101
|
Royce SG, Licciardi PV, Beh RC, Bourke JE, Donovan C, Hung A, Khurana I, Liang JJ, Maxwell S, Mazarakis N, Pitsillou E, Siow YY, Snibson KJ, Tobin MJ, Ververis K, Vongsvivut J, Ziemann M, Samuel CS, Tang MLK, El-Osta A, Karagiannis TC. Sulforaphane prevents and reverses allergic airways disease in mice via anti-inflammatory, antioxidant, and epigenetic mechanisms. Cell Mol Life Sci 2022; 79:579. [PMID: 36319916 PMCID: PMC11803010 DOI: 10.1007/s00018-022-04609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.
Collapse
Affiliation(s)
- Simon G Royce
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, 2305, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Nadia Mazarakis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Ya Yun Siow
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Kenneth J Snibson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark J Tobin
- ANSTO-Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Warrnambool, VIC, 3216, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mimi L K Tang
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
102
|
Vargas-Mendoza N, Madrigal-Santillán E, Álvarez-González I, Madrigal-Bujaidar E, Anguiano-Robledo L, Aguilar-Faisal JL, Morales-Martínez M, Delgado-Olivares L, Rodríguez-Negrete EV, Morales-González Á, Morales-González JA. Phytochemicals in Skeletal Muscle Health: Effects of Curcumin (from Curcuma longa Linn) and Sulforaphane (from Brassicaceae) on Muscle Function, Recovery and Therapy of Muscle Atrophy. PLANTS 2022; 11:plants11192517. [PMID: 36235384 PMCID: PMC9573421 DOI: 10.3390/plants11192517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The mobility of the human body depends on, among other things, muscle health, which can be affected by several situations, such as aging, increased oxidative stress, malnutrition, cancer, and the lack or excess of physical exercise, among others. Genetic, metabolic, hormonal, and nutritional factors are intricately involved in maintaining the balance that allows proper muscle function and fiber recovery; therefore, the breakdown of the balance among these elements can trigger muscle atrophy. The study from the nutrigenomic perspective of nutritional factors has drawn wide attention recently; one of these is the use of certain compounds derived from foods and plants known as phytochemicals, to which various biological activities have been described and attributed in terms of benefiting health in many respects. This work addresses the effect that the phytochemicals curcumin from Curcuma longa Linn and sulforaphane from Brassicaceae species have shown to exert on muscle function, recovery, and the prevention of muscle atrophy, and describes the impact on muscle health in general. In the same manner, there are future perspectives in research on novel compounds as potential agents in the prevention or treatment of medical conditions that affect muscle health.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City 14420, Mexico
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan-Tilcuauttla, s/n, Ex Hacienda la Concepción, San Agustín Tlaxiaca, Hidalgo 2160, Mexico
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
- Correspondence: (Á.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (Á.M.-G. & J.A.M.-G.)
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
- Correspondence: (Á.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (Á.M.-G. & J.A.M.-G.)
| |
Collapse
|
103
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
104
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
105
|
Zhao Y, Shang S, Song Y, Li T, Han M, Qin Y, Wei M, Xi J, Tang B. Sulforaphane kills Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis mc2155 through a reactive oxygen species dependent mechanism. J Microbiol 2022; 60:1095-1105. [DOI: 10.1007/s12275-022-2284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
|
106
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
107
|
Shimizu S, Kasai S, Yamazaki H, Tatara Y, Mimura J, Engler MJ, Tanji K, Nikaido Y, Inoue T, Suganuma H, Wakabayashi K, Itoh K. Sulforaphane Increase Mitochondrial Biogenesis-Related Gene Expression in the Hippocampus and Suppresses Age-Related Cognitive Decline in Mice. Int J Mol Sci 2022; 23:ijms23158433. [PMID: 35955572 PMCID: PMC9369397 DOI: 10.3390/ijms23158433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Sulforaphane (SFN) is a potent activator of the transcriptional factor, Nuclear Factor Erythroid 2 (NF-E2)-Related factor 2 (NRF2). SFN and its precursor, glucoraphanin (sulforaphane glucosinolate, SGS), have been shown to ameliorate cognitive function in clinical trials and in vivo studies. However, the effects of SGS on age-related cognitive decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) is unknown. In this study, we determined the preventive potential of SGS on age-related cognitive decline. One-month old SAMP8 mice or control SAM resistance 1 (SAMR1) mice were fed an ad libitum diet with or without SGS-containing broccoli sprout powder (0.3% w/w SGS in diet) until 13 months of age. SGS significantly improved long-term memory in SAMP8 at 12 months of age. Interestingly, SGS increased hippocampal mRNA and protein levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and mitochondrial transcription factor A (TFAM), which are master regulators of mitochondrial biogenesis, both in SAMR1 and SAMP8 at 13 months of age. Furthermore, mRNAs for nuclear respiratory factor-1 (NRF-1) and mitochondrial DNA-encoded respiratory complex enzymes, but not mitochondrial DNA itself, were increased by SGS in SAMP8 mice. These results suggest that SGS prevents age-related cognitive decline by maintaining mitochondrial function in senescence-accelerated mice.
Collapse
Affiliation(s)
- Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Shuya Kasai
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Hiromi Yamazaki
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Yota Tatara
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Junsei Mimura
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (K.T.); (K.W.)
| | - Yoshikazu Nikaido
- Department of Metabolomics Innovation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Takuro Inoue
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (K.T.); (K.W.)
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence:
| |
Collapse
|
108
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
109
|
Bai X, Li S, Liu X, An H, Kang X, Guo S. Caffeic Acid, an Active Ingredient in Coffee, Combines with DOX for Multitarget Combination Therapy of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8326-8337. [PMID: 35772797 DOI: 10.1021/acs.jafc.2c03009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adjuvant diet therapy is an important means of comprehensive treatment of cancer. It is recognized by patients for its high safety, painlessness, and ease to operate. However, the development of adjuvant dietary therapy is limited by unclear targets and unclear anticancer mechanisms. In this work, caffeic acid was found as an inhibitor of TMEM16A with an IC50 of 29.47 ± 3.19 μM by fluorescence quenching and whole-cell patch-clamp experiments. Caffeic acid regulated the proliferation, migration, and apoptosis of lung cancer cells targeting TMEM16A, which was detected by CCK-8, colony formation, wound healing, and Annexin V assays. In addition, molecular docking combined with site-directed mutagenesis confirmed that the binding sites of caffeic acid to TMEM16A were D439, E448, and R753. Western blot results indicated that caffeic acid regulated the growth of lung cancer through the MAPK pathway. In vitro experiments showed that the inhibitory effect of caffeic acid combined with hydroxydaunorubicin (DOX) on lung cancer cell growth was better than a double concentration of any single dose. In vivo pharmacokinetic experiments and tumor xenograft experiments indicated that the combination of 5.4 mg/kg caffeic acid and 4.1 mg/kg DOX achieved 85.6% tumor suppression rate and offset the side effects. Therefore, caffeic acid is a safe and efficient antitumor active ingredient of food that can enhance the antitumor effect of DOX.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
110
|
Beneficial Effect of H 2S-Releasing Molecules in an In Vitro Model of Sarcopenia: Relevance of Glucoraphanin. Int J Mol Sci 2022; 23:ijms23115955. [PMID: 35682634 PMCID: PMC9180606 DOI: 10.3390/ijms23115955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- β-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 μM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 μM), L-cysteine (150 μM), and 3-mercaptopyruvate (150 μM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2− levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.
Collapse
|
111
|
Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23095172. [PMID: 35563563 PMCID: PMC9099819 DOI: 10.3390/ijms23095172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Sulforaphane, a natural phytochemical compound found in various cruciferous vegetables, has been discovered to present anti-cancer properties. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in gastric cancer metastasis. However, the role of sulforaphane in MMP-9 expression in gastric cancer is not yet defined. Nicotine, a psychoactive alkaloid found in tobacco, is associated with the development of gastric cancer. Here, we found that sulforaphane suppresses the nicotine-mediated induction of MMP-9 in human gastric cancer cells. We discovered that reactive oxygen species (ROS) and MAPKs (p38 MAPK, Erk1/2) are involved in nicotine-induced MMP-9 expression. AP-1 and NF-κB are the critical transcription factors in MMP-9 expression. ROS/MAPK (p38 MAPK, Erk1/2) and ROS functioned as upstream signaling of AP-1 and NF-κB, respectively. Sulforaphane suppresses the nicotine-induced MMP-9 by inhibiting ROS-mediated MAPK (p38 MAPK, Erk1/2)/AP-1 and ROS-mediated NF-κB signaling axes, which in turn inhibit cell invasion in human gastric cancer AGS cells. Therefore, the current study provides valuable evidence for developing sulforaphane as a new anti-invasion strategy for human gastric cancer therapy.
