101
|
Li Q, Zallot R, MacTavish BS, Montoya A, Payan DJ, Hu Y, Gerlt JA, Angerhofer A, de Crécy-Lagard V, Bruner SD. Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry 2021; 60:3152-3161. [PMID: 34652139 DOI: 10.1021/acs.biochem.1c00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Queuosine is a structurally unique and functionally important tRNA modification, widely distributed in eukaryotes and bacteria. The final step of queuosine biosynthesis is the reduction/deoxygenation of epoxyqueuosine to form the cyclopentene motif of the nucleobase. The chemistry is performed by the structurally and functionally characterized cobalamin-dependent QueG. However, the queG gene is absent from several bacteria that otherwise retain queuosine biosynthesis machinery. Members of the IPR003828 family (previously known as DUF208) have been recently identified as nonorthologous replacements of QueG, and this family was renamed QueH. Here, we present the structural characterization of QueH from Thermotoga maritima. The structure reveals an unusual active site architecture with a [4Fe-4S] metallocluster along with an adjacent coordinated iron metal. The juxtaposition of the cofactor and coordinated metal ion predicts a unique mechanism for a two-electron reduction/deoxygenation of epoxyqueuosine. To support the structural characterization, in vitro biochemical and genomic analyses are presented. Overall, this work reveals new diversity in the chemistry of iron/sulfur-dependent enzymes and novel insight into the last step of this widely conserved tRNA modification.
Collapse
Affiliation(s)
- Qiang Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rémi Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian S MacTavish
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel J Payan
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - You Hu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Genetics Institute, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
102
|
Hinz BE, Walker SG, Xiong A, Gogal RA, Schnieders MJ, Wallrath LL. In Silico and In Vivo Analysis of Amino Acid Substitutions That Cause Laminopathies. Int J Mol Sci 2021; 22:ijms222011226. [PMID: 34681887 PMCID: PMC8536974 DOI: 10.3390/ijms222011226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype–phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.
Collapse
Affiliation(s)
- Benjamin E. Hinz
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; (B.E.H.); (S.G.W.); (A.X.); (M.J.S.)
| | - Sydney G. Walker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; (B.E.H.); (S.G.W.); (A.X.); (M.J.S.)
| | - Austin Xiong
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; (B.E.H.); (S.G.W.); (A.X.); (M.J.S.)
| | - Rose A. Gogal
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Michael J. Schnieders
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; (B.E.H.); (S.G.W.); (A.X.); (M.J.S.)
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; (B.E.H.); (S.G.W.); (A.X.); (M.J.S.)
- Correspondence: ; Tel.: +1-319-335-7920
| |
Collapse
|
103
|
Zhou W, Guan Z, Zhao F, Ye Y, Yang F, Yin P, Zhang D. Structural insights into dpCoA-RNA decapping by NudC. RNA Biol 2021; 18:244-253. [PMID: 34074215 PMCID: PMC8677037 DOI: 10.1080/15476286.2021.1936837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
Various kinds of cap structures, such as m7G, triphosphate groups, NAD and dpCoA, protect the 5' terminus of RNA. The cap structures bond covalently to RNA and affect its stability, translation, and transport. The removal of the caps is mainly executed by Nudix hydrolase family proteins, including Dcp2, RppH and NudC. Numerous efforts have been made to elucidate the mechanism underlying the removal of m7G, triphosphate group, and NAD caps. In contrast, few studies related to the cleavage of the RNA dpCoA cap have been conducted. Here, we report the hydrolytic activity of Escherichia coli NudC towards dpCoA and dpCoA-capped RNA in vitro. We also determined the crystal structure of dimeric NudC in complex with dpCoA at 2.0 Å resolution. Structural analysis revealed that dpCoA is recognized and hydrolysed in a manner similar to NAD. In addition, NudC may also remove other dinucleotide derivative caps of RNA, which comprise the AMP moieties. NudC homologs in Saccharomyces cerevisiae and Arabidopsis thaliana exhibited similar dpCoA decapping (deCoAping) activity. These results together indicate a conserved mechanism underpinning the hydrolysis of dpCoA-capped RNA in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yage Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- State Key Laboratory of Hybid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
104
|
Zhao L, Xu X, Tian Y, Pang B, Chu J, He B. Single site mutations of glycosyltransferase with improved activity and regioselectivity for directed biosynthesis of unnatural protopanaxatriol-type ginsenoside product. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
105
|
Zhang S, Wang Y, Han L, Fu X, Wang S, Li W, Han W. Targeting N-Terminal Human Maltase-Glucoamylase to Unravel Possible Inhibitors Using Molecular Docking, Molecular Dynamics Simulations, and Adaptive Steered Molecular Dynamics Simulations. Front Chem 2021; 9:711242. [PMID: 34527658 PMCID: PMC8435576 DOI: 10.3389/fchem.2021.711242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
There are multiple drugs for the treatment of type 2 diabetes, including traditional sulfonylureas biguanides, glinides, thiazolidinediones, α-glucosidase inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase IV (DPP-4) inhibitors, and sodium-glucose cotransporter 2 (SGLT2) inhibitors. α-Glucosidase inhibitors have been used to control postprandial glucose levels caused by type 2 diabetes since 1990. α-Glucosidases are rather crucial in the human metabolic system and are principally found in families 13 and 31. Maltase-glucoamylase (MGAM) belongs to glycoside hydrolase family 31. The main function of MGAM is to digest terminal starch products left after the enzymatic action of α-amylase; hence, MGAM becomes an efficient drug target for insulin resistance. In order to explore the conformational changes in the active pocket and unbinding pathway for NtMGAM, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed for two NtMGAM-inhibitor [de-O-sulfonated kotalanol (DSK) and acarbose] complexes. MD simulations indicated that DSK bound to NtMGAM may influence two domains (inserted loop 1 and inserted loop 2) by interfering with the spiralization of residue 497–499. The flexibility of inserted loop 1 and inserted loop 2 can influence the volume of the active pocket of NtMGAM, which can affect the binding progress for DSK to NtMGAM. ASMD simulations showed that compared to acarbose, DSK escaped from NtMGAM easily with lower energy. Asp542 is an important residue on the bottleneck of the active pocket of NtMGAM and could generate hydrogen bonds with DSK continuously. Our theoretical results may provide some useful clues for designing new α-glucosidase inhibitors to treat type 2 diabetes.
Collapse
Affiliation(s)
- Shitao Zhang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Yi Wang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Lu Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Xueqi Fu
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Wannan Li
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
106
|
Funabashi K, Sawata M, Nagai A, Akimoto M, Mashimo R, Takahara H, Kizawa K, Thompson PR, Ite K, Kitanishi K, Unno M. Structures of human peptidylarginine deiminase type III provide insights into substrate recognition and inhibitor design. Arch Biochem Biophys 2021; 708:108911. [PMID: 33971157 DOI: 10.1016/j.abb.2021.108911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.
Collapse
Affiliation(s)
- Kazumasa Funabashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Mizuki Sawata
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Anna Nagai
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Megumi Akimoto
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Ryutaro Mashimo
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Hidenari Takahara
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan; College of Agriculture, Ibaraki University, Ami Inashiki, Japan
| | - Kenji Kizawa
- Kao Corporation, Biological Science Research Laboratory, Odawara, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kenji Ite
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Kenichi Kitanishi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Tokyo University of Science, Faculty of Science Division I, Tokyo, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan.
| |
Collapse
|
107
|
Patil GS, Kinatukara P, Mondal S, Shambhavi S, Patel KD, Pramanik S, Dubey N, Narasimhan S, Madduri MK, Pal B, Gokhale RS, Sankaranarayanan R. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation. eLife 2021; 10:70067. [PMID: 34490847 PMCID: PMC8460268 DOI: 10.7554/elife.70067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.
