101
|
Burute M, Kapitein LC. Cellular Logistics: Unraveling the Interplay Between Microtubule Organization and Intracellular Transport. Annu Rev Cell Dev Biol 2019; 35:29-54. [DOI: 10.1146/annurev-cellbio-100818-125149] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules are core components of the cytoskeleton and serve as tracks for motor protein–based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type–specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.
Collapse
Affiliation(s)
- Mithila Burute
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
102
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
103
|
Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking. Cell Rep 2019; 22:3277-3291. [PMID: 29562183 DOI: 10.1016/j.celrep.2018.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Intracellular transport of membranous organelles and protein complexes to various destinations is fundamental to signaling transduction and cellular function. The cytoplasmic dynein motor and its regulatory proteins LIS1 and NDE1 are required for transporting a variety of cellular cargos along the microtubule network. In this study, we show that deletion of Lis1 in developing lung endoderm and limb mesenchymal cells causes agenesis of the lungs and limbs. In both mutants, there is increased cell death and decreased fibroblast growth factor (FGF) signaling activity. Mechanistically, LIS1 and its interacting protein NDE1/NDEL1 are associated with FGF receptor-containing vesicles and regulate FGF receptor intracellular trafficking and degradation. Notably, FGF signaling promotes NDE1 tyrosine phosphorylation, which leads to dissociation of LIS1/NDE1 complex. Thus, our studies identify the LIS1/NDE1 complex as an important FGF signaling regulator and provide insights into the bidirectional regulation of cell signaling and transport machinery for endocytosis.
Collapse
Affiliation(s)
- Liansheng Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Mujun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
104
|
Keidar L, Gerlitz G, Kshirsagar A, Tsoory M, Olender T, Wang X, Yang Y, Chen YS, Yang YG, Voineagu I, Reiner O. Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Front Cell Neurosci 2019; 13:370. [PMID: 31474834 PMCID: PMC6703185 DOI: 10.3389/fncel.2019.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
LIS1 is the main causative gene for lissencephaly, while MeCP2 is the main causative gene for Rett syndrome, both of which are neurodevelopmental diseases. Here we report nuclear functions for LIS1 and identify previously unrecognized physical and genetic interactions between the products of these two genes in the cell nucleus, that has implications on MeCP2 organization, neuronal gene expression and mouse behavior. Reduced LIS1 levels affect the association of MeCP2 with chromatin. Transcriptome analysis of primary cortical neurons derived from wild type, Lis1±, MeCP2−/y, or double mutants mice revealed a large overlap in the differentially expressed (DE) genes between the various mutants. Overall, our findings provide insights on molecular mechanisms involved in the neurodevelopmental disorders lissencephaly and Rett syndrome caused by dysfunction of LIS1 and MeCP2, respectively.
Collapse
Affiliation(s)
- Liraz Keidar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Gerlitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xing Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Sheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
105
|
Noell CR, Loh JY, Debler EW, Loftus KM, Cui H, Russ BB, Zhang K, Goyal P, Solmaz SR. Role of Coiled-Coil Registry Shifts in the Activation of Human Bicaudal D2 for Dynein Recruitment upon Cargo Binding. J Phys Chem Lett 2019; 10:4362-4367. [PMID: 31306018 PMCID: PMC7243283 DOI: 10.1021/acs.jpclett.9b01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Dynein adaptors such as Bicaudal D2 (BicD2) recognize cargo for dynein-dependent transport, and cargo-bound adaptors are required to activate dynein for processive transport, but the mechanism of action is unknown. Here we report the X-ray structure of the cargo-binding domain of human BicD2 and investigate the structural dynamics of the coiled-coil. Our molecular dynamics simulations support the fact that BicD2 can switch from a homotypic coiled-coil registry, in which both helices of the homodimer are aligned, to an asymmetric registry, where a portion of one helix is vertically shifted, as both states are similarly stable and defined by distinct conformations of F743. The F743I variant increases dynein recruitment in the Drosophila homologue, whereas the human R747C variant causes spinal muscular atrophy. We report spontaneous registry shifts for both variants, which may be the cause for BicD2 hyperactivation and disease. We propose that a registry shift upon cargo binding may activate autoinhibited BicD2 for dynein recruitment.
Collapse
Affiliation(s)
- Crystal R. Noell
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Erik W. Debler
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| | - Kyle M. Loftus
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Heying Cui
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Blaine B. Russ
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
- Corresponding Authors:. Tel: +1 607 777 4308 (P.G.)., . Tel: +1 607 777 2089 (S.R.S.)
| | - Sozanne R. Solmaz
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
- Corresponding Authors:. Tel: +1 607 777 4308 (P.G.)., . Tel: +1 607 777 2089 (S.R.S.)
| |
Collapse
|
106
|
Grotjahn DA, Lander GC. Setting the dynein motor in motion: New insights from electron tomography. J Biol Chem 2019; 294:13202-13217. [PMID: 31285262 DOI: 10.1074/jbc.rev119.003095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dyneins are ATP-fueled macromolecular machines that power all minus-end microtubule-based transport processes of molecular cargo within eukaryotic cells and play essential roles in a wide variety of cellular functions. These complex and fascinating motors have been the target of countless structural and biophysical studies. These investigations have elucidated the mechanism of ATP-driven force production and have helped unravel the conformational rearrangements associated with the dynein mechanochemical cycle. However, despite decades of research, it remains unknown how these molecular motions are harnessed to power massive cellular reorganization and what are the regulatory mechanisms that drive these processes. Recent advancements in electron tomography imaging have enabled researchers to visualize dynein motors in their transport environment with unprecedented detail and have led to exciting discoveries regarding dynein motor function and regulation. In this review, we will highlight how these recent structural studies have fundamentally propelled our understanding of the dynein motor and have revealed some unexpected, unifying mechanisms of regulation.