Collapse
|
112
|
Zheng W, Li X, Zhang T, Wang J. Biological mechanisms and clinical efficacy of sulforaphane for mental disorders. Gen Psychiatr 2022; 35:e100700. [PMID: 35492261 PMCID: PMC8987744 DOI: 10.1136/gpsych-2021-100700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Current clinical management of major mental disorders, such as autism spectrum disorder, depression and schizophrenia, is less than optimal. Recent scientific advances have indicated that deficits in oxidative and inflammation systems are extensively involved in the pathogenesis of these disorders. These findings have led to expanded considerations for treatment. Sulforaphane (SFN) is a dietary phytochemical extracted from cruciferous vegetables. It is an effective activator of the transcription factor nuclear erythroid-2 like factor-2, which can upregulate multiple antioxidants and protect neurons against various oxidative damages. On the other hand, it can also significantly reduce inflammatory response to pathological states and decrease the damage caused by the immune response via the nuclear factor-κB pathway and other pathways. In this review, we introduce the biological mechanisms of SFN and the pilot evidence from its clinical trials of major mental disorders, hoping to promote an increase in psychiatric clinical studies of SFN.
Collapse
Affiliation(s)
- Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Shenzhen R&D Center, Shenzhen Fushan Biotech, Shenzhen, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
113
|
Li H, Wu Q, Liu Q, Jin L, Chen B, Li C, Xiao J, Shen Y. Volatile Flavor Compounds of Pugionium cornutum (L.) Gaertn. Before and After Different Dehydration Treatments. Front Nutr 2022; 9:884086. [PMID: 35586736 PMCID: PMC9108931 DOI: 10.3389/fnut.2022.884086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Pugionium cornutum (L.) Gaertn (also Pugionium) is a special Mongolian vegetable, belonging to the Cruciferous family, growing in arid and semi-arid areas of northern China, with a unique flavor and potential health benefits. This article aims to describe the profile of volatile flavor compounds in fresh and different dehydrated samples, establish the fingerprint, and identify the characteristic compounds. The fresh Pugionium sample and 3 kinds of dehydrated samples were analyzed. Headspace/gas chromatography-ion migration spectrometry (HS/GC-IMS) and solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) were used for identification and relative quantification. HS/GC-IMS identified 78 compounds, whereas SPME/GC-MS identified 53 compounds. Principal component analysis (PCA), clustering analysis, and partial least squares discriminant analysis (PLS-DA) were used as appropriate to investigate variations in volatile compounds among Pugionium samples and identify distinctive compounds. The first two principal components described 76.5% and 69.5% of the variance of the data from HS/GC-IMS and SPME/GC-MS, respectively. By clustering analysis, 4 kinds of Pugionium samples could be classified into four independent groups. The similarity between fresh Pugionium and natural dehydration Pugionium was higher than the other two dehydrated samples, indicating that natural dehydration can better preserve the flavor of Pugionium. Most aldehydes and alcohols increased following different dehydration procedures, whereas esters decreased, and the dehydrated Pugionium samples have more harmonious and less pungent aroma than the fresh Pugionium. PLS-DA model analysis revealed that the marker compounds (VIP scores > 1) discriminating the flavor of the four samples for HS/GC-IMS and SPME/GC-MS were 24 and 15 compounds, respectively, such as 2-phenylethyl isothiocyanate, 1-butene-4-isothiocyanate and other isothiocyanates, 2-propanone, nonanal, gamma-butyrolactone, 2,3-butanediol, 3-methyl-2-butenenitrile, and pentanal. Analysis of volatile compounds might be useful for monitoring the quality of Pugionium and guiding the cooking methods and processing technologies. More study is required to discover if the various volatile flavor compounds have biological or physiological impacts on nutrition.
Collapse
Affiliation(s)
- Haoyu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, China
| | - Qian Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Qiannan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- *Correspondence: Cong Li
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
- Yehua Shen
| |
Collapse
|
114
|
Chen Y, Wang MH, Wu JY, Zhu JY, Xie CF, Li XT, Wu JS, Geng SS, Li YD, Han HY, Zhong CY. ΔNp63α mediates sulforaphane suppressed colorectal cancer stem cell properties through transcriptional regulation of Nanog/Oct4/Sox2. J Nutr Biochem 2022; 107:109067. [DOI: 10.1016/j.jnutbio.2022.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
115
|
SFN Enhanced the Radiosensitivity of Cervical Cancer Cells via Activating LATS2 and Blocking Rad51/MDC1 Recruitment to DNA Damage Site. Cancers (Basel) 2022; 14:cancers14081872. [PMID: 35454780 PMCID: PMC9026704 DOI: 10.3390/cancers14081872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Radiotherapy is the main treatment for cervical cancer patients in advanced stages. However a considerable number of patients are not sensitive to radiotherapy. Dysregulation of DNA double-strand break (DSB) repair is characteristic of cancer cells in a radiotherapy-resistance state. The aim of this study is to explore Sulforaphane (SFN) downstream target and the radiotherapy sensitization mechanism in cervical cancer. We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization. Abstract Background: Sulforaphane (SFN) is one kind of phytochemical anticancer drug. It inhibits cancer cell proliferation and promotes cell apoptosis while the mechanism behind is still uncertain. We aimed to explore its downstream target and the radiotherapy sensitization mechanism in cervical cancer. Methods: We treated established cervical cancer cells line (SiHa, HeLa, C33A) with SFN followed by irradiation, and explored its survival, apoptosis, and DNA damage repair in vitro and validated the radiosensitivity of SFN treatment in vivo. We conducted mRNA sequencing to identify differentially expressed mRNAs after SFN treatment. We further investigated SFN downstream target and its involvement in DNA damage repair under irradiation. Results: We found that SFN inhibited the survival of cervical cancer cells under radiotherapy treatment in vitro and prolonged the survival period after radiotherapy in the mouse tumorigenic model. SFN increased the protein expression of LATS2 and promoted apoptosis of cervical cancer cells. Overexpressed LATS2 decreased the cellular survival rate of cervical cancer cells. Additionally, SFN treatment and LATS2 overexpression prevented MDC1 and Rad51 from accumulating in the nucleus in cervical cancer cells after being exposed to ionized radiation. LATS2 loss intervened with SFN-alleviated RAD51 and MDC1 nucleus accumulation and resumed the repairment of DNA damage. Conclusion: We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization.
Collapse
|
116
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
117
|
Canto A, Martínez-González J, Miranda M, Olivar T, Almansa I, Hernández-Rabaza V. Sulforaphane Modulates the Inflammation and Delays Neurodegeneration on a Retinitis Pigmentosa Mice Model. Front Pharmacol 2022; 13:811257. [PMID: 35300301 PMCID: PMC8921528 DOI: 10.3389/fphar.2022.811257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
The term retinitis pigmentosa (RP) describes a large group of hereditary retinopathies. From a cellular view, retinal degeneration is prompted by an initial death of rods, followed later by cone degeneration. This cellular progressive degeneration is translated clinically in tunnel vision, which evolves to complete blindness. The mechanism underlying the photoreceptor degeneration is unknown, but several mechanisms have been pointed out as main co-stars, inflammation being one of the most relevant. Retinal inflammation is characterized by proliferation, migration, and morphological changes in glial cells, in both microglia and Müller cells, as well as the increase in the expression of inflammatory mediators. Retinal inflammation has been reported in several animal models and clinical cases of RP, but the specific role that inflammation plays in the pathology evolution remains uncertain. Sulforaphane (SFN) is an antioxidant natural compound that has shown anti-inflammatory properties, including the modulation of glial cells activation. The present work explores the effects of SFN on retinal degeneration and inflammation, analyzing the modulation of glial cells in the RP rd10 mice model. A daily dose of 20 mg/kg of sulforaphane was administered intraperitoneally to control (C57BL/6J wild type) and rd10 (Pde6brd10) mice, from postnatal day 14 to day 20. On postnatal day 21, euthanasia was performed. Histological retina samples were used to assess cellular degeneration, Müller cells, and microglia activation. SFN administration delayed the loss of photoreceptors. It also ameliorated the characteristic reactive gliosis, assessed by retinal GFAP expression. Moreover, sulforaphane treatment regulated the microglia activation state, inducing changes in the microglia morphology, migration, and expression through the retina. In addition, SFN modulated the expression of the interleukins 1β, 4, Ym1, and arginase inflammatory mediators. Surprisingly, M2 polarization marker expression was increased at P21 and was reduced by SFN treatment. To summarize, SFN administration reduced retinal neurodegeneration and modified the inflammatory profile of RP, which may contribute to the SFN neuroprotective effect.