Collapse
Affiliation(s)
- Gajanan S Patil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Sudipta Mondal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sakshi Shambhavi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ketan D Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Surabhi Pramanik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Noopur Dubey
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
108
|
Qiu J, Tian X, Liu J, Qin Y, Zhu J, Xu D, Qiu T. Revealing the Mutation Patterns of Drug-Resistant Reverse Transcriptase Variants of Human Immunodeficiency Virus through Proteochemometric Modeling. Biomolecules 2021; 11:biom11091302. [PMID: 34572515 PMCID: PMC8467226 DOI: 10.3390/biom11091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Drug-resistant cases of human immunodeficiency virus (HIV) nucleoside reverse transcriptase inhibitors (NRTI) are constantly accumulating due to the frequent mutations of the reverse transcriptase (RT). Predicting the potential drug resistance of HIV-1 NRTIs could provide instructions for the proper clinical use of available drugs. In this study, a novel proteochemometric (PCM) model was constructed to predict the drug resistance between six NRTIs against different variants of RT. Forty-seven dominant mutation sites were screened using the whole protein of HIV-1 RT. Thereafter, the physicochemical properties of the dominant mutation sites can be derived to generate the protein descriptors of RT. Furthermore, by combining the molecular descriptors of NRTIs, PCM modeling can be constructed to predict the inhibition ability between RT variants and NRTIs. The results indicated that our PCM model could achieve a mean AUC value of 0.946 and a mean accuracy of 0.873 on the external validation set. Finally, based on PCM modeling, the importance of features was calculated to reveal the dominant amino acid distribution and mutation patterns on RT, to reflect the characteristics of drug-resistant sequences.
Collapse
Affiliation(s)
- Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Xinxin Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Jiangru Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Yulong Qin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Junjie Zhu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Q.); (X.T.); (J.L.); (Y.Q.); (J.Z.); (D.X.)
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
109
|
Zhu J, Shen D, Xie J, Tang C, Jin B, Wu S. Mechanism of urea decomposition catalyzed by Sporosarcina pasteurii urease based on quantum chemical calculations. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1970156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jie Zhu
- College of Civil and Transportation Engineering, Hohai University, Nanjing, People’s Republic of China
| | - Dejian Shen
- College of Civil and Transportation Engineering, Hohai University, Nanjing, People’s Republic of China
| | - Jingjing Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, People’s Republic of China
| | - Chunmei Tang
- College of Science, Hohai University, Nanjing, People’s Republic of China
| | - Baosheng Jin
- School of Energy and Environment, Southeast University, Nanjing, People’s Republic of China
| | - Shengxing Wu
- College of Civil and Transportation Engineering, Hohai University, Nanjing, People’s Republic of China
| |
Collapse
|
110
|
Akella R, Humphreys JM, Sekulski K, He H, Durbacz M, Chakravarthy S, Liwocha J, Mohammed ZJ, Brautigam CA, Goldsmith EJ. Osmosensing by WNK Kinases. Mol Biol Cell 2021; 32:1614-1623. [PMID: 33689398 PMCID: PMC8684725 DOI: 10.1091/mbc.e20-01-0089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
With No Lysine (K) WNK kinases regulate electro-neutral cotransporters that are controlled by osmotic stress and chloride. We showed previously that autophosphorylation of WNK1 is inhibited by chloride, raising the possibility that WNKs are activated by osmotic stress. Here we demonstrate that unphosphorylated WNK isoforms 3 and 1 autophosphorylate in response to osmotic pressure in vitro, applied with the crowding agent polyethylene glycol (PEG)400 or osmolyte ethylene glycol (EG), and that this activation is opposed by chloride. Small angle x-ray scattering of WNK3 in the presence and absence of PEG400, static light scattering in EG, and crystallography of WNK1 were used to understand the mechanism. Osmosensing in WNK3 and WNK1 appears to occur through a conformational equilibrium between an inactive, unphosphorylated, chloride-binding dimer and an autophosphorylation-competent monomer. An improved structure of the inactive kinase domain of WNK1, and a comparison with the structure of a monophosphorylated form of WNK1, suggests that large cavities, greater hydration, and specific bound water may participate in the osmosensing mechanism. Our prior work showed that osmolytes have effects on the structure of phosphorylated WNK1, suggestive of multiple stages of osmotic regulation in WNKs.
Collapse
Affiliation(s)
- Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John M. Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kamil Sekulski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mateusz Durbacz
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Srinivas Chakravarthy
- Department of Biology, Chemistry, & Physical Sciences, APS/Illinois Institute of Technology, Argonne, IL 60439
| | - Joanna Liwocha
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elizabeth J. Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
111
|
Yu Q, Ni D, Kowal J, Manolaridis I, Jackson SM, Stahlberg H, Locher KP. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat Commun 2021; 12:4376. [PMID: 34282134 PMCID: PMC8289821 DOI: 10.1038/s41467-021-24651-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
ABCG2 is a multidrug transporter that affects drug pharmacokinetics and contributes to multidrug resistance of cancer cells. In previously reported structures, the reaction cycle was halted by the absence of substrates or ATP, mutation of catalytic residues, or the presence of small-molecule inhibitors or inhibitory antibodies. Here we present cryo-EM structures of ABCG2 under turnover conditions containing either the endogenous substrate estrone-3-sulfate or the exogenous substrate topotecan. We find two distinct conformational states in which both the transport substrates and ATP are bound. Whereas the state turnover-1 features more widely separated NBDs and an accessible substrate cavity between the TMDs, turnover-2 features semi-closed NBDs and an almost fully occluded substrate cavity. Substrate size appears to control which turnover state is mainly populated. The conformational changes between turnover-1 and turnover-2 states reveal how ATP binding is linked to the closing of the cytoplasmic side of the TMDs. The transition from turnover-1 to turnover-2 is the likely bottleneck or rate-limiting step of the reaction cycle, where the discrimination of substrates and inhibitors occurs. ABCG2 is a transporter contributing to multidrug resistance of cancer cells. Here, structures of human ABCG2 under turnover conditions reveal distinct conformational states, provide insight into the transport cycle and suggest a mechanism of discrimination between substrates and inhibitors.
Collapse
Affiliation(s)
- Qin Yu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dongchun Ni
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ioannis Manolaridis
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Scott M Jackson
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, and Dep. Fund. Microbiol., Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
112
|
Zhang Y, Li A. High-throughput virtual screening and microsecond MD simulations to identify potential sugar mimic of the solute-binding protein BlAXBP of the ABC transporter from Bifidobacterium animalis subsp. Lactis. Comput Biol Chem 2021; 93:107541. [PMID: 34273720 DOI: 10.1016/j.compbiolchem.2021.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/08/2022]
Abstract
Xylotetraose is a prebiotic oligosaccharide can be utilized by the ABC transporter of the gut microbiota Bifidobacteria. BlAXBP is the solute binding protein of the ABC transporter, and its complex with xylotetraose has been solved by X-ray crystallography. Here, we have identified novel sugar mimic of BlAXBP by applying a high-throughput virtual screening of ZINC database containing a huge library with ∼22 M compounds. To begin with, we identified 18,571 ligands by a ligand-based virtual screening. Further, a total of 3968 compounds were selected for molecular docking due to their Tanimoto coefficient's value were larger than a cutoff of 0.08. The molecular mechanics-generalized born surface area was used to evaluate the binding free energies, and the top 10 ligands with free energies below an energy threshold of -35.22 kcal/mol were selected. ZINC13783511 formed the most stable complex with BlAXBP and its recognition mechanism were further explored by microsecond MD simulations in explicit solvent. Free energy landscapes were used to evaluate conformational changes of BlAXBP in its ligand free and binding states. Collectively, this work identified potential novel sugar mimics to BlAXBP, providing novel atomic-level understanding of the binding mechanism.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Food Science, Foshan University, Foshan, 528231, China.
| | - Anqi Li
- Department of Food Science, Foshan University, Foshan, 528231, China
| |
Collapse
|
113
|
Rai A, Klare JP, Reinke PYA, Englmaier F, Fohrer J, Fedorov R, Taft MH, Chizhov I, Curth U, Plettenburg O, Manstein DJ. Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms22126265. [PMID: 34200865 PMCID: PMC8230527 DOI: 10.3390/ijms22126265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.
