101
|
Abazari MF, Soleimanifar F, Enderami SE, Nasiri N, Nejati F, Mousavi SA, Soleimani M, Kiani J, Ghoraeian P, Kehtari M. Decellularized amniotic membrane Scaffolds improve differentiation of iPSCs to functional hepatocyte‐like cells. J Cell Biochem 2019; 121:1169-1181. [DOI: 10.1002/jcb.29351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnolmicroogy, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
- Department of Developmental Biology, School of Biology, College of Science University of Tehran Tehran Iran
| |
Collapse
|
102
|
Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting Vasculature: Materials, Cells and Emergent Techniques. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2701. [PMID: 31450791 PMCID: PMC6747573 DOI: 10.3390/ma12172701] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Despite the great advances that the tissue engineering field has experienced over the last two decades, the amount of in vitro engineered tissues that have reached a stage of clinical trial is limited. While many challenges are still to be overcome, the lack of vascularization represents a major milestone if tissues bigger than approximately 200 µm are to be transplanted. Cell survival and homeostasis is to a large extent conditioned by the oxygen and nutrient transport (as well as waste removal) by blood vessels on their proximity and spontaneous vascularization in vivo is a relatively slow process, leading all together to necrosis of implanted tissues. Thus, in vitro vascularization appears to be a requirement for the advancement of the field. One of the main approaches to this end is the formation of vascular templates that will develop in vitro together with the targeted engineered tissue. Bioprinting, a fast and reliable method for the deposition of cells and materials on a precise manner, appears as an excellent fabrication technique. In this review, we provide a comprehensive background to the fields of vascularization and bioprinting, providing details on the current strategies, cell sources, materials and outcomes of these studies.
Collapse
Affiliation(s)
- Clarissa Tomasina
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Tristan Bodet
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| |
Collapse
|
103
|
Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019; 5:4167-4182. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver tissue engineering aims at the possibility of reproducing a fully functional organ for the treatment of acute and chronic liver disorders. Approaches in this field endeavor to replace organ transplantation (gold standard treatment for liver diseases in a clinical setting) with in vitro developed liver tissue constructs. However, the complexity of the liver microarchitecture and functionality along with the limited supply of cellular components of the liver pose numerous challenges. This review provides a comprehensive outlook onto how the physicochemical, mechanobiological, and spatiotemporal aspects of the substrates could be tuned to address current challenges in the field. We also highlight the strategic advancements made in the field so far for the development of artificial liver tissue. We further showcase the currently available prototypes in research and clinical trials, which shows the hope for the future of liver tissue engineering.
Collapse
|
104
|
Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, Bojedla SSR, Pati F. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
105
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
106
|
Park D, Lee J, Chung JJ, Jung Y, Kim SH. Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends Biotechnol 2019; 38:99-112. [PMID: 31345572 DOI: 10.1016/j.tibtech.2019.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Organs-on-chips (OoCs) have attracted significant attention because they can be designed to mimic in vivo environments. Beyond constructing a single OoC, recent efforts have tried to integrate multiple OoCs to broaden potential applications such as disease modeling and drug discoveries. However, various challenges remain for integrating OoCs towards in vivo-like operation, such as incorporating various connections for integrating multiple OoCs. We review multiplexed OoCs and challenges they face: scaling, vascularization, and innervation. In our opinion, future OoCs will be constructed to have increased predictive power for in vivo phenomena and will ultimately become a mainstream tool for high quality biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
107
|
Firouzian KF, Zhang T, Zhang H, Song Y, Su X, Lin F. An Image-Guided Intrascaffold Cell Assembly Technique for Accurate Printing of Heterogeneous Tissue Constructs. ACS Biomater Sci Eng 2019; 5:3499-3510. [PMID: 33405733 DOI: 10.1021/acsbiomaterials.9b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For tissue engineering and regenerative medicine, creating thick and heterogeneous scaffold-based tissue constructs requires deep and precise multicellular deposition. Traditional cell seeding strategies lack the ability to create multicellular tissue constructs with high cell penetration and distribution, while emerging strategies aim to simultaneously combine cell-laden tissue segments with scaffold fabrication. Here we describe a technique that allows for three-dimensional (3D) intrascaffold cell assembly in which scaffolds are prefabricated and pretreated, followed by accurate cell distribution within the scaffold using an image-guided technique. This two-step process yields less limitation in scaffold material choice as well as additional treatments, provides accurate cell distribution, and has less potential to harm cells. The image processing technique captures a 2D geometric image of the scaffold, followed by a series of processes, mainly including grayscale transformation, threshold segmentation, and boundary extraction, to ultimately locate scaffold macropore centroids. Coupled with camera calibration data, accurate 3D cell assembly pathway plans can be made. Intrascaffold assembly parameter optimization and complex intrascaffold gradient, multidirectional, and vascular structure assembly were studied. Demonstration was also made with path planning and cell assembly experiments using NIH3T3-cell-laden hydrogels and collagen-coated poly(lactic-co-glycolic acid) (PLGA) scaffolds. Experiments with CellTracker fluorescent monitoring, live/dead staining, and phalloidin-F-actin/DAPI immunostaining and comparison with two control groups (bioink manual injection and cell suspension static surface pipetting) showed accurate cell distribution and positioning and high cell viability (>93%). The PrestoBlue assay showed obvious cell proliferation over seven culture days in vitro. This technique provides an accurate method to aid simple and complex cell colonization with variant depth within 3D-scaffold-based constructs using multiple cells. The modular method can be used with any existing printing platform and shows potential in facilitating direct spatial organization and hierarchal 3D assembly of multiple cells and/or drugs within scaffolds for further tissue engineering studies and clinical applications.
