101
|
Guvendiren M, Fung S, Kohn J, De Maria C, Montemurro F, Vozzi G. The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture. MRS COMMUNICATIONS 2017; 7:383-390. [PMID: 31192033 PMCID: PMC6561507 DOI: 10.1557/mrc.2017.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
In this work, we investigated the interactions of human mesenchymal stem cells (hMSCs) with three-dimensional (3D) printed scaffolds displaying different scaffold architectures. Pressure-assisted microsyringe system was used to fabricate scaffolds with square (SQR), hexagonal (HEX), and octagonal (OCT) architectures defined by various degrees of curvatures. OCT represents the highest degree of curvature followed by HEX, and SQR is composed of linear struts without curvature. Scaffolds were fabricated from poly(L-lactic acid) and poly(tyrosol carbonate). We found that hMSCs attached and spread by taking the shape of the individual struts, exhibiting high aspect ratios (ARs) and mean cell area when cultured on OCT scaffolds as compared with those cultured on HEX and SQR scaffolds. In contrast, cells appeared bulkier with low AR on SQR scaffolds. These significant changes in cell morphology directly correlate with the stem cell lineage commitment, such that 80 ± 1% of the hMSCs grown on OCT scaffolds differentiated into osteogenic lineage, compared with 70 ± 4% and 62 ± 2% of those grown on HEX and SQR scaffolds, respectively. Cells on OCT scaffolds also showed 2.5 times more alkaline phosphatase activity compared with cells on SQR scaffolds. This study demonstrates the importance of scaffold design to direct stem cell differentiation, and aids in the development of novel 3D scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Murat Guvendiren
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, Department of Bioengineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Stephanie Fung
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Carmelo De Maria
- Department of Ingegneria dell'Informazione, Research Center "E. Piaggio", University of Pisa, 56100 Pisa, Italy
| | - Francesca Montemurro
- Department of Ingegneria dell'Informazione, Research Center "E. Piaggio", University of Pisa, 56100 Pisa, Italy
| | - Giovanni Vozzi
- Department of Ingegneria dell'Informazione, Research Center "E. Piaggio", University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
102
|
Kumar M, Nandi SK, Kaplan DL, Mandal BB. Localized Immunomodulatory Silk Macrocapsules for Islet-like Spheroid Formation and Sustained Insulin Production. ACS Biomater Sci Eng 2017; 3:2443-2456. [DOI: 10.1021/acsbiomaterials.7b00218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manishekhar Kumar
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Samit K. Nandi
- Department
of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States
| | - Biman B. Mandal
- Biomaterial
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
103
|
Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H. Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers (Basel) 2017; 9:E387. [PMID: 30965692 PMCID: PMC6418638 DOI: 10.3390/polym9090387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
The extensive need for hard tissue substituent greatly motivates development of suitable allogeneic grafts for therapeutic recreation. Different calcium phosphate phases have been accepted as scaffold's components with positive influence on osteoinduction and differentiation of human mesenchymal stem cells, in terms of their higher fraction within the graft. Nevertheless, the creation of unlimited nutrients diffusion through newly formed grafts is of great importance. The media flow accomplished by perfusion forces can provide physicochemical, and also, biomechanical stimuli for three-dimensional bone-construct growth. In the present study, the influence of a different scaffold's composition on the human mesenchymal stem cells (hMSCs) differentiation performed in a U-CUP bioreactor under perfusion conditioning was investigated. The histological and immunohistochemical analysis of cultured bony tissues, and the evaluation of osteogenic genes' expression indicate that the lower fraction of in situ formed hydroxyapatite in the range of 10⁻30% within chitosan scaffold could be preferable for bone-construct development.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Maja Antunović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Lidija Pribolšan
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | | | - Andreja Vukasović
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
- Department of Orthopaedic Surgery, University Hospital, Sveti Duh, 10001 Zagreb, Croatia.
| | - Inga Marijanović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Gloria Gallego Ferrer
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Biomedical Research Networking centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| |
Collapse
|
104
|
Usprech J, Romero DA, Amon CH, Simmons CA. Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering. Acta Biomater 2017; 58:34-43. [PMID: 28532900 DOI: 10.1016/j.actbio.2017.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
The physical and chemical properties of a biomaterial integrate with soluble cues in the cell microenvironment to direct cell fate and function. Predictable biomaterial-based control of integrated cell responses has been investigated with two-dimensional (2D) screening platforms, but integrated responses in 3D have largely not been explored systematically. To address this need, we developed a screening platform using polyethylene glycol norbornene (PEG-NB) as a model biomaterial with which the polymer wt% (to control elastic modulus) and adhesion peptide types (RGD, DGEA, YIGSR) and densities could be controlled independently and combinatorially in arrays of 3D hydrogels. We applied this platform and regression modeling to identify combinations of biomaterial and soluble biochemical (TGF-β1) factors that best promoted myofibrogenesis of human mesenchymal stromal cells (hMSCs) in order to inform our understanding of regenerative processes for heart valve tissue engineering. In contrast to 2D culture, our screens revealed that soft hydrogels (low PEG-NB wt%) best promoted spread myofibroblastic cells that expressed high levels of α-smooth muscle actin (α-SMA) and collagen type I. High concentrations of RGD enhanced α-SMA expression in the presence of TGF-β1 and cell spreading regardless of whether TGF-β1 was in the culture medium. Strikingly, combinations of peptides that maximized collagen expression depended on the presence or absence of TGF-β1, indicating that biomaterial properties can modulate MSC response to soluble signals. This combination of a 3D biomaterial array screening platform with statistical modeling is broadly applicable to systematically identify combinations of biomaterial and microenvironmental conditions that optimally guide cell responses. STATEMENT OF SIGNIFICANCE We present a novel screening platform and methodology to model and identify how combinations of biomaterial and microenvironmental conditions guide cell phenotypes in 3D. Our approach to systematically identify complex relationships between microenvironmental cues and cell responses enables greater predictive power over cell fate in conditions with interacting material design factors. We demonstrate that this approach not only predicts that mesenchymal stromal cell (MSC) myofibrogenesis is promoted by soft, porous 3D biomaterials, but also generated new insights which demonstrate how biomaterial properties can differentially modulate MSC response to soluble signals. An additional benefit of the process includes utilizing both parametric and non parametric analyses which can demonstrate dominant significant trends as well as subtle interactions between biochemical and biomaterial cues.
