX-478, an inhibitor of oxygen-sensitive HIF-1α, led to reduced expression of Foxp3 and VEGF transcript and/or protein, molecules that are directly controlled by HIF-1. When combined with dendritic cell (DC)-based vaccination, HIF-1α inhibition resulted in an augmented cytotoxic T lymphocyte effector function, improved proliferation status of T cells, increased production of inflammatory cytokine IFN-γ, as well as reduced regulatory function of T cells in association with slower tumor growth. Taken together, our findings indicate that the use of HIF-1α inhibition provides an immune adjuvant activity, thereby improves the efficacy of tumor antigen-based DC vaccine.
Collapse
Affiliation(s)
- Nasim Kheshtchin
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Arab
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ajami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ashourpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mousavi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Najmeh Khosravianfar
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Namdar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
124
|
Abstract
OBJECTIVES Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. STUDY SELECTION Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. CONCLUSIONS In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Collapse
|
125
|
Abstract
OBJECTIVES Extracellular adenosine has tissue-protective potential in several conditions. Adenosine levels are regulated by a close interplay between nucleoside transporters and adenosine kinase. On the basis of the evidence of the role of adenosine kinase in regulating adenosine levels during hypoxia, we evaluated the effect of adenosine kinase on lung injury. Furthermore, we tested the influence of a pharmacologic approach to blocking adenosine kinase on the extent of lung injury. DESIGN Prospective experimental animal study. SETTING University-based research laboratory. SUBJECTS In vitro cell lines, wild-type and adenosine kinase+/- mice. INTERVENTIONS We tested the expression of adenosine kinase during inflammatory stimulation in vitro and in a model of lipopolysaccharide inhalation in vivo. Studies using the adenosine kinase promoter were performed in vitro. Wild-type and adenosine kinase+/- mice were subjected to lipopolysaccharide inhalation. Pharmacologic inhibition of adenosine kinase was performed in vitro, and its effect on adenosine uptake was evaluated. The pharmacologic inhibition was also performed in vivo, and the effect on lung injury was assessed. MEASUREMENTS AND MAIN RESULTS We observed the repression of adenosine kinase by proinflammatory cytokines and found a significant influence of nuclear factor kappa-light-chain-enhancer of activated B-cells on regulation of the adenosine kinase promoter. Mice with endogenous adenosine kinase repression (adenosine kinase+/-) showed reduced infiltration of leukocytes into the alveolar space, decreased total protein and myeloperoxidase levels, and lower cytokine levels in the alveolar lavage fluid. The inhibition of adenosine kinase by 5-iodotubercidin increased the extracellular adenosine levels in vitro, diminished the transmigration of neutrophils, and improved the epithelial barrier function. The inhibition of adenosine kinase in vivo showed protective properties, reducing the extent of pulmonary inflammation during lung injury. CONCLUSIONS Taken together, these data show that adenosine kinase is a valuable target for reducing the inflammatory changes associated with lung injury and should be pursued as a therapeutic option.
Collapse
|
126
|
Covarrubias R, Chepurko E, Reynolds A, Huttinger ZM, Huttinger R, Stanfill K, Wheeler DG, Novitskaya T, Robson SC, Dwyer KM, Cowan PJ, Gumina RJ. Role of the CD39/CD73 Purinergic Pathway in Modulating Arterial Thrombosis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1809-20. [PMID: 27417582 DOI: 10.1161/atvbaha.116.307374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Circulating blood cells and endothelial cells express ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73). CD39 hydrolyzes extracellular ATP or ADP to AMP. CD73 hydrolyzes AMP to adenosine. The goal of this study was to examine the interplay between CD39 and CD73 cascade in arterial thrombosis. APPROACH AND RESULTS To determine how CD73 activity influences in vivo thrombosis, the time to ferric chloride-induced arterial thrombosis was measured in CD73-null mice. In response to 5% FeCl3, but not to 10% FeCl3, there was a significant decrease in the time to thrombosis in CD73-null mice compared with wild-type mice. In mice overexpressing CD39, ablation of CD73 did not inhibit the prolongation in the time to thrombosis conveyed by CD39 overexpression. However, the CD73 inhibitor α-β-methylene-ADP nullified the prolongation in the time to thrombosis in human CD39 transgenic (hC39-Tg)/CD73-null mice. To determine whether hematopoietic-derived cells or endothelial cell CD39 activity regulates in vivo arterial thrombus, bone marrow transplant studies were conducted. FeCl3-induced arterial thrombosis in chimeric mice revealed a significant prolongation in the time to thrombosis in hCD39-Tg reconstituted wild-type mice, but not on wild-type reconstituted hCD39-Tg mice. Monocyte depletion with clodronate-loaded liposomes normalized the time to thrombosis in hCD39-Tg mice compared with hCD39-Tg mice treated with control liposomes, demonstrating that increased CD39 expression on monocytes protects against thrombosis. CONCLUSIONS These data demonstrate that ablation of CD73 minimally effects in vivo thrombosis, but increased CD39 expression on hematopoietic-derived cells, especially monocytes, attenuates in vivo arterial thrombosis.