Collapse
Affiliation(s)
- Kevin F Firouzian
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolei Su
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
108
|
Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for Liver Tissue Engineering. Bioengineering (Basel) 2019; 6:E59. [PMID: 31284412 PMCID: PMC6784004 DOI: 10.3390/bioengineering6030059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
109
|
Skolasinski SD, Panoskaltsis-Mortari A. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev Respir Med 2019; 13:665-678. [PMID: 31164014 DOI: 10.1080/17476348.2019.1624163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) affects more than 380 million people, causing more than 3 million deaths annually worldwide. Despite this enormous burden, currently available therapies are largely limited to symptom control. Lung transplant is considered for end-stage disease but is severely limited by the availability of human organs. Furthermore, the pre-transplant course is a complex orchestration of locating and harvesting suitable lungs, and the post-transplant course is complicated by rejection and infection. Lung tissue bioengineering has the potential to relieve the organ shortage and improve the post-transplant course by generating patient-specific lungs for transplant. Additionally, emerging progenitor cell therapies may facilitate in vivo regeneration of pulmonary tissue, obviating the need for transplant. Areas Covered: We review several lung tissue bioengineering approaches including the recellularization of decellularized scaffolds, 3D bioprinting, genetically-engineered xenotransplantation, blastocyst complementation, and direct therapy with progenitor cells. Articles were identified by searching relevant terms (see Key Words) in the PubMed database and selected for inclusion based on novelty and uniqueness of their approach. Expert Opinion: Lung tissue bioengineering research is in the early stages. Of the methods reviewed, only direct cell therapy has been investigated in humans. We anticipate a minimum of 5-10 years before human therapy will be feasible.
Collapse
Affiliation(s)
- Steven D Skolasinski
- a Division of Pulmonary, Allergy, Critical Care and Sleep Medicine , University of Minnesota , Minneapolis , MN , USA
| | | |
Collapse
|
110
|
Acun A, Oganesyan R, Uygun BE. Liver Bioengineering: Promise, Pitfalls, and Hurdles to Overcome. CURRENT TRANSPLANTATION REPORTS 2019; 6:119-126. [PMID: 31289714 PMCID: PMC6615568 DOI: 10.1007/s40472-019-00236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advancements in liver bioengineering and cell therapy and future advancements to improve the field towards clinical applications. RECENT FINDINGS 3D printing, hydrogel-based tissue fabrication, and the use of native decellularized liver extracellular matrix as a scaffold are used to develop whole or partial liver substitutes. The current focus is on developing a functional liver graft through achieving a non-leaky endothelium and a fully constructed bile duct. Use of cell therapy as a treatment is less invasive and less costly compared to transplantation, however, lack of readily available cell sources with low or no immunogenicity and contradicting outcomes of clinical trials are yet to be overcome. SUMMARY Liver bioengineering is advancing rapidly through the development of in vitro and in vivo tissue and organ models. Although there are major challenges to overcome, through optimization of the current methods and successful integration of induced pluripotent stem cells, the development of readily available, patient-specific liver substitutes can be achieved.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
111
|
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci (Lond) 2019; 133:1115-1135. [DOI: 10.1042/cs20180155] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.
Collapse
|
112
|
Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering. Molecules 2019; 24:molecules24091762. [PMID: 31067670 PMCID: PMC6539120 DOI: 10.3390/molecules24091762] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) tissue models replicating liver architectures and functions are increasingly being needed for regenerative medicine. However, traditional studies are focused on establishing 2D environments for hepatocytes culture since it is challenging to recreate biodegradable 3D tissue-like architecture at a micro scale by using hydrogels. In this paper, we utilized a gelatin methacryloyl (GelMA) hydrogel as a matrix to construct 3D lobule-like microtissues for co-culture of hepatocytes and fibroblasts. GelMA hydrogel with high cytocompatibility and high structural fidelity was determined to fabricate hepatocytes encapsulated micromodules with central radial-type hole by photo-crosslinking through a digital micromirror device (DMD)-based microfluidic channel. The cellular micromodules were assembled through non-contact pick-up strategy relying on local fluid-based micromanipulation. Then the assembled micromodules were coated with fibroblast-laden GelMA, subsequently irradiated by ultraviolet for integration of the 3D lobule-like microtissues encapsulating multiple cell types. With long-term co-culture, the 3D lobule-like microtissues encapsulating hepatocytes and fibroblasts maintained over 90% cell viability. The liver function of albumin secretion was enhanced for the co-cultured 3D microtissues compared to the 3D microtissues encapsulating only hepatocytes. Experimental results demonstrated that 3D lobule-like microtissues fabricated by GelMA hydrogels capable of multicellular co-culture with high cell viability and liver function, which have huge potential for liver tissue engineering and regenerative medicine applications.