Collapse
|
105
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
106
|
Rich MH, Lee MK, Ballance WC, Boppart M, Kong H. Poly(ethylene glycol)-Mediated Collagen Gel Mechanics Regulates Cellular Phenotypes in a Microchanneled Matrix. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Max H. Rich
- Department of Chemical and Biomolecular Engineering, ‡Institute for Genomic Biology, §Department of Kinesiology, and ∥Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Min Kyung Lee
- Department of Chemical and Biomolecular Engineering, ‡Institute for Genomic Biology, §Department of Kinesiology, and ∥Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - William C. Ballance
- Department of Chemical and Biomolecular Engineering, ‡Institute for Genomic Biology, §Department of Kinesiology, and ∥Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marni Boppart
- Department of Chemical and Biomolecular Engineering, ‡Institute for Genomic Biology, §Department of Kinesiology, and ∥Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, ‡Institute for Genomic Biology, §Department of Kinesiology, and ∥Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
107
|
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017; 32:266-277. [PMID: 28615311 PMCID: PMC5545611 DOI: 10.1152/physiol.00036.2016] [Citation(s) in RCA: 1030] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.
Collapse
Affiliation(s)
- Kayla Duval
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Hannah Grover
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Yongchao Mou
- Department of Bioengineering, University of Illinois-Chicago, Rockford, Illinois
| | - Adrian F Pegoraro
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts; and
| | - Jeffery Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire;
| |
Collapse
|
108
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
109
|
Nijsure MP, Pastakia M, Spano J, Fenn MB, Kishore V. Bioglass incorporation improves mechanical properties and enhances cell-mediated mineralization on electrochemically aligned collagen threads. J Biomed Mater Res A 2017; 105:2429-2440. [DOI: 10.1002/jbm.a.36102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Madhura P. Nijsure
- Department of Chemical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Meet Pastakia
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Joseph Spano
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| | - Michael B. Fenn
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| | - Vipuil Kishore
- Department of Chemical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| |
Collapse
|
110
|
Sangkert S, Kamonmattayakul S, Chai WL, Meesane J. Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect. J Biomed Mater Res A 2017; 105:1624-1636. [PMID: 28000362 DOI: 10.1002/jbm.a.35983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023]
Abstract
Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
Collapse
Affiliation(s)
- Supaporn Sangkert
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suttatip Kamonmattayakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wen Lin Chai
- Department of General Dental Practice and Oral and Maxillofacial Imaging, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
111
|
Parratt K, Smerchansky M, Stiggers Q, Roy K. Effect of hydrogel material composition on hBMSC differentiation into zone-specific neo-cartilage: engineering human articular cartilage-like tissue with spatially varying properties. J Mater Chem B 2017; 5:6237-6248. [DOI: 10.1039/c7tb00896a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Material composition alone can be used to direct human bone marrow stromal cells into distinct, zone-specific cell phenotypes and spatially-varying, multi-layered material scaffolds can generate complex, patterned tissue structures.
Collapse
Affiliation(s)
- Kirsten Parratt
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | | | | | - Krishnendu Roy
- Biomedical Engineering Department
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
112
|
Ji H, Xi K, Zhang Q, Jia X. Photodegradable hydrogels for external manipulation of cellular microenvironments with real-time monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra02629c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A designed hydrogel whose stiffness could not only be controlled but also monitored in situ by fluorescence.
Collapse
Affiliation(s)
- Hanxu Ji
- State Key Laboratory of Coordination Chemistry
- Department of Polymer Science & Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| | - Kai Xi
- Department of Polymer Science & Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Qiuhong Zhang
- Department of Polymer Science & Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry
- Department of Polymer Science & Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| |
Collapse
|
113
|
Jaffer S, Valasek P, Luke G, Batarfi M, Whalley BJ, Patel K. Characterisation of Development and Electrophysiological Mechanisms Underlying Rhythmicity of the Avian Lymph Heart. PLoS One 2016; 11:e0166428. [PMID: 27930653 PMCID: PMC5145147 DOI: 10.1371/journal.pone.0166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/29/2016] [Indexed: 11/18/2022] Open
Abstract
Despite significant advances in tissue engineering such as the use of scaffolds, bioreactors and pluripotent stem cells, effective cardiac tissue engineering for therapeutic purposes has remained a largely intractable challenge. For this area to capitalise on such advances, a novel approach may be to unravel the physiological mechanisms underlying the development of tissues that exhibit rhythmic contraction yet do not originate from the cardiac lineage. Considerable attention has been focused on the physiology of the avian lymph heart, a discrete organ with skeletal muscle origins yet which displays pacemaker properties normally only found in the heart. A functional lymph heart is essential for avian survival and growth in ovo. The histological nature of the lymph heart is similar to skeletal muscle although molecular and bioelectrical characterisation during development to assess mechanisms that contribute towards lymph heart contractile rhythmicity have not been undertaken. A better understanding of these processes may provide exploitable insights for therapeutic rhythmically contractile tissue engineering approaches in this area of significant unmet clinical need. Here, using molecular and electrophysiological approaches, we describe the molecular development of the lymph heart to understand how this skeletal muscle becomes fully functional during discrete in ovo stages of development. Our results show that the lymph heart does not follow the normal transitional programme of myogenesis as documented in most skeletal muscle, but instead develops through a concurrent programme of precursor expansion, commitment to myogenesis and functional differentiation which offers a mechanistic explanation for its rapid development. Extracellular electrophysiological field potential recordings revealed that the peak-to-peak amplitude of electrically evoked local field potentials elicited from isolated lymph heart were significantly reduced by treatment with carbachol; an effect that could be fully reversed by atropine. Moreover, nifedipine and cyclopiazonic acid both significantly reduced peak-to-peak local field potential amplitude. Optical recordings of lymph heart showed that the organ’s rhythmicity can be blocked by the HCN channel blocker, ZD7288; an effect also associated with a significant reduction in peak-to-peak local field potential amplitude. Additionally, we also show that isoforms of HCN channels are expressed in avian lymph heart. These results demonstrate that cholinergic signalling and L-type Ca2+ channels are important in excitation and contraction coupling, while HCN channels contribute to maintenance of lymph heart rhythmicity.
