101
|
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:449-461. [PMID: 37259835 PMCID: PMC10233625 DOI: 10.1107/s2059798323003595] [Citation(s) in RCA: 373] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Charles B. Ballard
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rafael J. Borges
- The Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - David G. Brown
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - John M. Berrisford
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Lucrezia Catapano
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Atlanta G. Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Altos Labs, Portway Building, Granta Park, Great Abington, Cambridge CB21 6GP, United Kingdom
| | - Judit É. Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tarik R. Drevon
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Phil R. Evans
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Maria Fando
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Luis Fuentes-Montero
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kaushik Hatti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Robbie P. Joosten
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nicholas Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Eugene B. Krissinel
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
| | - Oleg Kovalevskiy
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrey A. Lebedev
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Andrew G. W. Leslie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin Malý
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James W. Murray
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin E. M. Noble
- Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Robert Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Navraj S. Pannu
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Nicholas Pearce
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Joana Pereira
- Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harold R. Powell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - William Rochira
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Discovery Centre, Biologics Engineering, AstraZeneca, Biomedical Campus, 1 Francis Crick Avenue, Trumpington, Cambridge CB2 0AA, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathryn L. Shelley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Felix Simkovic
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J. Simpkin
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - Pavol Skubak
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Italy
| | - Kyle Stevenson
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jens M. H. Thomas
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrea Thorn
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Alexei Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited (United Kingdom), Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
102
|
Liu J, Guo Z, Wu T, Roy RS, Quadir F, Chen C, Cheng J. Enhancing AlphaFold-Multimer-based Protein Complex Structure Prediction with MULTICOM in CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541055. [PMID: 37293073 PMCID: PMC10245707 DOI: 10.1101/2023.05.16.541055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
AlphaFold-Multimer has emerged as the state-of-the-art tool for predicting the quaternary structure of protein complexes (assemblies or multimers) since its release in 2021. To further enhance the AlphaFold-Multimer-based complex structure prediction, we developed a new quaternary structure prediction system (MULTICOM) to improve the input fed to AlphaFold-Multimer and evaluate and refine the outputs generated by AlphaFold2-Multimer. Specifically, MULTICOM samples diverse multiple sequence alignments (MSAs) and templates for AlphaFold-Multimer to generate structural models by using both traditional sequence alignments and new Foldseek-based structure alignments, ranks structural models through multiple complementary metrics, and refines the structural models via a Foldseek structure alignment-based refinement method. The MULTICOM system with different implementations was blindly tested in the assembly structure prediction in the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) in 2022 as both server and human predictors. Our server (MULTICOM_qa) ranked 3rd among 26 CASP15 server predictors and our human predictor (MULTICOM_human) ranked 7th among 87 CASP15 server and human predictors. The average TM-score of the first models predicted by MULTICOM_qa for CASP15 assembly targets is ~0.76, 5.3% higher than ~0.72 of the standard AlphaFold-Multimer. The average TM-score of the best of top 5 models predicted by MULTICOM_qa is ~0.80, about 8% higher than ~0.74 of the standard AlphaFold-Multimer. Moreover, the novel Foldseek Structure Alignment-based Model Generation (FSAMG) method based on AlphaFold-Multimer outperforms the widely used sequence alignment-based model generation. The source code of MULTICOM is available at: https://github.com/BioinfoMachineLearning/MULTICOM3.
Collapse
Affiliation(s)
- Jian Liu
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Zhiye Guo
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Tianqi Wu
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Raj S. Roy
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
103
|
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci 2023; 24:ijms24097835. [PMID: 37175539 PMCID: PMC10178863 DOI: 10.3390/ijms24097835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
104
|
Nakagawa R, Hirano H, Omura SN, Nety S, Kannan S, Altae-Tran H, Yao X, Sakaguchi Y, Ohira T, Wu WY, Nakayama H, Shuto Y, Tanaka T, Sano FK, Kusakizako T, Kise Y, Itoh Y, Dohmae N, van der Oost J, Suzuki T, Zhang F, Nureki O. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature 2023; 616:390-397. [PMID: 37020030 PMCID: PMC10097598 DOI: 10.1038/s41586-023-05933-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.
Collapse
Affiliation(s)
- Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi N Omura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suchita Nety
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Soumya Kannan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Han Altae-Tran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Xiao Yao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Wen Y Wu
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Curreio, The University of Tokyo, Tokyo, Japan
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Curreio, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
105
|
Rajapaksa S, Konagurthu AS, Lesk AM. Sequence and structure alignments in post-AlphaFold era. Curr Opin Struct Biol 2023; 79:102539. [PMID: 36753924 DOI: 10.1016/j.sbi.2023.102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023]
Abstract
Sequence alignment is fundamental for analyzing protein structure and function. For all but closely-related proteins, alignments based on structures are more accurate than alignments based purely on amino-acid sequences. However, the disparity between the large amount of sequence data and the relative paucity of experimentally-determined structures has precluded the general applicability of structure alignment. Based on the success of AlphaFold (and its likes) in producing high-quality structure predictions, we suggest that when aligning homologous proteins, lacking experimental structures, better results can be obtained by a structural alignment of predicted structures than by an alignment based only on amino-acid sequences. We present a quantitative evaluation, based on pairwise alignments of sequences and structures (both predicted and experimental) to support this hypothesis.
Collapse
Affiliation(s)
- Sandun Rajapaksa
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, 3800, Victoria, Australia
| | - Arun S Konagurthu
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, 3800, Victoria, Australia
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA.
| |
Collapse
|
106
|
Chu Y, Meng Q, Yu J, Zhang J, Chen J, Kang Y. Strain-Level Dynamics Reveal Regulatory Roles in Atopic Eczema by Gut Bacterial Phages. Microbiol Spectr 2023; 11:e0455122. [PMID: 36951555 PMCID: PMC10101075 DOI: 10.1128/spectrum.04551-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
The vast population of bacterial phages or viruses (virome) plays pivotal roles in the ecology of human microbial flora and health conditions. Obstacles, including poor viral sequence inference, strain-sensitive virus-host relationship, and the high diversity among individuals, hinder the in-depth understanding of the human virome. We conducted longitudinal studies of the virome based on constructing a high-quality personal reference metagenome (PRM). By applying long-read sequencing for representative samples, we could build a PRM of high continuity that allows accurate annotation and abundance estimation of viruses and bacterial species in all samples of the same individual by aligning short sequencing reads to the PRM. We applied this approach to a series of fecal samples collected for 6 months from a 2-year-old boy who had experienced a 2-month flare-up of atopic eczema (dermatitis) in this period. We identified 31 viral strains in the patient's gut microbiota and deciphered their strain-level relationship to their bacterial hosts. Among them, a lytic crAssphage developed into a dozen substrains and coordinated downregulation in the catabolism of aromatic amino acids (AAAs) in their host bacteria which govern the production of immune-active AAA derivates. The metabolic alterations confirmed based on metabolomic assays cooccurred with symptom remission. Our PRM-based analysis provides an easy approach for deciphering the dynamics of the strain-level human gut virome in the context of entire microbiota. Close temporal correlations among virome alteration, microbial metabolism, and disease remission suggest a potential mechanism for how bacterial phages in microbiota are intimately related to human health. IMPORTANCE The vast populations of viruses or bacteriophages in human gut flora remain mysterious. However, poor annotation and abundance estimation remain obstacles to strain-level analysis and clarification of their roles in microbiome ecology and metabolism associated with human health and diseases. We demonstrate that a personal reference metagenome (PRM)-based approach provides strain-level resolution for analyzing the gut microbiota-associated virome. When applying such an approach to longitudinal samples collected from a 2-year-old boy who has experienced a 2-month flare-up of atopic eczema, we observed thriving substrains of a lytic crAssphage, showing temporal correlation with downregulated catabolism of aromatic amino acids, lower production of immune-active metabolites, and remission of the disease. The PRM-based approach is practical and powerful for strain-centric analysis of the human gut virome, and the underlying mechanism of how strain-level virome dynamics affect disease deserves further investigation.