Collapse
|
113
|
Zhang Y, Zan Y, Chen H, Wang Z, Ni T, Liu M, Pei R. Bone Marrow Mesenchymal Stem Cells Encapsulated in a Hydrogel System via Bioorthogonal Chemistry for Liver Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:2444-2452. [DOI: 10.1021/acsabm.9b00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yajie Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yue Zan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hong Chen
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhili Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
114
|
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2019; 60:506-532. [PMID: 29761314 DOI: 10.1007/s12033-018-0084-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Simran Asawa
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Bhaskar Birru
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Ramaraju Baadhe
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
115
|
Janmohammadi M, Nourbakhsh MS. Recent advances on 3D printing in hard and soft tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mahsa Janmohammadi
- Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Biomedical Engineering- Biomaterials, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
116
|
Kehtari M, Beiki B, Zeynali B, Hosseini FS, Soleimanifar F, Kaabi M, Soleimani M, Enderami SE, Kabiri M, Mahboudi H. Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J Cell Biochem 2019; 120:6683-6697. [DOI: 10.1002/jcb.27965] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 08/30/2023]
Abstract
AbstractLiver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs‐derived hepatocyte‐like cells (hiPSCs‐Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic‐associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs‐Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.
Collapse
Affiliation(s)
- Mousa Kehtari
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Bahareh Beiki
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | - Bahman Zeynali
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | | | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences Karaj Iran
| | - Mohammad Kaabi
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Masoud Soleimani
- Department of Hematology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Seyed Ehsan Enderami
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Hossein Mahboudi
- Department of Biotechnology School of Pharmacy, Alborz University of Medical Sciences Karaj Iran
- Dietary Supplements and Probiotic Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
117
|
Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Acta Biomater 2019; 85:84-93. [PMID: 30590182 DOI: 10.1016/j.actbio.2018.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.
Collapse
|
118
|
Gill AS, Deol PK, Kaur IP. An Update on the Use of Alginate in Additive Biofabrication Techniques. Curr Pharm Des 2019; 25:1249-1264. [PMID: 31020933 DOI: 10.2174/1381612825666190423155835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. METHOD SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. RESULT & CONCLUSION Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.
Collapse
Affiliation(s)
- Amoljit Singh Gill
- Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
| | - Parneet Kaur Deol
- Department of Pharmaceutics, G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
119
|
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019; 1:100008. [PMID: 32159140 PMCID: PMC7061634 DOI: 10.1016/j.mtbio.2019.100008] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
The native tissues are complex structures consisting of different cell types, extracellular matrix materials, and biomolecules. Traditional tissue engineering strategies have not been able to fully reproduce biomimetic and heterogeneous tissue constructs because of the lack of appropriate biomaterials and technologies. However, recently developed three-dimensional bioprinting techniques can be leveraged to produce biomimetic and complex tissue structures. To achieve this, multicomponent bioinks composed of multiple biomaterials (natural, synthetic, or hybrid natural-synthetic biomaterials), different types of cells, and soluble factors have been developed. In addition, advanced bioprinting technologies have enabled us to print multimaterial bioinks with spatial and microscale resolution in a rapid and continuous manner, aiming to reproduce the complex architecture of the native tissues. This review highlights important advances in heterogeneous bioinks and bioprinting technologies to fabricate biomimetic tissue constructs. Opportunities and challenges to further accelerate this research area are also described.