Collapse
Affiliation(s)
- Sajjida Jaffer
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Petr Valasek
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Graham Luke
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Munirah Batarfi
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Benjamin Jason Whalley
- School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
114
|
Domenech M, Polo-Corrales L, Ramirez-Vick JE, Freytes DO. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:438-458. [PMID: 27269388 PMCID: PMC5124749 DOI: 10.1089/ten.teb.2015.0523] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
Abstract
Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.
Collapse
Affiliation(s)
- Maribella Domenech
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
| | - Lilliana Polo-Corrales
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
- Department of Agroindustrial Engineering, Universidad de Sucre, Sucre, Colombia
| | - Jaime E. Ramirez-Vick
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, Ohio
| | - Donald O. Freytes
- The New York Stem Cell Foundation Research Institute, New York, New York
- Joint Department of Biomedical Engineering, NC State/UNC-Chapel Hill, Raleigh, North Carolina
| |
Collapse
|
115
|
Nonaka PN, Uriarte JJ, Campillo N, Oliveira VR, Navajas D, Farré R. Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ. Respir Res 2016; 17:161. [PMID: 27894293 PMCID: PMC5126992 DOI: 10.1186/s12931-016-0477-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023] Open
Abstract
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Collapse
Affiliation(s)
- Paula N Nonaka
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Vinicius R Oliveira
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,CIBER Enfermedades Respiratorias, Madrid, Spain. .,Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|
116
|
Kerscher P, Kaczmarek JA, Head SE, Ellis ME, Seeto WJ, Kim J, Bhattacharya S, Suppiramaniam V, Lipke EA. Direct Production of Human Cardiac Tissues by Pluripotent Stem Cell Encapsulation in Gelatin Methacryloyl. ACS Biomater Sci Eng 2016; 3:1499-1509. [PMID: 33429637 DOI: 10.1021/acsbiomaterials.6b00226] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Direct stem cell encapsulation and cardiac differentiation within supporting biomaterial scaffolds are critical for reproducible and scalable production of the functional human tissues needed in regenerative medicine and drug-testing applications. Producing cardiac tissues directly from pluripotent stem cells rather than assembling tissues using pre-differentiated cells can eliminate multiple cell-handling steps that otherwise limit the potential for process automation and production scale-up. Here we asked whether our process for forming 3D developing human engineered cardiac tissues using poly(ethylene glycol)-fibrinogen hydrogels can be extended to widely used and printable gelatin methacryloyl (GelMA) hydrogels. We demonstrate that low-density GelMA hydrogels can be formed rapidly using visible light (<1 min) and successfully employed to encapsulate human induced pluripotent stem cells while maintaining high cell viability. Resulting constructs had an initial stiffness of approximately 220 Pa, supported tissue growth and dynamic remodeling, and facilitated high-efficiency cardiac differentiation (>70%) to produce spontaneously contracting GelMA human engineered cardiac tissues (GEhECTs). GEhECTs initiated spontaneous contractions on day 8 of differentiation, with synchronicity, frequency, and velocity of contraction increasing over time, and displayed developmentally appropriate temporal changes in cardiac gene expression. GEhECT-dissociated cardiomyocytes displayed well-defined and aligned sarcomeres spaced at 1.85 ± 0.1 μm and responded appropriately to drug treatments, including the β-adrenergic agonist isoproterenol and antagonist propranolol, as well as to outside pacing up to 3.0 Hz. Overall results demonstrate that GelMA is a suitable biomaterial for the production of developing cardiac tissues and has the potential to be employed in scale-up production and bioprinting of GEhECTs.
Collapse
Affiliation(s)
- Petra Kerscher
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Jennifer A Kaczmarek
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Sara E Head
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Morgan E Ellis
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | - Joonyul Kim
- Proximity Biosciences LLC, Auburn, Alabama 36832, United States
| | - Subhrajit Bhattacharya
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 2316 Walker Building, Auburn, Alabama 36829, United States
| | - Vishnu Suppiramaniam
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 2316 Walker Building, Auburn, Alabama 36829, United States
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| |
Collapse
|
117
|
Bodenberger N, Kubiczek D, Abrosimova I, Scharm A, Kipper F, Walther P, Rosenau F. Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel. ACTA ACUST UNITED AC 2016; 12:6-12. [PMID: 28352549 PMCID: PMC5361077 DOI: 10.1016/j.btre.2016.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023]
Abstract
Generation of a THPC linked BSA hydrogel and characterization by cryo electron microscopy. Evaluation of techniques to create tunable pore sizes and shapes including channel like structures. Characterization of materials by confocal laser scanning microscopy. Modification of hydrogels with cell adhesive peptides (RGD). Comparison of cancer cell adhesion (A549 and MCF7) on the material.
Different methods to create and manipulate pore sizes in hydrogel fabrication are available, but systematic studies are normally conducted with hydrogels made of synthetic chemical compounds as backbones. In this study, a hydrogel made of natural and abundant protein in combination with different, well-available techniques was used to produce different architectures within the hydrogel matrix. Pore sizes and distribution are compared and resulting hydrogel properties like swelling ratio, resistance towards external stimuli and enzymatic degradation were investigated. Porous hydrogels were functionalized and two cancer cell lines were successfully adhered onto the material. With simple methods, pores with a radius between 10 and 80 μm and channels of 25 μm radius with a length of several hundreds of μm could be created and analyzed with laser scanning confocal microscopy and electron microscopy respectively. Furthermore, the influence of different methods on swelling ratio, enzymatic degradation and pH and temperature resistance was observed.