Collapse
Affiliation(s)
- Yanan Chu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Qingren Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- Department of Pediatric, Peking University Third Hospital, Beijing, China
| | - Jing Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yu Kang
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
107
|
Wang J, Wang X, Li X, Kong L, Du Z, Li D, Gou L, Wu H, Cao W, Wang X, Lin S, Shi T, Deng Z, Wang Z, Liang J. C-N bond formation by a polyketide synthase. Nat Commun 2023; 14:1319. [PMID: 36899013 PMCID: PMC10006239 DOI: 10.1038/s41467-023-36989-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique "∞"-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C-C bond formation can be tweaked to mediate C-N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular Biology, Shanghai Jikaixing Biotech Inc., Shanghai, 200131, China
| | - Xixi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - LiangLiang Kong
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
108
|
Shmakov SA, Barth ZK, Makarova KS, Wolf YI, Brover V, Peters JE, Koonin EV. Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530964. [PMID: 37090614 PMCID: PMC10120712 DOI: 10.1101/2023.03.03.530964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
CRISPR- cas loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR- cas loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR- cas loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of cas genes, in particular cas8 , or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zachary K. Barth
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
109
|
Qin J, Ji B, Ma Y, Liu X, Wang T, Liu G, Li B, Wang G, Gao P. Diversity and potential function of pig gut DNA viruses. Heliyon 2023; 9:e14020. [PMID: 36915549 PMCID: PMC10006684 DOI: 10.1016/j.heliyon.2023.e14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Viruses are ubiquitous in the gut of animals and play an important role in the ecology of the gut microbiome. The potential effects of these substances on the growth and development of the body are not fully known. Little is known about the effects of breeding environment on pig gut virome. Here, there are 3584 viral operational taxonomic units (vOTUs) longer than 5 kb identified by virus-enriched metagenome sequencing from 25 pig fecal samples. Only a small minority of vOTUs (11.16%) can be classified at the family level, and ∼50% of the genes could be annotated, supporting the concept of pig gut as reservoirs of substantial undescribed viral genetic diversity. The composition of pig gut virome in the six regions may be related to geography. There are only 20 viral clusters (VCs) shared among pig gut virome in six regions of Shanxi Province. These viruses rarely carry antibiotic resistance genes (ARGs). At the same time, they possess abundant auxiliary metabolic genes (AMGs) potentially involved in carbon, sulfur metabolism and cofactor biosynthesis, etc. This study has revealed the unique characteristics and potential function of pig gut DNA virome and established a foundation for the recognition of the viral roles in gut environment.
Collapse
Affiliation(s)
- Junjun Qin
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bingzhen Ji
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xin Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tian Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
110
|
Sanderson T, Bileschi ML, Belanger D, Colwell LJ. ProteInfer, deep neural networks for protein functional inference. eLife 2023; 12:e80942. [PMID: 36847334 PMCID: PMC10063232 DOI: 10.7554/elife.80942] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions - Enzyme Commission (EC) numbers and Gene Ontology (GO) terms - directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user's personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.
Collapse
Affiliation(s)
| | | | | | - Lucy J Colwell
- Google AIBostonUnited States
- University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
111
|
Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, Xie Y, Li H, Zhu T, Lu X, Hess WR. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. Nat Commun 2023; 14:924. [PMID: 36801863 PMCID: PMC9938897 DOI: 10.1038/s41467-023-36542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.
Collapse
Affiliation(s)
- Marcus Ziemann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Viktoria Reimann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yajing Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yue Shi
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Honglei Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuman Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany.
| |
Collapse
|
112
|
Quan X, Xin Y, Wang HL, Sun Y, Chen C, Zhang J. Implications of altered sirtuins in metabolic regulation and oral cancer. PeerJ 2023; 11:e14752. [PMID: 36815979 PMCID: PMC9936870 DOI: 10.7717/peerj.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
Sirtuins (SIRTs 1-7) are a group of histone deacetylase enzymes with a wide range of enzyme activities that target a range of cellular proteins in the nucleus, cytoplasm, and mitochondria for posttranslational modifications by acetylation (SIRT1, 2, 3, and 5) or ADP ribosylation (SIRT4, 6, and 7). A variety of cellular functions, including mitochondrial functions and functions in energy homeostasis, metabolism, cancer, longevity and ageing, are regulated by sirtuins. Compromised sirtuin functions and/or alterations in the expression levels of sirtuins may lead to several pathological conditions and contribute significantly to alterations in metabolic phenotypes as well as oral carcinogenesis. Here, we describe the basic characteristics of seven mammalian sirtuins. This review also emphasizes the key molecular mechanisms of sirtuins in metabolic regulation and discusses the possible relationships of sirtuins with oral cancers. This review will provide novel insight into new therapeutic approaches targeting sirtuins that may potentially lead to effective strategies for combating oral malignancies.
Collapse
Affiliation(s)
- Xu Quan
- Department of Stomatology, Shanghai General Hospital, Shanghai, China
| | - Ying Xin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Yingjie Sun
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jiangying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
113
|
Senra MVX, Fonseca AL. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum. Eur J Protistol 2023; 88:125958. [PMID: 36857848 DOI: 10.1016/j.ejop.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a widely used plasticizer agent and a well-known ubiquitous endocrine disruptor, which is frequently associated with a series of reproductive, developmental, and transgenerational effects over wildlife, livestocks, and humans. Although extensive toxicological data is available for metazoans, the impact of BPA over unicellular eukaryotes, which represents a considerable proportion of eukaryotic diversity, remains largely overlooked. Here, we used acute end-point toxicological assay and an inverted virtual-screening (IVS) approach to evaluate cellular impairments infringed by BPA over the cosmopolitan ciliated protist, Paramecium caudatum. Our data indicate a clear time-dependent effect over P. caudatum survival, which seems to be a consequence of disruptions to multiple core cellular functions, such as DNA and cell replication, transcription, translation and signaling pathways. Finally, the use of this ciliate as a biosensor to monitor BPA within environments and the relevance of bioinformatic methods to leverage our current knowledge on the impacts of emerging contaminants to biological systems are discussed.
Collapse
Affiliation(s)
- Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil; Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil.