Collapse
Affiliation(s)
- Roman Covarrubias
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Elena Chepurko
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Adam Reynolds
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Zachary M Huttinger
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Ryan Huttinger
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Katherine Stanfill
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Debra G Wheeler
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Tatiana Novitskaya
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Simon C Robson
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Karen M Dwyer
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Peter J Cowan
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.)
| | - Richard J Gumina
- From the Division of Cardiovascular Medicine, Department of Medicine (R.C., E.C., T.N., R.J.G.), Department of Pharmacology (R.J.G.), and Department of Pathology Microbiology and Immunology (R.J.G.), Vanderbilt University, Nashville, TN; Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (A.R., Z.M.H., R.H., K.S., D.G.W.); Transplant Institute, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (S.C.R.); School of Medicine, Deakin University (K.M.D., P.J.C.); Immunology Research Centre, St. Vincent's Hospital (K.M.D.); and Department of Medicine, University of Melbourne, Victoria, Australia (K.M.D., P.J.C.).
| |
Collapse
|
127
|
Kiers HD, Scheffer GJ, van der Hoeven JG, Eltzschig HK, Pickkers P, Kox M. Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology 2016; 125:237-49. [PMID: 27183167 PMCID: PMC5119461 DOI: 10.1097/aln.0000000000001163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia and immunity are highly intertwined at clinical, cellular, and molecular levels. The prevention of tissue hypoxia and modulation of systemic inflammation are cornerstones of daily practice in the intensive care unit. Potentially, immunologic effects of hypoxia may contribute to outcome and represent possible therapeutic targets. Hypoxia and activation of downstream signaling pathways result in enhanced innate immune responses, aimed to augment pathogen clearance. On the other hand, hypoxia also exerts antiinflammatory and tissue-protective effects in lymphocytes and other tissues. Although human data on the net immunologic effects of hypoxia and pharmacologic modulation of downstream pathways are limited, preclinical data support the concept of tailoring the immune response through modulation of the oxygen status or pharmacologic modulation of hypoxia-signaling pathways in critically ill patients.
Collapse
Affiliation(s)
- Harmke D. Kiers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Holger K. Eltzschig
- Organ Protection Program; Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| |
Collapse
|
128
|
Hu X, Adebiyi MG, Luo J, Sun K, Le TTT, Zhang Y, Wu H, Zhao S, Karmouty-Quintana H, Liu H, Huang A, Wen YE, Zaika OL, Mamenko M, Pochynyuk OM, Kellems RE, Eltzschig HK, Blackburn MR, Walters ET, Huang D, Hu H, Xia Y. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Rep 2016; 16:106-119. [PMID: 27320922 DOI: 10.1016/j.celrep.2016.05.080] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/22/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.