Collapse
Affiliation(s)
- N. Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, 8000, Finland
| | - S. Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - C. Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
| | - H. Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - H. Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - R. Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - N. Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - A. Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
120
|
Yu C, Zhu W, Sun B, Mei D, Gou M, Chen S. Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. APPLIED PHYSICS REVIEWS 2018; 5:041107. [PMID: 31938080 PMCID: PMC6959479 DOI: 10.1063/1.5050245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023]
Abstract
Over the years, 3D printing technologies have transformed the field of tissue engineering and regenerative medicine by providing a tool that enables unprecedented flexibility, speed, control, and precision over conventional manufacturing methods. As a result, there has been a growing body of research focused on the development of complex biomimetic tissues and organs produced via 3D printing to serve in various applications ranging from models for drug development to translational research and biological studies. With the eventual goal to produce functional tissues, an important feature in 3D printing is the ability to tune and modulate the microenvironment to better mimic in vivo conditions to improve tissue maturation and performance. This paper reviews various strategies and techniques employed in 3D printing from the perspective of achieving control over physical, chemical, and biological properties to provide a conducive microenvironment for the development of physiologically relevant tissues. We will also highlight the current limitations associated with attaining each of these properties in addition to introducing challenges that need to be addressed for advancing future 3D printing approaches.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093,
USA
| | - Wei Zhu
- Department of NanoEngineering, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093,
USA
| | - Bingjie Sun
- Department of NanoEngineering, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093,
USA
| | - Deqing Mei
- Department of Mechanical Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West
China Hospital, Sichuan University and Collaborative Innovation Center of
Biotherapy, Chengdu, People's Republic of China
| | - Shaochen Chen
- Department of NanoEngineering, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093,
USA
| |
Collapse
|
121
|
Sasmal P, Datta P, Wu Y, Ozbolat IT. 3D bioprinting for modelling vasculature. MICROPHYSIOLOGICAL SYSTEMS 2018; 2:9. [PMID: 30931432 PMCID: PMC6436836 DOI: 10.21037/mps.2018.10.02] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though in vivo models provide the most physiologically-relevant environment for studying tissue development and function, an in vitro substitute is being offered by the advancement of three-dimensional (3D) bioprinting technology, which is a reproducible and scalable fabrication strategy providing precise 3D control compared to conventional microfluidic tissue fabrication methods. In this review, vasculature models printed using extrusion-, droplet-, and laser-based bioprinting techniques are summarized and compared. Besides bioprinting of hydrogels as bioinks, an alternative method to obtain vascular models by bioprinting is to use exogenous biomaterial-free cell aggregates such as tissue spheroids and cell pellet, which has also been discussed here. In addition, there have been efforts to fabricate micro-vasculature constructs (e.g., capillaries) to overcome the practical limitations of bioprinting of large scale vascular networks. At the end of the review, limitations and prospective of bioprinting in vasculature modelling has also been expounded.
Collapse
Affiliation(s)
- Pranabesh Sasmal
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| |
Collapse
|
122
|
Ortega‐Ribera M, Fernández‐Iglesias A, Illa X, Moya A, Molina V, Maeso‐Díaz R, Fondevila C, Peralta C, Bosch J, Villa R, Gracia‐Sancho J. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol Bioeng 2018; 115:2585-2594. [PMID: 29940068 PMCID: PMC6220781 DOI: 10.1002/bit.26776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Maintenance of the complex phenotype of primary hepatocytes in vitro represents a limitation for developing liver support systems and reliable tools for biomedical research and drug screening. We herein aimed at developing a biosystem able to preserve human and rodent hepatocytes phenotype in vitro based on the main characteristics of the liver sinusoid: unique cellular architecture, endothelial biodynamic stimulation, and parenchymal zonation. Primary hepatocytes and liver sinusoidal endothelial cells (LSEC) were isolated from control and cirrhotic human or control rat livers and cultured in conventional in vitro platforms or within our liver-resembling device. Hepatocytes phenotype, function, and response to hepatotoxic drugs were analyzed. Results evidenced that mimicking the in vivo sinusoidal environment within our biosystem, primary human and rat hepatocytes cocultured with functional LSEC maintained morphology and showed high albumin and urea production, enhanced cytochrome P450 family 3 subfamily A member 4 (CYP3A4) activity, and maintained expression of hepatocyte nuclear factor 4 alpha (hnf4α) and transporters, showing delayed hepatocyte dedifferentiation. In addition, differentiated hepatocytes cultured within this liver-resembling device responded to acute treatment with known hepatotoxic drugs significantly different from those seen in conventional culture platforms. In conclusion, this study describes a new bioengineered device that mimics the human sinusoid in vitro, representing a novel method to study liver diseases and toxicology.