Collapse
Affiliation(s)
- Amrita Rai
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Barbarastrasse 7, D-49076 Osnabrück, Germany;
| | - Patrick Y. A. Reinke
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- Center for Free-Electron Laser Science, German Electron Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany
| | - Felix Englmaier
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Jörg Fohrer
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
- NMR Department of the Department of Chemistry, Technical University Darmstadt, Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Roman Fedorov
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5323700
| |
Collapse
|
114
|
Murayama K, Kato-Murayama M, Sato T, Hosaka T, Ishiguro K, Mizuno T, Kitao K, Honma T, Yokoyama S, Tanaka Y, Shirouzu M. Anthocyanin 5,3'-aromatic acyltransferase from Gentiana triflora, a structural insight into biosynthesis of a blue anthocyanin. PHYTOCHEMISTRY 2021; 186:112727. [PMID: 33743393 DOI: 10.1016/j.phytochem.2021.112727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The acylation of anthocyanins contributes to their structural diversity. Aromatic acylation is responsible for the blue color of anthocyanins and certain flowers. Aromatic acyltransferase from Gentiana triflora Pall. (Gentianaceae) (Gt5,3'AT) catalyzes the acylation of glucosyl moieties at the 5 and 3' positions of anthocyanins. Anthocyanin acyltransferase transfers an acyl group to a single position, such that Gt5,3'AT possesses a unique enzymatic activity. Structural investigation of this aromatic acyl group transfer is fundamental to understand the molecular mechanism of the acylation of double positions. In this study, structural analyses of Gt5,3'AT were conducted to identify the underlying mechanism. The crystal structure indicated that Gt5,3'AT shares structural similarities with other BAHD family enzymes, consisting of N and C terminal lobes. Structural comparison revealed that acyl group preference (aromatic or aliphatic) for the enzymes was determined by four amino acid positions, which are well conserved in aromatic and aliphatic CoA-binding acyltransferases. Although a complex structure with anthocyanins was not obtained, the binding of delphinidin 3,5,3'-triglucoside to Gt5,3'AT was investigated by evaluating the molecular dynamics. The simulation indicated that acyl transfer by Gt5,3'AT preferentially occurs at the 5-position rather than at the 3'-position, with interacting amino acids that are mainly located in the C-terminal lobe. Subsequent assays of chimeric enzymes (exchange of the N-terminal lobe and the C-terminal lobe between Gt5,3'AT and lisianthus anthocyanin 5AT) demonstrated that acyl transfer selectivity may be caused by the C-terminal lobe.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8575, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Tomohiro Sato
- Laboratory for Structure-Based Molecular Design, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Kanako Ishiguro
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Tsukuba, 305-0005, Japan
| | - Kazunori Kitao
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Teruki Honma
- Laboratory for Structure-Based Molecular Design, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, 230-0045, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, 619-0284, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan.
| |
Collapse
|
115
|
CAVIAR: a method for automatic cavity detection, description and decomposition into subcavities. J Comput Aided Mol Des 2021; 35:737-750. [PMID: 34050420 DOI: 10.1007/s10822-021-00390-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The accurate description of protein binding sites is essential to the determination of similarity and the application of machine learning methods to relate the binding sites to observed functions. This work describes CAVIAR, a new open source tool for generating descriptors for binding sites, using protein structures in PDB and mmCIF format as well as trajectory frames from molecular dynamics simulations as input. The applicability of CAVIAR descriptors is showcased by computing machine learning predictions of binding site ligandability. The method can also automatically assign subcavities, even in the absence of a bound ligand. The defined subpockets mimic the empirical definitions used in medicinal chemistry projects. It is shown that the experimental binding affinity scales relatively well with the number of subcavities filled by the ligand, with compounds binding to more than three subcavities having nanomolar or better affinities to the target. The CAVIAR descriptors and methods can be used in any machine learning-based investigations of problems involving binding sites, from protein engineering to hit identification. The full software code is available on GitHub and a conda package is hosted on Anaconda cloud.
Collapse
|
116
|
Onodera W, Asahi T, Sawamura N. Rapid evolution of mammalian APLP1 as a synaptic adhesion molecule. Sci Rep 2021; 11:11305. [PMID: 34050225 PMCID: PMC8163877 DOI: 10.1038/s41598-021-90737-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid precursor protein (APP) family members are involved in essential neuronal development including neurite outgrowth, neuronal migration and maturation of synapse and neuromuscular junction. Among the APP gene family members, amyloid precursor-like protein 1 (APLP1) is selectively expressed in neurons and has specialized functions during synaptogenesis. Although a potential role for APLP1 in neuronal evolution has been indicated, its precise evolutionary and functional contributions are unknown. This study shows the molecular evolution of the vertebrate APP family based on phylogenetic analysis, while contrasting the evolutionary differences within the APP family. Phylogenetic analysis showed 15 times higher substitution rate that is driven by positive selection at the stem branch of the mammalian APLP1, resulting in dissimilar protein sequences compared to APP/APLP2. Docking simulation identified one positively selected site in APLP1 that alters the heparin-binding site, which could affect its function, and dimerization rate. Furthermore, the evolutionary rate covariation between the mammalian APP family and synaptic adhesion molecules (SAMs) was confirmed, indicating that only APLP1 has evolved to gain synaptic adhesion property. Overall, our results suggest that the enhanced synaptogenesis property of APLP1 as one of the SAMs may have played a role in mammalian brain evolution.
Collapse
Affiliation(s)
- Wataru Onodera
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan.,Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Naoya Sawamura
- Research Organization for Nano & Life Innovation, Waseda University, #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan. .,Green Computing Systems Research Organization, Waseda University, Shinjuku, Japan.
| |
Collapse
|
117
|
Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms. Proc Natl Acad Sci U S A 2021; 118:2024149118. [PMID: 33376205 DOI: 10.1073/pnas.2024149118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Aster proteins (encoded by the Gramd1a-c genes) contain a ligand-binding fold structurally similar to a START domain and mediate nonvesicular plasma membrane (PM) to endoplasmic reticulum (ER) cholesterol transport. In an effort to develop small molecule modulators of Asters, we identified 20α-hydroxycholesterol (HC) and U18666A as lead compounds. Unfortunately, both 20α-HC and U18666A target other sterol homeostatic proteins, limiting their utility. 20α-HC inhibits sterol regulatory element-binding protein 2 (SREBP2) processing, and U18666A is an inhibitor of the vesicular trafficking protein Niemann-Pick C1 (NPC1). To develop potent and selective Aster inhibitors, we synthesized a series of compounds by modifying 20α-HC and U18666A. Among these, AI (Aster inhibitor)-1l, which has a longer side chain than 20α-HC, selectively bound to Aster-C. The crystal structure of Aster-C in complex with AI-1l suggests that sequence and flexibility differences in the loop that gates the binding cavity may account for the ligand specificity for Aster C. We further identified the U18666A analog AI-3d as a potent inhibitor of all three Aster proteins. AI-3d blocks the ability of Asters to bind and transfer cholesterol in vitro and in cells. Importantly, AI-3d also inhibits the movement of low-density lipoprotein (LDL) cholesterol to the ER, although AI-3d does not block NPC1. This finding positions the nonvesicular Aster pathway downstream of NPC1-dependent vesicular transport in the movement of LDL cholesterol to the ER. Selective Aster inhibitors represent useful chemical tools to distinguish vesicular and nonvesicular sterol transport mechanisms in mammalian cells.