Collapse
Affiliation(s)
- Xia Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Anesthesiology, Third XiangYa Hospital, Central South University, Hunan 440851, China
| | - Morayo G Adebiyi
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jialie Luo
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Thanh-Thuy T Le
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hongyu Wu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Shushan Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Aji Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yuan Edward Wen
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Oleg L Zaika
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Mykola Mamenko
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Oleh M Pochynyuk
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Colorado, Aurora, CO 80045, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Edgar T Walters
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Dong Huang
- Department of Anesthesiology, Third XiangYa Hospital, Central South University, Hunan 440851, China
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| |
Collapse
|
129
|
Ju C, Colgan SP, Eltzschig HK. Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 2016; 94:613-27. [PMID: 27094811 PMCID: PMC4879168 DOI: 10.1007/s00109-016-1408-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bevacizumab/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/therapy
- Gene Expression Regulation
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/therapy
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Molecular Targeted Therapy
- Oligonucleotides/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Auroa, Colorado, 800045, USA.
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| | - Holger K Eltzschig
- Department of Anesthesiology and Organ Protection Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| |
Collapse
|
130
|
Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 2016; 29:7-16. [PMID: 27209048 DOI: 10.1016/j.coph.2016.04.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
Multiple immunosuppressive mechanisms impede anti-tumor immunity. Among them, the accumulation of extracellular adenosine is a potent and widespread strategy exploited by tumors to escape immunosurveillance through the activation of purinergic receptors. In the immune system, engagement of A2a and A2b adenosine receptors is a critical regulatory mechanism that protects tissues against excessive immune reactions. In tumors, this pathway is hijacked and hinders anti-tumor immunity, promoting cancer progression. Different groups have highlighted the therapeutic potential of blocking CD73-dependent adenosine-mediated immunosuppression to reinstate anti-tumor immunity. Phase clinical trials evaluating anti-CD73 antibodies and A2a receptor antagonists in cancer patients are currently ongoing. We here review the recent literature on the immunosuppressive effects of extracellular adenosine and discuss the development of adenosine inhibitors.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Parkville, Australia
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada.
| |
Collapse
|
131
|
Ou Y, Chan G, Zuo J, Rattner JB, van der Hoorn FA. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration. J Biol Chem 2016; 291:15388-403. [PMID: 27226580 DOI: 10.1074/jbc.m116.721241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process.
Collapse
Affiliation(s)
- Young Ou
- From the Departments of Biochemistry and Molecular Biology and
| | - Gordon Chan
- the Department of Oncology and Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Jeremy Zuo
- From the Departments of Biochemistry and Molecular Biology and
| | - Jerome B Rattner
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | | |
Collapse
|
132
|
Carmody JB, Harer MW, Denotti AR, Swanson JR, Charlton JR. Caffeine Exposure and Risk of Acute Kidney Injury in a Retrospective Cohort of Very Low Birth Weight Neonates. J Pediatr 2016; 172:63-68.e1. [PMID: 26898806 DOI: 10.1016/j.jpeds.2016.01.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the association between caffeine exposure and acute kidney injury (AKI) in very low birth weight (VLBW; ≤1500 g) neonates. STUDY DESIGN We retrospectively reviewed a cohort of 140 VLBW neonates consecutively admitted to the University of Virginia's neonatal intensive care unit from March 2011 to June 2012, excluding only those admitted >2 days of age or who died at <2 days after birth. We separately analyzed a subgroup of 44 neonates who received prolonged invasive respiratory support (mechanical ventilation for first 7 days after birth). The exposure of interest was caffeine exposure in the first week after birth. The primary outcome was AKI within the first 10 days after birth according to the Kidney Disease: Improving Global Outcomes system, modified to include only serum creatinine. RESULTS Caffeine exposure occurred in 72.1% of all patients and 54.5% of those who received prolonged invasive respiratory support. AKI occurred less frequently in neonates who received caffeine (all patients: 17.8% vs 43.6%; P = .002; prolonged invasive respiratory support: 29.2% vs 75.0%; P = .002). Caffeine exposure was associated with decreased odds for AKI in logistic regression models adjusted for sex, birth weight, gestational age, small for gestational age status, illness severity on admission, and receipt of indomethacin, invasive ventilation, dopamine, aminoglycosides, and vancomycin (all patients: OR 0.22; 95% CI 0.07-0.75, P = .02; prolonged invasive respiratory support subgroup: OR 0.06; 95% CI 0.01-0.57, P = .02). CONCLUSIONS In a cohort of VLBW neonates, those exposed to caffeine were less likely to experience AKI.