Collapse
Affiliation(s)
- Antolín Canto
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Javier Martínez-González
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Inma Almansa
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Vicente Hernández-Rabaza
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| |
Collapse
|
118
|
Gasparello J, Papi C, Zurlo M, Gambari L, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules 2022; 27:molecules27041299. [PMID: 35209084 PMCID: PMC8875359 DOI: 10.3390/molecules27041299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| |
Collapse
|
119
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
Collapse
|
120
|
Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res 2022; 177:106116. [PMID: 35122954 DOI: 10.1016/j.phrs.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Pediatric acute lymphoblastic leukemia (pALL), a malignancy of the lymphoid line of blood cells, accounts for a large percentage of all childhood leukemia cases. Although the 5-year survival rate for children with ALL has greatly improved over years, using chemotherapeutics as its first-line treatment still causes short- and long-term side effects. Furthermore, induction of toxicity and resistance, as well as the high cost, limit their application. Phytochemicals, with remarkable cancer preventive and chemotherapeutic characteristics, may serve as old solutions to new challenges. Bioactive plant secondary metabolites have exhibited promising antileukemic and adjunctive effects by targeting various molecular processes, including autophagy, cell cycle, angiogenesis, and extrinsic/intrinsic apoptotic pathways. Although numerous reports have shown that numerous plant secondary metabolites can interfere with the progression of malignancies, including leukemia, there was no comprehensive review article on the effect of phytochemicals on pALL. This systematic review aims to provide critical and cohesive analysis of the potential of various naturally-occurring metabolites in the management of pALL with the understanding of underlying molecular and cellular mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Nabizadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Ghanbari-Movahed
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6742775333, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
121
|
Huang X, Xu J, Hu Y, Huang K, Luo Y, He X. Broccoli ameliorate NAFLD by increasing lipolysis and promoting liver macrophages polarize toward M2-type. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
122
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
123
|
Xu X, Jia L, Ma X, Li H, Sun C. Application Potential of Plant-Derived Medicines in Prevention and Treatment of Platinum-Induced Peripheral Neurotoxicity. Front Pharmacol 2022; 12:792331. [PMID: 35095502 PMCID: PMC8793340 DOI: 10.3389/fphar.2021.792331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.
Collapse
Affiliation(s)
- Xiaowei Xu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqun Jia
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
124
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
125
|
Kyriakou S, Tragkola V, Alghol H, Anestopoulos I, Amery T, Stewart K, Winyard PG, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals (Basel) 2022; 15:141. [PMID: 35215254 PMCID: PMC8879096 DOI: 10.3390/ph15020141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and (ii) biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e., mixture of leaves and lateral buds) and non-edible (i.e., stems) parts of watercress in an in vitro model of malignant melanoma consisting of human malignant melanoma (A375), non-melanoma (A431) and keratinocyte (HaCaT) cells. The extraction of the main constituents of watercress was performed by subjecting the freeze-dried edible and non-edible samples through different extraction protocols, whereas their concentration was obtained utilizing analytical methodologies. In addition, cell viability was evaluated by the Alamar Blue assay, whereas levels of oxidative stress and apoptosis were determined by commercially available kits. The edible watercress sample contained a higher amount of various nutrients and phytochemicals in the hexane fraction compared to the non-edible one, as evidenced by the presence of PEITC, phenolics, flavonoids, pigments, ascorbic acid, etc. The cytotoxicity potential of the edible watercress sample in the hexane fraction was considerably higher than the non-edible one in A375 cells, whereas A431 and HaCaT cells appeared to be either more resistant or minimally affected, respectively. Finally, levels of oxidative stress and apoptotic induction were increased in both watercress samples, but the magnitude of the induction was much higher in the edible than the non-edible watercress samples. Herein, we provide further evidence documenting the potential development of watercress extracts (including watercress waste by-products) as promising anti-cancer agent(s) against malignant melanoma cells.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Heba Alghol
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Tom Amery
- The Watercress Company, Dorchester DT2 8QY, UK;
| | - Kyle Stewart
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Paul G. Winyard
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| |
Collapse
|
126
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
127
|
Li C, Song S, He Y, Zhang X, Liu H. CaCl 2-HCl electrolyzed water affects glucosinolate metabolism and improves the quality of broccoli sprouts. Food Res Int 2021; 150:110807. [PMID: 34863498 DOI: 10.1016/j.foodres.2021.110807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
This study evaluated the effects of CaCl2-HCl electrolyzed water (CHEW) with different calcium chloride concentrations on broccoli sprouts. CHEW treatment reduced the malondialdehyde (MDA) and H2O2 contents of broccoli sprouts. The results showed that 10 kinds of glucosinolates were detected, and glucoraphanin was the dominant component. After hydrolysis, three kinds of isothiocyanates and two kinds of nitriles were detected in broccoli sprouts; however, the corresponding nitrile 4-isothiocyanato-1-butene was not detectable. The sulforaphane content of broccoli sprouts in the 10CHEW (Electrolyte of 10 mM CaCl2 acidic solution) treatment increased by 34.4%, and the content of sulforaphane nitrile decreased by 53.3% compared with that of the tap water treatment. CHEW changed the metabolism of glucosinolates in broccoli sprouts by promoting the synthesis of glucoraphanin, increasing the activity of myrosinase and decreasing the activity of epithiospecifier protein (ESP) for the generation of more bioactive isothiocyanates. In addition, compared to the tap water treatment, the calcium content in broccoli sprouts treated with 25CHEW (Electrolyte of 25 mM CaCl2 acidic solution) was dramatically enhanced from 15.8 to 49.7 mg/g DW. CHEW can be a useful tool for enhancing the amount of secondary metabolites and calcium content in broccoli sprouts intended for fresh consumption as a functional food.
Collapse
Affiliation(s)
- Cui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuhui Song
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing 100045, China
| | - Yanan He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xindan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
128
|
Huynh TPN, Bowater RP, Bernuzzi F, Saha S, Wormstone IM. GSH Levels Serve As a Biological Redox Switch Regulating Sulforaphane-Induced Cell Fate in Human Lens Cells. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34854886 PMCID: PMC8648057 DOI: 10.1167/iovs.62.15.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Sulforaphane (SFN) is a therapeutic phytochemical agent for many health conditions. SFN-induced cytotoxicity is shown to have promise in preventing posterior capsule opacification (PCO). In the current study, we aimed to elucidate key processes and mechanisms linking SFN treatment to lens cell death. Methods The human lens epithelial cell line FHL124 and central anterior epithelium were used as experimental models. Cell death was assessed by microscopic observation and cell damage/viability assays. Gene or protein levels were assessed by TaqMan RT-PCR or immunoblotting. Mitochondrial networks and DNA damage were assessed by immunofluorescence. Mitochondrial membrane potential, activating transcription factor 6 (ATF6) activity, ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), and glutathione reductase (GR) activity were measured using different light reporter assays. SFN metabolites were analyzed by LC-MS/MS. Results Treatment with N-acetylcysteine (NAC), a reactive oxygen species scavenger, prevented SFN-induced cell death in both models. NAC also significantly protected FHL124 cells from SFN-induced mitochondrial dysfunctions, endoplasmic reticulum stress (ERS), DNA damage and autophagy. SFN significantly depleted GSH, the major antioxidant in the eye, and reduced GR activity, despite doubling its protein levels. The most abundant SFN conjugate detected in lens cells following SFN application was SFN-GSH. The addition of GSH protected lens cells from all SFN-induced cellular events. Conclusions SFN depletes GSH levels in lens cells through conjugation and inhibition of GR activity. This leads to increased reactive oxygen species and oxidative stress that trigger mitochondrial dysfunction, ERS, autophagy, and DNA damage, leading to cell death. In summary, the work presented provides a mechanistic understanding to support the therapeutic application of SFN for PCO and other disorders.