Collapse
Affiliation(s)
- Nicholas Bodenberger
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Dennis Kubiczek
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Irina Abrosimova
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Annika Scharm
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Franziska Kipper
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Paul Walther
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| | - Frank Rosenau
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, Germany
| |
Collapse
|
118
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
119
|
Sülflow K, Schneider M, Loth T, Kascholke C, Schulz-Siegmund M, Hacker MC, Simon JC, Savkovic V. Melanocytes from the outer root sheath of human hair and epidermal melanocytes display improved melanotic features in the niche provided by cGEL, oligomer-cross-linked gelatin-based hydrogel. J Biomed Mater Res A 2016; 104:3115-3126. [PMID: 27409726 DOI: 10.1002/jbm.a.35832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Non-invasively based cell treatments of depigmented skin disorders are largely limited by means of cell sampling as much as by their routes of application. Human melanocytes cultivated from the outer root sheath of hair follicle (HUMORS) are among the cell types that fit the non-invasive concept by being cultivated out of a minimal sample: hair root. Eventual implementation of HUMORS as a graft essentially depends on a choice of suitable biocompatible, biodegradable carrier that would mechanically and biologically support the cells as transient niche and facilitate their engraftment. Hence, the melanotic features of follicle-derived HUMORS and normal human epidermal melanocytes (NHEM) in engineered scaffolds based on collagen, the usual leading candidate for graft material for a variety of skin transplantation procedures were tested. Hydrogel named cGEL, an enzymatically degraded bovine gelatin chemically cross-linked with an oligomeric copolymer synthesized from pentaerythritol diacrylate monostearate (PEDAS), maleic anhydride (MA), and N-isopropylacrylamide (NiPAAm) or diacetone acrylamide (DAAm), was used. The cGEL provided a friendly three-dimensional (3D) cultivation environment for human melanocytes with increased melanin content of the 3D cultures in comparison to Collagen Cell Carrier® (CCC), a commercially available bovine decellularized collagen membrane, and electrospun polycaprolactone (PCL) matrices. One of the cGEL variants fostered not only a dramatic increase in melanin production but also a significant enhancement of melanotic gene PAX3, PMEL, TYR, and MITF expression in comparison to that of both CCC full-length collagen and PCL scaffolds, providing a clearly superior melanocyte niche that may be a suitable candidate for grafting carriers. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3115-3126, 2016.
Collapse
Affiliation(s)
- Katharina Sülflow
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Marie Schneider
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany
| | - Tina Loth
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Christian Kascholke
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Michael C Hacker
- Leipzig University, Faculty of Biosciences Pharmacy and Psychology, Institute of Pharmacy Dept of Pharmaceutical Technology, Eilenburger Straße 15 a, 04317, Leipzig, Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic, Faculty of Medicine, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation/Translational Centre for Regenerative Medicine, Leipzig University, Phillip-Rosenthal-Str.55, Leipzig, 04103, Germany.
| |
Collapse
|
120
|
Almela T, Brook IM, Moharamzadeh K. The significance of cell-related challenges in the clinical application of tissue engineering. J Biomed Mater Res A 2016; 104:3157-3163. [DOI: 10.1002/jbm.a.35856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Thafar Almela
- School of Clinical Dentistry; University of Sheffield, Claremont Crescent; Sheffield S10 2TA United Kingdom
| | - Ian M. Brook
- School of Clinical Dentistry; University of Sheffield, Claremont Crescent; Sheffield S10 2TA United Kingdom
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry; University of Sheffield, Claremont Crescent; Sheffield S10 2TA United Kingdom
| |
Collapse
|
121
|
Head DA, Tronci G, Russell SJ, Wood DJ. In Silico Modeling of the Rheological Properties of Covalently Cross-Linked Collagen Triple Helices. ACS Biomater Sci Eng 2016; 2:1224-1233. [DOI: 10.1021/acsbiomaterials.6b00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David A. Head
- School
of Computing, University of Leeds, Leeds LS2 9JT, U.K
| | - Giuseppe Tronci
- Nonwovens
Research Group, School of Design, University of Leeds, Leeds LS2 9JT, U.K
- Biomaterials
and Tissue Engineering Research Group, School of Dentistry, St. James’s
University Hospital, University of Leeds, Leeds LS9 7TF, U.K
| | - Stephen J. Russell
- Nonwovens
Research Group, School of Design, University of Leeds, Leeds LS2 9JT, U.K
| | - David J. Wood
- Biomaterials
and Tissue Engineering Research Group, School of Dentistry, St. James’s
University Hospital, University of Leeds, Leeds LS9 7TF, U.K
| |
Collapse
|
122
|
Samorezov JE, Headley EB, Everett CR, Alsberg E. Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels. J Biomed Mater Res A 2016; 104:1387-97. [PMID: 26822338 PMCID: PMC6930142 DOI: 10.1002/jbm.a.35668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 11/07/2022]
Abstract
Human adipose-derived stem cells (hASCs) show great potential for healing bone defects. Bone morphogenetic protein-2 (BMP-2) has been reported to stimulate their osteogenic differentiation both in vitro and in vivo. Here, methacrylated gelatin (GelMA) hydrogels were evaluated as a system to deliver BMP-2 to encapsulated hASCs from two different donors, and BMP-2 delivered from the hydrogels was compared to BMP-2 presented exogenously in culture media. GelMA hydrogels were shown to provide sustained, localized presentation of BMP-2 due to electrostatic interactions between the growth factor and biomaterial after an initial burst release. Both donors exhibited similar responses to the loaded and exogenous growth factor; BMP-2 from the hydrogels had a statistically significant effect on hASC osteogenic differentiation compared to exogenous BMP-2. Expression of alkaline phosphatase was accelerated, and cells in hydrogels with loaded BMP-2 deposited more calcium at one, two, and four weeks than cells without BMP-2 or with the growth factor presented in the media. There were no statistically significant differences in calcium content between groups with 25, 50, or 100 µg/mL loaded BMP-2, suggesting that using a lower growth factor dose may be as effective as a higher loading amount in this system. Taken together, these findings suggest that controlled delivery of BMP-2 from the GelMA enhances its osteogenic bioactivity compared to free growth factor presented in the media. Thus, the GelMA system is a promising biomaterial for BMP-2-mediated hASC osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1387-1397, 2016.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
| | - Emma B Headley
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
| | - Christopher R Everett
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
- Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
- National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106
| |
Collapse
|
123
|
Rizzi LG, Auer S, Head DA. Importance of non-affine viscoelastic response in disordered fibre networks. SOFT MATTER 2016; 12:4332-4338. [PMID: 27079274 DOI: 10.1039/c6sm00139d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Disordered fibre networks are ubiquitous in nature and have a wide range of industrial applications as novel biomaterials. Predicting their viscoelastic response is straightforward for affine deformations that are uniform over all length scales, but when affinity fails, as has been observed experimentally, modelling becomes challenging. Here we present a numerical methodology, related to an existing framework for amorphous packings, to predict the steady-state viscoelastic spectra and degree of affinity for disordered fibre networks driven at arbitrary frequencies. Applying this method to a peptide gel model reveals a monotonic increase of the shear modulus as the soft, non-affine normal modes are successively suppressed as the driving frequency increases. In addition to being dominated by fibril bending, these low frequency network modes are also shown to be delocalised. The presented methodology provides insights into the importance of non-affinity in the viscoelastic response of peptide gels, and is easily extendible to all types of fibre networks.