Collapse
Affiliation(s)
- J Bryan Carmody
- Division of Nephrology, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA
| | - Matthew W Harer
- Division of Neonatology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA
| | - Anna R Denotti
- Department of Pediatrics, Ospedale Regionale per le Microcitemie, University of Cagliari, Cagliari, Italy
| | - Jonathan R Swanson
- Division of Neonatology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA.
| |
Collapse
|
133
|
d'Almeida SM, Kauffenstein G, Roy C, Basset L, Papargyris L, Henrion D, Catros V, Ifrah N, Descamps P, Croue A, Jeannin P, Grégoire M, Delneste Y, Tabiasco J. The ecto-ATPDase CD39 is involved in the acquisition of the immunoregulatory phenotype by M-CSF-macrophages and ovarian cancer tumor-associated macrophages: Regulatory role of IL-27. Oncoimmunology 2016; 5:e1178025. [PMID: 27622030 DOI: 10.1080/2162402x.2016.1178025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Sènan M d'Almeida
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | | | - Charlotte Roy
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Laetitia Basset
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Loukas Papargyris
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| | - Daniel Henrion
- BNMI, INSERM, CNRS, Université d'Angers , Angers, France
| | - Véronique Catros
- INSERM, Université de Rennes 1, CRB santé de Rennes , Rennes, France
| | - Norbert Ifrah
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Services des maladies du sang, CHU Angers, Angers, France
| | | | - Anne Croue
- Laboratoire de Pathologie Cellulaire et Tissulaire, CHU Angers , Angers, France
| | - Pascale Jeannin
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Marc Grégoire
- LabEx ImmunoGraftOnco, Angers, France; CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France; Laboratoire d'Immunologie et d'Allergologie, CHU Angers, Angers, France
| | - Julie Tabiasco
- CRCNA, INSERM, CNRS, Université de Nantes, Université d'Angers, Angers, France; LabEx ImmunoGraftOnco, Angers, France; Equipe labellisée Ligue contre le Cancer, Angers, France
| |
Collapse
|
134
|
Castilhos LG, Doleski PH, Adefegha SA, Becker LV, Ruchel JB, Leal DBR. Altered E-NTPDase/E-ADA activities and CD39 expression in platelets of sickle cell anemia patients. Biomed Pharmacother 2016; 79:241-6. [PMID: 27044834 DOI: 10.1016/j.biopha.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/15/2022] Open
Abstract
Sickle cell anemia (SCA) is a hemoglobinopathy characterized by hemolysis and vaso-occlusions caused by rigidly distorted red blood cells. Sickle cell crisis is associated with extracellular release of nucleotides and platelets, which are critical mediators of hemostasis participating actively in purinergic thromboregulatory enzymes system.This study aimed to investigate the activities of purinergic system ecto-enzymes present on the platelet surface as well as CD39 and CD73 expressions on platelets of SCA treated patients. Fifteen SCA treated patients and 30 health subjects (control group) were selected. Ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-5'-NT) and ecto-adenosine deaminase (E-ADA) activities were measured in platelets isolated from these individuals. Results demonstrated an increase of 41 % in the E-NTPDase for ATP hydrolysis, 52% for ADP hydrolysis and 60 % in the E-ADA activity in SCA patients (P<0.05); however, a two folds decrease in the CD39 expression in platelets was observed in the same group (P<0.01). The increased E-NTPDase activity could be a compensatory mechanism associated with the low expression of CD39 in platelets. Besides, alteration of these enzymes activities suggests that the purinergic system could be involved in the thromboregulatory process in SCA patients.