Collapse
Affiliation(s)
- Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
107
|
Jespersen N, Estelle A, Waugh N, Davey NE, Blikstad C, Ammon YC, Akhmanova A, Ivarsson Y, Hendrix DA, Barbar E. Systematic identification of recognition motifs for the hub protein LC8. Life Sci Alliance 2019; 2:2/4/e201900366. [PMID: 31266884 PMCID: PMC6607443 DOI: 10.26508/lsa.201900366] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023] Open
Abstract
LC8 is a eukaryotic hub protein that interacts with multifarious partners; analysis of more than 100 binding/nonbinding sequences led to an algorithm that predicts LC8 partners with 78% accuracy. Hub proteins participate in cellular regulation by dynamic binding of multiple proteins within interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner pool, we screened for LC8 binding partners using a proteomic phage display library composed of peptides from the human proteome, which had no bias toward a known LC8 motif. Of the identified hits, we validated binding of 29 peptides using isothermal titration calorimetry. Of the 29 peptides, 19 were entirely novel, and all had the canonical TQT motif anchor. A striking observation is that numerous peptides containing the TQT anchor do not bind LC8, indicating that residues outside of the anchor facilitate LC8 interactions. Using both LC8-binding and nonbinding peptides containing the motif anchor, we developed the “LC8Pred” algorithm that identifies critical residues flanking the anchor and parses random sequences to predict LC8-binding motifs with ∼78% accuracy. Our findings significantly expand the scope of the LC8 hub interactome.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Aidan Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Nathan Waugh
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Cecilia Blikstad
- Department of Chemistry - Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Anna Akhmanova
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ylva Ivarsson
- Department of Chemistry - Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
108
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
109
|
Reversible association with motor proteins (RAMP): A streptavidin-based method to manipulate organelle positioning. PLoS Biol 2019; 17:e3000279. [PMID: 31100061 PMCID: PMC6542540 DOI: 10.1371/journal.pbio.3000279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 05/03/2019] [Indexed: 01/18/2023] Open
Abstract
We report the development and characterization of a method, named reversible association with motor proteins (RAMP), for manipulation of organelle positioning within the cytoplasm. RAMP consists of coexpressing in cultured cells (i) an organellar protein fused to the streptavidin-binding peptide (SBP) and (ii) motor, neck, and coiled-coil domains from a plus-end-directed or minus-end-directed kinesin fused to streptavidin. The SBP-streptavidin interaction drives accumulation of organelles at the plus or minus end of microtubules, respectively. Importantly, competition of the streptavidin-SBP interaction by the addition of biotin to the culture medium rapidly dissociates the motor construct from the organelle, allowing restoration of normal patterns of organelle transport and distribution. A distinctive feature of this method is that organelles initially accumulate at either end of the microtubule network in the initial state and are subsequently released from this accumulation, allowing analyses of the movement of a synchronized population of organelles by endogenous motors.
Collapse
|
110
|
Caracci MO, Fuentealba LM, Marzolo MP. Golgi Complex Dynamics and Its Implication in Prevalent Neurological Disorders. Front Cell Dev Biol 2019; 7:75. [PMID: 31134199 PMCID: PMC6514153 DOI: 10.3389/fcell.2019.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Coupling of protein synthesis with protein delivery to distinct subcellular domains is essential for maintaining cellular homeostasis, and defects thereof have consistently been shown to be associated with several diseases. This function is particularly challenging for neurons given their polarized nature and differential protein requirements in synaptic boutons, dendrites, axons, and soma. Long-range trafficking is greatly enhanced in neurons by discrete mini-organelles resembling the Golgi complex (GC) referred to as Golgi outposts (GOPs) which play an essential role in the development of dendritic arborization. In this context, the morphology of the GC is highly plastic, and the polarized distribution of this organelle is necessary for neuronal migration and polarized growth. Furthermore, synaptic components are readily trafficked and modified at GOP suggesting a function for this organelle in synaptic plasticity. However, little is known about GOPs properties and biogenesis and the role of GOP dysregulation in pathology. In this review, we discuss current literature supporting a role for GC dynamics in prevalent neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and epilepsy, and examine the association of these disorders with the wide-ranging effects of GC function on common cellular pathways regulating neuronal excitability, polarity, migration, and organellar stress. First, we discuss the role of Golgins and Golgi-associated proteins in the regulation of GC morphology and dynamics. Then, we consider abnormal GC arrangements observed in neurological disorders and associations with common neuronal defects therein. Finally, we consider the cell signaling pathways involved in the modulation of GC dynamics and argue for a master regulatory role for Reelin signaling, a well-known regulator of neuronal polarity and migration. Determining the cellular pathways involved in shaping the Golgi network will have a direct and profound impact on our current understanding of neurodevelopment and neuropathology and aid the development of novel therapeutic strategies for improved patient care and prognosis.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
111
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Han HJ. Role of HIF1 α Regulatory Factors in Stem Cells. Int J Stem Cells 2019; 12:8-20. [PMID: 30836734 PMCID: PMC6457711 DOI: 10.15283/ijsc18109] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a master transcription factor that induces the transcription of genes involved in the metabolism and behavior of stem cells. HIF1-mediated adaptation to hypoxia is required to maintain the pluripotency and survival of stem cells under hypoxic conditions. HIF1 activity is well known to be tightly controlled by the alpha subunit of HIF1 (HIF1α). Understanding the regulatory mechanisms that control HIF1 activity in stem cells will provide novel insights into stem cell biology under hypoxia. Recent research has unraveled the mechanistic details of HIF1α regulating processes, suggesting new strategies for regulating stem cells. This review summarizes recent experimental studies on the role of several regulatory factors (including calcium, 2-oxoglutarate-dependent dioxygenase, microtubule network, importin, and coactivators) in regulating HIF1α activity in stem cells.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| |
Collapse
|
112
|
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor that drives the movement of diverse cargos along the microtubule cytoskeleton, including organelles, vesicles and RNAs. A long-standing question is how a single form of dynein can be adapted to a wide range of cellular functions in both interphase and mitosis. Recent progress has provided new insights - dynein interacts with a group of activating adaptors that provide cargo-specific and/or function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the complex that dynein forms with its required activator dynactin, leading to highly processive motility toward the microtubule minus end. Furthermore, activating adaptors mediate specific interactions of the motor complex with cargos such as Rab6-positive vesicles or ribonucleoprotein particles for BICD2, and signaling endosomes for Hook1. In this Cell Science at a Glance article and accompanying poster, we highlight the conserved structural features found in dynein activators, the effects of these activators on biophysical parameters, such as motor velocity and stall force, and the specific intracellular functions they mediate.