Collapse
Affiliation(s)
- L G Rizzi
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Brazil and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - S Auer
- School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - D A Head
- School of Computing, University of Leeds, LS2 9JT, Leeds, UK.
| |
Collapse
|
124
|
Huang C, Melerzanov A, Du Y. Engineering Embryonic Stem Cell Microenvironments for Tailored Cellular Differentiation. J Nanotechnol Eng Med 2016. [DOI: 10.1115/1.4033193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rapid progress of embryonic stem cell (ESCs) research offers great promise for drug discovery, tissue engineering, and regenerative medicine. However, a major limitation in translation of ESCs technology to pharmaceutical and clinical applications is how to induce their differentiation into tailored lineage commitment with satisfactory efficiency. Many studies indicate that this lineage commitment is precisely controlled by the ESC microenvironment in vivo. Engineering and biomaterial-based approaches to recreate a biomimetic cellular microenvironment provide valuable strategies for directing ESCs differentiation to specific lineages in vitro. In this review, we summarize and examine the recent advances in application of engineering and biomaterial-based approaches to control ESC differentiation. We focus on physical strategies (e.g., geometrical constraint, mechanical stimulation, extracellular matrix (ECM) stiffness, and topography) and biochemical approaches (e.g., genetic engineering, soluble bioactive factors, coculture, and synthetic small molecules), and highlight the three-dimensional (3D) hydrogel-based microenvironment for directed ESC differentiation. Finally, future perspectives in ESCs engineering are provided for the subsequent advancement of this promising research direction.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing 100084, China
- Department of Plastic Surgery, Meitan General Hospital, Beijing 100028, China e-mail:
| | - Alexander Melerzanov
- Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny 141701, Russia
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China e-mail:
| |
Collapse
|
125
|
Lee JH, Han YS, Lee SH. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells. Biomol Ther (Seoul) 2016; 24:260-7. [PMID: 26869524 PMCID: PMC4859789 DOI: 10.4062/biomolther.2015.146] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.
Collapse
Affiliation(s)
- Jun Hee Lee
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.,Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.,Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| |
Collapse
|
126
|
Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, Wu D, Liu B, Cao S, An D, Ma W, Zhang H, Wang W, Wang Q, Gu H. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:77. [PMID: 26894267 PMCID: PMC4760996 DOI: 10.1007/s10856-016-5684-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/27/2016] [Indexed: 05/14/2023]
Abstract
Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan-gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hui Li
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Guifeng Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jiaoning Miao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Di Wu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Bo Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Dong An
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Henan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
127
|
Whang M, Kim J. Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng Regen Med 2016; 13:126-139. [PMID: 30603392 PMCID: PMC6170857 DOI: 10.1007/s13770-016-0026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Migration of cells along the right direction is of paramount importance in a number of in vivo circumstances such as immune response, embryonic developments, morphogenesis, and healing of wounds and scars. While it has been known for a while that spatial gradients in chemical cues guide the direction of cell migration, the significance of the gradient in mechanical cues, such as stiffness of extracellular matrices (ECMs), in directed migration of cells has only recently emerged. With advances in synthetic chemistry, micro-fabrication techniques, and methods to characterize mechanical properties at a length scale even smaller than a single cell, synthetic ECMs with spatially controlled stiffness have been created with variations in design parameters. Since then, the synthetic ECMs have served as platforms to study the migratory behaviors of cells in the presence of the stiffness gradient of ECM and also as scaffolds for the regeneration of tissues. In this review, we highlight recent studies in cell migration directed by the stiffness gradient, called durotaxis, and discuss the mechanisms of durotaxis. We also summarize general methods and design principles to create synthetic ECMs with the stiffness gradients and, finally, conclude by discussing current limitations and future directions of synthetic ECMs for the study of durotaxis and the scaffold for tissue engineering.
Collapse
Affiliation(s)
- Minji Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| |
Collapse
|
128
|
Aligholi H, Rezayat SM, Azari H, Ejtemaei Mehr S, Akbari M, Modarres Mousavi SM, Attari F, Alipour F, Hassanzadeh G, Gorji A. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study. Brain Res 2016; 1642:197-208. [PMID: 27038753 DOI: 10.1016/j.brainres.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury.
Collapse
Affiliation(s)
- Hadi Aligholi
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Azari
- Neural Stem Cell & Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz, Iran; Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Attari
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran; Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
129
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
130
|
Bajaj P, Harris JF, Huang JH, Nath P, Iyer R. Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials. ACS Biomater Sci Eng 2016; 2:473-488. [PMID: 33465851 DOI: 10.1021/acsbiomaterials.5b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.
Collapse
Affiliation(s)
- Piyush Bajaj
- Information Systems and Modeling, §Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer F Harris
- Information Systems and Modeling, Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
131
|
Choi JS, Harley BAC. Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche. CURRENT STEM CELL REPORTS 2016; 2:85-94. [PMID: 27134819 PMCID: PMC4845958 DOI: 10.1007/s40778-016-0031-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our body, stem cells reside in a microenvironment termed the niche. While the exact composition and therefore the level of complexity of a stem cell niche can vary significantly tissue-to-tissue, the stem cell niche microenvironment is dynamic, typically containing spatial and temporal variations in both cellular, extracellular matrix, and biomolecular components. This complex flow of secreted or bound biomolecules, cytokines, extracellular matrix components, and cellular constituents all contribute to the regulation of stem cell fate specification events, making engineering approaches at the nano- and micro-scale of particular interest for creating an artificial niche environment in vitro. Recent advances in fabrication approaches have enabled biomedical researchers to capture and recreate the complexity of stem cell niche microenvironments in vitro. Such engineered platforms show promise as a means to enhance our understanding of the mechanisms underlying niche-mediated stem cell regulation as well as offer opportunities to precisely control stem cell expansion and differentiation events for clinical applications. While these principles generally apply to all adult stem cells and niches, in this review, we focus on recent developments in engineering synthetic niche microenvironments for one of the best-characterized stem cell populations, hematopoietic stem cells (HSC). Specifically, we highlight recent advances in platforms designed to facilitate the extrinsic control of HSC fate decisions.