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
114
|
Lee FS, Anderson AG, Olafson BD. Benchmarking TriadAb using targets from the second antibody modeling assessment. Protein Eng Des Sel 2023; 36:gzad013. [PMID: 37864287 DOI: 10.1093/protein/gzad013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Indexed: 10/22/2023] Open
Abstract
Computational modeling and design of antibodies has become an integral part of today's research and development in antibody therapeutics. Here we describe the Triad Antibody Homology Modeling (TriadAb) package, a functionality of the Triad protein design platform that predicts the structure of any heavy and light chain sequences of an antibody Fv domain using template-based modeling. To gauge the performance of TriadAb, we benchmarked against the results of the Second Antibody Modeling Assessment (AMA-II). On average, TriadAb produced main-chain carbonyl root-mean-square deviations between models and experimentally determined structures at 1.10 Å, 1.45 Å, 1.41 Å, 3.04 Å, 1.47 Å, 1.27 Å, 1.63 Å in the framework and the six complementarity-determining regions (H1, H2, H3, L1, L2, L3), respectively. The inaugural results are comparable to those reported in AMA-II, corroborating with our internal bench-based experiences that models generated using TriadAb are sufficiently accurate and useful for antibody engineering using the sequence design capabilities provided by Triad.
Collapse
|
115
|
Singh DK, Gamboa RS, Singh AK, Walkemeier B, Van Leene J, De Jaeger G, Siddiqi I, Guerois R, Crismani W, Mercier R. The FANCC-FANCE-FANCF complex is evolutionarily conserved and regulates meiotic recombination. Nucleic Acids Res 2023; 51:2516-2528. [PMID: 36652992 PMCID: PMC10085685 DOI: 10.1093/nar/gkac1244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
At meiosis, programmed meiotic DNA double-strand breaks are repaired via homologous recombination, resulting in crossovers (COs). From a large excess of DNA double-strand breaks that are formed, only a small proportion gets converted into COs because of active mechanisms that restrict CO formation. The Fanconi anemia (FA) complex proteins AtFANCM, MHF1 and MHF2 were previously identified in a genetic screen as anti-CO factors that function during meiosis in Arabidopsis thaliana. Here, pursuing the same screen, we identify FANCC as a new anti-CO gene. FANCC was previously only identified in mammals because of low primary sequence conservation. We show that FANCC, and its physical interaction with FANCE-FANCF, is conserved from vertebrates to plants. Further, we show that FANCC, together with its subcomplex partners FANCE and FANCF, regulates meiotic recombination. Mutations of any of these three genes partially rescues CO-defective mutants, which is particularly marked in female meiosis. Functional loss of FANCC, FANCE, or FANCF results in synthetic meiotic catastrophe with the pro-CO factor MUS81. This work reveals that FANCC is conserved outside mammals and has an anti-CO role during meiosis together with FANCE and FANCF.
Collapse
Affiliation(s)
- Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Rigel Salinas Gamboa
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Avinash Kumar Singh
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Birgit Walkemeier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Imran Siddiqi
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Wayne Crismani
- The DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical Research, Melbourne 3065, Australia.,The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
116
|
Kaur H, Lynn AM. Mapping the FtsQBL divisome components in bacterial NTD pathogens as potential drug targets. Front Genet 2023; 13:1010870. [PMID: 36685953 PMCID: PMC9846249 DOI: 10.3389/fgene.2022.1010870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Cytokinesis is an essential process in bacterial cell division, and it involves more than 25 essential/non-essential cell division proteins that form a protein complex known as a divisome. Central to the divisome are the proteins FtsB and FtsL binding to FtsQ to form a complex FtsQBL, which helps link the early proteins with late proteins. The FtsQBL complex is highly conserved as a component across bacteria. Pathogens like Vibrio cholerae, Mycobacterium ulcerans, Mycobacterium leprae, and Chlamydia trachomatis are the causative agents of the bacterial Neglected Tropical Diseases Cholera, Buruli ulcer, Leprosy, and Trachoma, respectively, some of which seemingly lack known homologs for some of the FtsQBL complex proteins. In the absence of experimental characterization, either due to insufficient resources or the massive increase in novel sequences generated from genomics, functional annotation is traditionally inferred by sequence similarity to a known homolog. With the advent of accurate protein structure prediction methods, features both at the fold level and at the protein interaction level can be used to identify orthologs that cannot be unambiguously identified using sequence similarity methods. Using the FtsQBL complex proteins as a case study, we report potential remote homologs using Profile Hidden Markov models and structures predicted using AlphaFold. Predicted ortholog structures show conformational similarity with corresponding E. coli proteins irrespective of their level of sequence similarity. Alphafold multimer was used to characterize remote homologs as FtsB or FtsL, when they were not sufficiently distinguishable at both the sequence or structure level, as their interactions with FtsQ and FtsW play a crucial role in their function. The structures were then analyzed to identify functionally critical regions of the proteins consistent with their homologs and delineate regions potentially useful for inhibitor discovery.
Collapse
|
117
|
Schoelmerich MC, Sachdeva R, West-Roberts J, Waldburger L, Banfield JF. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins. PLoS Biol 2023; 21:e3001980. [PMID: 36701369 PMCID: PMC9879509 DOI: 10.1371/journal.pbio.3001980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
Borgs are huge, linear extrachromosomal elements associated with anaerobic methane-oxidizing archaea. Striking features of Borg genomes are pervasive tandem direct repeat (TR) regions. Here, we present six new Borg genomes and investigate the characteristics of TRs in all ten complete Borg genomes. We find that TR regions are rapidly evolving, recently formed, arise independently, and are virtually absent in host Methanoperedens genomes. Flanking partial repeats and A-enriched character constrain the TR formation mechanism. TRs can be in intergenic regions, where they might serve as regulatory RNAs, or in open reading frames (ORFs). TRs in ORFs are under very strong selective pressure, leading to perfect amino acid TRs (aaTRs) that are commonly intrinsically disordered regions. Proteins with aaTRs are often extracellular or membrane proteins, and functionally similar or homologous proteins often have aaTRs composed of the same amino acids. We propose that Borg aaTR-proteins functionally diversify Methanoperedens and all TRs are crucial for specific Borg-host associations and possibly cospeciation.
Collapse
Affiliation(s)
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Jacob West-Roberts
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Lucas Waldburger
- Bioengineering, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
118
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
119
|
Li H, Schneider T, Tan Y, Zhang D. Ribonuclease T2 represents a distinct circularly permutated version of the BECR RNases. Protein Sci 2023; 32:e4531. [PMID: 36477982 PMCID: PMC9793965 DOI: 10.1002/pro.4531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Detection of homologous relationships among proteins and understanding their mechanisms of diversification are major topics in the fields of protein science, bioinformatics, and phylogenetics. Recent developments in sequence/profile-based and structural similarity-based methods have greatly facilitated the unification and classification of many protein families into superfamilies or folds, yet many proteins remain unclassified in current protein databases. As one of the three earliest identified RNases in biology, ribonuclease T2, also known as RNase I in Escherichia coli, RNase Rh in fungi, or S-RNase in plant, is thought to be an ancient RNase family due to its widespread distribution and distinct structure. In this study, we present evidence that RNase T2 represents a circularly permutated version of the BECR (Barnase-EndoU-Colicin E5/D-RelE) fold RNases. This subtle relationship cannot be detected by traditional methods such as sequence/profile-based comparisons, structure-similarity searches, and circular permutation detections. However, we were able to identify the structural similarity using rational reconstruction of a theoretical RNase T2 ancestor via a reverse circular permutation process, followed by structural modeling using AlphaFold2, and structural comparisons. This relationship is further supported by the fact that RNase T2 and other typical BECR RNases, namely Colicin D, RNase A, and BrnT, share similar catalytic site configurations, all involving an analogous set of conserved residues on the α0 helix and the β4 strand of the BECR fold. This study revealed a hidden root of RNase T2 in bacterial toxin systems and demonstrated that reconstruction and modeling of ancestral topology is an effective strategy to identify remote relationship between proteins.
