101
|
Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q, Zhang Z. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS NANO 2017; 11:9536-9549. [PMID: 28858473 DOI: 10.1021/acsnano.7b05465] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8+ T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8+ T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.
Collapse
Affiliation(s)
- Yuan Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yanfeng Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Guoqiang Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiang Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
102
|
Selvaraj S, Oh JH, Spanel R, Länger F, Han HY, Lee EH, Yoon S, Borlak J. The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury. Oncotarget 2017; 8:107763-107824. [PMID: 29296203 PMCID: PMC5746105 DOI: 10.18632/oncotarget.21201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system.
Collapse
Affiliation(s)
- Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
103
|
Leuschner F. My Transition From a Postdoctoral Fellowship in the United States to Junior Faculty in Europe: Challenges and Opportunities. Circ Res 2017; 121:206-207. [PMID: 28729450 DOI: 10.1161/circresaha.117.310654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Florian Leuschner
- From the Department of Medicine III, University of Heidelberg, German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
104
|
Abstract
Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.
Collapse
|
105
|
Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res 2017; 66:739-751. [PMID: 28600668 DOI: 10.1007/s00011-017-1060-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. RESULTS At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. CONCLUSIONS It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.
Collapse
|
106
|
Deniset JF, Surewaard BG, Lee WY, Kubes P. Splenic Ly6G high mature and Ly6G int immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med 2017; 214:1333-1350. [PMID: 28424248 PMCID: PMC5413339 DOI: 10.1084/jem.20161621] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/27/2017] [Accepted: 03/03/2017] [Indexed: 11/04/2022] Open
Abstract
The spleen plays an integral protective role against encapsulated bacterial infections. Our understanding of the associated mechanisms is limited to thymus-independent (TI) antibody production by the marginal zone (MZ) B cells, leaving the contribution of other splenic compartments such as the red pulp (RP) largely unexplored despite asplenic patients succumbing to the infection in the first 24 h, suggesting important antibody-independent mechanisms. In this study, using time-lapse intravital imaging of the spleen, we identify a tropism for Streptococcus pneumoniae in this organ mediated by tissue-resident MZ and RP macrophages and a protective role for two distinct splenic neutrophil populations (Ly6Ghi and Ly6Gintermediate) residing in the splenic RP. Splenic mature neutrophils mediated pneumococcal clearance in the spleen by plucking bacteria off the surface of RP macrophages that caught the majority of bacteria in a complement-dependent manner. This neutrophil phagocytic capacity was further enhanced after TI antibody production. Resident immature neutrophils (Ly6Gintermediate) in the spleen undergo emergency proliferation and mobilization from their splenic niche after pneumococcal stimulation to increase the effector mature neutrophil pool. We demonstrate that splenic neutrophils together with two macrophage populations and MZ B cells regulate systemic S. pneumoniae clearance through complementary mechanisms.