Collapse
Affiliation(s)
- Mara A Olenick
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
113
|
Gonçalves JC, Dantas TJ, Vallee RB. Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation. J Cell Biol 2019; 218:808-819. [PMID: 30674581 PMCID: PMC6400572 DOI: 10.1083/jcb.201806112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs' unique functions during brain development and dynein regulation overall.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
114
|
Martinez Carrera LA, Gabriel E, Donohoe CD, Hölker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 2019. [PMID: 29528393 DOI: 10.1093/hmg/ddy086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.
Collapse
Affiliation(s)
- Lilian A Martinez Carrera
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Elke Gabriel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Colin D Donohoe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Aruljothi Mariappan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
115
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|
116
|
Celestino R, Henen MA, Gama JB, Carvalho C, McCabe M, Barbosa DJ, Born A, Nichols PJ, Carvalho AX, Gassmann R, Vögeli B. A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport. PLoS Biol 2019; 17:e3000100. [PMID: 30615611 PMCID: PMC6336354 DOI: 10.1371/journal.pbio.3000100] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/17/2019] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo. A highly conserved mechanism links the microtubule minus end–directed motor dynein to structurally diverse cargo adaptors through its light intermediate chain; this interaction is crucial for dynein function in vivo. The large size and complex organization of animal cells make the correct and efficient distribution of intracellular content a challenge. The solution is to use motor proteins, which harness energy from ATP hydrolysis to walk along actin filaments or microtubules, for directional transport of cargo. The multi-subunit motor cytoplasmic dynein 1 (dynein) is responsible for transport directed toward the minus ends of microtubules. An important question is how dynein is recruited to its diverse cargo, which includes organelles such as endosomes and mitochondria, proteins, and mRNA. In this study, we use nuclear magnetic resonance spectroscopy to show that the light intermediate chain (LIC) subunit of human dynein uses a short helix in its disordered C-terminal region to bind structurally distinct adaptor proteins that connect the motor to specific cargo. We then use genome editing in the animal model C. elegans to demonstrate the functional relevance of the C-terminal LIC helix for dynein-dependent cargo transport in neurons. Thus, dynein recruitment to cargo involves a highly conserved interaction between LIC and adaptor proteins.
Collapse
Affiliation(s)
- Ricardo Celestino
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - José B. Gama
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maxwell McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- * E-mail: (RG); (BV)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (RG); (BV)
| |
Collapse
|
117
|
Rodriguez-Garcia R, Chesneau L, Pastezeur S, Roul J, Tramier M, Pécréaux J. The polarity-induced force imbalance in Caenorhabditis elegans embryos is caused by asymmetric binding rates of dynein to the cortex. Mol Biol Cell 2018; 29:3093-3104. [PMID: 30332325 PMCID: PMC6340208 DOI: 10.1091/mbc.e17-11-0653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
During asymmetric cell division, the molecular motor dynein generates cortical pulling forces that position the spindle to reflect polarity and adequately distribute cell fate determinants. In Caenorhabditis elegans embryos, despite a measured anteroposterior force imbalance, antibody staining failed to reveal dynein enrichment at the posterior cortex, suggesting a transient localization there. Dynein accumulates at the microtubule plus ends, in an EBP-2EB-dependent manner. This accumulation, although not transporting dynein, contributes modestly to cortical forces. Most dyneins may instead diffuse to the cortex. Tracking of cortical dynein revealed two motions: one directed and the other diffusive-like, corresponding to force-generating events. Surprisingly, while dynein is not polarized at the plus ends or in the cytoplasm, diffusive-like tracks were more frequently found at the embryo posterior tip, where the forces are higher. This asymmetry depends on GPR-1/2LGN and LIN-5NuMA, which are enriched there. In csnk-1(RNAi) embryos, the inverse distribution of these proteins coincides with an increased frequency of diffusive-like tracks anteriorly. Importantly, dynein cortical residence time is always symmetric. We propose that the dynein-binding rate at the posterior cortex is increased, causing the polarity-reflecting force imbalance. This mechanism of control supplements the regulation of mitotic progression through the nonpolarized dynein detachment rate.
Collapse
Affiliation(s)
- Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Julien Roul
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Marc Tramier
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| |
Collapse
|
118
|
Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 2018; 29:324-331. [PMID: 30120715 DOI: 10.1007/s12022-018-9543-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan's population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
119
|
Noell CR, Loftus KM, Cui H, Grewer C, Kizer M, Debler EW, Solmaz SR. A Quantitative Model for BicD2/Cargo Interactions. Biochemistry 2018; 57:6538-6550. [PMID: 30345745 DOI: 10.1021/acs.biochem.8b00987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein adaptor proteins such as Bicaudal D2 (BicD2) are integral components of the dynein transport machinery, as they recognize cargoes for cell cycle-specific transport and link them to the motor complex. Human BicD2 switches from selecting secretory and Golgi-derived vesicles for transport in G1 and S phase (by recognizing Rab6GTP), to selecting the nucleus for transport in G2 phase (by recognizing nuclear pore protein Nup358), but the molecular mechanisms governing this switch are elusive. Here, we have developed a quantitative model for BicD2/cargo interactions that integrates affinities, oligomeric states, and cellular concentrations of the reactants. BicD2 and cargo form predominantly 2:2 complexes. Furthermore, the affinity of BicD2 toward its cargo Nup358 is higher than that toward Rab6GTP. Based on our calculations, an estimated 1000 BicD2 molecules per cell would be recruited to the nucleus through Nup358 in the absence of regulation. Notably, RanGTP is a negative regulator of the Nup358/BicD2 interaction that weakens the affinity by a factor of 10 and may play a role in averting dynein recruitment to the nucleus outside of the G2 phase. However, our quantitative model predicts that an additional negative regulator remains to be identified. In the absence of negative regulation, the affinity of Nup358 would likely be sufficient to recruit BicD2 to the nucleus in G2 phase. Our quantitative model makes testable predictions of how cellular transport events are orchestrated. These transport processes are important for brain development, cell cycle control, signaling, and neurotransmission at synapses.