Collapse
Affiliation(s)
- Martí Ortega‐Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Applications Group (GAB)Institut de Microelectrònica de Barcelona, IMB‐CNM (CSIC), Esfera UABBellaterraSpain
| | - Anabel Fernández‐Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Xavi Illa
- Biomedical Applications Group (GAB)Institut de Microelectrònica de Barcelona, IMB‐CNM (CSIC), Esfera UABBellaterraSpain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBERBBN)MadridSpain
| | - Ana Moya
- Biomedical Applications Group (GAB)Institut de Microelectrònica de Barcelona, IMB‐CNM (CSIC), Esfera UABBellaterraSpain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBERBBN)MadridSpain
| | - Víctor Molina
- Liver Surgery and Transplantation Unit, IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Raquel Maeso‐Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Constantino Fondevila
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Liver Surgery and Transplantation Unit, IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Carmen Peralta
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Protective Strategies Against Hepatic Ischemia‐Reperfusion Group, IDIBAPSBarcelonaSpain
| | - Jaume Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Hepatology, Department of Biomedical Research, InselspitalBern UniversityBernSwitzerland
| | - Rosa Villa
- Biomedical Applications Group (GAB)Institut de Microelectrònica de Barcelona, IMB‐CNM (CSIC), Esfera UABBellaterraSpain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBERBBN)MadridSpain
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- Hepatology, Department of Biomedical Research, InselspitalBern UniversityBernSwitzerland
| |
Collapse
|
123
|
Ghosh U, Ning S, Wang Y, Kong YL. Addressing Unmet Clinical Needs with 3D Printing Technologies. Adv Healthc Mater 2018; 7:e1800417. [PMID: 30004185 DOI: 10.1002/adhm.201800417] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Recent advances in 3D printing have enabled the creation of novel 3D constructs and devices with an unprecedented level of complexity, properties, and functionalities. In contrast to manufacturing techniques developed for mass production, 3D printing encompasses a broad class of fabrication technologies that can enable 1) the creation of highly customized and optimized 3D physical architectures from digital designs; 2) the synergistic integration of properties and functionalities of distinct classes of materials to create novel hybrid devices; and 3) a biocompatible fabrication approach that facilitates the creation and cointegration of biological constructs and systems. This progress report describes how these capabilities can potentially address a myriad of unmet clinical needs. First, the creation of 3D-printed prosthetics to regain lost functionalities by providing structural support for skeletal and tubular organs is highlighted. Second, novel drug delivery strategies aided by 3D-printed devices are described. Third, the advancement of medical research heralded by 3D-printed tissue/organ-on-chips systems is discussed. Fourth, the developments of 3D-printed tissue and organ regeneration are explored. Finally, the potential for seamless integration of engineered organs with active devices by leveraging the versatility of multimaterial 3D printing is envisioned.
Collapse
Affiliation(s)
- Udayan Ghosh
- Department of Mechanical Engineering; University of Utah; 1495 E 100 S (1550 MEK) Salt Lake City UT 84112 USA
| | - Shen Ning
- Boston University School of Medicine; Boston University; 72 E Concord St Boston MA 02118 USA
| | - Yuzhu Wang
- Department of Mechanical Engineering; University of Utah; 1495 E 100 S (1550 MEK) Salt Lake City UT 84112 USA
| | - Yong Lin Kong
- Department of Mechanical Engineering; University of Utah; 1495 E 100 S (1550 MEK) Salt Lake City UT 84112 USA
| |
Collapse
|
124
|
Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, Alini M, Eslaminejad MB. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med 2018; 12:1925-1943. [PMID: 30011424 DOI: 10.1002/term.2727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
125
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
126
|
Wang JZ, Xiong NY, Zhao LZ, Hu JT, Kong DC, Yuan JY. Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: A review. Int J Surg 2018; 56:1-6. [PMID: 29886280 DOI: 10.1016/j.ijsu.2018.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
The epidemiological trend in liver diseases becomes more serious worldwide. Several recent articles published by International Journal of Surgery in 2018 particularly emphasized the encouraging clinical benefits of hepatectomy, liver regeneration and liver transplantation, however, there are still many technical bottlenecks underlying these therapeutic approaches. Remarkably, a few preliminary studies have shown some clues to the role of three-dimensional (3D) printing in improving traditional therapy for liver diseases. Here, we concisely elucidated the curative applications of 3D-printing (no cells) and 3D Bio-printing (with hepatic cells), such as 3D-printed patient-specific liver models and devices for medical education, surgical simulation, hepatectomy and liver transplantation, 3D Bio-printed hepatic constructs for liver regeneration and artificial liver, 3D-printed liver tissues for evaluating drug's hepatotoxicity, and so on. Briefly, 3D-printed liver models and bioactive tissues may facilitate a lot of key steps to cure liver disorders, predictably bringing promising clinical benefits. This work further provides novel insights into facilitating treatment of hepatic carcinoma, promoting liver regeneration both in vivo and in vitro, expanding transplantable liver resources, maximizing therapeutic efficacy as well as minimizing surgical complications, medical hepatotoxicity, operational time, economic costs, etc.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan, 056002, PR China.
| | - Nan-Yan Xiong
- College of Medicine, Hebei University of Engineering, Handan, 056002, PR China
| | - Li-Zhen Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, PR China
| | - Jin-Tian Hu
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, PR China
| | - De-Cheng Kong
- College of Medicine, Hebei University of Engineering, Handan, 056002, PR China
| | - Jiang-Yong Yuan
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, PR China.
| |
Collapse
|
127
|
Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018; 177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. AIM The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. METHODS rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. RESULTS After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). CONCLUSION rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Xiaolin You
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| |
Collapse
|
128
|
Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018; 69:42-62. [PMID: 29371132 PMCID: PMC5831518 DOI: 10.1016/j.actbio.2018.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. STATEMENT OF SIGNIFICANCE Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community.
Collapse
Affiliation(s)
- Rajeev J Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
129
|
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 2018; 3:144-156. [PMID: 29744452 PMCID: PMC5935777 DOI: 10.1016/j.bioactmat.2017.11.008] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/25/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV). We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks. The most recent promising advances in three-dimensional bioprinting are reviewed. Extrusion, inkjet, stereolithography, and laser bioprinting studies are cited. Challenges toward successful employment of bioprinting are discussed.