Collapse
|
118
|
Parashar A, Jacob VD, Gideon DA, Manoj KM. Hemoglobin catalyzes ATP-synthesis in human erythrocytes: a murburn model. J Biomol Struct Dyn 2021; 40:8783-8795. [PMID: 33998971 DOI: 10.1080/07391102.2021.1925592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood hemoglobin (Hb), known to transport oxygen, is the most abundant globular protein in humans. Erythrocytes have ∼10-3 M concentration of ATP in steady-state and we estimate that this high amounts cannot be formed from 10-4 - 10-7 M levels of precursors via substrate-level phosphorylation of glycolysis. To account for this discrepancy, we propose that Hb serves as a 'murzyme' (a redox enzyme working along the principles of murburn concept), catalyzing the synthesis of the major amounts of ATP found in erythrocytes. This proposal is along the lines of our earlier works demonstrating DROS (diffusible reactive oxygen species) mediated ATP-synthesis as a thermodynamically and kinetically viable mechanism for physiological oxidative phosphorylation. We support the new hypothesis for Hb with theoretical arguments, experimental findings of reputed peers and in silico explorations. Using in silico methods, we demonstrate that adenosine nucleotide and 2,3-bisphosphoglycerate (2,3-BPG) binding sites are located suitably on the monomer/tetramer, thereby availing facile access to the superoxide emanating from the heme center. Our proposal explains earlier reported in situ experimental findings/suggestions of 2,3-BPG and ADP binding at the same locus on Hb. The binding energy is in the order of 2,3-BPG > NADH > ATP > ADP > AMP and agrees with earlier reports, potentially explaining the bioenergetic physiology of erythrocytes. Also, the newly discovered site for 2,3-BPG shows lower affinity in fetal Hb (as compared to adults) explaining oxygen transfer from mother to embryo. The findings pose significant implications in routine physiology and pathologies like sickle cell anemia and thalassemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, India
| | | | | | | |
Collapse
|
119
|
Eberle RJ, Olivier DS, Amaral MS, Gering I, Willbold D, Arni RK, Coronado MA. The Repurposed Drugs Suramin and Quinacrine Cooperatively Inhibit SARS-CoV-2 3CL pro In Vitro. Viruses 2021; 13:873. [PMID: 34068686 PMCID: PMC8170883 DOI: 10.3390/v13050873] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (I.G.); (D.W.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Campus Cimba, Federal University of Tocantins, Araguaína, TO 77824-838, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil;
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (I.G.); (D.W.)
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (I.G.); (D.W.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, IBILCE, Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP 15054-000, Brazil;
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (I.G.); (D.W.)
- Multiuser Center for Biomolecular Innovation, IBILCE, Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, SP 15054-000, Brazil;
| |
Collapse
|
120
|
Sgrignani J, Cavalli A. Computational Identification of a Putative Allosteric Binding Pocket in TMPRSS2. Front Mol Biosci 2021; 8:666626. [PMID: 33996911 PMCID: PMC8119889 DOI: 10.3389/fmolb.2021.666626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
Camostat, nafamostat, and bromhexine are inhibitors of the transmembrane serine protease TMPRSS2. The inhibition of TMPRSS2 has been shown to prevent the viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses. However, while camostat and nafamostat inhibit TMPRSS2 by forming a covalent adduct, the mode of action of bromhexine remains unclear. TMPRSS2 is autocatalytically activated from its inactive form, zymogen, through a proteolytic cleavage that promotes the binding of Ile256 to a putative allosteric pocket (A-pocket). Computer simulations, reported here, indicate that Ile256 binding induces a conformational change in the catalytic site, thus providing the atomistic rationale to the activation process of the enzyme. Furthermore, computational docking and molecular dynamics simulations indicate that bromhexine competes with the N-terminal Ile256 for the same binding site, making it a potential allosteric inhibitor. Taken together, these findings provide the atomistic basis for the development of more selective and potent TMPRSS2 inhibitors.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
121
|
Akaberi D, Båhlström A, Chinthakindi PK, Nyman T, Sandström A, Järhult JD, Palanisamy N, Lundkvist Å, Lennerstrand J. Targeting the NS2B-NS3 protease of tick-borne encephalitis virus with pan-flaviviral protease inhibitors. Antiviral Res 2021; 190:105074. [PMID: 33872674 DOI: 10.1016/j.antiviral.2021.105074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Tick-borne encephalitis (TBE) is a severe neurological disorder caused by tick-borne encephalitis virus (TBEV), a member of the Flavivirus genus. Currently, two vaccines are available in Europe against TBEV. However, TBE cases have been rising in Sweden for the past twenty years, and thousands of cases are reported in Europe, emphasizing the need for antiviral treatments against this virus. The NS2B-NS3 protease is essential for flaviviral life cycle and has been studied as a target for the design of inhibitors against several well-known flaviviruses, but not TBEV. In the present study, Compound 86, a known tripeptidic inhibitor of dengue (DENV), West Nile (WNV) and Zika (ZIKV) proteases, was predicted to be active against TBEV protease using a combination of in silico techniques. Further, Compound 86 was found to inhibit recombinant TBEV protease with an IC50 = 0.92 μM in the in vitro enzymatic assay. Additionally, two more peptidic analogues were synthetized and they displayed inhibitory activities against both TBEV and ZIKV proteases. In particular, Compound 104 inhibited ZIKV protease with an IC50 = 0.25 μM. These compounds represent the first reported inhibitors of TBEV protease to date and provides valuable information for the further development of TBEV as well as pan-flavivirus protease inhibitors.
Collapse
Affiliation(s)
- Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Amanda Båhlström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Praveen K Chinthakindi
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Tomas Nyman
- Protein Science Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anja Sandström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
122
|
Wang K, Chan YC, So PK, Liu X, Feng L, Cheung WT, Lee SST, Au SWN. Structure of mouse cytosolic sulfotransferase SULT2A8 provides insight into sulfonation of 7α-hydroxyl bile acids. J Lipid Res 2021; 62:100074. [PMID: 33872606 PMCID: PMC8134075 DOI: 10.1016/j.jlr.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze the transfer of a sulfonate group from the cofactor 3'-phosphoadenosine 5'-phosphosulfate to a hydroxyl (OH) containing substrate and play a critical role in the homeostasis of endogenous compounds, including hormones, neurotransmitters, and bile acids. In human, SULT2A1 sulfonates the 3-OH of bile acids; however, bile acid metabolism in mouse is dependent on a 7α-OH sulfonating SULT2A8 via unknown molecular mechanisms. In this study, the crystal structure of SULT2A8 in complex with adenosine 3',5'-diphosphate and cholic acid was resolved at a resolution of 2.5 Å. Structural comparison with human SULT2A1 reveals different conformations of substrate binding loops. In addition, SULT2A8 possesses a unique substrate binding mode that positions the target 7α-OH of the bile acid close to the catalytic site. Furthermore, mapping of the critical residues by mutagenesis and enzyme activity assays further highlighted the importance of Lys44 and His48 for enzyme catalysis and Glu237 in loop 3 on substrate binding and stabilization. In addition, limited proteolysis and thermal shift assays suggested that the cofactor and substrates have protective roles in stabilizing SULT2A8 protein. Together, the findings unveil the structural basis of bile acid sulfonation targeting 7α-OH and shed light on the functional diversity of bile acid metabolism across species.