Collapse
Affiliation(s)
- Crystal R Noell
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Kyle M Loftus
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Heying Cui
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Christof Grewer
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Megan Kizer
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Erik W Debler
- Department of Biochemistry & Molecular Biology , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Sozanne R Solmaz
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| |
Collapse
|
120
|
HIV-1 Engages a Dynein-Dynactin-BICD2 Complex for Infection and Transport to the Nucleus. J Virol 2018; 92:JVI.00358-18. [PMID: 30068656 DOI: 10.1128/jvi.00358-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection depends on efficient intracytoplasmic transport of the incoming viral core to the target cell nucleus. Evidence suggests that this movement is facilitated by the microtubule motor dynein, a large multiprotein complex that interacts with dynactin and cargo-specific adaptor proteins for retrograde movement via microtubules. Dynein adaptor proteins are necessary for activating dynein movement and for linking specific cargoes to dynein. We hypothesized that HIV-1 engages the dynein motor complex via an adaptor for intracellular transport. Here, we show that small interfering RNA depletion of the dynein heavy chain, components of the dynactin complex, and the dynein adaptor BICD2 reduced cell permissiveness to HIV-1 infection. Cell depletion of dynein heavy chain and BICD2 resulted in impaired HIV-1 DNA accumulation in the nucleus and decreased retrograde movement of the virus. Biochemical studies revealed that dynein components and BICD2 associate with capsid-like assemblies of the HIV-1 CA protein in cell extracts and that purified recombinant BICD2 binds to CA assemblies in vitro Association of dynein with CA assemblies was reduced upon immunodepletion of BICD2 from cell extracts. We conclude that BICD2 is a capsid-associated dynein adaptor utilized by HIV-1 for transport to the nucleus.IMPORTANCE During HIV-1 infection, the virus must travel across the cytoplasm to enter the nucleus. The host cell motor protein complex dynein has been implicated in HIV-1 intracellular transport. We show that expression of the dynein heavy chain, components of the dynein-associated dynactin complex, and the dynein adaptor BICD2 in target cells are important for HIV-1 infection and nuclear entry. BICD2 interacts with the HIV-1 capsid in vitro, suggesting that it functions as a capsid-specific adaptor for HIV-1 intracellular transport. Our work identifies specific host proteins involved in microtubule-dependent HIV-1 intracellular transport and highlights the BICD2-capsid interaction as a potential target for antiviral therapy.
Collapse
|
121
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
122
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
123
|
Qiu R, Zhang J, Xiang X. p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation. J Biol Chem 2018; 293:15606-15619. [PMID: 30143531 DOI: 10.1074/jbc.ra118.004000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
Cytoplasmic dynein binds its cargoes via the dynactin complex and cargo adapters, and the dynactin pointed-end protein p25 is required for dynein-dynactin binding to the early endosomal dynein adapter HookA (Hook in the fungus Aspergillus nidulans). However, it is unclear whether the HookA-dynein-dynactin interaction requires p27, another pointed-end protein forming heterodimers with p25 within vertebrate dynactin. Here, live-cell imaging and biochemical pulldown experiments revealed that although p27 is a component of the dynactin complex in A. nidulans, it is dispensable for dynein-dynactin to interact with ΔC-HookA (cytosolic HookA lacking its early endosome-binding C terminus) and is not critical for dynein-mediated early endosome transport. Using mutagenesis, imaging, and biochemical approaches, we found that several p25 regions are required for the ΔC-HookA-dynein-dynactin interaction, with the N terminus and loop1 being the most critical regions. Interestingly, p25 was also important for the microtubule (MT) plus-end accumulation of dynactin. This p25 function in dynactin localization also involved p25's N terminus and the loop1 critical for the ΔC-HookA-dynein-dynactin interaction. Given that dynactin's MT plus-end localization does not require HookA and that the kinesin-1-dependent plus-end accumulation of dynactin is unnecessary for the ΔC-HookA-dynein-dynactin interaction, our results indicate that p25 plays a dual role in cargo binding and dynactin regulation. As cargo adapters are implicated in dynein activation via binding to dynactin's pointed end to switch the conformation of p150, a major dynactin component, our results suggest p25 as a critical pointed-end protein involved in this process.
Collapse
Affiliation(s)
- Rongde Qiu
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| | - Jun Zhang
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| | - Xin Xiang
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| |
Collapse
|
124
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
125
|
McClintock MA, Dix CI, Johnson CM, McLaughlin SH, Maizels RJ, Hoang HT, Bullock SL. RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs. eLife 2018; 7:36312. [PMID: 29944118 PMCID: PMC6056234 DOI: 10.7554/elife.36312] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport. In our cells, tiny molecular motors transport the components necessary for life’s biological processes from one location to another. They do so by loading their cargo, and burning up chemical fuel to carry it along pathways made of filaments. For example, one such motor, called dynein, can move molecules of messenger RNA (mRNA) to specific locations within the cell. There, the mRNA will be used as a template to create proteins, which will operate at exactly the right place. Transporting mRNA in this way is critical in processes such as embryonic development and the formation of memories; yet, this mechanism is still poorly understood. Previous work suggested that the mRNA is simply a passenger of the dynein motor, but McClintock et al. asked if this is really the case. Instead, could mRNA regulate its own sorting by controlling the activity of dynein? Studying mRNA trafficking within the complex molecular environment of a cell is challenging, so mRNA transporting machinery was recreated in the laboratory. Only the proteins necessary to build a working system were included in the experiments. In addition to the filaments, the components included dynein and a complex of proteins known as dynactin, which allows the motor to move together with a protein called BICD2. A protein named Egalitarian was used to link the mRNA to BICD2. By filming fluorescently labelled proteins and mRNAs, McClintock et al. discovered that mRNA strongly promotes the movement of the dynein motor. A structured section in the mRNA acts as a docking area for two copies of Egalitarian. This activates BICD2, which then binds to dynein and dynactin, thereby completing the transport machinery. According to these results, the mRNA directs the assembly of the system that will carry it within the cell. Viruses such as HIV and herpesvirus hijack dynein motors to have their genetic information moved around a cell in order to propagate infection. Understanding precisely how mRNA is transported may help to develop new strategies to fight these viruses.