Collapse
Affiliation(s)
- Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bas G Surewaard
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Medical Microbiology, University Medical Centre, 3584 CX Utrecht, Netherlands
| | - Woo-Yong Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada .,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
107
|
McLellan MA, Rosenthal NA, Pinto AR. Cre-loxP-Mediated Recombination: General Principles and Experimental Considerations. ACTA ACUST UNITED AC 2017; 7:1-12. [DOI: 10.1002/cpmo.22] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Micheal A. McLellan
- The Jackson Laboratory; Bar Harbor Maine
- Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University; Boston Massachusetts
| | - Nadia A. Rosenthal
- The Jackson Laboratory; Bar Harbor Maine
- Australian Regenerative Medicine Institute, Monash University; Melbourne Victoria Australia
- National Heart and Lung Institute, Imperial College London; London United Kingdom
| | - Alexander R. Pinto
- The Jackson Laboratory; Bar Harbor Maine
- Australian Regenerative Medicine Institute, Monash University; Melbourne Victoria Australia
| |
Collapse
|
108
|
Nairz M, Theurl I, Swirski FK, Weiss G. "Pumping iron"-how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch 2017; 469:397-418. [PMID: 28251312 PMCID: PMC5362662 DOI: 10.1007/s00424-017-1944-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/12/2022]
Abstract
Macrophages reside in virtually every organ. First arising during embryogenesis, macrophages replenish themselves in the adult through a combination of self-renewal and influx of bone marrow-derived monocytes. As large phagocytic cells, macrophages participate in innate immunity while contributing to tissue-specific homeostatic functions. Among the key metabolic tasks are senescent red blood cell recycling, free heme detoxification, and provision of iron for de novo hemoglobin synthesis. While this systemic mechanism involves the shuttling of iron between spleen, liver, and bone marrow through the concerted function of defined macrophage populations, similar circuits appear to exist within the microenvironment of other organs. The high turnover of iron is the prerequisite for continuous erythropoiesis and tissue integrity but challenges macrophages’ ability to maintain cellular iron homeostasis and immune function. This review provides a brief overview of systemic, microenvironmental, and cellular aspects of macrophage iron handling with a focus on exciting and unresolved questions in the field.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria. .,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Igor Theurl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria.
| |
Collapse
|
109
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
110
|
Miteva K, Pappritz K, El-Shafeey M, Dong F, Ringe J, Tschöpe C, Van Linthout S. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3-Induced Myocarditis. Stem Cells Transl Med 2017; 6:1249-1261. [PMID: 28186704 PMCID: PMC5442851 DOI: 10.1002/sctm.16-0353] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)‐induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra‐cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3‐induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro‐inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti‐inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC‐treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein‐1 (MCP)−1, MCP‐3, CCL5, the adhesion molecules intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, the pro‐inflammatory cytokines interleukin‐6, interleukin‐12, tumor necrosis factor‐α, the pro‐fibrotic transforming growth factorβ1, and circulating MCP‐1 and MCP‐3 levels decreased in CVB3 MSC mice, while LV stromal cell‐derived factor‐1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3‐induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of the disease progression. Stem Cells Translational Medicine2017;6:1249–1261
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| |
Collapse
|
111
|
Jung WC, Levesque JP, Ruitenberg MJ. It takes nerve to fight back: The significance of neural innervation of the bone marrow and spleen for immune function. Semin Cell Dev Biol 2017; 61:60-70. [DOI: 10.1016/j.semcdb.2016.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/17/2023]
|
112
|
Swirski FK, Robbins CS, Nahrendorf M. Development and Function of Arterial and Cardiac Macrophages. Trends Immunol 2016; 37:32-40. [PMID: 26748179 DOI: 10.1016/j.it.2015.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
Macrophages inhabit all major organs, and are capable of adapting their functions to meet the needs of their home tissues. The recent recognition that tissue macrophages derive from different sources, coupled with the notion that environmental cues and inflammatory stimuli can sculpt and agitate homeostasis, provides a frame of reference from which we can decipher the breadth and depth of macrophage activity. Here we discuss macrophages residing in the cardiovascular system, focusing particularly on their development and function in steady state and disease. Central to our discussion is the tension between macrophage ontogeny as a determinant of macrophage function, and the idea that tissues condition macrophage activities and supplant the influence of macrophage origins in favor of environmental demands.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Clinton S Robbins
- Department of Immunology, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
113
|
Wildgruber M, Aschenbrenner T, Wendorff H, Czubba M, Glinzer A, Haller B, Schiemann M, Zimmermann A, Berger H, Eckstein HH, Meier R, Wohlgemuth WA, Libby P, Zernecke A. The "Intermediate" CD14 ++CD16 + monocyte subset increases in severe peripheral artery disease in humans. Sci Rep 2016; 6:39483. [PMID: 27991581 PMCID: PMC5171878 DOI: 10.1038/srep39483] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14++CD16− classical monocytes, CD14+CD16++ non-classical monocytes and CD14++CD16+ intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14++CD16+ intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14++CD16− classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Moritz Wildgruber
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany.,Institut für Klinische Radiologie, Universitätsklinikum Münster, Germany
| | - Teresa Aschenbrenner
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Heiko Wendorff
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Maria Czubba
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Almut Glinzer
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany.,Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Bernhard Haller
- Institut für medizinische Statistik und Epidemiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Matthias Schiemann
- Institut für medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Germany.,Klinische Kooperationsgemeinschaft "Immunmonitoring", Helmholtz Zentrum München (Neuherberg) und Technische Universität München, Germany
| | - Alexander Zimmermann
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Hermann Berger
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Hans-Henning Eckstein
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Reinhard Meier
- Institut für Radiologie, Universitätsklinikum Ulm, Germany
| | | | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alma Zernecke
- Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Germany
| |
Collapse
|
114
|
|
115
|
Affiliation(s)
- Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, LMU Munich, Germany; Academic Medical Center, Department of Pathology, Amsterdam University, The Netherlands; and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany.