Collapse
Affiliation(s)
- Soroosh Derakhshanfar
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Rene Mbeleck
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
130
|
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156:88-106. [DOI: 10.1016/j.biomaterials.2017.11.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
|
131
|
Park SH, Choi YJ, Moon SW, Lee BH, Shim JH, Cho DW, Wang JH. Three-Dimensional Bio-Printed Scaffold Sleeves With Mesenchymal Stem Cells for Enhancement of Tendon-to-Bone Healing in Anterior Cruciate Ligament Reconstruction Using Soft-Tissue Tendon Graft. Arthroscopy 2018; 34:166-179. [PMID: 28688825 DOI: 10.1016/j.arthro.2017.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the efficacy of the insertion of 3-dimensional (3D) bio-printed scaffold sleeves seeded with mesenchymal stem cells (MSCs) to enhance osteointegration between the tendon and tunnel bone in anterior cruciate ligament (ACL) reconstruction in a rabbit model. METHODS Scaffold sleeves were fabricated by 3D bio-printing. Before ACL reconstruction, MSCs were seeded into the scaffold sleeves. ACL reconstruction with hamstring tendon was performed on both legs of 15 adult rabbits (aged 12 weeks). We implanted 15 bone tunnels with scaffold sleeves with MSCs and implanted another 15 bone tunnels with scaffold sleeves without MSCs before passing the graft. The specimens were harvested at 4, 8, and 12 weeks. H&E staining, immunohistochemical staining of type II collagen, and micro-computed tomography of the tunnel cross-sectional area were evaluated. Histologic assessment was conducted with a histologic scoring system. RESULTS In the histologic assessment, a smooth bone-to-tendon transition through broad fibrocartilage formation was identified in the treatment group, and the interface zone showed abundant type II collagen production on immunohistochemical staining. Bone-tendon healing histologic scores were significantly higher in the treatment group than in the control group at all time points. Micro-computed tomography at 12 weeks showed smaller tibial (control, 9.4 ± 0.9 mm2; treatment, 5.8 ± 2.9 mm2; P = .044) and femoral (control, 9.6 ± 2.9 mm2; treatment, 6.0 ± 1.0 mm2; P = .03) bone-tunnel areas in the treated group than in the control group. CONCLUSIONS The 3D bio-printed scaffold sleeve with MSCs exhibited excellent results in osteointegration enhancement between the tendon and tunnel bone in ACL reconstruction in a rabbit model. CLINICAL RELEVANCE If secure biological healing between the tendon graft and tunnel bone can be induced in the early postoperative period, earlier, more successful rehabilitation may be facilitated. Three-dimensional bio-printed scaffold sleeves with MSCs have the potential to accelerate bone-tendon healing in ACL reconstruction.
Collapse
Affiliation(s)
- Sin Hyung Park
- Department of Orthopaedic Surgery, Soonchunhyang University School of Medicine, Bucheon Hospital, Bucheon, Republic of Korea
| | - Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Won Moon
- Department of Orthopaedic Surgery, Inje University School of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Byung Hoon Lee
- Department of Orthopaedic Surgery, Hallym University School of Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Joon Ho Wang
- Department of Orthopaedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
132
|
Zhang R, Larsen NB. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. LAB ON A CHIP 2017; 17:4273-4282. [PMID: 29116271 DOI: 10.1039/c7lc00926g] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three-dimensional (3D) in vitro models capturing both the structural and dynamic complexity of the in vivo situation are in great demand as an alternative to animal models. Despite tremendous progress in engineering complex tissue/organ models in the past decade, approaches that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically stable hydrogel constructs as self-contained chips, where confined culture volumes are traversed and surrounded by perfusable vascular-like networks. An optimized resin formulation enables printing of hydrogel chips holding perfusable microchannels with a cross-section as small as 100 μm × 100 μm, and the printed microchannels can be steadily perfused for at least one week. In addition, the integration of multiple independently perfusable and structurally stable channel systems further allows for easy combination of different bulk material volumes at exact relative spatial positions. We demonstrate this structural and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D constructs containing microfluidic perfusion networks for advanced in vitro models.
Collapse
Affiliation(s)
- Rujing Zhang
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
133
|
Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater 2017; 64:67-79. [PMID: 28966094 DOI: 10.1016/j.actbio.2017.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. STATEMENT OF SIGNIFICANCE We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment.