Collapse
Affiliation(s)
- Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Carly I Dix
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Christopher M Johnson
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stephen H McLaughlin
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Rory J Maizels
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ha Thi Hoang
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
126
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
127
|
Lee IG, Olenick MA, Boczkowska M, Franzini-Armstrong C, Holzbaur ELF, Dominguez R. A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity. Nat Commun 2018. [PMID: 29515126 PMCID: PMC5841405 DOI: 10.1038/s41467-018-03412-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytoplasmic dynein is the major minus-end-directed microtubule-based motor in cells. Dynein processivity and cargo selectivity depend on cargo-specific effectors that, while generally unrelated, share the ability to interact with dynein and dynactin to form processive dynein-dynactin-effector complexes. How this is achieved is poorly understood. Here, we identify a conserved region of the dynein Light Intermediate Chain 1 (LIC1) that mediates interactions with unrelated dynein-dynactin effectors. Quantitative binding studies map these interactions to a conserved helix within LIC1 and to N-terminal fragments of Hook1, Hook3, BICD2, and Spindly. A structure of the LIC1 helix bound to the N-terminal Hook domain reveals a conformational change that creates a hydrophobic cleft for binding of the LIC1 helix. The LIC1 helix competitively inhibits processive dynein-dynactin-effector motility in vitro, whereas structure-inspired mutations in this helix impair lysosomal positioning in cells. The results reveal a conserved mechanism of effector interaction with dynein-dynactin necessary for processive motility.
Collapse
Affiliation(s)
- In-Gyun Lee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara A Olenick
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
128
|
Fritzler MJ, Hudson M, Choi MY, Mahler M, Wang M, Bentow C, Milo J, Baron M. Bicaudal D2 is a novel autoantibody target in systemic sclerosis that shares a key epitope with CENP-A but has a distinct clinical phenotype. Autoimmun Rev 2018; 17:267-275. [PMID: 29369808 DOI: 10.1016/j.autrev.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Abstract
We studied the clinical correlations and epitopes of autoantibodies directed to a novel autoantigen, Bicaudal D (BICD2), in systemic sclerosis (SSc) and reviewed its relationship to centromere protein A (CENP-A). 451 SSc sera were tested for anti-BICD2 using a paramagnetic bead immunoassay and then univariate and multivariate logistic regression was used to study the association between anti-BICD2 and demographic and clinical parameters as well as other SSc-related autoantibodies. Epitope mapping was performed on solid phase matrices. 25.7% (116/451) SSc sera were anti-BICD2 positive, of which 19.0% had single specificity anti-BICD2 and 81.0% had other autoantibodies, notably anti-CENP (83/94; 88.3%). Compared to anti-BICD2 negative subjects (335/451), single specificity anti-BICD2 subjects were more likely to have an inflammatory myopathy (IM; 31.8% vs. 9.6%, p=.004) and interstitial lung disease (ILD; 52.4% vs. 29.0%, p=.024). Epitope mapping revealed a serine- and proline-rich nonapeptide SPSPGSSLP comprising amino acids 606-614 of BICD2, shared with CENP-A but not CENP-B. We observed that autoantibodies to BICD2 represent a new biomarker as they were detected in patients without other SSc-specific autoantibodies and were the second most common autoantibody identified in this SSc cohort. Our data indicate that the major cross-reactive epitope is associated with anti-CENP-A but, unlike anti-CENP, single specificity anti-BICD2 antibodies associate with ILD and IM.
Collapse
Affiliation(s)
- Marvin J Fritzler
- Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N4N1, Canada.
| | - Marie Hudson
- Department of Medicine, McGill University, Montréal, Quebec, Canada; Division of Rheumatology, Jewish General Hospital, Montréal, Quebec, Canada; Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada.
| | - May Y Choi
- Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N4N1, Canada.
| | - Michael Mahler
- Inova Diagnostics, Division of Research, San Diego, CA, USA.
| | - Mianbo Wang
- Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada.
| | - Chelsea Bentow
- Inova Diagnostics, Division of Research, San Diego, CA, USA.
| | - Jay Milo
- Inova Diagnostics, Division of Research, San Diego, CA, USA.
| | - Murray Baron
- Department of Medicine, McGill University, Montréal, Quebec, Canada; Division of Rheumatology, Jewish General Hospital, Montréal, Quebec, Canada.
| | | |
Collapse
|
129
|
She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat Commun 2017; 8:2151. [PMID: 29247176 PMCID: PMC5732302 DOI: 10.1038/s41467-017-02004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility. Dynein is a microtubule motor the motility of which is affected by the microtubule-associated protein She1. Here, the authors show that She1 alters dynein stepping behavior and increases its microtubule affinity through simultaneous interactions with the microtubule and dynein microtubule binding domain.
Collapse
|
130
|
Jha R, Roostalu J, Cade NI, Trokter M, Surrey T. Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility. EMBO J 2017; 36:3387-3404. [PMID: 29038173 PMCID: PMC5686545 DOI: 10.15252/embj.201797077] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus-ends in an EB-dependent manner or moving processively towards minus ends in an adaptor protein-dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal-D2 (BicD2) or the multifunctional regulator Lissencephaly-1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus-end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.