| |
Collapse
|
116
|
Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol 2016; 61:12-21. [PMID: 27521519 DOI: 10.1016/j.semcdb.2016.08.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022]
Abstract
Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.
Collapse
|
117
|
Dutta P, Hoyer FF, Sun Y, Iwamoto Y, Tricot B, Weissleder R, Magnani JL, Swirski FK, Nahrendorf M. E-Selectin Inhibition Mitigates Splenic HSC Activation and Myelopoiesis in Hypercholesterolemic Mice With Myocardial Infarction. Arterioscler Thromb Vasc Biol 2016; 36:1802-8. [PMID: 27470513 DOI: 10.1161/atvbaha.116.307519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Atherosclerosis is a chronic disease characterized by lipid accumulation in the arterial wall. After myocardial infarction (MI), atherosclerotic plaques are infiltrated by inflammatory myeloid cells that aggravate the disease and increase the risk of secondary myocardial ischemia. Splenic myelopoiesis provides a steady flow of myeloid cells to inflamed atherosclerotic lesions after MI. Therefore, targeting myeloid cell production in the spleen could ameliorate increased atherosclerotic plaque inflammation after MI. APPROACH AND RESULTS Here we show that MI increases splenic myelopoiesis by driving hematopoietic stem and progenitor cells into the cell cycle. In an atherosclerotic mouse model, E-selectin inhibition decreased hematopoietic stem and progenitor cell proliferation in the spleen after MI. This led to reduced extramedullary myelopoiesis and decreased myeloid cell accumulation in atherosclerotic lesions. Finally, we observed stable atherosclerotic plaque features, including smaller plaque size, reduced necrotic core area, and thicker fibrous cap after E-selectin inhibition. CONCLUSIONS Inhibiting E-selectin attenuated inflammation in atherosclerotic plaques, likely by reducing leukocyte recruitment into plaques and by mitigating hematopoietic stem and progenitor cell activation in the spleen of mice with MI.
Collapse
Affiliation(s)
- Partha Dutta
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Friedrich Felix Hoyer
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Yuan Sun
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Benoit Tricot
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - John L Magnani
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Filip K Swirski
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (P.D., F.F.H., Y.S., Y.I., B.T., R.W., F.K.S., M.N.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); and GlycoMimetics Inc, Rockville, MD (J.L.M.).