Collapse
Affiliation(s)
- Kai Wang
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Yan-Chun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xing Liu
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lu Feng
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Tai Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna Sau-Tuen Lee
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
123
|
Lin Z, Li F, Zhang Y, Tan X, Luo P, Liu H. Analysis of astaxanthin molecular targets based on network pharmacological strategies. J Food Biochem 2021; 45:e13717. [PMID: 33844306 DOI: 10.1111/jfbc.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
In order to further explore the potential pharmacological activity of astaxanthin (AST), network pharmacological approaches were employed in this work to systematically investigate its affinity targets, perturbed signaling pathways, and related disease applications. First, potential targets were captured based on AST chemical structure information. Enrichment analysis was then performed using bioinformatics tools to predict the biological processes and diseases in which AST targets are involved. The results suggest that AST is involved in steroid hormone metabolism, and the regulation of glucocorticoids may be one of the potential mechanisms of its known therapeutic effects on depression and insulin resistance. Molecular docking experiments confirmed that AST can form stable binding to several key nodes (SRD5A2, STS, AKR1C2, HSD11B1, and CYP17A1) in steroid hormone biosynthesis. More importantly, the molecular targets of AST were the most significantly associated with endometriosis. Functionally, grouped analysis of key therapeutic nodes was carried out by establishing the interaction network between drug targets and disease targets. While exerting inflammatory effects, the regulation of estrogen and other semiochemicals by targeting steroid metabolism may be the biological basis for the potential treatment of endometriosis with AST. This work provides a theoretical basis for further exploring the pharmacological mechanisms of AST and development of new therapeutic applications. PRACTICAL APPLICATIONS: In this study, systematic pharmacological methods were used to identify the potential therapeutic effects and associated mechanisms of astaxanthin, providing a bioinformatics basis for further exploration of astaxanthin's new pharmacological properties in foods.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Fangping Li
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Yu Zhang
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiaohui Tan
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Ping Luo
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
124
|
Li A, Wang T, Tian Q, Yang X, Yin D, Qin Y, Zhang L. Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity. Chemistry 2021; 27:6283-6294. [PMID: 33475219 DOI: 10.1002/chem.202005195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Enzyme stereoselectivity control is still a major challenge. To gain insight into the molecular basis of enzyme stereo-recognition and expand the source of antiPrelog carbonyl reductase toward β-ketoesters, rational enzyme design aiming at stereoselectivity inversion was performed. The designed variant Q139G switched the enzyme stereoselectivity toward β-ketoesters from Prelog to antiPrelog, providing corresponding alcohols in high enantiomeric purity (89.1-99.1 % ee). More importantly, the well-known trade-off between stereoselectivity and activity was not found. Q139G exhibited higher catalytic activity than the wildtype enzyme, the enhancement of the catalytic efficiency (kcat /Km ) varied from 1.1- to 27.1-fold. Interestingly, the mutant Q139G did not lead to reversed stereoselectivity toward aromatic ketones. Analysis of enzyme-substrate complexes showed that the structural flexibility of β-ketoesters and a newly formed cave together facilitated the formation of the antiPrelog-preferred conformation. In contrast, the relatively large and rigid structure of the aromatic ketones prevents them from forming the antiPrelog-preferred conformation.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Ting Wang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Dongming Yin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| |
Collapse
|
125
|
Rani JJ, Jayaseeli AMI, Rajagopal S, Seenithurai S, Chai JD, Raja JD, Rajasekaran R. Synthesis, characterization, antimicrobial, BSA binding, DFT calculation, molecular docking and cytotoxicity of Ni(II) complexes with Schiff base ligands. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
126
|
Watanabe H, Yabe-Wada T, Onai N, Unno M. Detailed Structure of Mouse Interferon α2 and Its Interaction with Sortilin. J Biochem 2021; 170:265-273. [PMID: 33769476 DOI: 10.1093/jb/mvab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
Interferon α (IFNα) is a type I interferon, an essential cytokine employed by the immune system to fight viruses. Although a number of the structures of type I interferons have been reported, most of the known structures of IFNα are in complex with its receptors. There are only two examples of structures of free IFNα: one is a dimeric X-ray structure without side-chain information; and another is an NMR structure of human IFNα. Although we have shown that Sortilin is involved in the secretion of IFNα, the details of the molecular interaction and the secretion mechanism remain unclear. Recently, we solved the X-ray structure of mouse Sortilin, but the structure of mouse IFNα remained unknown. In the present study, we determined the crystal structure of mouse IFNα2 at 2.1 Å resolution and investigated its interaction with Sortilin. Docking simulations suggested that Arg22 of mouse IFNα2 is important for the interaction with mouse Sortilin. Mutation of Arg22 to alanine facilitated IFNα2 secretion, as determined by flow cytometry, highlighting the contribution of this residue to the interaction with Sortilin. These results suggest an important role for Arg22 in mouse IFNα for Sortilin-mediated IFNα trafficking.
Collapse
Affiliation(s)
- Honoka Watanabe
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Ibaraki 319-1106, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa 920-0293, Japan
| | - Nobuyuki Onai
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa 920-0293, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
127
|
Zhang B, Kang Z, Zhang J, Kang Y, Liang L, Liu Y, Wang Q. Simultaneous binding mechanism of multiple substrates for multidrug resistance transporter P-glycoprotein. Phys Chem Chem Phys 2021; 23:4530-4543. [PMID: 33595579 DOI: 10.1039/d0cp05910b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a multidrug resistance pump. Its promiscuous nature is the main cause of multidrug resistance in cancer cells. P-gp can bind multiple drug molecules simultaneously; however, the binding mechanism is still not clear. Furthermore, the upper limit of the number of substrates that can be accommodated by the binding pocket is not fully understood. In this work, we explore the dynamic process of P-gp binding to multiple substrates by using molecular dynamics (MD) simulations. Our results show that P-gp possesses the ability for simultaneous binding, and that the number of substrates has an upper limit. The accommodating ability of P-gp relates to the size of the binding drugs, and conforms to induced fit theory. In the binding process, the residues 339PHE, 982MET and 986GLN are essential. The pocket of P-gp presents strong flexibility and adaptability features according to the mutation results in this work. Drug molecules tend to gather in the pocket during binding, and interactions between these molecules are beneficial to simultaneous binding. These findings provide new insights into the mechanism of the promiscuous nature of P-gp, and may give us a guideline for inhibiting the process of multidrug resistance.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lijun Liang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
128
|
Liu K, Wang M, Zhou Y, Wang H, Liu Y, Han L, Han W. Exploration of the cofactor specificity of wild-type phosphite dehydrogenase and its mutant using molecular dynamics simulations. RSC Adv 2021; 11:14527-14533. [PMID: 35424015 PMCID: PMC8697927 DOI: 10.1039/d1ra00221j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/12/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
Phosphite dehydrogenase (Pdh) catalyzes the NAD-dependent oxidation of phosphite to phosphate with the formation of NADH. It can be used in several bioorthogonal systems for metabolic control and related applications, for example, bioelectricity. At present, NAD has poor stability at high concentrations and costs are expensive. Implementation of a non-natural cofactor alternative to the ubiquitous redox cofactor nicotinamide adenosine dinucleotide (NAD) is of great scientific and biotechnological interest. Several Pdhs have been engineered to favor a smaller-sized NAD analogue with a cheaper price and better thermal stability, namely, nicotinamide cytosine dinucleotide (NCD). However, the conformational changes of two cofactors binding to Pdh remain unknown. In this study, five molecular dynamics (MD) simulations were performed to exploit the different cofactors binding to wild-type (WT) Pdh and mutant-type (MT) Pdh (I151R/P176E/M207A). The results were as follows: First, compared with WT Pdh, the cofactor-binding pocket of mutant Pdh became smaller, which may favor a smaller-sized NCD. Second, secondary structure analysis showed that the alpha helices in residues 151–207 partly disappeared in mutant Pdh binding to NAD or NCD. Our theoretical results may provide a basis for further studies on the Pdh family. Phosphite dehydrogenase (Pdh) catalyzes the NAD-dependent oxidation of phosphite to phosphate with the formation of NADH.![]()
Collapse
Affiliation(s)
- Kunlu Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Science
- Jilin University
- Changchun 130012
- China
| | - Min Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Science
- Jilin University
- Changchun 130012
- China
| | - Yubo Zhou
- High School Attached to Northeast Normal University
- Changchun 130012
- China
| | - Hongxiang Wang
- High School Attached to Northeast Normal University
- Changchun 130012
- China
| | - Yudong Liu
- High School Attached to Northeast Normal University
- Changchun 130012
- China
| | - Lu Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Science
- Jilin University
- Changchun 130012
- China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Science
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
129
|
Brackenridge DA, McGuffin LJ. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods with a Focus on FunFOLD3. Methods Mol Biol 2021; 2365:43-58. [PMID: 34432238 DOI: 10.1007/978-1-0716-1665-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are essential molecules with a diverse range of functions; elucidating their biological and biochemical characteristics can be difficult and time consuming using in vitro and/or in vivo methods. Additionally, in vivo protein-ligand binding site elucidation is unable to keep place with current growth in sequencing, leaving the majority of new protein sequences without known functions. Therefore, the development of new methods, which aim to predict the protein-ligand interactions and ligand-binding site residues directly from amino acid sequences, is becoming increasingly important. In silico prediction can utilise either sequence information, structural information or a combination of both. In this chapter, we will discuss the broad range of methods for ligand-binding site prediction from protein structure and we will describe our method, FunFOLD3, for the prediction of protein-ligand interactions and ligand-binding sites based on template-based modelling. Additionally, we will describe the step-by-step instructions using the FunFOLD3 downloadable application along with examples from the Critical Assessment of Techniques for Protein Structure Prediction (CASP) where FunFOLD3 has been used to aid ligand and ligand-binding site prediction. Finally, we will introduce our newer method, FunFOLD3-D, a version of FunFOLD3 which aims to improve template-based protein-ligand binding site prediction through the integration of docking, using AutoDock Vina.