Collapse
Affiliation(s)
- Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil.
| | - Pedro H Doleski
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Stephen A Adefegha
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Department of Biochemistry, Federal University of Technology, P. M. B. 704, Akure, Nigeria
| | - Lara V Becker
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Jader B Ruchel
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil.
| |
Collapse
|
135
|
Shaikh G, Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 2016; 12:191-7. [PMID: 26847815 DOI: 10.1007/s11302-016-9498-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Collagen and matrix deposition by fibroblasts is an essential part of wound healing but also contributes to pathologic remodeling of organs leading to substantial morbidity and mortality. Adenosine, a small molecule generated extracellularly from adenine nucleotides as a result of direct stimulation, hypoxia, or injury, acts via a family of classical seven-pass G protein-coupled protein receptors, A2A and A2B, leading to generation of cAMP and activation of downstream targets such as PKA and Epac. These effectors, in turn, lead to fibroblast activation and collagen synthesis. The regulatory actions of these receptors likely involve multiple interconnected pathways, and one of the more interesting aspects of this regulation is opposing effects at different levels of cAMP generated. Additionally, adenosine signaling contributes to fibrosis in organ-specific ways and may have opposite effects in different organs. The development of drugs that selectively target these receptors and their signaling pathways will disrupt the pathogenesis of fibrosis and slow or arrest the progression of the important diseases they underlie.
Collapse
Affiliation(s)
- Gibran Shaikh
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA
| | - Bruce Cronstein
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
136
|
Abstract
In this review, I summarize some of the recent insight into pharmacological targeting of hypoxia in disease models. Studies from cultured cell systems, animal models, and translation to human patients have revealed that posttranslational modifications of individual proteins within NF-κB and hypoxia-inducible factor pathways serve as ideal targets for analysis in disease models. Studies defining differences and similarities between these responses have taught us a number of important lessons about the complexity of the inflammatory response. A clearer definition of these pathways has provided new insight into disease pathogenesis and, importantly, the potential for new therapeutic targets.
Collapse
|
137
|
Liu JR, Liu Q, Khoury J, Li YJ, Han XH, Li J, Ibla JC. Hypoxic preconditioning decreases nuclear factor κB activity via Disrupted in Schizophrenia-1. Int J Biochem Cell Biol 2016; 70:140-148. [PMID: 26615762 DOI: 10.1016/j.biocel.2015.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023]
Abstract
Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.
Collapse
Affiliation(s)
- Jia-Ren Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | - Qian Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, JiangXi 341000, PR China
| | - Joseph Khoury
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Yue-Jin Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Xiao-Hui Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Juan C Ibla
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
138
|
Gile J, Eckle T. ADORA2b Signaling in Cardioprotection. JOURNAL OF NATURE AND SCIENCE 2016; 2:e222. [PMID: 27747290 PMCID: PMC5061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease is the number one cause of death worldwide. A powerful strategy for cardioprotection would be to identify specific molecules or targets that mimic ischemic preconditioning (IP), where short non-lethal episodes of ischemia and reperfusion prior to myocardial infarction result in dramatic reduction of infarct sizes. Since 1960 researchers believed that adenosine has a strong cardio-protective potential. In fact, with the discovery of cardiac IP in 1986 by Murry et al., adenosine was the first identified molecule that was used in studying the underlying mechanism of IP. Today we know, based on genetic studies, that adenosine is crucial for IP mediated cardio-protection and that the adenosine receptors ADORA1, ADORA2a and ADORA2b play an important role. However, the ADORA2b receptor is the only receptor so far which has been found to play a role in human and murine myocardial ischemia. With recent advances using tissue specific mice for the ADORA2b, we were able to uncover cardiomyocytes and endothelia as the responsible cell type for cardiac IP. Using a wide search for ADORA2b downstream targets, our group identified the circadian rhythm protein, Period 2 (PER2), as a novel target for IP mediated cardioprotection. Mechanistic studies on PER2 mediated cardioprotection revealed an important role for PER2 in optimizing cardiac metabolism through activation of oxygen saving pathways. Thus, cardiomyocyte or endothelial expressed ADORA2b or the downstream circadian rhythm protein PER2 are key targets for cardiac IP and could represent novel strategies to treat or prevent MI.