Collapse
Affiliation(s)
- Huan Li
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Theresa Schneider
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Yongjun Tan
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Dapeng Zhang
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
- Program of Bioinformatics and Computational BiologySchool of Science and Engineering, Saint Louis UniversitySaint LouisMissouriUSA
| |
Collapse
|
120
|
Ben Boubaker R, Tiss A, Henrion D, Chabbert M. Homology Modeling in the Twilight Zone: Improved Accuracy by Sequence Space Analysis. Methods Mol Biol 2023; 2627:1-23. [PMID: 36959439 DOI: 10.1007/978-1-0716-2974-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The analysis of the relationship between sequence and structure similarities during the evolution of a protein family has revealed a limit of sequence divergence for which structural conservation can be confidently assumed and homology modeling is reliable. Below this limit, the twilight zone corresponds to sequence divergence for which homology modeling becomes increasingly difficult and requires specific methods. Either with conventional threading methods or with recent deep learning methods, such as AlphaFold, the challenge relies on the identification of a template that shares not only a common ancestor (homology) but also a conserved structure with the query. As both homology and structural conservation are transitive properties, mining of sequence databases followed by multidimensional scaling (MDS) of the query sequence space can reveal intermediary sequences to infer homology and structural conservation between the query and the template. Here, as a case study, we studied the plethodontid receptivity factor isoform 1 (PRF1) from Plethodon jordani, a member of a pheromone protein family present only in lungless salamanders and weakly related to cytokines of the IL6 family. A variety of conventional threading methods led to the cytokine CNTF as a template. Sequence mining, followed by phylogenetic and MDS analysis, provided missing links between PRF1 and CNTF and allowed reliable homology modeling. In addition, we compared automated models obtained from web servers to a customized model to show how modeling can be improved by expert information.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Asma Tiss
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.
| |
Collapse
|
121
|
Hermanns T, Hofmann K. Bioinformatical Approaches to the Discovery and Classification of Novel Deubiquitinases. Methods Mol Biol 2023; 2591:135-149. [PMID: 36350547 DOI: 10.1007/978-1-0716-2803-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deubiquitinating enzymes (DUBs) are active at multiple levels of the eukaryotic ubiquitin system. DUBs are important for ubiquitin activation and maintaining cellular ubiquitin levels but can also edit or dissolve ubiquitin chains or deconjugate ubiquitin from substrates. Eukaryotic DUBs can be grouped into seven molecular classes, most of which enzymes are cysteine proteases assuming the papain fold. In recent years, an ever-increasing number of pathogen-encoded DUBs have been characterized, which are active inside the host cell and help the pathogens to evade the defense response. At first sight, bacterial and viral DUBs appear to be very different from their eukaryotic counterparts, making them hard to identify by bioinformatic methods. However, apart from very few exceptions, bacterial and viral DUBs are distantly related to eukaryotic DUB classes and possess several hallmarks that can be used to identify high-confidence DUB candidates from pathogen genomes - even in the complete absence of biochemical or functional annotation. This chapter addresses bioinformatical DUB discovery approaches based on a previously published analysis of DUB evolution. The core set of bioinformatical tools required for this endeavor are freely accessible and do not require a particular bioinformatics infrastructure.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
122
|
Wojciechowski JW, Tekoglu E, Gąsior-Głogowska M, Coustou V, Szulc N, Szefczyk M, Kopaczyńska M, Saupe SJ, Dyrka W. Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins. PLoS Comput Biol 2022; 18:e1010787. [PMID: 36542665 PMCID: PMC9815663 DOI: 10.1371/journal.pcbi.1010787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/05/2023] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
NLR proteins are intracellular receptors constituting a conserved component of the innate immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of architectures and presence of amyloid signaling. Here, we explore the diverse world of effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to substantially improving the overall annotation, especially in basidiomycetes, the study identifies novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like domains forming the most abundant superfamily of fungal NLR effectors. Moreover, compared to previous studies, we found several times more amyloid motif instances, including novel families, and validated aggregating and prion-forming properties of the most abundant of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated amyloid signaling was identified in basidiomycetes. The emerging picture highlights similarities and differences in the NLR architectures and amyloid signaling in ascomycetes, basidiomycetes and other branches of life.
Collapse
Affiliation(s)
- Jakub W. Wojciechowski
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Emirhan Tekoglu
- Biyomühendislik Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Turkey
- Wydział Chemiczny, Politechnika Wrocławska, Poland
| | - Marlena Gąsior-Głogowska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Virginie Coustou
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
| | - Natalia Szulc
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Monika Szefczyk
- Katedra Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław, Poland
| | - Marta Kopaczyńska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
- * E-mail: (SJS); (WD)
| | - Witold Dyrka
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
- * E-mail: (SJS); (WD)
| |
Collapse
|
123
|
Erven I, Abraham E, Hermanns T, Baumann U, Hofmann K. A widely distributed family of eukaryotic and bacterial deubiquitinases related to herpesviral large tegument proteins. Nat Commun 2022; 13:7643. [PMID: 36496440 PMCID: PMC9741609 DOI: 10.1038/s41467-022-35244-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct families of eukaryotic deubiquitinases (DUBs) are regulators of ubiquitin signaling. Here, we report on the presence of an additional DUB class broadly distributed in eukaryotes and several bacteria. The only described members of this family are the large tegument proteins of herpesviruses, which are attached to the outside of the viral capsid. By using a bioinformatics screen, we have identified distant homologs of this VTD (Viral tegument-like DUB) family in vertebrate transposons, fungi, insects, nematodes, cnidaria, protists and bacteria. While some VTD activities resemble viral tegument DUBs in that they favor K48-linked ubiquitin chains, other members are highly specific for K6- or K63-linked ubiquitin chains. The crystal structures of K48- and K6-specific members reveal considerable differences in ubiquitin recognition. The VTD family likely evolved from non-DUB proteases and spread through transposons, many of which became 'domesticated', giving rise to the Drosophila male sterile (3)76Ca gene and several nematode genes with male-specific expression.