Collapse
|
130
|
Gao DW, Jamieson CS, Wang G, Yan Y, Zhou J, Houk KN, Tang Y. A Polyketide Cyclase That Forms Medium-Ring Lactones. J Am Chem Soc 2020; 143:80-84. [PMID: 33351624 DOI: 10.1021/jacs.0c11226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medium-ring lactones are synthetically challenging due to unfavorable energetics involved in cyclization. We have discovered a thioesterase enzyme DcsB, from the decarestrictine C1 (1) biosynthetic pathway, that efficiently performs medium-ring lactonizations. DcsB shows broad substrate promiscuity toward linear substrates that vary in lengths and substituents, and is a potential biocatalyst for lactonization. X-ray crystal structure and computational analyses provide insights into the molecular basis of catalysis.
Collapse
Affiliation(s)
| | | | - Gaoqian Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | | | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
131
|
Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Front Mol Biosci 2020; 7:586544. [PMID: 33344505 PMCID: PMC7746812 DOI: 10.3389/fmolb.2020.586544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have been recorded on the complex between the edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure has been destabilized by alternately suppressing different co-factors, such as adefovir ligand or ions, revealing several long-distance correlations between the conformation of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall organization of the complex. An allosteric communication between CaM/EF interface and the EF catalytic site, highlighted by these correlations, was confirmed by several bioinformatics approaches from the literature. A network of hydrogen bonds and stacking interactions extending from the helix V of of CaM, and the residues of the switches A, B and C, and connecting to catalytic site residues, is a plausible candidate for the mediation of allosteric communication. The greatest variability in volume between the different MD conditions was also found for cavities present at the EF/CaM interface and in the EF catalytic site. The similarity between the predictions from literature and the volume variability might introduce the volume variability as new descriptor of allostery.
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | - Damien Monet
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France.,Ecole Doctorale Université Paris Sorbonne, Paris, France
| | | | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR 3528, Paris, France.,Center de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR 3756, Paris, France
| |
Collapse
|
132
|
Jones R, Bragagnolo G, Arranz R, Reguera J. Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature 2020; 589:615-619. [PMID: 33328629 PMCID: PMC7739802 DOI: 10.1038/s41586-020-3036-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Positive-sense single-stranded RNA viruses, such as coronaviruses, flaviviruses and alphaviruses, carry out transcription and replication inside virus-induced membranous organelles within host cells1–7. The remodelling of the host-cell membranes for the formation of these organelles is coupled to the membrane association of viral replication complexes and to RNA synthesis. These viral niches allow for the concentration of metabolites and proteins for the synthesis of viral RNA, and prevent the detection of this RNA by the cellular innate immune system8. Here we present the cryo-electron microscopy structure of non-structural protein 1 (nsP1) of the alphavirus chikungunya virus, which is responsible for RNA capping and membrane binding of the viral replication machinery. The structure shows the enzyme in its active form, assembled in a monotopic membrane-associated dodecameric ring. The structure reveals the structural basis of the coupling between membrane binding, oligomerization and allosteric activation of the capping enzyme. The stoichiometry—with 12 active sites in a single complex—redefines viral replication complexes as RNA synthesis reactors. The ring shape of the complex implies it has a role in controlling access to the viral organelle and ensuring the exit of properly capped viral RNA. Our results provide high-resolution information about the membrane association of the replication machinery of positive-sense single-stranded RNA viruses, and open up avenues for the further characterization of viral replication on cell membranes and the generation of antiviral agents. Cryo-electron microscopy structures of non-structural protein 1 (nsP1) of chikungunya virus reveal the mechanisms that underpin the association of viral replication machinery with virus-induced membranous organelles within host cells.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Rocío Arranz
- National Center of Biotechnology, CSIC, Madrid, Spain
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France. .,INSERM, AFMB UMR7257, Marseille, France.
| |
Collapse
|
133
|
Effect of lysine acetylation on the regulation of Trypanosoma brucei glycosomal aldolase activity. Biochem J 2020; 477:1733-1744. [PMID: 32329788 DOI: 10.1042/bcj20200142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
Post-translational modifications provide suitable mechanisms for cellular adaptation to environmental changes. Lysine acetylation is one of these modifications and occurs with the addition of an acetyl group to Nε-amino chain of this residue, eliminating its positive charge. Recently, we found distinct acetylation profiles of procyclic and bloodstream forms of Trypanosoma brucei, the agent of African Trypanosomiasis. Interestingly, glycolytic enzymes were more acetylated in the procyclic, which develops in insects and uses oxidative phosphorylation to obtain energy, compared with the bloodstream form, whose main source of energy is glycolysis. Here, we investigated whether acetylation regulates the T. brucei fructose 1,6-bisphosphate aldolase. We found that aldolase activity was reduced in procyclic parasites cultivated in the absence of glucose and partial recovered by in vitro deacetylation. Similarly, acetylation of protein extracts from procyclics cultivated in glucose-rich medium, caused a reduction in the aldolase activity. In addition, aldolase acetylation levels were higher in procyclics cultivated in the absence of glucose compared with those cultivated in the presence of glucose. To further confirm the role of acetylation, lysine residues near the catalytic site were substituted by glutamine in recombinant T. brucei aldolase. These replacements, especially K157, inhibited enzymatic activity, changed the electrostatic surface potential, decrease substrate binding and modify the catalytic pocket structure of the enzyme, as predicted by in silico analysis. Taken together, these data confirm the role of acetylation in regulating the activity of an enzyme from the glycolytic pathway of T. brucei, expanding the factors responsible for regulating important pathways in this parasite.
Collapse
|
134
|
Bhattacharya S, Sah PP, Banerjee A, Ray S. Structural impact due to PPQEE deletion in multiple cancer associated protein - Integrin αV: An In silico exploration. Biosystems 2020; 198:104216. [DOI: 10.1016/j.biosystems.2020.104216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
|
135
|
Mirgaux M, Leherte L, Wouters J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1211-1221. [DOI: 10.1107/s2059798320013510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 has sparked interest as an immunotherapeutic target in cancer research. Its structure includes a loop, named the JK-loop, that controls the orientation of the substrate or inhibitor within the active site. However, little has been reported about the crystal structure of this loop. In the present work, the conformation of the JK-loop is determined for the first time in the presence of the heme cofactor in the active site through X-ray diffraction experiments (2.44 Å resolution). Molecular-dynamics trajectories were also obtained to provide dynamic information about the loop according to the presence of cofactor. This new structural and dynamic information highlights the importance of the JK-loop in confining the labile heme cofactor to the active site.