Collapse
Affiliation(s)
- Rupam Jha
- The Francis Crick Institute, London, UK
| | | | | | | | | |
Collapse
|
131
|
Kaczmarek B, Verbavatz JM, Jackson CL. GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol Cell 2017; 109:391-399. [PMID: 28985001 DOI: 10.1111/boc.201700042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| |
Collapse
|
132
|
Mukherjee R, Majumder P, Chakrabarti O. MGRN1-mediated ubiquitination of α-tubulin regulates microtubule dynamics and intracellular transport. Traffic 2017; 18:791-807. [PMID: 28902452 DOI: 10.1111/tra.12527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022]
Abstract
MGRN1-mediated ubiquitination of α-tubulin regulates microtubule stability and mitotic spindle positioning in mitotic cells. This study elucidates the effect of MGRN1-mediated ubiquitination of α-tubulin in interphase cells. Here, we show that MGRN1-mediated ubiquitination regulates dynamics of EB1-labeled plus ends of microtubules. Intracellular transport of mitochondria and endosomes are affected in cultured cells where functional MGRN1 is depleted. Defects in microtubule-dependent organellar transport are evident in cells where noncanonical K6-mediated ubiquitination of α-tubulin by MGRN1 is compromised. Loss of MGRN1 has been previously correlated with late-onset spongiform neurodegeneration. Mislocalised cytosolically exposed PrP (Ctm PrP) interacts with MGRN1 leading to its loss of function. Expression of Ctm PrP generating mutants of PrP[PrP(A117V) and PrP(KHII)] lead to decrease in MGRN1-mediated ubiquitination of α-tubulin and intracellular transport defects. Brain lysates from PrP(A117V) transgenic mice also indicate loss of tubulin polymerization as compared to non-transgenic controls. Depletion of MGRN1 activity may hamper physiologically important processes like mitochondrial movement in neuronal processes and intracellular transport of ligands through the endosomal pathway thereby contributing to the pathogenesis of neurodegeneration in certain types of prion diseases.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Priyanka Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
133
|
DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE. Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein. Cell 2017; 170:1197-1208.e12. [PMID: 28886386 DOI: 10.1016/j.cell.2017.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.
Collapse
Affiliation(s)
- Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biophysics Graduate Program, Harvard University, Boston, MA 92105, USA
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Cellular and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
134
|
Huynh W, Vale RD. Disease-associated mutations in human BICD2 hyperactivate motility of dynein-dynactin. J Cell Biol 2017; 216:3051-3060. [PMID: 28883039 PMCID: PMC5626548 DOI: 10.1083/jcb.201703201] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
Bicaudal D2 (BICD2) is an adaptor protein that recruits and activates dynein–dynactin onto Rab6 membrane vesicles. Huynh and Vale reconstitute Rab6 regulation of BICD2-mediated dynein transport in vitro and show that disease-associated mutations in BICD2 cause an increase in retrograde transport. Bicaudal D2 (BICD2) joins dynein with dynactin into a ternary complex (termed DDB) capable of processive movement. Point mutations in the BICD2 gene have been identified in patients with a dominant form of spinal muscular atrophy, but how these mutations cause disease is unknown. To investigate this question, we have developed in vitro motility assays with purified DDB and BICD2’s membrane vesicle partner, the GTPase Rab6a. Rab6a–GTP, either in solution or bound to artificial liposomes, released BICD2 from an autoinhibited state and promoted robust dynein–dynactin transport. In these assays, BICD2 mutants showed an enhanced ability to form motile DDB complexes. Increased retrograde transport by BICD2 mutants also was observed in cells using an inducible organelle transport assay. When overexpressed in rat hippocampal neurons, the hyperactive BICD2 mutants decreased neurite growth. Our results reveal that dominant mutations in BICD2 hyperactivate DDB motility and suggest that an imbalance of minus versus plus end–directed microtubule motility in neurons may underlie spinal muscular atrophy.
Collapse
Affiliation(s)
- Walter Huynh
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
135
|
Schmidt R, Fielmich LE, Grigoriev I, Katrukha EA, Akhmanova A, van den Heuvel S. Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos. J Cell Biol 2017; 216:2777-2793. [PMID: 28739679 PMCID: PMC5584144 DOI: 10.1083/jcb.201607038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
The position of the mitotic spindle is tightly controlled in animal cells as it determines the plane and orientation of cell division. Contacts between cytoplasmic dynein and astral microtubules (MTs) at the cell cortex generate pulling forces that position the spindle. An evolutionarily conserved Gα-GPR-1/2Pins/LGN-LIN-5Mud/NuMA cortical complex interacts with dynein and is required for pulling force generation, but the dynamics of this process remain unclear. In this study, by fluorescently labeling endogenous proteins in Caenorhabditis elegans embryos, we show that dynein exists in two distinct cortical populations. One population directly depends on LIN-5, whereas the other is concentrated at MT plus ends and depends on end-binding (EB) proteins. Knockout mutants lacking all EBs are viable and fertile and display normal pulling forces and spindle positioning. However, EB protein-dependent dynein plus end tracking was found to contribute to force generation in embryos with a partially perturbed dynein function, indicating the existence of two mechanisms that together create a highly robust force-generating system.
Collapse
Affiliation(s)
- Ruben Schmidt
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Lars-Eric Fielmich
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
136
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
137
|
Loftus KM, Cui H, Coutavas E, King DS, Ceravolo A, Pereiras D, Solmaz SR. Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F. Cell Cycle 2017; 16:1414-1429. [PMID: 28723232 DOI: 10.1080/15384101.2017.1338218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.
Collapse
Affiliation(s)
- Kyle M Loftus
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Heying Cui
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Elias Coutavas
- b Laboratory of Cell Biology , The Rockefeller University , New York , NY , USA
| | - David S King
- c Howard Hughes Medical Institute, Mass Spectrometry Laboratory , University of California at Berkeley , Berkeley , CA , USA
| | - Amanda Ceravolo
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Dylan Pereiras
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| | - Sozanne R Solmaz
- a Department of Chemistry , State University of New York at Binghamton , New York , NY , USA
| |
Collapse
|
138
|
Ayloo S, Guedes-Dias P, Ghiretti AE, Holzbaur ELF. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. Mol Biol Cell 2017; 28:2543-2554. [PMID: 28720664 PMCID: PMC5597326 DOI: 10.1091/mbc.e17-01-0068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Optogenetic recruitment of dynein and kinesin motors to peroxisomes within hippocampal neurons demonstrates that dynein can more efficiently navigate the bipolar dendritic cytoskeleton. Dynein-driven transport is enhanced by dynamic microtubules in both axons and dendrites and efficiently translocates endogenous cargo from dendrites to soma. The efficient transport of cargoes within axons and dendrites is critical for neuronal function. Although we have a basic understanding of axonal transport, much less is known about transport in dendrites. We used an optogenetic approach to recruit motor proteins to cargo in real time within axons or dendrites in hippocampal neurons. Kinesin-1, a robust axonal motor, moves cargo less efficiently in dendrites. In contrast, cytoplasmic dynein efficiently navigates both axons and dendrites; in both compartments, dynamic microtubule plus ends enhance dynein-dependent transport. To test the predictions of the optogenetic assay, we examined the contribution of dynein to the motility of an endogenous dendritic cargo and found that dynein inhibition eliminates the retrograde bias of BDNF/TrkB trafficking. However, inhibition of microtubule dynamics has no effect on BDNF/TrkB motility, suggesting that dendritic kinesin motors may cooperate with dynein to drive the transport of signaling endosomes into the soma. Collectively our data highlight compartment-specific differences in kinesin activity that likely reflect specialized tuning for localized cytoskeletal determinants, whereas dynein activity is less compartment specific but is more responsive to changes in microtubule dynamics.