Collapse
Affiliation(s)
| | - Tobias Eckle
- Corresponding Author. Tobias Eckle, M.D., Ph.D., Professor of Anesthesiology, Cardiology and Cell Biology. Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045, USA. Office: +1-303-724 -2932 or – 2947; Fax: +1-303-724-2852.
| |
Collapse
|
139
|
Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K, Broaddus RR. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 2015; 126:220-38. [PMID: 26642367 DOI: 10.1172/jci79380] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, β-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Collapse
|
140
|
Bonyanian Z, Rose'Meyer RB. Caffeine and its Potential Role in Attenuating Impaired Wound Healing in Diabetes. JOURNAL OF CAFFEINE RESEARCH 2015. [DOI: 10.1089/jcr.2015.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zeinab Bonyanian
- School of Medical Sciences, Griffith University, Gold Coast, Australia
| | | |
Collapse
|
141
|
Eisenstein A, Patterson S, Ravid K. The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases. J Cell Physiol 2015; 230:2891-7. [PMID: 25975415 DOI: 10.1002/jcp.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023]
Abstract
Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shenia Patterson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
142
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
143
|
Seo SW, Koeppen M, Bonney S, Gobel M, Thayer M, Harter PN, Ravid K, Eltzschig HK, Mittelbronn M, Walker L, Eckle T. Differential Tissue-Specific Function of Adora2b in Cardioprotection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1732-43. [PMID: 26136425 DOI: 10.4049/jimmunol.1402288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/03/2015] [Indexed: 01/18/2023]
Abstract
The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre(+), VE-cadherin-Cre(+), or myosin-Cre(+) transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2b(f/f)-VE-cadherin-Cre(+) or Adora2b(f/f)-myosin-Cre(+), indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2b(f/f)-Lyz2-Cre(+) mice only. Cytokine profiling of IR injury in Adora2b(f/f)-Lyz2-Cre(+) mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2b(f/f)-Lyz2-Cre(+) confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b(-/-) PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia.
Collapse
Affiliation(s)
- Seong-wook Seo
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Michael Koeppen
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Anesthesiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Stephanie Bonney
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Merit Gobel
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Molly Thayer
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118; and
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Lori Walker
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045;
| |
Collapse
|
144
|
Sickle cell anemia induces changes in peripheral lymphocytes E-NTPDase/E-ADA activities and cytokines secretion in patients under treatment. Biomed Pharmacother 2015. [PMID: 26211589 DOI: 10.1016/j.biopha.2015.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sickle cell anemia (SCA) is characterized by hemoglobin polymerization that results in sickle-shaped red blood cells. The vascular obstruction by sickle erythrocytes is often inflammatory, and purinergic system ecto-enzymes play an important role in modulating the inflammatory and immune response. This study aimed to evaluate the E-NTPDase and E-ADA activities in lymphocytes of SCA treated patients, as well as verify the cytokine profile in this population. Fifteen SCA treated patients and 30 health subjects (control group) were selected. The peripheral lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Serum was separated from clot formation for the cytokines quantification. E-NTPDase (ATP and ADP as substrate) and E-ADA (adenosine as substrate) activities were increased in lymphocytes from SCA patients (P<0.001). The TNF-α and IL-6 serum cytokines showed decreased on SCA patients comparing to control (P<0.001). The regulation of extracellular nucleotides released in response to hypoxia and inflammation through E-NTPDase and E-ADA enzymes represent an important control of purine-mediated in the SCA disease, avoiding elevated adenosine levels in the extracellular medium and consequent organ injuries in these patients. The pro-inflammatory cytokines decreased levels by use of hydroxyurea occur in attempt to reduce the pro-inflammatory response and prevent vaso-oclusive crisis.