Collapse
|
136
|
Investigating the Multitarget Mechanism of Traditional Chinese Medicine Prescription for Cancer-Related Pain by Using Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7617261. [PMID: 33224254 PMCID: PMC7673937 DOI: 10.1155/2020/7617261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023]
Abstract
Gu-tong formula (GTF) has achieved good curative effects in the treatment of cancer-related pain. However, its potential mechanisms have not been explored. We used network pharmacology and molecular docking to investigate the molecular mechanism and the effective compounds of the prescription. Through the analysis and research in this paper, we obtained 74 effective compounds and 125 drug-disease intersection targets to construct a network, indicating that quercetin, kaempferol, and β-sitosterol were possibly the most important compounds in GTF. The key targets of GTF for cancer-related pain were Jun proto-oncogene (JUN), mitogen-activated protein kinase 1 (MAPK1), and RELA proto-oncogene (RELA). 2204 GO entries and 148 pathways were obtained by GO and KEGG enrichment, respectively, which proved that chemokine, MAPK, and transient receptor potential (TRP) channels can be regulated by GTF. The results of molecular docking showed that stigmasterol had strong binding activity with arginine vasopressin receptor 2 (AVPR2) and C-X3-C motif chemokine ligand 1 (CX3CL1) and cholesterol was more stable with p38 MAPK, prostaglandin-endoperoxide synthase 2 (PTGS2), and transient receptor potential vanilloid-1 (TRPV1). In conclusion, the therapeutic effect of GTF on cancer-related pain is based on the comprehensive pharmacological effect of multicomponent, multitarget, and multichannel pathways. This study provides a theoretical basis for further experimental research in the future.
Collapse
|
137
|
Bell A, Christian L, Hecht D, Huisinga K, Rakus J, Bell E. Teaching virtual protein-centric CUREs and UREs using computational tools. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:646-647. [PMID: 32919430 DOI: 10.1002/bmb.21454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Readily available, free, computational approaches, adaptable for topics accessible for first to senior year classes and individual research projects, emphasizing contributions of noncovalent interactions to structure, binding and catalysis were used to teach Course-based Undergraduate Research Experiences that fulfil generally accepted main CURE components: Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis of quantitative data, Conclusions, and Presentation.
Collapse
Affiliation(s)
- Anthony Bell
- University of San Diego, San Diego, California, USA
| | | | - David Hecht
- Southwestern College, Chula Vista, California, USA
| | | | - John Rakus
- Marshall University, Huntington, West Virginia, USA
| | - Ellis Bell
- University of San Diego, San Diego, California, USA
| |
Collapse
|
138
|
Hu QH, Williams MT, Shulgina I, Fossum CJ, Weeks KM, Adams LM, Reinhardt CR, Musier-Forsyth K, Hati S, Bhattacharyya S. Editing Domain Motions Preorganize the Synthetic Active Site of Prolyl-tRNA Synthetase. ACS Catal 2020; 10:10229-10242. [PMID: 34295570 DOI: 10.1021/acscatal.0c02381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolyl-tRNA synthetases (ProRSs) catalyze the covalent attachment of proline onto cognate tRNAs, an indispensable step for protein synthesis in all living organisms. ProRSs are modular enzymes and the "prokaryotic-like" ProRSs are distinguished from "eukaryotic-like" ProRSs by the presence of an editing domain (INS) inserted between motifs 2 and 3 of the main catalytic domain. Earlier studies suggested the presence of coupled-domain dynamics could contribute to catalysis; however, the role that the distal, highly mobile INS domain plays in catalysis at the synthetic active site is not completely understood. In the present study, a combination of theoretical and experimental approaches has been used to elucidate the precise role of INS domain dynamics. Quantum mechanical/molecular mechanical simulations were carried out to model catalytic Pro-AMP formation by Enterococcus faecalis ProRS. The energetics of the adenylate formation by the wild-type enzyme was computed and contrasted with variants containing active site mutations, as well as a deletion mutant lacking the INS domain. The combined results revealed that two distinct types of dynamics contribute to the enzyme's catalytic power. One set of motions is intrinsic to the INS domain and leads to conformational preorganization that is essential for catalysis. A second type of motion, stemming from the electrostatic reorganization of active site residues, impacts the height and width of the energy profile and has a critical role in fine tuning the substrate orientation to facilitate reactive collisions. Thus, motions in a distal domain can preorganize the active site of an enzyme to optimize catalysis.
Collapse
Affiliation(s)
- Quin H. Hu
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Murphi T. Williams
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carl J. Fossum
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Katelyn M. Weeks
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Lauren M. Adams
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Clorice R. Reinhardt
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin, Eau Claire, Wisconsin 54701, United States
| |
Collapse
|
139
|
Tormet-González GD, Wilson C, de Oliveira GS, dos Santos JC, de Oliveira LG, Dias MVB. An epoxide hydrolase from endophytic Streptomyces shows unique structural features and wide biocatalytic activity. Acta Crystallogr D Struct Biol 2020; 76:868-875. [PMID: 32876062 PMCID: PMC7466753 DOI: 10.1107/s2059798320010402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 11/12/2022] Open
Abstract
The genus Streptomyces is characterized by the production of a wide variety of secondary metabolites with remarkable biological activities and broad antibiotic capabilities. The presence of an unprecedented number of genes encoding hydrolytic enzymes with industrial appeal such as epoxide hydrolases (EHs) reveals its resourceful microscopic machinery. The whole-genome sequence of Streptomyces sp. CBMAI 2042, an endophytic actinobacterium isolated from Citrus sinensis branches, was explored by genome mining, and a putative α/β-epoxide hydrolase named B1EPH2 and encoded by 344 amino acids was selected for functional and structural studies. The crystal structure of B1EPH2 was obtained at a resolution of 2.2 Å and it was found to have a similar fold to other EHs, despite its hexameric quaternary structure, which contrasts with previously solved dimeric and monomeric EH structures. While B1EPH2 has a high sequence similarity to EHB from Mycobacterium tuberculosis, its cavity is similar to that of human EH. A group of 12 aromatic and aliphatic racemic epoxides were assayed to determine the activity of B1EPH2; remarkably, this enzyme was able to hydrolyse all the epoxides to the respective 1,2-diols, indicating a wide-range substrate scope acceptance. Moreover, the (R)- and (S)-enantiomers of styrene oxide, epichlorohydrin and 1,2-epoxybutane were used to monitor enantiopreference. Taken together, the functional and structural analyses indicate that this enzyme is an attractive biocatalyst for future biotechnological applications.
Collapse
Affiliation(s)
- Gabriela D. Tormet-González
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas-SP 3083-970, Brazil
| | - Carolina Wilson
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
- Department of Biology, IBILCE – University of State of São Paulo, São José do Rio Preto-SP 15054-000, Brazil
| | - Gabriel Stephani de Oliveira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Jademilson Celestino dos Santos
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Luciana G. de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas-SP 3083-970, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
- Department of Biology, IBILCE – University of State of São Paulo, São José do Rio Preto-SP 15054-000, Brazil
- Department of Chemistry, University of Warwick, Warwick CV4 7AL, United Kingdom
| |
Collapse
|
140
|
Petratos K, Gessmann R, Daskalakis V, Papadovasilaki M, Papanikolau Y, Tsigos I, Bouriotis V. Structure and Dynamics of a Thermostable Alcohol Dehydrogenase from the Antarctic Psychrophile Moraxella sp. TAE123. ACS OMEGA 2020; 5:14523-14534. [PMID: 32596590 PMCID: PMC7315583 DOI: 10.1021/acsomega.0c01210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The structure of a recombinant (His-tagged at C-terminus) alcohol dehydrogenase (MoADH) from the cold-adapted bacterium Moraxella sp. TAE123 has been refined with X-ray diffraction data extending to 1.9 Å resolution. The enzyme assumes a homo-tetrameric structure. Each subunit comprises two distinct structural domains: the catalytic domain (residues 1-150 and 288-340/345) and the nucleotide-binding domain (residues 151-287). There are two Zn2+ ions in each protein subunit. Two additional zinc ions have been found in the crystal structure between symmetry-related subunits. The structure has been compared with those of homologous enzymes from Geobacillus stearothermophilus (GsADH), Escherichia coli (EcADH), and Thermus sp. ATN1 (ThADH) that thrive in environments of diverse temperatures. Unexpectedly, MoADH has been found active from 10 to at least 53 °C and unfolds at 89 °C according to circular dichroism spectropolarimetry data. MoADH with substrate ethanol exhibits a small value of activation enthalpy ΔH ‡ of 30 kJ mol-1. Molecular dynamics simulations for single subunits of the closely homologous enzymes MoADH and GsADH performed at 280, 310, and 340 K showed enhanced wide-ranging mobility of MoADH at high temperatures and generally lower but more distinct and localized mobility for GsADH. Principal component analysis of the fluctuations of both ADHs resulted in a prominent open-close transition of the structural domains mainly at 280 K for MoADH and 340 K for GsADH. In conclusion, MoADH is a very thermostable, cold-adapted enzyme and the small value of activation enthalpy allows the enzyme to function adequately at low temperatures.