Collapse
|
134
|
Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S. A decade of progress in liver regenerative medicine. Biomaterials 2017; 157:161-176. [PMID: 29274550 DOI: 10.1016/j.biomaterials.2017.11.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/05/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Liver diseases can be caused by viral infection, metabolic disorder, alcohol consumption, carcinoma or injury, chronically progressing to end-stage liver disease or rapidly resulting in acute liver failure. In either situation, liver transplantation is most often sought for life saving, which is, however, significantly limited by severe shortage of organ donors. Until now, tremendous multi-disciplinary efforts have been dedicated to liver regenerative medicine, aiming at providing transplantable cells, microtissues, or bioengineered whole liver via tissue engineering, or maintaining partial liver functions via extracorporeal support. In both directions, new compatible biomaterials, stem cell sources, and bioengineering approaches have fast-forwarded liver regenerative medicine towards potential clinical applications. Another important progress in this field is the development of liver-on-a-chip technologies, which enable tissue engineering, disease modeling, and drug testing under biomimetic extracellular conditions. In this review, we aim to highlight the last decade's progress in liver regenerative medicine from liver tissue engineering, bioartificial liver devices (BAL), to liver-on-a-chip platforms, and then to present challenges ahead for further advancement.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Liguo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China.
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA; Department of Electrical Engineering (By courtesy), Stanford University, Stanford, CA 94305, USA.
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China; Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
135
|
Kreimendahl F, Köpf M, Thiebes AL, Duarte Campos DF, Blaeser A, Schmitz-Rode T, Apel C, Jockenhoevel S, Fischer H. Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Tissue Eng Part C Methods 2017; 23:604-615. [DOI: 10.1089/ten.tec.2017.0234] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Franziska Kreimendahl
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Marius Köpf
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Daniela F. Duarte Campos
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
136
|
Huang J, Fu H, Li C, Dai J, Zhang Z. Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fabrication of 3D scaffolds with patient-specific designs, high structural and component complexity, and rapid on-demand production at a low-cost by printing technique has attracted ever-increasing interests in tissue engineering. Cell-laden 3D bioprinting offers good prospects for future organ transplantation. Compared with nonbiological 3D printing, cell-laden 3D bioprinting involves more complex factors, including the choice of printing materials, the strategy of gelling, cell viability and technical challenges. Although cell-populated 3D bioprinting has so many complex factors, it has proven to be a useful and exciting tool with wide potential applications in regenerative medicine to generate a variety of transplantable tissues. In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-laden 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-populated 3D bioprinting in tissue engineering and regenerative medicine. [Formula: see text] In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-populated 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-laden 3D bioprinting in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
137
|
Pekkanen AM, Mondschein RJ, Williams CB, Long TE. 3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules 2017; 18:2669-2687. [PMID: 28762718 DOI: 10.1021/acs.biomac.7b00671] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.
Collapse
Affiliation(s)
- Allison M Pekkanen
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ryan J Mondschein
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Timothy E Long
- Macromolecules Innovation Institute (MII), Virginia Tech , Blacksburg, Virginia 24061, United States.,Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
138
|
Choi YJ, Yi HG, Kim SW, Cho DW. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics 2017; 7:3118-3137. [PMID: 28839468 PMCID: PMC5566110 DOI: 10.7150/thno.19396] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023] Open
Abstract
Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics.
Collapse
Affiliation(s)
- Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-781, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-781, Republic of Korea
| | - Seok-Won Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-781, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-781, Republic of Korea
| |
Collapse
|
139
|
Liu Y, Gill E, Shery Huang YY. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Sci OA 2017; 3:FSO173. [PMID: 28670465 PMCID: PMC5481809 DOI: 10.4155/fsoa-2016-0084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
A plethora of 3D and microfluidics-based culture models have been demonstrated in the recent years with the ultimate aim to facilitate predictive in vitro models for pharmaceutical development. This article summarizes to date the progress in the microfluidics-based tissue culture models, including organ-on-a-chip and vasculature-on-a-chip. Specific focus is placed on addressing the question of what kinds of 3D culture and system complexities are deemed desirable by the biological and biomedical community. This question is addressed through analysis of a research survey to evaluate the potential use of microfluidic cell culture models among the end users. Our results showed a willingness to adopt 3D culture technology among biomedical researchers, although a significant gap still exists between the desired systems and existing 3D culture options. With these results, key challenges and future directions are highlighted.
Collapse
Affiliation(s)
- Ye Liu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| | - Elisabeth Gill
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ
| |
Collapse
|
140
|
Tetsuka K, Ohbuchi M, Tabata K. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System. J Pharm Sci 2017; 106:2302-2311. [PMID: 28533121 DOI: 10.1016/j.xphs.2017.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan.
| | - Masato Ohbuchi
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| | - Kenji Tabata
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
141
|
Hikita A, Chung UI, Hoshi K, Takato T. Bone Regenerative Medicine in Oral and Maxillofacial Region Using a Three-Dimensional Printer<sup/>. Tissue Eng Part A 2017; 23:515-521. [PMID: 28351222 DOI: 10.1089/ten.tea.2016.0543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone grafts currently used for the treatment of large bone defect or asymmetry in oral and maxillofacial region include autologous, allogeneic, and artificial bones. Although artificial bone is free from the concerns of donor site morbidity, limitation of volume, disease transmission, and ethical issues, it lacks osteogenic and osteoinductive activities. In addition, molding of the artificial bone is an issue especially when it is used for the augmentation of bone as onlay grafts. To solve this problem, additive manufacturing techniques have been applied to fabricate bones which have outer shapes conformed to patients' bones. We developed a custom-made artificial bone called a computed tomography (CT)-bone. Efficacy of CT-bone was proven in a clinical research and clinical trial, showing good manipulability, stability, and patient satisfaction. However, low replacement rate of artificial bones by endogenous bones remain an unsolved issue. Loading of cells and growth factors will improve the bone replacement by inducing osteogenic and osteoinductive activities. In addition, the three-dimensional bioprinting technique will facilitate bone regeneration by placing cells and biological substances into appropriate sites.