Collapse
Affiliation(s)
| | - Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Federico Bernuzzi
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Shikha Saha
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - I. Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
129
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-colored foods, such as broccoli, sprouts, soybean, and green leafy vegetables are considered one of the representative healthy foods for containing various functional ingredients that can combat chronic diseases, including diabetes, obesity, and cancer. Herein, we reviewed the anti-cancer activities and the underlying mechanisms of some important bioactive compounds, such as sulforaphane, catechins, chlorophyll, isoflavone, indole dervatives, and lutein, present in green-colored foods. In vivo and clinical studies suggest that sulforaphane, a sulfur-containing compound found in cruciferous vegetables, can ameliorate prostate and breast cancer symptoms by arresting cell-cycle progression and modulating Ki67 and HDAC expression. A green tea compound, known as epigallocatechin-3-gallate (EGCG), has shown remarkable anti-cancer effects against prostate cancer and lung adenocarcinoma in human trials through its antioxidative defense and immunomodulatory functions. Chlorophyll, a natural pigment found in all green plants, can regulate multiple cancer-related genes, including cyclin D1, CYP1A, CYP1B1, and p53. Epidemiological studies indicate that chlorophyll can substantially reduce aflatoxin level and can mitigate colon cancer in human subjects. Remarkably, the consumption of soy isoflavone has been found to be associated with the lower incidence and mortality of breast and prostate cancers in East Asia and in Canada. In vivo and in vitro data point out that isoflavone has modulatory effects on estrogen and androgen signaling pathways and the expression of MAPK, NfκB, Bcl-2, and PI3K/AKT in different cancer models. Other green food bioactive compounds, such as indole derivatives and lutein, also exhibited suppressing effects in rodent models of lung, liver, stomach, cervical, and prostate cancers. In addition, some micronutrients, such as folate, riboflavin, retinoic acid, and vitamin D3 present in green foods, also showed potential cancer suppressing effects. Taken together, these data suggest potential chemopreventive functions of the bioactive compounds from green-colored foods. This paper could be beneficial for further research on the anti-carcinogenic effects of green-colored food-derived compounds, in order to develop green chemotherapeutics for cancers.
Collapse
|
130
|
Huang L, He C, Zheng S, Wu C, Ren M, Shan Y. AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder Cancer. Mol Nutr Food Res 2021; 66:e2100738. [PMID: 34791822 DOI: 10.1002/mnfr.202100738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Metabolic disorder is a pivotal hallmark of cancer cells. Sulforaphane (SFN) is reported to improve lipid metabolism. However, the effect of SFN on glucose metabolism in bladder cancer remains unclear. Hence, the effect and underling mechanism is investigated. METHODS AND RESULTS Biological samples from bladder cancer patients are collected, and also investigated using N-butyl-N-(4-hydroxybutyl) nitrosamine-induced bladder cancer mice and bladder cancer cell lines. A novel glucose transport aberrant-independent aerobic glycolysis is found in bladder cancer patients, and the lower malignancy tissues have the more obvious abnormality. SFN strongly downregulates ATP production by inhibiting glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). Both in vitro cell culture and in bladder tumor mice, SFN weaken the glycolytic flux by suppressing multiple metabolic enzymes, including hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH). Moreover, SFN decreases the level of AKT1 and p-AKT ser473 , especially in low-invasive UMUC3 cells. The downregulation of ATP and HK2 by SFN is both reversed by AKT1 overexpression. CONCLUSIONS SFN downregulates the unique glucose transport aberrant-independent aerobic glycolysis existed in bladder cancer via blocking the AKT1/HK2 axis and PDH expression.
Collapse
Affiliation(s)
- Lei Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
| | - Canxia He
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Sicong Zheng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Wu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| | - Minghua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
131
|
Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar KM. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153755. [PMID: 34583226 DOI: 10.1016/j.phymed.2021.153755] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor (Nrf2), a stress-activated transcription factor, has been documented to induce a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway a key pharmacological target for the treatment of liver diseases. PURPOSE The present review highlights the role of phytochemical compounds in activating Nrf2 and mitigate toxicant-induced stress on liver injury. METHODS A comprehensive search of published articles was carried out to focus on original publications related to Nrf2 activators against liver disease using various literature databases, including the scientific Databases of Science Direct, Web of Science, Pubmed, Google, EMBASE, and Scientific Information (SID). RESULTS Nrf2 activators exhibited promising effects in resisting a variety of liver diseases induced by different toxicants in preclinical experiments and in vitro studies by regulating cell proliferation and apoptosis as well as an antioxidant defense mechanism. We found that the phytochemical compounds, such as curcumin, naringenin, sulforaphane, diallyl disulfide, mangiferin, oleanolic acid, umbelliferone, daphnetin, quercetin, isorhamnetin-3-O-galactoside, hesperidin, diammonium glycyrrhizinate, corilagin, shikonin, farrerol, and chenpi, had the potential to improve the Nrf2-ARE signaling thereby combat hepatotoxicity. CONCLUSION Nrf2 activators may offer a novel potential strategy for the prevention and treatment of liver diseases. More extensive studies are essential to identify the underlying mechanisms and establish future therapeutic potentials of these signaling modulators. Further clinical trials are warranted to determine the safety and effectiveness of Nrf2 activators for hepatopathy.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia
| | - Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China.
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
132
|
Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 2021; 140:175-185. [PMID: 34717147 DOI: 10.1016/j.molimm.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.
Collapse
|
133
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
134
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
135
|
Amiot MJ, Latgé C, Plumey L, Raynal S. Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients 2021; 13:nu13103628. [PMID: 34684628 PMCID: PMC8539512 DOI: 10.3390/nu13103628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Phytochemicals contribute to the health benefits of plant-rich diets, notably through their antioxidant and anti-inflammatory effects. However, recommended daily amounts of the main dietary phytochemicals remain undetermined. We aimed to estimate the amounts of phytochemicals in a well-balanced diet. A modelled diet was created, containing dietary reference intakes for adults in France. Two one-week menus (summer and winter) were devised to reflect typical intakes of plant-based foods. Existing databases were used to estimate daily phytochemical content for seven phytochemical families: phenolic acids, flavonoids (except anthocyanins), anthocyanins, tannins, organosulfur compounds, carotenoids, and caffeine. The summer and winter menus provided 1607 and 1441 mg/day, respectively, of total polyphenols (phenolic acids, flavonoids, anthocyanins, and tannins), the difference being driven by reduced anthocyanin intake in winter. Phenolic acids, flavonoids (including anthocyanins), and tannins accounted for approximately 50%, 25%, and 25% of total polyphenols, respectively. Dietary carotenoid and organosulfur compound content was estimated to be approximately 17 and 70 mg/day, respectively, in both seasons. Finally, both menus provided approximately 110 mg/day of caffeine, exclusively from tea and coffee. Our work supports ongoing efforts to define phytochemical insufficiency states that may occur in individuals with unbalanced diets and related disease risk factors.
Collapse
Affiliation(s)
- Marie-Josèphe Amiot
- INRAE, MoISA, University of Montpellier, CIHEAM-IAMM, CIRAD, Institut Agro-Montpellier SupAgro, IRD, Campus La Gaillarde, 2 Place Pierre Viala, 34000 Montpellier, France
- Correspondence: ; Tel.: +33-(0)4-99-61-22-16
| | - Christian Latgé
- Pierre Fabre Laboratories, Langlade-3 Avenue Hubert Curien-BP 13 562, CEDEX 1, 31035 Toulouse, France;
| | - Laurence Plumey
- NUTRITION CO&CO, 11 Avenue des Vignes, 92210 St Cloud, France;
| | - Sylvie Raynal
- Naturactive, Pierre Fabre Laboratories, 29 Avenue du Sidobre, 81106 Castres, France;
| |
Collapse
|
136
|
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021; 26:molecules26206096. [PMID: 34684678 PMCID: PMC8541433 DOI: 10.3390/molecules26206096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. Methods: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. Results: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. Conclusions: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
- Correspondence: ; Tel.: +52-492-8926556
| | - Elda Araceli García-Mayorga
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Daisy L. Díaz-Avila
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Guadalupe T González-Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, 28046 Madrid, Spain;
- Molecular Biology Research, Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), 28049 Madrid, Spain
| |
Collapse
|
137
|
Shock T, Badang L, Ferguson B, Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem 2021; 95:108631. [PMID: 33789148 PMCID: PMC8355029 DOI: 10.1016/j.jnutbio.2021.108631] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/31/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.