Collapse
Affiliation(s)
- Ilka Erven
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Elena Abraham
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Thomas Hermanns
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Kay Hofmann
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| |
Collapse
|
124
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
125
|
Wang W, Peng Z, Yang J. Single-sequence protein structure prediction using supervised transformer protein language models. NATURE COMPUTATIONAL SCIENCE 2022; 2:804-814. [PMID: 38177395 DOI: 10.1038/s43588-022-00373-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/06/2022] [Indexed: 01/06/2024]
Abstract
Significant progress has been made in protein structure prediction in recent years. However, it remains challenging for AlphaFold2 and other deep learning-based methods to predict protein structure with single-sequence input. Here we introduce trRosettaX-Single, an automated algorithm for single-sequence protein structure prediction. It incorporates the sequence embedding from a supervised transformer protein language model into a multi-scale network enhanced by knowledge distillation to predict inter-residue two-dimensional geometry, which is then used to reconstruct three-dimensional structures via energy minimization. Benchmark tests show that trRosettaX-Single outperforms AlphaFold2 and RoseTTAFold on orphan proteins and works well on human-designed proteins (with an average template modeling score (TM-score) of 0.79). An experimental test shows that the full trRosettaX-Single pipeline is two times faster than AlphaFold2, using much fewer computing resources (<10%). On 2,000 designed proteins from network hallucination, trRosettaX-Single generates structure models with high confidence. As a demonstration, trRosettaX-Single is applied to missense mutation analysis. These data suggest that trRosettaX-Single may find potential applications in protein design and related studies.
Collapse
Affiliation(s)
- Wenkai Wang
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Zhenling Peng
- Ministry of Education Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Jianyi Yang
- Ministry of Education Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
126
|
Efstathiou S, Ottens F, Schütter LS, Ravanelli S, Charmpilas N, Gutschmidt A, Le Pen J, Gehring NH, Miska EA, Bouças J, Hoppe T. ER-associated RNA silencing promotes ER quality control. Nat Cell Biol 2022; 24:1714-1725. [PMID: 36471127 PMCID: PMC9729107 DOI: 10.1038/s41556-022-01025-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) coordinates mRNA translation and processing of secreted and endomembrane proteins. ER-associated degradation (ERAD) prevents the accumulation of misfolded proteins in the ER, but the physiological regulation of this process remains poorly characterized. Here, in a genetic screen using an ERAD model substrate in Caenorhabditis elegans, we identified an anti-viral RNA interference pathway, referred to as ER-associated RNA silencing (ERAS), which acts together with ERAD to preserve ER homeostasis and function. Induced by ER stress, ERAS is mediated by the Argonaute protein RDE-1/AGO2, is conserved in mammals and promotes ER-associated RNA turnover. ERAS and ERAD are complementary, as simultaneous inactivation of both quality-control pathways leads to increased ER stress, reduced protein quality control and impaired intestinal integrity. Collectively, our findings indicate that ER homeostasis and organismal health are protected by synergistic functions of ERAS and ERAD.
Collapse
Affiliation(s)
- Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lena-Sophie Schütter
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sonia Ravanelli
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aljona Gutschmidt
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- BioNTech SE, Mainz, Germany
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Jorge Bouças
- Bioinformatics Core Facility, Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
127
|
Schoelmerich MC, Ouboter HT, Sachdeva R, Penev PI, Amano Y, West-Roberts J, Welte CU, Banfield JF. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nat Commun 2022; 13:7085. [PMID: 36400771 PMCID: PMC9674854 DOI: 10.1038/s41467-022-34588-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Anaerobic methanotrophic (ANME) archaea obtain energy from the breakdown of methane, yet their extrachromosomal genetic elements are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus in enrichment cultures and other natural anoxic environments. By manual curation we show that two of the plasmids are large (155,605 bp and 191,912 bp), circular, and may replicate bidirectionally. The plasmids occur in the same copy number as the main chromosome, and plasmid genes are actively transcribed. One of the plasmids encodes three tRNAs, ribosomal protein uL16 and elongation factor eEF2; these genes appear to be missing in the host Methanoperedens genome, suggesting an obligate interdependence between plasmid and host. Our work opens the way for the development of genetic vectors to shed light on the physiology and biochemistry of Methanoperedens, and potentially genetically edit them to enhance growth and accelerate methane oxidation rates.
Collapse
Affiliation(s)
| | - Heleen T Ouboter
- Department of Microbiology, Radboud University, Nijmegen, AJ, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, AJ, Netherlands
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Yuki Amano
- Sector of Decommissioning and Radioactive Wastes Management, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Cornelia U Welte
- Department of Microbiology, Radboud University, Nijmegen, AJ, Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, AJ, Netherlands
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
128
|
A ShK-like Domain from Steinernema carpocapsae with Bioinsecticidal Potential. Toxins (Basel) 2022; 14:toxins14110754. [PMID: 36356004 PMCID: PMC9699480 DOI: 10.3390/toxins14110754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Entomopathogenic nematodes are used as biological control agents against a broad range of insect pests. We ascribed the pathogenicity of these organisms to the excretory/secretory products (ESP) released by the infective nematode. Our group characterized different virulence factors produced by Steinernema carpocapsae that underlie its success as an insect pathogen. A novel ShK-like peptide (ScK1) from this nematode that presents high sequence similarity with the ShK peptide from a sea anemone was successfully produced recombinantly in Escherichia coli. The secondary structure of ScK1 appeared redox-sensitive, exhibiting a far-UV circular dichroism spectrum consistent with an alpha-helical secondary structure. Thermal denaturation of the ScK1 allowed estimating the melting temperature to 59.2 ± 0.1 °C. The results from toxicity assays using Drosophila melanogaster as a model show that injection of this peptide can kill insects in a dose-dependent manner with an LD50 of 16.9 µM per adult within 24 h. Oral administration of the fusion protein significantly reduced the locomotor activity of insects after 48 h (p < 0.05, Tukey's test). These data show that this nematode expresses insecticidal peptides with potential as next-generation insecticides.
Collapse
|
129
|
Hannan KM, Soo P, Wong MS, Lee JK, Hein N, Poh P, Wysoke KD, Williams TD, Montellese C, Smith LK, Al-Obaidi SJ, Núñez-Villacís L, Pavy M, He JS, Parsons KM, Loring KE, Morrison T, Diesch J, Burgio G, Ferreira R, Feng ZP, Gould CM, Madhamshettiwar PB, Flygare J, Gonda TJ, Simpson KJ, Kutay U, Pearson RB, Engel C, Watkins NJ, Hannan RD, George AJ. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway. Cell Rep 2022; 41:111571. [DOI: 10.1016/j.celrep.2022.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
|
130
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
131
|
Urbaitis T, Gasiunas G, Young JK, Hou Z, Paulraj S, Godliauskaite E, Juskeviciene MM, Stitilyte M, Jasnauskaite M, Mabuchi M, Robb GB, Siksnys V. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep 2022; 23:e55481. [PMID: 36268581 PMCID: PMC9724661 DOI: 10.15252/embr.202255481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.