Collapse
Affiliation(s)
- Swathi Ayloo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104.,Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Pedro Guedes-Dias
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy E Ghiretti
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
139
|
Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport. PLoS Genet 2017; 13:e1006941. [PMID: 28759579 PMCID: PMC5552355 DOI: 10.1371/journal.pgen.1006941] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Analysis of p150 mutants engineered by genome editing suggests that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating robust cortical pulling forces. Instead, mutations in p150's CAP-Gly domain inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of α-tubulin's C-terminal tyrosine, and both p150 CAP-Gly and tubulin tyrosine mutants decrease the frequency of early endosome transport from the cell periphery towards centrosomes during centration. Our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing one-cell embryo, and that this function of p150 is critical for generating cytoplasmic pulling forces for centrosome centration.
Collapse
Affiliation(s)
- Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Joana Duro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Bram Prevo
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Dhanya K. Cheerambathur
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
140
|
Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. Eur J Hum Genet 2017. [PMID: 28635954 DOI: 10.1038/ejhg.2017.98] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heterozygous variants in BICD cargo adapter 2 (BICD2) cause autosomal dominant spinal muscular atrophy, lower extremity-predominant 2 (SMALED2). The disease is usually characterized by a benign or slowly progressive, congenital or early onset muscle weakness and atrophy that mainly affects the lower extremities, although some affected individuals show involvement of the arms and the shoulder girdle. Here we report unusual extremes of BICD2-related diseases: A severe form of congenital muscular atrophy with arthrogryposis multiplex, respiratory insufficiency and lethality within four months. This was caused by three BICD2 variants, (c.581A>G, p.(Gln194Arg)), (c.1626C>G, p.(Cys542Trp)) and (c.2080C>T, p.(Arg694Cys)), two of which were proven to be de novo. Affected individuals showed reduced fetal movement, weak muscle tone and sparse or no spontaneous activity after birth. Despite assisted ventilation, the condition led to early death. At the other extreme, we identified an asymptomatic woman with a known BICD2 variant (c.2108C>T, p.(Thr703Met)). Radiological examination showed fatty degeneration of selected thigh and calf muscles without clinical consequences. Instead, her son carrying the same variant is affected by a mild childhood onset disease with myopathic and neurogenic features. Mechanisms leading to variable expressivity and onset of BICD2-related disease may include alterations in molecular interactions of BICD2 and suggest the presence of genetic modifiers that may act in a protective fashion to ameliorate or abrogate disease. Our data define an additional severe disease type caused by BICD2 and emphasize a possibly variable etiology of BICD2-opathies with regard to primary muscle and neuronal involvement.
Collapse
|
141
|
Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell 2017; 169:1303-1314.e18. [PMID: 28602352 PMCID: PMC5473941 DOI: 10.1016/j.cell.2017.05.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi-particle. We reveal the 3D structure of the cargo binding dynein tail and show how self-dimerization of the motor domains locks them in a conformation with low microtubule affinity. Disrupting motor dimerization with structure-based mutagenesis drives dynein-1 into an open form with higher affinity for both microtubules and dynactin. We find the open form is also inhibited for movement and that dynactin relieves this by reorienting the motor domains to interact correctly with microtubules. Our model explains how dynactin binding to the dynein-1 tail directly stimulates its motor activity.
Collapse
Affiliation(s)
- Kai Zhang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Foster
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Samuel E Lacey
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Nadia Bahi-Buisson
- Department of Pediatric Neurology, Université Paris Descartes, Imaging Institute, INSERM U781, Paris, France
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | |
Collapse
|
142
|
DT-13 synergistically enhanced vinorelbine-mediated mitotic arrest through inhibition of FOXM1-BICD2 axis in non-small-cell lung cancer cells. Cell Death Dis 2017; 8:e2810. [PMID: 28542137 PMCID: PMC5520732 DOI: 10.1038/cddis.2017.218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is the most commonly diagnosed malignant disease with the leading cause of cancer-related death. Combination treatment remains the major strategy in the clinical therapy of NSCLC. Vinorelbine (NVB), a semi-synthetic vinca alkaloid, is used for advanced and metastatic NSCLC by destabilizing microtubule formation to induce mitotic arrest and cell death. However, the side effect of NVB heavily affected its effectiveness in clinical therapy. Hence, it is of great significance to develop new agents to synergize with NVB and decrease the adverse effect. In our study, we found that the saponin monomer 13 of the dwarf lilyturf tuber, DT-13, exhibiting anti-angiogenesis and anti-metastasis effect, synergized with NVB to inhibit cell proliferation in NSCLC cells. The synergistic interaction of DT-13 and NVB was confirmed by combination Index values. Also, DT-13 and NVB act in concert to inhibit the long-term colony formation. Furthermore, DT-13/NVB co-treatment cooperated to induce mitotic arrest and subsequent apoptosis. Mechanistically, we found that nuclear expression of transcription factors forkhead box M1 (FOXM1) and levels of motor adaptor bicaudal D2 (BICD2) were dramatically reduced by combination treatment. Importantly, oncogene FOXM1 was identified as the crucial regulator of BICD2, which played critical roles in NVB-induced mitotic spindle defects. Moreover, overexpression of FOXM1 and BICD2 significantly reversed mitotic arrest induced by DT-13/NVB co-treatment, and siRNAs against both genes greatly increased the combinational effects. In addition, in vivo study revealed that DT-13 combined with NVB significantly suppressed tumor growth in nude mice xenograft model, and downregulated the expression of FOXM1 and BICD2 in tumor tissues, which was consistent with in vitro study. In conclusion, DT-13 might provide a novel strategy for the chemosensitization of NVB in NSCLC therapy.