| |
Collapse
|
118
|
Affiliation(s)
- Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
119
|
Affiliation(s)
| | - Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
120
|
Deronic A, Tahvili S, Leanderson T, Ivars F. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth. BMC Cancer 2016; 16:440. [PMID: 27400708 PMCID: PMC4939705 DOI: 10.1186/s12885-016-2481-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/17/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Background Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Methods Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Results Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6Chi and Ly6Ghi cells, but instead reduced the influx of Ly6Chi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6Chi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Conclusions Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor inoculation and that this effect is at least partially caused by reduced recruitment of Ly6Chi cells to tumor tissue. Long-term treatment also reduces the number of splenic myeloid cells and myeloerythroid progenitors, but these effects did not influence established rapidly growing tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2481-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adnan Deronic
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
121
|
Zewdu R, Risolino M, Barbulescu A, Ramalingam P, Butler JM, Selleri L. Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. J Anat 2016; 229:153-69. [PMID: 27075259 PMCID: PMC5341595 DOI: 10.1111/joa.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 01/01/2023] Open
Abstract
The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury.
Collapse
Affiliation(s)
- Rediet Zewdu
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Present address: Huntsman Cancer Institute University of UtahSalt Lake CityUTUSA
| | - Maurizio Risolino
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Jason M. Butler
- Department of Genetic MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Licia Selleri
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
122
|
Grisanti LA, Gumpert AM, Traynham CJ, Gorsky JE, Repas AA, Gao E, Carter RL, Yu D, Calvert JW, García AP, Ibáñez B, Rabinowitz JE, Koch WJ, Tilley DG. Leukocyte-Expressed β2-Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation 2016; 134:153-67. [PMID: 27364164 DOI: 10.1161/circulationaha.116.022304] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/17/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immune cell-mediated inflammation is an essential process for mounting a repair response after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune system function through β-adrenergic receptors (βARs); however, their role in regulating immune cell responses to acute cardiac injury is unknown. METHODS Wild-type (WT) mice were irradiated followed by isoform-specific βAR knockout (βARKO) or WT bone-marrow transplantation (BMT) and after full reconstitution underwent MI surgery. Survival was monitored over time, and alterations in immune cell infiltration after MI were examined through immunohistochemistry. Alterations in splenic function were identified through the investigation of altered adhesion receptor expression. RESULTS β2ARKO BMT mice displayed 100% mortality resulting from cardiac rupture within 12 days after MI compared with ≈20% mortality in WT BMT mice. β2ARKO BMT mice displayed severely reduced post-MI cardiac infiltration of leukocytes with reciprocally enhanced splenic retention of the same immune cell populations. Splenic retention of the leukocytes was associated with an increase in vascular cell adhesion molecule-1 expression, which itself was regulated via β-arrestin-dependent β2AR signaling. Furthermore, vascular cell adhesion molecule-1 expression in both mouse and human macrophages was sensitive to β2AR activity, and spleens from human tissue donors treated with β-blocker showed enhanced vascular cell adhesion molecule-1 expression. The impairments in splenic retention and cardiac infiltration of leukocytes after MI were restored to WT levels via lentiviral-mediated re-expression of β2AR in β2ARKO bone marrow before transplantation, which also resulted in post-MI survival rates comparable to those in WT BMT mice. CONCLUSIONS Immune cell-expressed β2AR plays an essential role in regulating the early inflammatory repair response to acute myocardial injury by facilitating cardiac leukocyte infiltration.
Collapse
Affiliation(s)
- Laurel A Grisanti
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Anna M Gumpert
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Christopher J Traynham
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Joshua E Gorsky
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Ashley A Repas
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Erhe Gao
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Rhonda L Carter
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Daohai Yu
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - John W Calvert
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Andrés Pun García
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Borja Ibáñez
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Joseph E Rabinowitz
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Walter J Koch
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.)
| | - Douglas G Tilley
- From Center for Translational Medicine (L.A.G., A.M.G., C.J.T., J.E.G., A.A.R., E.G., R.L.C., J.E.R., W.J.K., D.G.T.), Department of Pharmacology (E.G., J.E.R., W.J.K., D.G.T.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine and Carlyle Fraser Heart Center, Atlanta, GA (J.W.C.); and Spanish National Center for Cardiovascular Research, Madrid, Spain (A.P.G., B.I.).