Collapse
Affiliation(s)
- Tomas Urbaitis
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | | | | | - Zhenglin Hou
- Farming Solutions & DigitalCorteva Agriscience™JohnstonIAUSA
| | | | | | | | - Migle Stitilyte
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | - Monika Jasnauskaite
- CasZymeVilniusLithuania,Present address:
LSC‐EMBL Partnership Institute for Genome Technologies Editing, Life Sciences CenterVilnius UniversityVilniusLithuania
| | | | | | - Virginijus Siksnys
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| |
Collapse
|
132
|
Zhang Z, Quan S, Niu J, Guo C, Kang C, Liu J, Yuan X. Comprehensive Identification and Analyses of the GRF Gene Family in the Whole-Genome of Four Juglandaceae Species. Int J Mol Sci 2022; 23:ijms232012663. [PMID: 36293519 PMCID: PMC9604165 DOI: 10.3390/ijms232012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The GRF gene family plays an important role in plant growth and development as regulators involved in plant hormone signaling and metabolism. However, the Juglandaceae GRF gene family remains to be studied. Here, we identified 15, 15, 19, and 20 GRF genes in J. regia, C. illinoinensis, J. sigillata, and J. mandshurica, respectively. The phylogeny shows that the Juglandaceae family GRF is divided into two subfamilies, the ε-group and the non-ε-group, and that selection pressure analysis did not detect amino acid loci subject to positive selection pressure. In addition, we found that the duplications of the Juglandaceae family GRF genes were all segmental duplication events, and a total of 79 orthologous gene pairs and one paralogous homologous gene pair were identified in four Juglandaceae families. The Ka/KS ratios between these homologous gene pairs were further analyzed, and the Ka/KS values were all less than 1, indicating that purifying selection plays an important role in the evolution of the Juglandaceae family GRF genes. The codon bias of genes in the GRF family of Juglandaceae species is weak, and is affected by both natural selection pressure and base mutation, and translation selection plays a dominant role in the mutation pressure in codon usage. Finally, expression analysis showed that GRF genes play important roles in pecan embryo development and walnut male and female flower bud development, but with different expression patterns. In conclusion, this study will serve as a rich genetic resource for exploring the molecular mechanisms of flower bud differentiation and embryo development in Juglandaceae. In addition, this is the first study to report the GRF gene family in the Juglandaceae family; therefore, our study will provide guidance for future comparative and functional genomic studies of the GRF gene family in the Juglandaceae specie.
Collapse
Affiliation(s)
- Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
- Correspondence:
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| |
Collapse
|
133
|
Sim J, Kwon S, Seok C. HProteome-BSite: predicted binding sites and ligands in human 3D proteome. Nucleic Acids Res 2022; 51:D403-D408. [PMID: 36243970 PMCID: PMC9825455 DOI: 10.1093/nar/gkac873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 01/29/2023] Open
Abstract
Atomic-level knowledge of protein-ligand interactions allows a detailed understanding of protein functions and provides critical clues to discovering molecules regulating the functions. While recent innovative deep learning methods for protein structure prediction dramatically increased the structural coverage of the human proteome, molecular interactions remain largely unknown. A new database, HProteome-BSite, provides predictions of binding sites and ligands in the enlarged 3D human proteome. The model structures for human proteins from the AlphaFold Protein Structure Database were processed to structural domains of high confidence to maximize the coverage and reliability of interaction prediction. For ligand binding site prediction, an updated version of a template-based method GalaxySite was used. A high-level performance of the updated GalaxySite was confirmed. HProteome-BSite covers 80.74% of the UniProt entries in the AlphaFold human 3D proteome. Predicted binding sites and binding poses of potential ligands are provided for effective applications to further functional studies and drug discovery. The HProteome-BSite database is available at https://galaxy.seoklab.org/hproteome-bsite/database and is free and open to all users.
Collapse
Affiliation(s)
- Jiho Sim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea,Galux Inc, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Chaok Seok
- To whom correspondence should be addressed. Tel: +82 2 880 9197; Fax: +82 2 889 1568;
| |
Collapse
|
134
|
Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022; 8:1981-1991. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycans, one of the most diverse groups of macromolecules, are ubiquitous constituents of all cells and have many critical functions, including the interaction between microbes and their hosts. One of the best model organisms to study the host-pathogen interaction, the gastrointestinal pathogen Campylobacter jejuni dedicates extensive resources to glycosylation and exhibits a diverse array of surface sugar-coated displays. The first bacterium where N-linked glycosylation was described, C. jejuni can additionally modify proteins by O-linked glycosylation, has extracellular capsular polysaccharides that are important for virulence and represent the major determinant of the Penner serotyping scheme, and has outer membrane lipooligosaccharides that participate in processes such as colonization, survival, inflammation, and immune evasion. In addition to causing gastrointestinal disease and extraintestinal infections, C. jejuni was also linked to postinfectious autoimmune neuropathies, of which Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are the most extensively characterized ones. These postinfectious autoimmune neuropathies occur when specific bacterial surface lipooligosaccharides mimic gangliosides in the host nervous system. C. jejuni provided the first proof of concept for the involvement of molecular mimicry in the pathogenesis of an autoimmune disease and, also, for the ability of a bacterial polymorphism to shape the clinical presentation of the postinfectious autoimmune neuropathy. The scientific journey that culminated with elucidating the mechanistic details of the C. jejuni-GBS link was the result of contributions from several fields, including microbiology, structural biology, glycobiology, genetics, and immunology and provides an inspiring and important example to interrogate other instances of molecular mimicry and their involvement in autoimmune disease.
Collapse
Affiliation(s)
- Richard A Stein
- Industry Associate Professor NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
135
|
Phetruen T, Chanarat S, Janvilisri T, Phanchana M, Charoensutthivarakul S, Phothichaisri W, Chankhamhaengdecha S. Receptor binding protein of prophage reversibly recognizes the low-molecular weight subunit of the surface-layer protein SlpA in Clostridioides difficile. Front Microbiol 2022; 13:998215. [PMID: 36312948 PMCID: PMC9615553 DOI: 10.3389/fmicb.2022.998215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.
Collapse
Affiliation(s)
- Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sitthivut Charoensutthivarakul
- Faculty of Science, School of Bioinnovation and Bio-Based Product Intelligence, Mahidol University, Bangkok, Thailand
- Faculty of Science, Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Surang Chankhamhaengdecha,
| |
Collapse
|
136
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
137
|
Bafna K, Cioffi CL, Krug RM, Montelione GT. Structural similarities between SARS-CoV2 3CL pro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Front Chem 2022; 10:948553. [PMID: 36353143 PMCID: PMC9638714 DOI: 10.3389/fchem.2022.948553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/08/2022] [Indexed: 09/01/2023] Open
Abstract
Considering the significant impact of the recent COVID-19 outbreak, development of broad-spectrum antivirals is a high priority goal to prevent future global pandemics. Antiviral development processes generally emphasize targeting a specific protein from a particular virus. However, some antiviral agents developed for specific viral protein targets may exhibit broad spectrum antiviral activity, or at least provide useful lead molecules for broad spectrum drug development. There is significant potential for repurposing a wide range of existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease (3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules can provide a diverse and novel set of scaffolds for new drug discovery campaigns. In this study, we compared the sequence- and structure-based similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified 22 proteases with similar active-site structures. This structural similarity, characterized by secondary-structure topology diagrams, is evolutionarily divergent within taxonomically related viruses, but appears to result from evolutionary convergence of protease enzymes between virus families. Inhibitors of these proteases that are structurally similar to the SARS-CoV2 3CLpro protease were identified and assessed as potential inhibitors of SARS-CoV2 3CLpro protease by virtual docking. Several of these molecules have docking scores that are significantly better than known SARS-CoV2 3CLpro inhibitors, suggesting that these molecules are also potential inhibitors of the SARS-CoV2 3CLpro protease. Some have been previously reported to inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral 3C-like proteases.