Collapse
Affiliation(s)
- Ji Sun Choi
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
132
|
Seale NM, Varghese S. Biomaterials for pluripotent stem cell engineering: From fate determination to vascularization. J Mater Chem B 2016; 4:3454-3463. [PMID: 27446588 DOI: 10.1039/c5tb02658j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advancements in material science and engineering may hold the key to overcoming reproducibility and scalability limitations currently hindering the clinical translation of stem cell therapies. Biomaterial assisted differentiation commitment of stem cells and modulation of their in vivo function could have significant impact in stem cell-centred regenerative medicine approaches and next gen technological platforms. Synthetic biomaterials are of particular interest as they provide a consistent, chemically defined, and tunable way of mimicking the physical and chemical properties of the natural tissue or cell environment. Combining emerging biomaterial and biofabrication advancements may finally give researchers the tools to modulate spatiotemporal complexity and engineer more hierarchically complex, physiologically relevant tissue mimics. In this review we highlight recent research advancements in biomaterial assisted pluripotent stem cell (PSC) expansion and three dimensional (3D) tissue formation strategies. Furthermore, since vascularization is a major challenge affecting the in vivo function of engineered tissues, we discuss recent developments in vascularization strategies and assess their ability to produce perfusable and functional vasculature that can be integrated with the host tissue.
Collapse
Affiliation(s)
- Nailah M Seale
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| |
Collapse
|
133
|
Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int 2016; 2016:6737345. [PMID: 27057174 PMCID: PMC4761677 DOI: 10.1155/2016/6737345] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/02/2016] [Accepted: 01/03/2016] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.
Collapse
|
134
|
Liu M, Yang J, Hu W, Zhang S, Wang Y. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. ACTA ACUST UNITED AC 2016; 11:015008. [PMID: 26836957 DOI: 10.1088/1748-6041/11/1/015008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, cell-based therapies have attracted attention as promising treatments for acute liver failure (ALF). Bone marrow-derived mesenchymal stem cells (MSCs) are potential candidates for co-culture with hepatocytes in poly(lactic acid-glycolic acid) (PLGA) scaffolds to support hepatocellular function. However, the mechanism of culturing protocol using PLGA scaffolds for MSC differentiation into hepatocyte-like cells as well as the therapeutic effect of cell seeded PLGA scaffolds on ALF remain unsatisfactory in clinical application. Here, MSCs and hepatocytes were co-cultured at ratios of 1:2.5 (MSCs: Hep), 1:5 and 1:10, respectively. The proliferation abilities of these co-cultured cells were detected by CCK8, MTT, EdU and by scanning electron microscopy (SEM), and the ability of MSCs to differentiate into hepatocytes was detected by PCR, western blot and immunofluorescence staining. Therapeutic trials of cell seeded PLGA scaffolds were conducted through mouse abdominal cavity transplantation. Results showed that the 1:5 group showed significantly higher cellular proliferation than the 1:2.5 and 1:10 groups, supernatant albumin and urea nitrogen levels were also significantly higher in the 1:5 group than in other two groups. Similarly, the 1:5 group demonstrated better DNA transcription and liver-specific protein (albumin, CK18 and P450) production. Meanwhile, the GalN-stimulated levels of ALT, AST and TBil in mouse serum were down-regulated significantly more by (MSC + Hep)-PLGA scaffold treatment than MSC-PLGA or Hep-PLGA scaffold treatments. Furthermore, the (MSC + Hep)-PLGA scaffold-treated ALF mice showed a lower immunogenic response level than the other two groups. These data suggested that the ratio of 1:5 (MSC:Hep) co-cultures was the optimal ratio for MSCs to support hepatocellular metabolism and function in PLGA scaffolds in vitro, the (MSC + Hep)-PLGA scaffold treatment could perform better restoration for damaged liver function and could give ALF mice a greater survival rate than the monocell seeded PLGA scaffold treatment.
Collapse
Affiliation(s)
- Mingying Liu
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | |
Collapse
|
135
|
Xie L, Mao M, Zhou L, Jiang B. Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Microvesicles: Two Potential Therapeutic Strategies. Stem Cells Dev 2016; 25:203-13. [PMID: 26575103 DOI: 10.1089/scd.2015.0278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lili Xie
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Mao
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, California
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
136
|
Belu A, Schnitker J, Bertazzo S, Neumann E, Mayer D, Offenhäusser A, Santoro F. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J Microsc 2016; 263:78-86. [PMID: 26820619 DOI: 10.1111/jmi.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023]
Abstract
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.
Collapse
Affiliation(s)
- A Belu
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - J Schnitker
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - S Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, U.K
| | - E Neumann
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - D Mayer
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - A Offenhäusser
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - F Santoro
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| |
Collapse
|
137
|
A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
138
|
Iacovacci V, Ricotti L, Menciassi A, Dario P. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochem Pharmacol 2016; 100:12-27. [DOI: 10.1016/j.bcp.2015.08.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023]
|
139
|
Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, El Haj AJ, Rose FRAJ, Shakesheff KM, Oreffo ROC. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors. PLoS One 2015; 10:e0145080. [PMID: 26675008 PMCID: PMC4684226 DOI: 10.1371/journal.pone.0145080] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
- * E-mail: (DG); (ROCO)
| | - Emma L. Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Janos M. Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Cameron R. Black
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Julia A. Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Carol A. Roberts
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Lisa J. White
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Omar Qutachi
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Heather Peto
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Hassan Rashidi
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Luis Rojo
- Department of Materials, Imperial College London, Royal School of Mines, London, SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
- Biomaterials, Biomimetics, Biophotonics Research Division, King's College London, Dental Institute, Guy's Hospital, Tower Wing, London Bridge, London SE1 9RT, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, Royal School of Mines, London, SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, ST4 7BQ, United Kingdom
| | - Felicity R. A. J. Rose
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Kevin M. Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Pharmacy, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
- Locate Therapeutics Limited, MediCity, Nottingham, NG90 6BH, United Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
- * E-mail: (DG); (ROCO)
| |
Collapse
|
140
|
Bogorad MI, DeStefano J, Karlsson J, Wong AD, Gerecht S, Searson PC. Review: in vitro microvessel models. LAB ON A CHIP 2015; 15:4242-55. [PMID: 26364747 PMCID: PMC9397147 DOI: 10.1039/c5lc00832h] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A wide range of perfusable microvessel models have been developed, exploiting advances in microfabrication, microfluidics, biomaterials, stem cell technology, and tissue engineering. These models vary in complexity and physiological relevance, but provide a diverse tool kit for the study of vascular phenomena and methods to vascularize artificial organs. Here we review the state-of-the-art in perfusable microvessel models, summarizing the different fabrication methods and highlighting advantages and limitations.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology (INBT), 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, Maryland 21218, USA.
| | - Jackson DeStefano
- Institute for Nanobiotechnology (INBT), 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, Maryland 21218, USA.
| | - Johan Karlsson
- Institute for Nanobiotechnology (INBT), 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, Maryland 21218, USA.