| |
Collapse
|
123
|
Okada T, Kimura A, Kanki K, Nakatani S, Nagahara Y, Hiraga M, Watanabe Y. Liver Resident Macrophages (Kupffer Cells) Share Several Functional Antigens in Common with Endothelial Cells. Scand J Immunol 2016; 83:139-50. [PMID: 26678711 DOI: 10.1111/sji.12402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/05/2015] [Indexed: 12/21/2022]
Abstract
The identification and specific functions of Kupffer cells (KCs), a liver resident macrophage subpopulation, are still unclear. We compared KCs with peritoneal macrophages using cDNA microarray analysis and found that these cells share some antigens with endothelial cells. KCs highly express VCAM-1 and VEGF receptors (VEGF-Rs) at transcriptional and protein levels. VCAM-1 mediates the functional binding of KCs with lymphocytes and induces KC activation. Among the VEGF receptors, VEGF-R2 and VEGF-R3 were expressed on the KCs, while VEGF-R1 was expressed on other tissue macrophage subsets. VEGF120, a ligand of both VEGF-R1 and VEGF-R2, transduced strong survival and chemotactic signals through the KCs, when compared to PIGF, a VEGF-R1 ligand, indicating that VEGF-R2 plays significant roles in regulating KC activities. Expression of the VEGF-Rs was regulated by TLR4 signalling. These results suggest that the function of KCs is partly regulated by the common antigens shared with endothelial cells.
Collapse
Affiliation(s)
- T Okada
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - A Kimura
- Denka Seiken Co. Ltd., Niigata, Japan
| | - K Kanki
- Tottori University Faculty of Medicine, Institute of Regenerative Medicine and Biofunction, Yonago, Japan
| | - S Nakatani
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Y Nagahara
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - M Hiraga
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Y Watanabe
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
124
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
125
|
Abstract
Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.
Collapse
Affiliation(s)
- Myron I. Cybulsky
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Cheolho Cheong
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Clinton S. Robbins
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| |
Collapse
|
126
|
McCabe A, MacNamara KC. Macrophages: Key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 2016; 44:213-22. [PMID: 26806720 DOI: 10.1016/j.exphem.2016.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell (HSC) function is required for balanced blood production throughout life; it is thus essential to understand the mechanisms regulating this highly dynamic process. Bone marrow-resident macrophages (Mϕs) have recently emerged as an important component of the HSC niche, where they contribute to regulating HSC and progenitor cell (HSPC) mobilization and function. Here we review the role of macrophages (Mϕs) on immune cell production, HSPC pool size, and mobilization at steady state and under inflammatory conditions. Inflammation induces marked changes in hematopoiesis to restrict or promote generation of specific cell lineages, and this often has a negative impact on HSC function. Cytokines and growth factors induced during inflammation influence hematopoiesis by acting directly on HSPCs and/or by modulating niche cell function. We focus particular attention on the opposing effects of two key inflammatory proteins, interferon-γ and granulocyte-colony stimulating factor, in regulating bone marrow-resident macrophages (Mϕs) and HSPCs. Macrophages (Mϕs) are essential for tissue homeostasis, and here we highlight their emerging role as a central regulator of both steady-state and demand-adapted hematopoiesis.
Collapse
Affiliation(s)
- Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | | |
Collapse
|
127
|
Duan M, Steinfort DP, Smallwood D, Hew M, Chen W, Ernst M, Irving LB, Anderson GP, Hibbs ML. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol 2016; 9:550-63. [PMID: 26422753 PMCID: PMC7101582 DOI: 10.1038/mi.2015.84] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/12/2015] [Indexed: 02/04/2023]
Abstract
The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.