Collapse
Affiliation(s)
- Tori Shock
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, USA
| | - Luis Badang
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, USA
| | - Bradley Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV, USA; Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
138
|
Cruz-Martins N, Quispe C, Kırkın C, Şenol E, Zuluğ A, Özçelik B, Ademiluyi AO, Oyeniran OH, Semwal P, Kumar M, Sharopov F, López V, Les F, Bagiu IC, Butnariu M, Sharifi-Rad J, Alshehri MM, Cho WC. Paving Plant-Food-Derived Bioactives as Effective Therapeutic Agents in Autism Spectrum Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1131280. [PMID: 34471461 PMCID: PMC8405324 DOI: 10.1155/2021/1131280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, where social and communication deficits and repetitive behaviors are present. Plant-derived bioactives have shown promising results in the treatment of autism. In this sense, this review is aimed at providing a careful view on the use of plant-derived bioactive molecules for the treatment of autism. Among the plethora of bioactives, curcumin, luteolin, and resveratrol have revealed excellent neuroprotective effects and can be effectively used in the treatment of neuropsychological disorders. However, the number of clinical trials is limited, and none of them have been approved for the treatment of autism or autism-related disorder. Further clinical studies are needed to effectively assess the real potential of such bioactive molecules.
Collapse
Affiliation(s)
- Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Celale Kırkın
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ezgi Şenol
- Department Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Beyoglu, 34427 Istanbul, Turkey
| | - Aslı Zuluğ
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Ozyegin University, Cekmekoy, 34794 Istanbul, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Adedayo O. Ademiluyi
- Functional Foods, Nutraceuticals, and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340001, Nigeria
| | - Olubukola Helen Oyeniran
- Functional Foods, Nutraceuticals, and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340001, Nigeria
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan
| | - Victor López
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Francisco Les
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
139
|
Iahtisham-Ul-Haq, Khan S, Awan KA, Iqbal MJ. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2021; 46:e13886. [PMID: 34350614 DOI: 10.1111/jfbc.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering various biological benefits for health promotion and disease prevention. This compound is considered vital to curtail numerous metabolic disorders. Various studies have proven its beneficial effects against cancer prevention and its possible utilization as a therapeutic agent in cancer treatment. Understanding the mechanistic pathways and possible interactions at cellular and subcellular levels is key to design and develop cancer therapeutics for humans. In this respect, a number of mechanisms such as modulation of carcinogen metabolism & phase II enzymatic activities, cell cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have been reported to be involved in cancer prevention. This article provides sufficient information by critical analysis to understand the mechanisms involved in cancer prevention attributed to sulforaphane. Furthermore, various clinical studies have also been included for design and development of novel therapies for cancer prevention and cure. PRACTICAL APPLICATIONS: Diet and dietary components are potential tools to address various lifestyle-related disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer prevalence are quite large which are worsen by adopting unhealthy lifestyles. Cancer can be treated with various therapies but those are acquiring side effects causing the patients to suffer the treatment regime. Nutraceuticals and functional foods provide safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is a pivotal compound to be targeted as a potential agent for cancer treatment both in preventive and therapeutic regimes. This article provides sufficient evidence via discussing the underlying mechanisms of positive effects of sulforaphane to further the research for developing anticancer drugs that will help assuage this lethal morbidity.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- School of Food and Nutrition, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
140
|
Ghazizadeh-Hashemi F, Bagheri S, Ashraf-Ganjouei A, Moradi K, Shahmansouri N, Mehrpooya M, Noorbala AA, Akhondzadeh S. Efficacy and safety of sulforaphane for treatment of mild to moderate depression in patients with history of cardiac interventions: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci 2021; 75:250-255. [PMID: 34033171 DOI: 10.1111/pcn.13276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
AIM Depression has been recognized as one of the disorders associated with cardiac interventions such as percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery (CABG). In the present study, we evaluated the efficacy and safety of sulforaphane in treatment of depression induced by cardiac interventions. METHODS After initial screening, 66 patients with previous history of at least one cardiac intervention and current mild to moderate depression were randomly assigned to two parallel groups receiving either sulforaphane (n = 33) or placebo (n = 33) for six successive weeks. Efficacy was assessed using the Hamilton Rating Scale for Depression (HAM-D) at baseline and week 2, 4, and 6. Safety of the treatments was checked during the trial period. RESULTS Sixty participants completed the clinical trial (n = 30 in each group). Baseline demographic and clinical parameters were all similar among groups. Repeated measures analysis indicated that the sulforaphane group exhibited greater improvement in HAM-D scores throughout the trial (P < 0.001). Response to treatment (≥50% reduction in the HAM-D score) rate was higher in the sulforaphane group at trial endpoint (30% vs 6.67%, P = 0.042). Remission (HAM-D score ≤ 7) rate was also higher in the sulforaphane group; however, the difference was not significant (23.33% vs 3.33%, P = 0.052). Finally, no significant difference was observed between the two groups in terms of frequency of side effects. CONCLUSIONS Sulforaphane could safely improve depressive symptoms induced by cardiac interventions. Further clinical trials with larger sample sizes and longer follow-up periods are warranted to confirm our results.
Collapse
Affiliation(s)
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Shahmansouri
- Psychosomatic Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mehrpooya
- Cardiovascular Ward, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Ali Noorbala
- Psychosomatic Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
141
|
Zandani G, Anavi-Cohen S, Tsybina-Shimshilashvili N, Sela N, Nyska A, Madar Z. Broccoli Florets Supplementation Improves Insulin Sensitivity and Alters Gut Microbiome Population-A Steatosis Mice Model Induced by High-Fat Diet. Front Nutr 2021; 8:680241. [PMID: 34395490 PMCID: PMC8355420 DOI: 10.3389/fnut.2021.680241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.
Collapse
Affiliation(s)
- Gil Zandani
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Noa Sela
- Department of Plant Pathology and Weed Research, Volcani Center, Rishon LeZion, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zecharia Madar
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
142
|
Yeary KHK, Clark N, Saad-Harfouche F, Erwin D, Kuliszewski MG, Li Q, McCann SE, Yu H, Lincourt C, Zoellner J, Tang L. Cruciferous Vegetable Intervention to Prevent Cancer Recurrence in Non-Muscle Invasive Bladder Cancer Survivors: Development using a Systematic Process (Preprint). JMIR Cancer 2021; 8:e32291. [PMID: 35166681 PMCID: PMC8889476 DOI: 10.2196/32291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Bladder cancer is one of the top 10 most common cancers in the United States. Most bladder cancers (70%-80%) are diagnosed at early stages as non–muscle-invasive bladder cancer (NMIBC), which can be removed surgically. However, 50% to 80% of NMIBC cases recur within 5 years, and 15% to 30% progress with poor survival. Current treatments are limited and expensive. A wealth of preclinical and epidemiological evidence suggests that dietary isothiocyanates in cruciferous vegetables (Cruciferae) could be a novel, noninvasive, and cost-effective strategy to control NMIBC recurrence and progression. Objective The aim of this study is to develop a scalable dietary intervention that increases isothiocyanate exposure through Cruciferae intake in NMIBC survivors. Methods We worked with a community advisory board (N=8) to identify relevant factors, evidence-based behavior change techniques, and behavioral theory constructs used to increase Cruciferae intake in NMIBC survivors; use the PEN-3 Model focused on incorporating cultural factors salient to the group’s shared experiences to review the intervention components (eg, the saliency of behavioral messages); administer the revised intervention to community partners for their feedback; and refine the intervention. Results We developed a multicomponent intervention for NMIBC survivors consisting of a magazine, tracking book, live telephone call script, and interactive voice messages. Entitled POW-R Health: Power to Redefine Your Health, the intervention incorporated findings from our adaptation process to ensure saliency to NMIBC survivors. Conclusions This is the first evidence-based, theoretically grounded dietary intervention developed to reduce bladder cancer recurrence in NMIBC survivors using a systematic process for community adaptation. This study provides a model for others who aim to develop behavioral, community-relevant interventions for cancer prevention and control with the overall goal of wide-scale implementation and dissemination.