Collapse
|
143
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
144
|
Baumbach J, Murthy A, McClintock MA, Dix CI, Zalyte R, Hoang HT, Bullock SL. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 2017; 6. [PMID: 28406398 PMCID: PMC5413349 DOI: 10.7554/elife.21768] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo. DOI:http://dx.doi.org/10.7554/eLife.21768.001
Collapse
Affiliation(s)
- Janina Baumbach
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andal Murthy
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Carly I Dix
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ruta Zalyte
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ha Thi Hoang
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
145
|
Gama JB, Pereira C, Simões PA, Celestino R, Reis RM, Barbosa DJ, Pires HR, Carvalho C, Amorim J, Carvalho AX, Cheerambathur DK, Gassmann R. Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly. J Cell Biol 2017; 216:943-960. [PMID: 28320824 PMCID: PMC5379953 DOI: 10.1083/jcb.201610108] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/02/2023] Open
Abstract
The dynein motor is recruited to the kinetochore to capture spindle microtubules and control the spindle assembly checkpoint. Gama et al. reveal the molecular mechanism of how the Rod–Zw10–Zwilch complex and Spindly mediate dynein recruitment in Caenorhabditis elegans and human cells. The molecular motor dynein concentrates at the kinetochore region of mitotic chromosomes in animals to accelerate spindle microtubule capture and to control spindle checkpoint signaling. In this study, we describe the molecular mechanism used by the Rod–Zw10–Zwilch complex and the adaptor Spindly to recruit dynein to kinetochores in Caenorhabditis elegans embryos and human cells. We show that Rod’s N-terminal β-propeller and the associated Zwilch subunit bind Spindly’s C-terminal domain, and we identify a specific Zwilch mutant that abrogates Spindly and dynein recruitment in vivo and Spindly binding to a Rod β-propeller–Zwilch complex in vitro. Spindly’s N-terminal coiled-coil uses distinct motifs to bind dynein light intermediate chain and the pointed-end complex of dynactin. Mutations in these motifs inhibit assembly of a dynein–dynactin–Spindly complex, and a null mutant of the dynactin pointed-end subunit p27 prevents kinetochore recruitment of dynein–dynactin without affecting other mitotic functions of the motor. Conservation of Spindly-like motifs in adaptors involved in intracellular transport suggests a common mechanism for linking dynein to cargo.
Collapse
Affiliation(s)
- José B Gama
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cláudia Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita M Reis
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniel J Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helena R Pires
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - João Amorim
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
146
|
DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc Natl Acad Sci U S A 2017; 114:E1597-E1606. [PMID: 28196890 DOI: 10.1073/pnas.1620141114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.
Collapse
|
147
|
Zheng W. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling. Biochemistry 2016; 56:313-323. [PMID: 27976861 DOI: 10.1021/acs.biochem.6b01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo , Buffalo, New York 14260, United States
| |
Collapse
|
148
|
Sharif SR, Islam A, Moon IS. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division. Mol Cells 2016; 39:669-79. [PMID: 27646688 PMCID: PMC5050531 DOI: 10.14348/molcells.2016.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| |
Collapse
|
149
|
Belyy V, Schlager MA, Foster H, Reimer AE, Carter AP, Yildiz A. The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat Cell Biol 2016; 18:1018-24. [PMID: 27454819 PMCID: PMC5007201 DOI: 10.1038/ncb3393] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Kinesin and dynein motors transport intracellular cargos bidirectionally by pulling them in opposite directions along microtubules, through a process frequently described as a 'tug of war'. While kinesin produces 6 pN of force, mammalian dynein was found to be a surprisingly weak motor (0.5-1.5 pN) in vitro, suggesting that many dyneins are required to counteract the pull of a single kinesin. Mammalian dynein's association with dynactin and Bicaudal-D2 (BICD2) activates its processive motility, but it was unknown how this affects dynein's force output. Here, we show that formation of the dynein-dynactin-BICD2 (DDB) complex increases human dynein's force production to 4.3 pN. An in vitro tug-of-war assay revealed that a single DDB successfully resists a single kinesin. Contrary to previous reports, the clustering of many dyneins is not required to win the tug of war. Our work reveals the key role of dynactin and a cargo adaptor protein in shifting the balance of forces between dynein and kinesin motors during intracellular transport.
Collapse
Affiliation(s)
- Vladislav Belyy
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Max A Schlager
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen Foster
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Armando E Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Cellular and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
150
|
Load-induced enhancement of Dynein force production by LIS1-NudE in vivo and in vitro. Nat Commun 2016; 7:12259. [PMID: 27489054 PMCID: PMC4976208 DOI: 10.1038/ncomms12259] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Most sub-cellular cargos are transported along microtubules by kinesin and dynein molecular motors, but how transport is regulated is not well understood. It is unknown whether local control is possible, for example, by changes in specific cargo-associated motor behaviour to react to impediments. Here we discover that microtubule-associated lipid droplets (LDs) in COS1 cells respond to an optical trap with a remarkable enhancement in sustained force production. This effect is observed only for microtubule minus-end-moving LDs. It is specifically blocked by RNAi for the cytoplasmic dynein regulators LIS1 and NudE/L (Nde1/Ndel1), but not for the dynactin p150Glued subunit. It can be completely replicated using cell-free preparations of purified LDs, where duration of LD force production is more than doubled. These results identify a novel, intrinsic, cargo-associated mechanism for dynein-mediated force adaptation, which should markedly improve the ability of motor-driven cargoes to overcome subcellular obstacles. Transport of large cargo through the cytoplasm can encounter physical impediments which should be overcome. Here the authors show that lipid droplets constrained by an optical trap respond with an increase in dynein-mediated force that is dependent on dynein regulators LIS1 and NudE/L, but not on p150glued.
Collapse
|