Collapse
Affiliation(s)
- M Duan
- grid.1002.30000 0004 1936 7857Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery, University of Melbourne, Melbourne, Australia ,grid.482095.2Ludwig Institute for Cancer Research, Melbourne, Australia ,grid.1018.80000 0001 2342 0938Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - D P Steinfort
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - D Smallwood
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - M Hew
- grid.1623.60000 0004 0432 511XDepartment of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Parkville, Australia
| | - W Chen
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - M Ernst
- grid.1042.7The Walter and Eliza Hall Institute for Medical Research, Parkville, Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, Australia ,grid.410678.cPresent Address: 10Present address: Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Victoria 3084, Australia., ,
| | - L B Irving
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - G P Anderson
- grid.1008.90000 0001 2179 088XDepartment of Pharmacology, University of Melbourne, Melbourne, Australia
| | - M L Hibbs
- grid.1002.30000 0004 1936 7857Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia
| |
Collapse
|
128
|
Ye YX, Calcagno C, Binderup T, Courties G, Keliher EJ, Wojtkiewicz GR, Iwamoto Y, Tang J, Pérez-Medina C, Mani V, Ishino S, Johnbeck CB, Knigge U, Fayad ZA, Libby P, Weissleder R, Tawakol A, Dubey S, Belanger AP, Di Carli MF, Swirski FK, Kjaer A, Mulder WJM, Nahrendorf M. Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circ Res 2015; 117:835-45. [PMID: 26394773 PMCID: PMC4619168 DOI: 10.1161/circresaha.115.307024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
RATIONALE Local plaque macrophage proliferation and monocyte production in hematopoietic organs promote progression of atherosclerosis. Therefore, noninvasive imaging of proliferation could serve as a biomarker and monitor therapeutic intervention. OBJECTIVE To explore (18)F-FLT positron emission tomography-computed tomography imaging of cell proliferation in atherosclerosis. METHODS AND RESULTS (18)F-FLT positron emission tomography-computed tomography was performed in mice, rabbits, and humans with atherosclerosis. In apolipoprotein E knock out mice, increased (18)F-FLT signal was observed in atherosclerotic lesions, spleen, and bone marrow (standardized uptake values wild-type versus apolipoprotein E knock out mice, 0.05 ± 0.01 versus 0.17 ± 0.01, P<0.05 in aorta; 0.13 ± 0.01 versus 0.28 ± 0.02, P<0.05 in bone marrow; 0.06 ± 0.01 versus 0.22 ± 0.01, P<0.05 in spleen), corroborated by ex vivo scintillation counting and autoradiography. Flow cytometry confirmed significantly higher proliferation of macrophages in aortic lesions and hematopoietic stem and progenitor cells in the spleen and bone marrow in these mice. In addition, (18)F-FLT plaque signal correlated with the duration of high cholesterol diet (r(2)=0.33, P<0.05). Aortic (18)F-FLT uptake was reduced when cell proliferation was suppressed with fluorouracil in apolipoprotein E knock out mice (P<0.05). In rabbits, inflamed atherosclerotic vasculature with the highest (18)F-fluorodeoxyglucose uptake enriched (18)F-FLT. In patients with atherosclerosis, (18)F-FLT signal significantly increased in the inflamed carotid artery and in the aorta. CONCLUSIONS (18)F-FLT positron emission tomography imaging may serve as an imaging biomarker for cell proliferation in plaque and hematopoietic activity in individuals with atherosclerosis.
Collapse
Affiliation(s)
- Yu-Xiang Ye
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Claudia Calcagno
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Tina Binderup
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Gabriel Courties
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Edmund J Keliher
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Gregory R Wojtkiewicz
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Jun Tang
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Carlos Pérez-Medina
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Venkatesh Mani
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Seigo Ishino
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Camilla Bardram Johnbeck
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Ulrich Knigge
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Zahi A Fayad
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Peter Libby
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Ahmed Tawakol
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Shipra Dubey
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Anthony P Belanger
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Marcelo F Di Carli
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Filip K Swirski
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Andreas Kjaer
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Willem J M Mulder
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Department of Radiology (Y.-X.Y., G.C., E.J.K., G.R.W., Y.I., R.W., F.K.S., M.N.) and Division of Cardiology (A.T.), Massachusetts General Hospital and Harvard Medical School, Boston; Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., J.T., C.P.-M., V.M., S.I., Z.A.F., W.J.M.M.); Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (T.B., C.B.J., A.K.) and Departments of Clinical Endocrinology PE and Surgery C (U.K.), Rigshospitalet, National University Hospital & University of Copenhagen, Copenhagen, Denmark; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.L., M.F.D.C.); Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.); Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.D., A.P.B., M.F.D.C.); and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.).