Collapse
Affiliation(s)
- Khushboo Bafna
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Christopher L. Cioffi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert M. Krug
- Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
138
|
Anderson CMH, Edwards N, Watson AK, Althaus M, Thwaites DT. Reshaping the Binding Pocket of the Neurotransmitter:Solute Symporter (NSS) Family Transporter SLC6A14 (ATB 0,+) Selectively Reduces Access for Cationic Amino Acids and Derivatives. Biomolecules 2022; 12:biom12101404. [PMID: 36291613 PMCID: PMC9599917 DOI: 10.3390/biom12101404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Collapse
Affiliation(s)
- Catriona M. H. Anderson
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| | - Noel Edwards
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew K. Watson
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mike Althaus
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - David T. Thwaites
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| |
Collapse
|
139
|
Wein T, Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22:629-638. [PMID: 35396464 DOI: 10.1038/s41577-022-00705-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma. Recent studies show that central components of the cell-autonomous innate immune system have ancient evolutionary roots in prokaryotic genes that protect bacteria from phages. These include the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, Toll/IL-1 receptor (TIR) domain-containing pathogen receptors, the viperin family of antiviral proteins, SAMHD1-like nucleotide-depletion enzymes, gasdermin proteins and key components of the RNA interference pathway. This Perspective details current knowledge of the elements of antiviral immunity that are conserved from bacteria to humans, and presents possible evolutionary scenarios to explain the observed conservation.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
140
|
Peters SL, Borges AL, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Experimental validation that human microbiome phages use alternative genetic coding. Nat Commun 2022; 13:5710. [PMID: 36175428 PMCID: PMC9523058 DOI: 10.1038/s41467-022-32979-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Previous bioinformatic analyses of metagenomic data have indicated that bacteriophages can use genetic codes different from those of their host bacteria. In particular, reassignment of stop codon TAG to glutamine (a variation known as 'genetic code 15') has been predicted. Here, we use LC-MS/MS-based metaproteomics of human fecal samples to provide experimental evidence of the use of genetic code 15 in two crAss-like phages. Furthermore, the proteomic data from several phage structural proteins supports the reassignment of the TAG stop codon to glutamine late in the phage infection cycle. Thus, our work experimentally validates the expression of genetic code 15 in human microbiome phages.
Collapse
Affiliation(s)
- Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | | | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
141
|
Targeted Mutagenesis of the Multicopy Myrosinase Gene Family in Allotetraploid Brassica juncea Reduces Pungency in Fresh Leaves across Environments. PLANTS 2022; 11:plants11192494. [PMID: 36235360 PMCID: PMC9572489 DOI: 10.3390/plants11192494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Recent breeding efforts in Brassica have focused on the development of new oilseed feedstock crop for biofuels (e.g., ethanol, biodiesel, bio-jet fuel), bio-industrial uses (e.g., bio-plastics, lubricants), specialty fatty acids (e.g., erucic acid), and producing low glucosinolates levels for oilseed and feed meal production for animal consumption. We identified a novel opportunity to enhance the availability of nutritious, fresh leafy greens for human consumption. Here, we demonstrated the efficacy of disarming the ‘mustard bomb’ reaction in reducing pungency upon the mastication of fresh tissue—a major source of unpleasant flavor and/or odor in leafy Brassica. Using gene-specific mutagenesis via CRISPR-Cas12a, we created knockouts of all functional copies of the type-I myrosinase multigene family in tetraploid Brassica juncea. Our greenhouse and field trials demonstrate, via sensory and biochemical analyses, a stable reduction in pungency in edited plants across multiple environments. Collectively, these efforts provide a compelling path toward boosting the human consumption of nutrient-dense, fresh, leafy green vegetables.
Collapse
|
142
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
143
|
Descorps-Declère S, Richard GF. Megasatellite formation and evolution in vertebrate genes. Cell Rep 2022; 40:111347. [PMID: 36103826 DOI: 10.1016/j.celrep.2022.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25 rue du Dr Roux, 75015 Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Natural & Synthetic Genome Instabilities, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
144
|
Gokulan K, Khare S, Foley SL. Structural analysis of VirD4 a type IV ATPase encoded by transmissible plasmids of Salmonella enterica isolated from poultry products. Front Artif Intell 2022; 5:952997. [PMID: 36177367 PMCID: PMC9513038 DOI: 10.3389/frai.2022.952997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial species have evolved with a wide variety of cellular devices, and they employ these devices for communication and transfer of genetic materials and toxins. They are classified into secretory system types I to VI based on their structure, composition, and functional activity. Specifically, the bacterial type IV secretory system (T4SS) is a more versatile system than the other secretory systems because it is involved in the transfer of genetic materials, proteins, and toxins to the host cells or other bacterial species. The T4SS machinery is made up of several proteins with distinct functions and forms a complex which spans the inner and outer membranes. This secretory machinery contains three ATPases that are the driving force for the functionality of this apparatus. At the initial stage of the secretion process, the selection of substrate molecules and processing occurs at the cytoplasmic region (also known as relaxosome), and then transfer mechanisms occur through the secretion complex. In this process, the VirD4 ATPase is the first molecule that initiates substrate selection, which is subsequently delivered to the secretory machinery. In the protein data bank (PDB), no structural information is available for the VirD4 ATPase to understand the functional property. In this manuscript, we have modeled VirD4 structure in the Gram-negative bacterium Salmonella enterica and described the predicted functional importance. The sequence alignment shows that VirD4 of S. enterica contains several insertion regions as compared with the template structure (pdb:1E9R) used for homology modeling. In this study, we hypothesized that the insertion regions could play a role in the flexible movement of the hexameric unit during the relaxosome processing or transfer of the substrate.