Collapse
Affiliation(s)
- Atsuhiko Hikita
- 1 Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| | - Ung-Il Chung
- 2 Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Japan
| | - Kazuto Hoshi
- 3 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| | - Tsuyoshi Takato
- 3 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| |
Collapse
|
142
|
Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Biomacromolecules 2017; 18:1229-1237. [DOI: 10.1021/acs.biomac.6b01908] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hyungseok Lee
- Department of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Wonil Han
- Division of Integrative Biosciences
and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Hyeonji Kim
- Department of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Dong-Heon Ha
- Department of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Byoung Soo Kim
- Department of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Dong-Woo Cho
- Department of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| |
Collapse
|
143
|
Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017; 51:1-20. [PMID: 28087487 DOI: 10.1016/j.actbio.2017.01.035] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. STATEMENT OF SIGNIFICANCE Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication.
Collapse
|
144
|
Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y, Iwagami Y, Yamada D, Noda T, Wada H, Gotoh K, Kawamoto K, Doki Y, Mori M, Akashi M. Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials 2017; 133:263-274. [PMID: 28448819 DOI: 10.1016/j.biomaterials.2017.02.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
Abstract
The creation of artificial liver tissue is an active area of research due to the shortage of donors for liver transplantation. Here we investigated whether a simple and efficient cell coating technique developed in our laboratory could be used to generate functional vascularized liver tissue. This technique creates three-dimensional tissue by loading cells sterically onto other cells that have been coated with layer-by-layer (LbL) nanofilms of fibronectin and gelatin, two extracellular matrix proteins. We used this technique to construct homogenous, dense, well-vascularized liver tissue from cryopreserved human primary hepatocytes, human umbilical vein endothelial cells, and normal human dermal fibroblasts. Using LbL cell coating technique resulted in higher cellular function in terms of human albumin production (P < 0.01) and cytochrome P450 activity (P < 0.01) in vitro. Furthermore, after being transplanted subcutaneously into NOD/SCID mice, the vascularized liver tissue showed greater albumin production in the early stage than non-vascularized tissue or a hepatocyte suspension (P < 0.01). Histological examination demonstrated that compare to non-vascularized tissue, there were many less-morphologically changed and intact hepatocytes in the vascularized tissue. This cell coating technique would be applicable to the generation of vascularized functional liver tissue for regenerative medicine in the future.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Takami Akagi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yasunari Fukuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Japan.
| |
Collapse
|
145
|
Yi HG, Lee H, Cho DW. 3D Printing of Organs-On-Chips. Bioengineering (Basel) 2017; 4:E10. [PMID: 28952489 PMCID: PMC5590440 DOI: 10.3390/bioengineering4010010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.
Collapse
Affiliation(s)
- Hee-Gyeong Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| |
Collapse
|
146
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
147
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
148
|
Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 2016; 13:647-662. [PMID: 30603446 DOI: 10.1007/s13770-016-0133-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting technologies have been developed to offer construction of biological tissue constructs that mimic the anatomical and functional features of native tissues or organs. These cutting-edge technologies could make it possible to precisely place multiple cell types and biomaterials in a single 3D tissue construct. Hence, 3D bioprinting is one of the most attractive and powerful tools to provide more anatomical and functional similarity of human tissues or organs in tissue engineering and regenerative medicine. In recent years, this 3D bioprinting continually shows promise for building complex soft tissue constructs through placement of cell-laden hydrogel-based bioinks in a layer-by-layer fashion. This review will discuss bioprinting technologies and their applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Ji Hyun Kim
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - James J Yoo
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Sang Jin Lee
- 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
149
|
Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, Cho DW. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink. Adv Healthc Mater 2016; 5:2636-2645. [PMID: 27529631 DOI: 10.1002/adhm.201600483] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/15/2016] [Indexed: 12/21/2022]
Abstract
Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.
Collapse
Affiliation(s)
- Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-guPohang Kyungbuk 790-784 Korea
| | - Taek Gyoung Kim
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| | - Jonghyeon Jeong
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| | - Hee-Gyeong Yi
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| | - Ji Won Park
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| | - Woonbong Hwang
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Nam-gu, Pohang Kyungbuk 790-784 Korea
| |
Collapse
|
150
|
Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 2016; 14:271. [PMID: 27645770 PMCID: PMC5028995 DOI: 10.1186/s12967-016-1028-0] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.
Collapse
Affiliation(s)
- Jipeng Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Mingjiao Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 People’s Republic of China
| |
Collapse
|