Collapse
|
145
|
Bonney S, Hughes K, Eckle T. Anesthetic cardioprotection: the role of adenosine. Curr Pharm Des 2015; 20:5690-5. [PMID: 24502579 DOI: 10.2174/1381612820666140204102524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022]
Abstract
Brief periods of cardiac ischemia and reperfusion exert a protective effect against subsequent longer ischemic periods, a phenomenon coined ischemic preconditioning. Similarly, repeated brief episodes of coronary occlusion and reperfusion at the onset of reperfusion, called post-conditioning, dramatically reduce infarct sizes. Interestingly, both effects can be achieved by the administration of any volatile anesthetic. In fact, cardio-protection by volatile anesthetics is an older phenomenon than ischemic pre- or post-conditioning. Although the mechanism through which anesthetics can mimic ischemic pre- or post-conditioning is still unknown, adenosine generation and signaling are the most redundant triggers in ischemic pre- or post-conditioning. In fact, adenosine signaling has been implicated in isoflurane-mediated cardioprotection. Adenosine acts via four receptors designated as A1, A2a, A2b, and A3. Cardioprotection has been associated with all subtypes, although the role of each remains controversial. Much of the controversy stems from the abundance of receptor agonists and antagonists that are, in fact, capable of interacting with multiple receptor subtypes. Recently, more specific receptor agonists and new genetic animal models have become available paving way towards new discoveries. As such, the adenosine A2b receptor was shown to be the only one of the adenosine receptors whose cardiac expression is induced by ischemia in both mice and humans and whose function is implicated in ischemic pre- or post-conditioning. In the current review, we will focus on adenosine signaling in the context of anesthetic cardioprotection and will highlight new discoveries, which could lead to new therapeutic concepts to treat myocardial ischemia using anesthetic preconditioning.
Collapse
Affiliation(s)
| | | | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045.
| |
Collapse
|
146
|
Boros D, Thompson J, Larson DF. Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 2015; 31:103-10. [PMID: 25987550 DOI: 10.1177/0267659115586579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is clinically established that adenosine has negative chronotropic, antiarrhythmic effects and reduces arterial blood pressure. Adenosine addition to cardioplegic solutions used in cardiac operations is clinically well tolerated and has been shown to improve myocardial protection in several studies. However, the mechanism of action remains unclear. Therefore, it is important to define the effect of adenosine on the inflammatory cascade as immune cell activation occurs early during ischemia reperfusion injury. Adenosine appears to mediate the initial steps of the inflammatory cascade via its four G-coupled protein receptors: A1, A2A, A2B, and A3, expressed on neutrophils, lymphocytes and macrophages. The adenosine receptor isotype dictates the immune response. More specifically, the A1 and A3 receptors stimulate a pro-inflammatory immune response whereas the A2A and A2B are immunosuppressive. As the adenosine receptors are important for cardiac pre-conditioning and post-conditioning, adenosine may regulate the inflammatory responses initiated during ischemia-mediated immune injury related to myocardial protection.
Collapse
Affiliation(s)
- D Boros
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - J Thompson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - D F Larson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
147
|
Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015; 5:775-92. [PMID: 25950510 PMCID: PMC4496696 DOI: 10.3390/biom5020775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
Collapse
|
148
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
149
|
Colgan SP, Curtis VF, Lanis JM, Glover LE. Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers 2015; 3:e970936. [PMID: 25838978 DOI: 10.4161/21688362.2014.970936] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit.
Collapse
Key Words
- AMP, adenosine monophosphate
- CK, creatine kinase
- ChIP, chromatin immunoprecipitation
- Colitis
- HIF, hypoxia-inducible factor
- PHD, prolyl hydroxylase
- PMN, polymorphonuclear leukcoyte, neutrophil
- TJ, tight junction
- VASP, vasodilator-stimulated
- ZO-1, zonula occludens-1
- creatine
- epithelium
- inflammation
- metabolism
- mucosa
- murine model
- neutrophil
- nucleoside
- nucleotidase
- nucleotide
- phosphocreatine
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Valerie F Curtis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Jordi M Lanis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Louise E Glover
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| |
Collapse
|
150
|
Neutrophils and inflammatory resolution in the mucosa. Semin Immunol 2015; 27:177-83. [PMID: 25818531 DOI: 10.1016/j.smim.2015.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Inflammatory diseases in mucosal organs as diverse as the lung, liver and intestine inevitably require the intimate interactions between neutrophils and epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets to promote the resolution of mucosal inflammation. Physiologically-relevant in vitro and in vivo model systems have aided in discovery of novel pathways to define basic inflammatory mechanisms and approaches to defining the concepts of inflammatory resolution. Here, we will review the recent literature regarding the contribution of neutrophils to inflammatory resolution, with an emphasis on the role of the tissue microenvironment, endogenous pathways for promoting resolution and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of pro-resolving pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
|