Collapse
|
145
|
Qiu K, Ben‐Tal N, Kolodny R. Similar protein segments shared between domains of different evolutionary lineages. Protein Sci 2022; 31:e4407. [PMID: 36040261 PMCID: PMC9387206 DOI: 10.1002/pro.4407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The emergence of novel proteins, beyond these that can be readily made by duplication and recombination of preexisting domains, is elusive. De novo emergence from random sequences is unlikely because the vast majority of random chains would not even fold, let alone function. An alternative explanation is that novel proteins emerge by duplication and fusion of pre-existing polypeptide segments. In this case, traces of such ancient events may remain within contemporary proteins in the form of reused segments. Together with the late Dan Tawfik, we detected such similar segments, far shorter than intact protein domains, which are found in different environments. The detection of these, "bridging themes," was based on a unique search strategy, where in addition to searching for similarity of shared fragments, so-called "themes," we also explicitly searched for cases in which the sequence segments before and after the theme are dissimilar (both in sequence and structure). Here, using a similar strategy, we further expanded the search and discovered almost 500 additional "bridging themes," linking domains that are often from ancient folds. The themes, of 20 residues or more (average 53), do not retain their structure despite sharing 37% sequence identity on average. Indeed, conformation flexibility may confer an evolutionary advantage, in that it fits in multiple environments. We elaborate on two interesting themes, shared between Rossmann/Trefoil-Plexin-like domains and a β-propeller-like domain. FOR A BROAD AUDIENCE: A fundamental question in molecular evolution is how protein domains emerged. Similar segments shared between domains of seemingly distinct origins, may offer clues, as these may be remnants of the evolutionary process through which these domains emerged. However, finding such cases is difficult. Here, we expand the set of such cases which we curated previously, adding segments shared between domains that are considered ancient.
Collapse
Affiliation(s)
- Kaiyu Qiu
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Nir Ben‐Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Rachel Kolodny
- Department of Computer ScienceUniversity of HaifaHaifaIsrael
| |
Collapse
|
146
|
Genome Sequence of a Microvirus Recovered from Wastewater in Arizona, USA, in October 2020, Encodes a Previously Undescribed DNA-Binding Protein. Microbiol Resour Announc 2022; 11:e0033722. [PMID: 36043869 PMCID: PMC9584320 DOI: 10.1128/mra.00337-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We describe the genome of Microvirus-AZ-2020, which was identified from wastewater in Arizona, USA, in October 2020. Microvirus-AZ-2020 belongs to subfamily Gokushovirinae and contains six (five known and one hypothetical) open reading frames (ORFs), each with >40 codons. HHPred analysis and Colabfold structure prediction suggest that the hypothetical ORF encodes a previously undescribed putative DNA-binding protein.
Collapse
|
147
|
Karamycheva S, Wolf YI, Persi E, Koonin EV, Makarova KS. Analysis of lineage-specific protein family variability in prokaryotes combined with evolutionary reconstructions. Biol Direct 2022; 17:22. [PMID: 36042479 PMCID: PMC9425974 DOI: 10.1186/s13062-022-00337-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Evolutionary rate is a key characteristic of gene families that is linked to the functional importance of the respective genes as well as specific biological functions of the proteins they encode. Accurate estimation of evolutionary rates is a challenging task that requires precise phylogenetic analysis. Here we present an easy to estimate protein family level measure of sequence variability based on alignment column homogeneity in multiple alignments of protein sequences from Clade-Specific Clusters of Orthologous Genes (csCOGs). Results We report genome-wide estimates of variability for 8 diverse groups of bacteria and archaea and investigate the connection between variability and various genomic and biological features. The variability estimates are based on homogeneity distributions across amino acid sequence alignments and can be obtained for multiple groups of genomes at minimal computational expense. About half of the variance in variability values can be explained by the analyzed features, with the greatest contribution coming from the extent of gene paralogy in the given csCOG. The correlation between variability and paralogy appears to originate, primarily, not from gene duplication, but from acquisition of distant paralogs and xenologs, introducing sequence variants that are more divergent than those that could have evolved in situ during the lifetime of the given group of organisms. Both high-variability and low-variability csCOGs were identified in all functional categories, but as expected, proteins encoded by integrated mobile elements as well as proteins involved in defense functions and cell motility are, on average, more variable than proteins with housekeeping functions. Additionally, using linear discriminant analysis, we found that variability and fraction of genomes carrying a given gene are the two variables that provide the best prediction of gene essentiality as compared to the results of transposon mutagenesis in Sulfolobus islandicus. Conclusions Variability, a measure of sequence diversity within an alignment relative to the overall diversity within a group of organisms, offers a convenient proxy for evolutionary rate estimates and is informative with respect to prediction of functional properties of proteins. In particular, variability is a strong predictor of gene essentiality for the respective organisms and indicative of sub- or neofunctionalization of paralogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00337-7.
Collapse
Affiliation(s)
- Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
148
|
Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis). Molecules 2022; 27:molecules27175491. [PMID: 36080259 PMCID: PMC9457811 DOI: 10.3390/molecules27175491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
G2-like (GLK) transcription factors contribute significantly and extensively in regulating chloroplast growth and development in plants. This study investigated the genome-wide identification, phylogenetic relationships, conserved motifs, promoter cis-elements, MCScanX, divergence times, and expression profile analysis of PeGLK genes in moso bamboo (Phyllostachys edulis). Overall, 78 putative PeGLKs (PeGLK1–PeGLK78) were identified and divided into 13 distinct subfamilies. Each subfamily contains members displaying similar gene structure and motif composition. By synteny analysis, 42 orthologous pairs and highly conserved microsynteny between regions of GLK genes across moso bamboo and maize were found. Furthermore, an analysis of the divergence times indicated that PeGLK genes had a duplication event around 15 million years ago (MYA) and a divergence happened around 38 MYA between PeGLK and ZmGLK. Tissue-specific expression analysis showed that PeGLK genes presented distinct expression profiles in various tissues, and many members were highly expressed in leaves. Additionally, several PeGLKs were significantly up-regulated under cold stress, osmotic stress, and MeJA and GA treatment, implying that they have a likelihood of affecting abiotic stress and phytohormone responses in plants. The results of this study provide a comprehensive understanding of the moso bamboo GLK gene family, as well as elucidating the potential functional characterization of PeGLK genes.
Collapse
|
149
|
Brusini L, Dos Santos Pacheco N, Tromer EC, Soldati-Favre D, Brochet M. Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. J Cell Biol 2022; 221:213421. [PMID: 36006241 PMCID: PMC9418836 DOI: 10.1083/jcb.202111084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa. Apicomplexan kinetochores are highly divergent in sequence and composition from animal and fungal models. The nanoscale organization includes at least four discrete compartments, each displaying different biochemical interactions, subkinetochore localizations and evolutionary rates across the phylum. We reveal alignment of kinetochores at the metaphase plate in both Plasmodium berghei and Toxoplasma gondii, suggestive of a conserved "hold signal" that prevents precocious entry into anaphase. Finally, we show unexpected plasticity in kinetochore composition and segregation between apicomplexan lifecycle stages, suggestive of diverse requirements to maintain fidelity of chromosome segregation across parasite modes of division.
Collapse
Affiliation(s)
- Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Correspondence to Lorenzo Brusini:
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Mathieu Brochet:
| |
Collapse
|
150
|
Yutin N, Rayko M, Antipov D, Mutz P, Wolf YI, Krupovic M, Koonin EV. Varidnaviruses in the Human Gut: A Major Expansion of the Order Vinavirales. Viruses 2022; 14:1842. [PMID: 36146653 PMCID: PMC9502842 DOI: 10.3390/v14091842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm Varidnaviria. Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of Alphaproteobacteria and Verrucomicrobia and belong to the order Vinavirales, which currently consists of the families Corticoviridae and Autolykiviridae. Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within Vinavirales to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of Vinavirales. Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of Vinavirales, suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mike Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, F-75015 Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|