| |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW This review relates recent findings that highlight the role of the spleen as an active donor of monocytes during inflammation, with a special focus on atherosclerosis. RECENT FINDINGS The contribution of hypercholesterolemia and monocytes/macrophages to atherosclerotic lesion formation is undisputable. The origin of plaque macrophages is, however, still a subject of debate as to whether they derive from local amplification of (resident) macrophages or from continuous recruitment and differentiation of monocytes. Recently, the spleen has emerged as an important reservoir of monocytes that contributes to lesion growth. The regulation of monocyte mobilization from the splenic compartment has, therefore, raised a keen interest in understanding the cellular and molecular mechanisms involved in this process. SUMMARY Impaired regulation of cholesterol metabolism increases the proliferation of hematopoietic stem and progenitor cells in both the bone marrow and the spleen. Recent findings identified the implication of angiotensin II, red pulp macrophages and B-lymphocytes as partners of monocyte expansion in, and mobilization from the spleen. Future studies will help in understanding the mechanisms of monocyte mobilization and its precise roles in atherosclerosis, and whether modulation of the splenic components may become a promising future direction in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Stephane Potteaux
- aINSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité bRéanimation médicale, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France cDepartment of Medicine, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
130
|
Nahrendorf M, Swirski FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction? Eur Heart J 2015; 37:868-72. [PMID: 26351395 DOI: 10.1093/eurheartj/ehv453] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
Knowledge of macrophages in steady-state and diseased tissue is rapidly expanding, propelled by improved diagnostic capacity to detect and monitor cells in their native environments. In this review, we discuss implications for ischaemic heart disease and examine innate immune cell pathways that increase systemic leucocyte supply after myocardial infarction (MI). Acute MI alters the macrophage phenotype and supply chain from tissue resident to blood monocytes sourced from haematopoietic organs. That blood leucocytosis closely associates with cardiovascular mortality provides a strong motivation to understand why and how organ ischaemia alters cellular immunity.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
131
|
Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35:1066-70. [PMID: 25792449 PMCID: PMC4409536 DOI: 10.1161/atvbaha.114.304652] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/27/2015] [Indexed: 01/06/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death in developed countries. Though timely revascularization of the ischemic myocardium and current standard therapy reduce acute mortality after MI, long-term morbidity and mortality remain high. During the first 1 to 2 weeks after MI, tissues in the infarcted myocardium undergo rapid turnover, including digestion of extracellular matrix and fibrosis. Post-MI repair is crucial to survival. Monocytes recruited to the infarcted myocardium remove debris and facilitate the repair process. However, exaggerated inflammation may also impede healing, as demonstrated by the association between elevated white blood cell count and in-hospital mortality after MI. Monocytes produced in the bone marrow and spleen enter the blood after MI and are recruited to the injured myocardium in 2 phases. The first phase is dominated by Ly-6c(high) monocytes and the second phase by Ly-6c(low) monocytes. Yet the number of Ly6C(low) monocytes recruited to the infarct is much lower, and Ly6C(high) monocytes can differentiate to Ly6C(low) macrophages in later healing stages. Understanding the signals regulating monocytosis after MI will help design new therapies to facilitate cardiac healing and limit heart failure.
Collapse
Affiliation(s)
- Partha Dutta
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|