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, Maryland 21218, USA.
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, Maryland 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
141
|
Avci NG, Fan Y, Dragomir A, Akay YM, Akay M. Investigating the Influence of HUVECs in the Formation of Glioblastoma Spheroids in High-Throughput Three-Dimensional Microwells. IEEE Trans Nanobioscience 2015; 14:790-6. [PMID: 26571536 DOI: 10.1109/tnb.2015.2477818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is the most common form of primary brain tumor with a high infiltrative capacity, increased vascularity, and largely elusive tumor progression mechanism. The current GBM treatment methods do not increase the patient survival rate and studies using two-dimensional (2D) cell cultures and in vivo animal models to investigate GBM behavior and mechanism have limitations. Therefore, there is an increasing need for in vitro three-dimensional (3D) models that closely mimic in vivo microenvironment of the GBM tumors to understand the underlying mechanisms of the tumor progression. In this study we propose to use a 3D in vitro model to overcome these limitations, using poly (ethylene glycol) dimethyl acrylate (PEGDA) hydrogel-based microwells and co-culture GBM (U87) cells and endothelial cells (HUVEC) in the 3D microwells to provide a 3D in vitro simulation of the tumor microenvironment. Furthermore, we investigated the gene expression differences of co-cultures by quantitative real-time PCR. Our results suggested that the relative expression profiles of tumor angiogenesis markers, PECAM1/CD31, and VEGFR2, in co-cultures are consistent with in vivo GBM studies. Furthermore, we suggest that our microwell platform could provide robust and useful 3D co-culture models for high-throughput drug screening and treatment of the GBM.
Collapse
|
142
|
Karumbaiah L, Enam SF, Brown AC, Saxena T, Betancur MI, Barker TH, Bellamkonda RV. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem 2015; 26:2336-49. [PMID: 26440046 DOI: 10.1021/acs.bioconjchem.5b00397] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p < 0.05) enriched in CS-GAG hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p < 0.05) higher self-renewal when compared to neurospheres cultured in unconditioned hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.
Collapse
Affiliation(s)
- Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, The University of Georgia , 425 River Road, Athens, Georgia 30602, United States
| | | | - Ashley C Brown
- Joint Department of Biomedical Engineering NC State University/UNC-Chapel Hill , 4204 B Engineering Building III, Raleigh, North Carolina 27695, United States
| | | | - Martha I Betancur
- Regenerative Bioscience Center, ADS Complex, The University of Georgia , 425 River Road, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
143
|
Xu Y, Li Z, Li X, Fan Z, Liu Z, Xie X, Guan J. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomater 2015; 26:23-33. [PMID: 26277379 DOI: 10.1016/j.actbio.2015.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023]
Abstract
Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy for skeletal muscle regeneration in ischemic limb experiences low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as hydrogel modulus may be modulated to induce the differentiation. Yet current approaches used to modulate hydrogel modulus may simultaneously vary other properties that also affect stem cell myogenic differentiation, such as chemistry, composition and water content. In this report, we decoupled the hydrogel modulus from chemistry, composition, and water content using injectable and thermosensitive hydrogels. We found that mesenchymal stem cells best differentiated into myogenic lineage in the hydrogel with elastic modulus of 20 kPa.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
144
|
Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2015; 99:62-8. [PMID: 26384580 DOI: 10.1016/j.ymeth.2015.09.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. Although they were originally identified in bone marrow and described as 'marrow stromal cells', they have since been identified in many other anatomical locations in the body. MSCs can be isolated from bone marrow, adipose tissue, umbilical cord and other tissues but the richest tissue source of MSCs is fat. Since they are adherent to plastic, they may be expanded in vitro. MSCs have a distinct morphology and express a specific set of CD (cluster of differentiation) molecules. The phenotypic pattern for the identification of MSCs cells requires expression of CD73, CD90, and CD105 and lack of CD34, CD45, and HLA-DR antigens. Under appropriate micro-environmental conditions MSCs can proliferate and give rise to other cell types. Therefore, they are ideally suited for the treatment of systemic inflammatory and autoimmune conditions. They have also been implicated as key players in regenerating injured tissue following injury and trauma. MSC populations isolated from adipose tissue may also contain regulatory T (Treg) cells, which have the capacity for modulating the immune system. The immunoregulatory and regenerative properties of MSCs make them ideal for use as therapeutic agents in vivo. In this paper we review the literature on the identification, phenotypic characterization and biological properties of MSCs and discuss their potential for applications in cell therapy and regenerative medicine. We also discuss strategies for biomaterial micro-engineering of the stem cell niche.
Collapse
Affiliation(s)
| | - Andras Dinnyes
- Biotalentum Ltd., Gödöllö 2100, Hungary; Szent István University, Gödöllö 2100, Hungary; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands.
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
145
|
Radhakrishnan A, Jose GM, Kurup M. PEG-penetrated chitosan-alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications. Prog Biomater 2015; 4:101-112. [PMID: 26566468 PMCID: PMC4636530 DOI: 10.1007/s40204-015-0041-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022] Open
Abstract
The emerging strategy of tissue engineering for the management of end-stage organ failure and associated complications mainly relies on ECM mimicking scaffolds for neo-tissue genesis. In the current study, novel polyethylene glycol interpenetrated cross-linked hydrogel scaffold based on a co-polysaccharide (PIAC) synthesized from two marine heteropolysaccharides, alginate and chitosan, was designed. Partially cross-linked (PIAC-P) and fully cross-linked hydrogels (PIAC-F) were prepared. The physiochemical evaluations of both the hydrogels revealed the presence of alginate fraction and extensive -OH groups on the surface, sufficient water content and water holding capacity. The porosity and bulk density were also appreciable. The scaffolds were hemocompatible and were able to adsorb appreciable plasma proteins on to the surface. MTT assay on hydrogel extracts and direct contact assay showed the nontoxic effects of fibroblast cells upon contact with the hydrogel. Live/dead assay using ethidium bromide/acridine orange cocktail on fibroblast cells grown on the hydrogels after 5 days of initial seeding displayed green nucleus revealing the non-apoptotic cells. PIAC-P hydrogels were superior to certain aspects due to the availability of free functional groups than PIAC-F where most of these groups were utilized for cross-linking. The biological evaluations confirmed the healthy being and 3D growth of fibroblasts on the porous networks of both the hydrogels. The present hydrogel can form an ECM mimic and can form a potent candidate for various tissue engineering applications.