Collapse
Affiliation(s)
- Karen H Kim Yeary
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nikia Clark
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Frances Saad-Harfouche
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Deborah Erwin
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Margaret Gates Kuliszewski
- New York State Cancer Registry, New York State Department of Health, Albany, NY, United States
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Albany, NY, United States
| | - Qiang Li
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Susan E McCann
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Catherine Lincourt
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jamie Zoellner
- Department of Public Health Science, University of Virginia, Charlottesville, VA, United States
| | - Li Tang
- Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
143
|
Li D, Ding Z, Du K, Ye X, Cheng S. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5583215. [PMID: 34336103 PMCID: PMC8324391 DOI: 10.1155/2021/5583215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that can oxidize proteins, lipids, and DNA. Under physiological conditions, ROS are mainly generated in the mitochondria during aerobic metabolism. Under pathological conditions, excessive ROS disrupt cellular homeostasis. High levels of ROS result in severe oxidative damage to the cellular machinery. However, a low/mild level of ROS could serve as a signal to trigger cell survival mechanisms. To prevent and cope with oxidative damage to biomolecules, cells have developed various antioxidant and detoxifying mechanisms. Meanwhile, ROS can initiate autophagy, a process of self-clearance, which helps to reduce oxidative damage by engulfing and degrading oxidized substance. This review summarizes the interactions among ROS, autophagy, and antioxidant pathways. The effects of natural phytochemicals on autophagy induction, antioxidation, and dual-function are also discussed.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zongxian Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiangshi Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shixue Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
144
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
145
|
Sulforaphane Ameliorates the Liver Injury of Traumatic Hemorrhagic Shock Rats. J Surg Res 2021; 267:293-301. [PMID: 34174694 DOI: 10.1016/j.jss.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The protective effects of sulforaphane on liver injury induced by high-fat diet and sodium valproate were previously reported. The present study preliminarily investigated the effect of sulforaphane on liver injury induced by traumatic hemorrhagic shock. MATERIALS AND METHODS After a traumatic hemorrhagic shock model was established in rats, the survival of rats during the first 24 hours was analyzed by Kaplan-Meier analysis. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β) were measured using a biochemical analyzer or enzyme-linked immunosorbent assay (ELISA). The cell apoptosis and histopathology of liver tissues were examined by TUNEL and hematoxylin-eosin (HE) staining. The mRNA and protein expressions of B-cell lymphoma-2 (Bcl-2), Bcl2 associated X (Bax), Caspase-3, TNF-α, IL-1β, Cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) in the liver tissues were determined by immunohistochemical staining, quantitative reverse transcription PCR (qRT-PCR) or western blot. RESULTS Sulforaphane promoted the health of the animal, reduced liver cell apoptosis and ameliorated the histopathological damage in the liver of rats with traumatic hemorrhagic shock. Sulforaphane downregulated the expressions of liver function-related factors (ALT, AST, TB), inflammation-related factors (TNF-α, IL-1β, COX-2, iNOS), and apoptosis-related factors (Bax, Caspase-3) and upregulated the expressions of factors related to apoptosis (Bcl-2) and Nrf2/HO-1 pathway (Nrf2, HO-1). CONCLUSION Sulforaphane protected the liver against traumatic hemorrhagic shock through ameliorating the apoptosis and inflammation of the liver via activating the Nrf2/HO-1 pathway.
Collapse
|
146
|
Bhaskar BV, Rammohan A, Babu TM, Zheng GY, Chen W, Rajendra W, Zyryanov GV, Gu W. Molecular insight into isoform specific inhibition of PI3K-α and PKC-η with dietary agents through an ensemble pharmacophore and docking studies. Sci Rep 2021; 11:12150. [PMID: 34108504 PMCID: PMC8190100 DOI: 10.1038/s41598-021-90287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dietary compounds play an important role in the prevention and treatment of many cancers, although their specific molecular mechanism is not yet known. In the present study, thirty dietary agents were analyzed on nine drug targets through in silico studies. However, nine dietary scaffolds, such as silibinin, flavopiridol, oleandrin, ursolic acid, α-boswellic acid, β-boswellic acid, triterpenoid, guggulsterone, and oleanolic acid potentially bound to the cavity of PI3K-α, PKC-η, H-Ras, and Ras with the highest binding energy. Particularly, the compounds silibinin and flavopiridol have been shown to have broad spectrum anticancer activity. Interestingly, flavopiridol was embedded in the pockets of PI3K-α and PKC-η as bound crystal inhibitors in two different conformations and showed significant interactions with ATP binding pocket residues. However, complex-based pharmacophore modeling achieved two vital pharmacophoric features namely, two H-bond acceptors for PI3K-α, while three are hydrophobic, one cat-donor and one H-bond donor and acceptor for PKC-η, respectively. The database screening with the ChemBridge core library explored potential hits on a valid pharmacophore query. Therefore, to optimize perspective lead compounds from the hits, which were subjected to various constraints such as docking, MM/GBVI, Lipinski rule of five, ADMET and toxicity properties. Henceforth, the top ligands were sorted out and examined for vital interactions with key residues, arguably the top three promising lead compounds for PI3K-α, while seven for PKC-η, exhibiting binding energy from - 11.5 to - 8.5 kcal mol-1. Therefore, these scaffolds could be helpful in the development of novel class of effective anticancer agents.
Collapse
Affiliation(s)
- Baki Vijaya Bhaskar
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| | - Aluru Rammohan
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | | | - Gui Yu Zheng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Weibin Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Wudayagiri Rajendra
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
147
|
Valero-Vello M, Peris-Martínez C, García-Medina JJ, Sanz-González SM, Ramírez AI, Fernández-Albarral JA, Galarreta-Mira D, Zanón-Moreno V, Casaroli-Marano RP, Pinazo-Duran MD. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population. Foods 2021; 10:1231. [PMID: 34071459 PMCID: PMC8229954 DOI: 10.3390/foods10061231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Adherence to a healthy diet offers a valuable intervention to compete against the increasing cases of ocular diseases worldwide, such as dry eye disorders, myopia progression, cataracts, glaucoma, diabetic retinopathy, or age macular degeneration. Certain amounts of micronutrients must be daily provided for proper functioning of the visual system, such as vitamins, carotenoids, trace metals and omega-3 fatty acids. Among natural foods, the following have to be considered for boosting eye/vision health: fish, meat, eggs, nuts, legumes, citrus fruits, nuts, leafy green vegetables, orange-colored fruits/vegetables, olives-olive oil, and dairy products. Nutritional supplements have received much attention as potential tools for managing chronic-degenerative ocular diseases. A systematic search of PubMed, Web of Science, hand-searched publications and historical archives were performed by the professionals involved in this study, to include peer-reviewed articles in which natural food, nutrient content, and its potential relationship with ocular health. Five ophthalmologists and two researchers collected the characteristics, quality and suitability of the above studies. Finally, 177 publications from 1983 to 2021 were enclosed, mainly related to natural food, Mediterranean diet (MedDiet) and nutraceutic supplementation. For the first time, original studies with broccoli and tigernut (chufa de Valencia) regarding the ocular surface dysfunction, macular degeneration, diabetic retinopathy and glaucoma were enclosed. These can add value to the diet, counteract nutritional defects, and help in the early stages, as well as in the course of ophthalmic pathologies. The main purpose of this review, enclosed in the Special Issue "Health Benefits and Nutritional Quality of Fruits, Nuts and Vegetables," is to identify directions for further research on the role of diet and nutrition in the eyes and vision, and the potential antioxidant, anti-inflammatory and neuroprotective effects of natural food (broccoli, saffron, tigernuts and walnuts), the Mediterranean Diet, and nutraceutic supplements that may supply a promising and highly affordable scenario for patients at risk of vision loss. This review work was designed and carried out by a multidisciplinary group involved in ophthalmology and ophthalmic research and especially in nutritional ophthalmology.