Collapse
Affiliation(s)
- Anitha Radhakrishnan
- Department of Biochemistry, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala India
| | - Geena Mariya Jose
- Department of Biochemistry, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala India
| | - Muraleedhara Kurup
- Department of Biochemistry, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala India
| |
Collapse
|
146
|
Tourlomousis F, Chang RC. Numerical investigation of dynamic microorgan devices as drug screening platforms. Part II: Microscale modeling approach and validation. Biotechnol Bioeng 2015; 113:623-34. [PMID: 26333066 DOI: 10.1002/bit.25824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/27/2015] [Indexed: 11/11/2022]
Abstract
The authors have previously reported a rigorous macroscale modeling approach for an in vitro 3D dynamic microorgan device (DMD). This paper represents the second of a two-part model-based investigation where the effect of microscale (single liver cell-level) shear-mediated mechanotransduction on drug biotransformation is deconstructed. Herein, each cell is explicitly incorporated into the geometric model as single compartmentalized metabolic structures. Each cell's metabolic activity is coupled with the microscale hydrodynamic Wall Shear Stress (WSS) simulated around the cell boundary through a semi-empirical polynomial function as an additional reaction term in the mass transfer equations. Guided by the macroscale model-based hydrodynamics, only 9 cells in 3 representative DMD domains are explicitly modeled. Dynamic and reaction similarity rules based on non-dimensionalization are invoked to correlate the numerical and empirical models, accounting for the substrate time scales. The proposed modeling approach addresses the key challenge of computational cost towards modeling complex large-scale DMD-type system with prohibitively high cell densities. Transient simulations are implemented to extract the drug metabolite profile with the microscale modeling approach validated with an experimental drug flow study. The results from the author's study demonstrate the preferred implementation of the microscale modeling approach over that of its macroscale counterpart.
Collapse
Affiliation(s)
- Filippos Tourlomousis
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.
| | - Robert C Chang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
147
|
McKee C, Perez-Cruet M, Chavez F, Chaudhry GR. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells. World J Stem Cells 2015; 7:1064-1077. [PMID: 26328022 PMCID: PMC4550630 DOI: 10.4252/wjsc.v7.i7.1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.
METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.
RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.
CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.
Collapse
|
148
|
Syva SH, Ampon K, Lasimbang H, Fatimah SS. Microenvironmental factors involved in human amnion mesenchymal stem cells fate decisions. J Tissue Eng Regen Med 2015; 11:311-320. [PMID: 26073746 DOI: 10.1002/term.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/12/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Human amnion mesenchymal stem cells (HAMCs) show great differentiation and proliferation potential and also other remarkable features that could serve as an outstanding alternative source of stem cells in regenerative medicine. Recent reports have demonstrated various kinds of effective artificial niche that mimic the microenvironment of different types of stem cell to maintain and control their fate and function. The components of the stem cell microenvironment consist mainly of soluble and insoluble factors responsible for regulating stem cell differentiation and self-renewal. Extensive studies have been made on regulating HAMCs differentiation into specific phenotypes; however, the understanding of relevant factors in directing stem cell fate decisions in HAMCs remain underexplored. In this review, we have therefore identified soluble and insoluble factors, including mechanical stimuli and cues from the other supporting cells that are involved in directing HAMCs fate decisions. In order to strengthen the significance of understanding on the relevant factors involved in stem cell fate decisions, recent technologies developed to specifically mimic the microenvironments of specific cell lineages are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Kamaruzaman Ampon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Malaysia
| | - Helen Lasimbang
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Malaysia
| | | |
Collapse
|
149
|
Tocchio A, Martello F, Tamplenizza M, Rossi E, Gerges I, Milani P, Lenardi C. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs. Acta Biomater 2015; 18:144-54. [PMID: 25724444 DOI: 10.1016/j.actbio.2015.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/12/2022]
Abstract
The potential of the 3D cell culture approach for creating in vitro models for drug screening and cellular studies, has led to the development of hydrogels that are able to mimic the in vivo 3D cellular milieu. To this aim, synthetic polymer-based hydrogels, with which it is possible to fine-tune the chemical and biophysical properties of the cell microenvironment, are becoming more and more acclaimed. Of all synthetic materials, poly(amidoamine)s (PAAs) hydrogels are known to have promising properties. In particular, PAAs hydrogels containing the 2,2-bisacrylamidoacetic acid-agmatine monomeric unit are capable of enhancing cellular adhesion by interacting with the RGD-binding αVβ3 integrin. The synthesis of a new photocrosslinkable, biomimetic PAA-Jeffamine®-PAA triblock copolymer (PJP) hydrogel is reported in this paper with the aim of improving the optical, biocompatibility and cell-adhesion properties of previously studied PAA hydrogels and providing an inexpensive alternative to the RGD peptide based hydrogels. The physicochemical properties of PJP hydrogels are extensively discussed and the behavior of 2D and 3D cell cultures was analyzed in depth with different cell types. Moreover, cell-laden PJP hydrogels were patterned with perfusable microchannels and seeded with endothelial cells, in order to investigate the possibility of using PJP hydrogels for fabricating cell laden tissue-like micro constructs and microfluidic devices. Overall the data obtained suggest that PJP could ultimately become a useful tool for fabricating improved in vitro models in order to potentially enhance the effectiveness of drug screening and clinical treatments.
Collapse
Affiliation(s)
- Alessandro Tocchio
- SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139 Milano, Italy
| | | | | | - Eleonora Rossi
- SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139 Milano, Italy
| | - Irini Gerges
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | - Paolo Milani
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Cristina Lenardi
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
| |
Collapse
|
150
|
Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:203-17. [PMID: 25343302 PMCID: PMC4390213 DOI: 10.1089/ten.teb.2014.0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.
Collapse
Affiliation(s)
- Himanshu Kaul
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|