Collapse
Affiliation(s)
- Mar Valero-Vello
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
| | - Cristina Peris-Martínez
- Ophthalmic Medical Center (FOM), Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), 46015 Valencia, Spain;
- Department of Surgery, University of Valencia, 46019 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
| | - José J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Ana I. Ramírez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José A. Fernández-Albarral
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - David Galarreta-Mira
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology. University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Faculty of Health Sciences, International University of Valencia, 46002 Valencia, Spain
| | - Ricardo P. Casaroli-Marano
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Departament of Surgery, School of Medicine and Health Sciences, Clinic Hospital of Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - María D. Pinazo-Duran
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
148
|
Rhoden A, Friedrich FW, Brandt T, Raabe J, Schweizer M, Meisterknecht J, Wittig I, Ulmer BM, Klampe B, Uebeler J, Piasecki A, Lorenz K, Eschenhagen T, Hansen A, Cuello F. Sulforaphane exposure impairs contractility and mitochondrial function in three-dimensional engineered heart tissue. Redox Biol 2021; 41:101951. [PMID: 33831709 PMCID: PMC8056268 DOI: 10.1016/j.redox.2021.101951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sulforaphane (SFN) is a phytochemical compound extracted from cruciferous plants, like broccoli or cauliflower. Its isothiocyanate group renders SFN reactive, thus allowing post-translational modification of cellular proteins to regulate their function with the potential for biological and therapeutic actions. SFN and stabilized variants recently received regulatory approval for clinical studies in humans for the treatment of neurological disorders and cancer. Potential unwanted side effects of SFN on heart function have not been investigated yet. The present study characterizes the impact of SFN on cardiomyocyte contractile function in cardiac preparations from neonatal rat, adult mouse and human induced-pluripotent stem cell-derived cardiomyocytes. This revealed a SFN-mediated negative inotropic effect, when administered either acutely or chronically, with an impairment of the Frank-Starling response to stretch activation. A direct effect of SFN on myofilament function was excluded in chemically permeabilized mouse trabeculae. However, SFN pretreatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species accompanied by a significant reduction in the mitochondrial membrane potential. Transmission electron microscopy revealed disturbed sarcomeric organization and inflated mitochondria with whorled membrane shape in response to SFN exposure. Interestingly, administration of the alternative energy source l-glutamine to the medium that bypasses the uptake route of pyruvate into the mitochondrial tricarboxylic acid cycle improved force development in SFN-treated EHTs, suggesting indeed mitochondrial dysfunction as a contributor of SFN-mediated contractile dysfunction. Taken together, the data from the present study suggest that SFN might impact negatively on cardiac contractility in patients with cardiovascular co-morbidities undergoing SFN supplementation therapy. Therefore, cardiac function should be monitored regularly to avoid the onset of cardiotoxic side effects. Sulforaphane has negative inotropic effects and increases diastolic tension. Sulforaphane exposure increases lactate levels and mitochondrial ROS production and reduces mitochondrial membrane potential. l-glutamine supplementation rescues the sulforaphane-mediated reduction in force development. Sulforaphane plasma levels and cardiac function should be monitored to avoid unwanted cardiac side effects in patients.
Collapse
Affiliation(s)
- Alexandra Rhoden
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Theresa Brandt
- Institute of Experimental Pharmacology and Toxicology, University of Würzburg, Versbacher Str., 9 97078, Würzburg, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jana Meisterknecht
- Functional Proteomics, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - June Uebeler
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kristina Lorenz
- Institute of Experimental Pharmacology and Toxicology, University of Würzburg, Versbacher Str., 9 97078, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
149
|
Yin Y, Liu Y, Cheng C, Yang Z, Luo Z, Fang W. iTRAQ-based proteomic and physiological analyses of broccoli sprouts in response to exogenous melatonin with ZnSO 4 stress. RSC Adv 2021; 11:12336-12347. [PMID: 35423784 PMCID: PMC8696995 DOI: 10.1039/d1ra00696g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
Exogenous melatonin (10 μM) enhances ZnSO4 (4 mM) stress tolerance and regulates the isothiocyanate content of broccoli sprouts. Nevertheless, the molecular mechanism underlying the role of melatonin in isothiocyanate metabolism under ZnSO4 stress is unclear. The effects of exogenous melatonin on growth and isothiocyanate metabolism in broccoli sprouts under ZnSO4 stress during germination were investigated by physio-biochemical methods, quantification of relative gene expression levels, and the isobaric tags for the relative and absolute quantitation (iTRAQ) labelling technique. Compared with sprouts under ZnSO4 stress alone, sprout length, fresh weight and free calcium content increased significantly in sprouts under ZnSO4 stress plus melatonin treatment while electrolyte leakage and malonaldehyde content decreased. The glucosinolate content and myrosinase activity also significantly increased in sprouts under ZnSO4 stress plus melatonin treatment compared with the control, and thus the isothiocyanate and sulforaphane content increased markedly. Meanwhile, the expression of glucoraphanin biosynthesis genes, such as MYB28, CYP83A1, AOP2, BoSAT1, and BoHMT1 was significantly induced by melatonin in sprouts under ZnSO4 stress. Furthermore, compared with sprouts under ZnSO4 stress alone, a total of 145 proteins in broccoli sprouts under ZnSO4 stress plus melatonin treatment showed differential relative abundances. These proteins were divided into 13 functional classes and revealed that pathways for sulfur metabolism, glucosinolate biosynthesis, selenocompound metabolism, biosynthesis of secondary metabolites and peroxisome were significantly enriched. The present study indicates that exogenous melatonin alleviates the adverse effects of ZnSO4 stress on sprout growth and promotes glucoraphanin biosynthesis and the hydrolysis of glucoraphanin to form isothiocyanates in broccoli sprouts.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yin Liu
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Chao Cheng
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhenlan Luo
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| |
Collapse
|
150
|
Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, et alBousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, Calderon MA, Calvo M, Camargos P, Camuzat T, Canevari F, Cano A, Canonica GW, Capriles‐Hulett A, Caraballo L, Cardona V, Carlsen K, Carmon Pirez J, Caro J, Carr W, Carreiro‐Martins P, Carreon‐Asuncion F, Carriazo A, Casale T, Castor M, Castro E, Caviglia A, Cecchi L, Cepeda Sarabia A, Chandrasekharan R, Chang Y, Chato‐Andeza V, Chatzi L, Chatzidaki C, Chavannes NH, Chaves Loureiro C, Chelninska M, Chen Y, Cheng L, Chinthrajah S, Chivato T, Chkhartishvili E, Christoff G, Chrystyn H, Chu DK, Chua A, Chuchalin A, Chung KF, Cicerán A, Cingi C, Ciprandi G, Cirule I, Coelho AC, Compalati E, Constantinidis J, Correia de Sousa J, Costa EM, Costa D, Costa Domínguez MDC, Coste A, Cottini M, Cox L, Crisci C, Crivellaro MA, Cruz AA, Cullen J, Custovic A, Cvetkovski B, Czarlewski W, D'Amato G, Silva J, Dahl R, Dahlen S, Daniilidis V, DarjaziniNahhas L, Darsow U, Davies J, Blay F, De Feo G, De Guia E, los Santos C, De Manuel Keenoy E, De Vries G, Deleanu D, Demoly P, Denburg J, Devillier P, Didier A, Dimic Janjic S, Dimou M, Dinh‐Xuan AT, Djukanovic R, Do Ceu Texeira M, Dokic D, Dominguez Silva MG, Douagui H, Douladiris N, Doulaptsi M, Dray G, Dubakiene R, Dupas E, Durham S, Duse M, Dykewicz M, Ebo D, Edelbaher N, Eiwegger T, Eklund P, El‐Gamal Y, El‐Sayed ZA, El‐Sayed SS, El‐Seify M, Emuzyte R, Enecilla L, Erhola M, Espinoza H, Espinoza Contreras JG, Farrell J, Fernandez L, Fink Wagner A, Fiocchi A, Fokkens WJ, Lenia F, Fonseca JA, Fontaine J, Forastiere F, Fuentes Pèrez JM, Gaerlan–Resureccion E, Gaga M, Gálvez Romero JL, Gamkrelidze A, Garcia A, García Cobas CY, García Cruz MDLLH, Gayraud J, Gelardi M, Gemicioglu B, Gennimata D, Genova S, Gereda J, Gerth van Wijk R, Giuliano A, Gomez M, González Diaz S, Gotua M, Grigoreas C, Grisle I, Gualteiro L, Guidacci M, Guldemond N, Gutter Z, Guzmán A, Halloum R, Halpin D, Hamelmann E, Hammadi S, Harvey R, Heffler E, Heinrich J, Hejjaoui A, Hellquist‐Dahl B, Hernández Velázquez L, Hew M, Hossny E, Howarth P, Hrubiško M, Huerta Villalobos YR, Humbert M, Salina H, Hyland M, Ibrahim M, Ilina N, Illario M, Incorvaia C, Infantino A, Irani C, Ispayeva Z, Ivancevich J, E.J. Jares E, Jarvis D, Jassem E, Jenko K, Jiméneracruz Uscanga RD, Johnston SL, Joos G, Jošt M, Julge K, Jung K, Just J, Jutel M, Kaidashev I, Kalayci O, Kalyoncu F, Kapsali J, Kardas P, Karjalainen J, Kasala CA, Katotomichelakis M, Kavaliukaite L, Kazi BS, Keil T, Keith P, Khaitov M, Khaltaev N, Kim Y, Kirenga B, Kleine‐Tebbe J, Klimek L, Koffi N’Goran B, Kompoti E, Kopač P, Koppelman G, KorenJeverica A, Koskinen S, Košnik M, Kostov KV, Kowalski ML, Kralimarkova T, Kramer Vrščaj K, Kraxner H, Kreft S, Kritikos V, Kudlay D, Kuitunen M, Kull I, Kuna P, Kupczyk M, Kvedariene V, Kyriakakou M, Lalek N, Landi M, Lane S, Larenas‐Linnemann D, Lau S, Laune D, Lavrut J, Le L, Lenzenhuber M, Lessa M, Levin M, Li J, Lieberman P, Liotta G, Lipworth B, Liu X, Lobo R, Lodrup Carlsen KC, Lombardi C, Louis R, Loukidis S, Lourenço O, Luna Pech JA, Madjar B, Maggi E, Magnan A, Mahboub B, Mair A, Mais Y, Maitland van der Zee A, Makela M, Makris M, Malling H, Mandajieva M, Manning P, Manousakis M, Maragoudakis P, Marseglia G, Marshall G, Reza Masjedi M, Máspero JF, Matta Campos JJ, Maurer M, Mavale‐Manuel S, Meço C, Melén E, Melioli G, Melo‐Gomes E, Meltzer EO, Menditto E, Menzies‐Gow A, Merk H, Michel J, Micheli Y, Miculinic N, Midão L, Mihaltan F, Mikos N, Milanese M, Milenkovic B, Mitsias D, Moalla B, Moda G, Mogica Martínez MD, Mohammad Y, Moin M, Molimard M, Momas I, Mommers M, Monaco A, Montefort S, Mora D, Morais‐Almeida M, Mösges R, Mostafa B, Mullol J, Münter L, Muraro A, Murray R, Musarra A, Mustakov T, Naclerio R, Nadeau KC, Nadif R, Nakonechna A, Namazova‐Baranova L, Navarro‐Locsin G, Neffen H, Nekam K, Neou A, Nettis E, Neuberger D, Nicod L, Nicola S, Niederberger‐Leppin V, Niedoszytko M, Nieto A, Novellino E, Nunes E, Nyembue D, O’Hehir R, Odjakova C, Ohta K, Okamoto Y, Okubo K, Oliver B, Onorato GL, Pia Orru M, Ouédraogo S, Ouoba K, Paggiaro PL, Pagkalos A, Pajno G, Pala G, Palaniappan S, Pali‐Schöll I, Palkonen S, Palmer S, Panaitescu Bunu C, Panzner P, Papadopoulos NG, Papanikolaou V, Papi A, Paralchev B, Paraskevopoulos G, Park H, Passalacqua G, Patella V, Pavord I, Pawankar R, Pedersen S, Peleve S, Pellegino S, Pereira A, Pérez T, Perna A, Peroni D, Pfaar O, Pham‐Thi N, Pigearias B, Pin I, Piskou K, Pitsios C, Plavec D, Poethig D, Pohl W, Poplas Susic A, Popov TA, Portejoie F, Potter P, Poulsen L, Prados‐Torres A, Prarros F, Price D, Prokopakis E, Puggioni F, Puig‐Domenech E, Puy R, Rabe K, Raciborski F, Ramos J, Recto MT, Reda SM, Regateiro FS, Reider N, Reitsma S, Repka‐Ramirez S, Ridolo E, Rimmer J, Rivero Yeverino D, Angelo Rizzo J, Robalo‐Cordeiro C, Roberts G, Roche N, Rodríguez González M, Rodríguez Zagal E, Rolla G, Rolland C, Roller‐Wirnsberger R, Roman Rodriguez M, Romano A, Romantowski J, Rombaux P, Romualdez J, Rosado‐Pinto J, Rosario N, Rosenwasser L, Rossi O, Rottem M, Rouadi P, Rovina N, Rozman Sinur I, Ruiz M, Ruiz Segura LT, Ryan D, Sagara H, Sakai D, Sakurai D, Saleh W, Salimaki J, Samitas K, Samolinski B, Sánchez Coronel MG, Sanchez‐Borges M, Sanchez‐Lopez J, Sarafoleanu C, Sarquis Serpa F, Sastre‐Dominguez J, Savi E, Sawaf B, Scadding GK, Scheire S, Schmid‐Grendelmeier P, Schuhl JF, Schunemann H, Schvalbová M, Schwarze J, Scichilone N, Senna G, Sepúlveda C, Serrano E, Shields M, Shishkov V, Siafakas N, Simeonov A, FER Simons E, Carlos Sisul J, Sitkauskiene B, Skrindo I, SokličKošak T, Solé D, Sooronbaev T, Soto‐Martinez M, Soto‐Quiros M, Sousa Pinto B, Sova M, Soyka M, Specjalski K, Spranger O, Stamataki S, Stefanaki L, Stellato C, Stelmach R, Strandberg T, Stute P, Subramaniam A, Suppli Ulrik C, Sutherland M, Sylvestre S, Syrigou A, Taborda Barata L, Takovska N, Tan R, Tan F, Tan V, Ping Tang I, Taniguchi M, Tannert L, Tantilipikorn P, Tattersall J, Tesi F, Thijs C, Thomas M, To T, Todo‐Bom A, Togias A, Tomazic P, Tomic‐Spiric V, Toppila‐Salmi S, Toskala E, Triggiani M, Triller N, Triller K, Tsiligianni I, Uberti M, Ulmeanu R, Urbancic J, Urrutia Pereira M, Vachova M, Valdés F, Valenta R, Valentin Rostan M, Valero A, Valiulis A, Vallianatou M, Valovirta E, Van Eerd M, Van Ganse E, Hage M, Vandenplas O, Vasankari T, Vassileva D, Velasco Munoz C, Ventura MT, Vera‐Munoz C, Vicheva D, Vichyanond P, Vidgren P, Viegi G, Vogelmeier C, Von Hertzen L, Vontetsianos T, Vourdas D, Tran Thien Quan V, Wagenmann M, Walker S, Wallace D, Wang DY, Waserman S, Wickman M, Williams S, Williams D, Wilson N, Wong G, Woo K, Wright J, Wroczynski P, Xepapadaki P, Yakovliev P, Yamaguchi M, Yan K, Yeow Yap Y, Yawn B, Yiallouros P, Yorgancioglu A, Yoshihara S, Young I, Yusuf OB, Zaidi A, Zaitoun F, Zar H, Zedda M, Zernotti ME, Zhang L, Zhong N, Zidarn M, Zubrinich C. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021; 76:735-750. [PMID: 32762135 PMCID: PMC7436771 DOI: 10.1111/all.14549] [Show More Authors] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Large differences in COVID‐19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS‐CoV‐2 binds to its receptor, the angiotensin‐converting enzyme 2 (ACE2). As a result of SARS‐CoV‐2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID‐19. The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof‐of‐concept of dietary manipulations that may enhance Nrf2‐associated antioxidant effects, helpful in mitigating COVID‐19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
- MACVIA‐France and CHU Montpellier France
| | - Josep M. Anto
- Centre for Research in Environmental Epidemiology (CREAL) ISGlobAL Barcelona Spain
- IMIM (Hospital del Mar Research Institute) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | | | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital University of Helsinki Finland
| | - Susana C. Fonseca
- Faculty of Sciences GreenUPorto ‐ Sustainable Agrifood Production Research Centre DGAOTUniversity of Porto Porto Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences Federico II University Napoli Italy
| | - Hubert Blain
- Department of Geriatrics Montpellier University hospital and MUSE Montpellier France
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Geneva Switzerland
- AgroParisTech ‐ Paris Institute of Technology for Life, Food and Environmental Sciences Paris France
| | - Aziz Sheikh
- Usher Institute University of Edinburgh Scotland, UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Torsten Zuberbier
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|