Collapse
Affiliation(s)
- Kyriacos Petratos
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Renate Gessmann
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Vangelis Daskalakis
- Department
of Chemical Engineering, Cyprus University
of Technology, 3603 Limassol, Cyprus
| | - Maria Papadovasilaki
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Yannis Papanikolau
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Iason Tsigos
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Vassilis Bouriotis
- Institute
of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece
- Department
of Biology, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
141
|
Akella R, Drozdz MA, Humphreys JM, Jiou J, Durbacz MZ, Mohammed ZJ, He H, Liwocha J, Sekulski K, Goldsmith EJ. A Phosphorylated Intermediate in the Activation of WNK Kinases. Biochemistry 2020; 59:1747-1755. [PMID: 32314908 PMCID: PMC7914002 DOI: 10.1021/acs.biochem.0c00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
WNK kinases autoactivate by autophosphorylation. Crystallography of the kinase domain of WNK1 phosphorylated on the primary activating site (pWNK1) in the presence of AMP-PNP reveals a well-ordered but inactive configuration. This new pWNK1 structure features specific and unique interactions of the phosphoserine, less hydration, and smaller cavities compared with those of unphosphorylated WNK1 (uWNK1). Because WNKs are activated by osmotic stress in cells, we addressed whether the structure was influenced directly by osmotic pressure. pWNK1 crystals formed in PEG3350 were soaked in the osmolyte sucrose. Suc-WNK1 crystals maintained X-ray diffraction, but the lattice constants and pWNK1 structure changed. Differences were found in the activation loop and helix C, common switch loci in kinase activation. On the basis of these structural changes, we tested for effects on in vitro activity of two WNKs, pWNK1 and pWNK3. The osmolyte PEG400 enhanced ATPase activity. Our data suggest multistage activation of WNKs.
Collapse
Affiliation(s)
- Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - Mateusz A. Drozdz
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - John M. Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - Jenny Jiou
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - Mateusz Z. Durbacz
- Faculty of Agronomy and Bioengineering, University of Life Sciences, Wojska Polskiego 28, 60-624 Poznan, Poland
| | - Zuhair J. Mohammed
- Biomedical Engineering, University of Texas at Dallas, Richardson, TX 75080
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Kamil Sekulski
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| | - Elizabeth J. Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8816, USA
| |
Collapse
|
142
|
Moreau E, Mikulska-Ruminska K, Goulu M, Perrier S, Deshayes C, Stankiewicz M, Apaire-Marchais V, Nowak W, Lapied B. Orthosteric muscarinic receptor activation by the insect repellent IR3535 opens new prospects in insecticide-based vector control. Sci Rep 2020; 10:6842. [PMID: 32321987 PMCID: PMC7176678 DOI: 10.1038/s41598-020-63957-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/08/2020] [Indexed: 01/14/2023] Open
Abstract
The insect repellent IR3535 is one of the important alternative in the fight against mosquito-borne disease such as malaria, dengue, chikungunya, yellow fever and Zika. Using a multidisciplinary approach, we propose the development of an innovative insecticide-based vector control strategy using an unexplored property of IR3535. We have demonstrated that in insect neurosecretory cells, very low concentration of IR3535 induces intracellular calcium rise through cellular mechanisms involving orthosteric/allosteric sites of the M1-muscarinic receptor subtype, G protein βγ subunits, background potassium channel inhibition generating depolarization, which induces voltage-gated calcium channel activation. The resulting internal calcium concentration elevation increases nicotinic receptor sensitivity to the neonicotinoid insecticide thiacloprid. The synergistic interaction between IR3535 and thiacloprid contributes to significantly increase the efficacy of the treatment while reducing concentrations. In this context, IR3535, used as a synergistic agent, seems to promise a new approach in the optimization of the integrated vector management for vector control.
Collapse
Affiliation(s)
- Eléonore Moreau
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, N. Copernicus University, Torun, Poland
| | - Mathilde Goulu
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France
| | - Stéphane Perrier
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France
| | - Caroline Deshayes
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France
| | - Maria Stankiewicz
- Faculty of Biological and Veternary Sciences, N. Copernicus University, Torun, Poland
| | - Véronique Apaire-Marchais
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, N. Copernicus University, Torun, Poland
| | - Bruno Lapied
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, 2 boulevard Lavoisier, 49045, Angers, cedex, France.
| |
Collapse
|
143
|
Tanaka M, Hayakawa K, Ogawa N, Kurokawa T, Kitanishi K, Ite K, Matsui T, Mori Y, Unno M. Structure determination of the human TRPV1 ankyrin-repeat domain under nonreducing conditions. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:130-137. [PMID: 32133998 DOI: 10.1107/s2053230x20001533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/04/2020] [Indexed: 11/10/2022]
Abstract
TRPV1, a member of the transient receptor potential (TRP) channels family, has been found to be involved in redox sensing. The crystal structure of the human TRPV1 ankyrin-repeat domain (TRPV1-ARD) was determined at 4.5 Å resolution under nonreducing conditions. This is the first report of the crystal structure of a ligand-free form of TRPV1-ARD and in particular of the human homologue. The structure showed a unique conformation in finger loop 3 near Cys258, which is most likely to be involved in inter-subunit disulfide-bond formation. Also, in human TRPV1-ARD it was possible for solvent to access Cys258. This structural feature might be related to the high sensitivity of human TRPV1 to oxidants. ESI-MS revealed that Cys258 did not form an S-OH functionality even under nonreducing conditions.
Collapse
Affiliation(s)
- Miki Tanaka
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Kaori Hayakawa
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Nozomi Ogawa
- Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Kitanishi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Kenji Ite
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
144
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
145
|
Arai S, Shibazaki C, Shimizu R, Adachi M, Ishibashi M, Tokunaga H, Tokunaga M. Catalytic mechanism and evolutionary characteristics of thioredoxin from Halobacterium salinarum NRC-1. Acta Crystallogr D Struct Biol 2020; 76:73-84. [PMID: 31909745 DOI: 10.1107/s2059798319015894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Thioredoxin (TRX) is an important antioxidant against oxidative stress. TRX from the extremely halophilic archaeon Halobacterium salinarum NRC-1 (HsTRX-A), which has the highest acidic residue content [(Asp + Glu)/(Arg + Lys + His) = 9.0] among known TRXs, was chosen to elucidate the catalytic mechanism and evolutionary characteristics associated with haloadaptation. X-ray crystallographic analysis revealed that the main-chain structure of HsTRX-A is similar to those of homologous TRXs; for example, the root-mean-square deviations on Cα atoms were <2.3 Å for extant archaeal TRXs and <1.5 Å for resurrected Precambrian TRXs. A unique water network was located near the active-site residues (Cys45 and Cys48) in HsTRX-A, which may enhance the proton transfer required for the reduction of substrates under a high-salt environment. The high density of negative charges on the molecular surface (3.6 × 10-3 e Å-2) should improve the solubility and haloadaptivity. Moreover, circular-dichroism measurements and enzymatic assays using a mutant HsTRX-A with deletion of the long flexible N-terminal region (Ala2-Pro17) revealed that Ala2-Pro17 improves the structural stability and the enzymatic activity of HsTRX-A under high-salt environments (>2 M NaCl). The elongation of the N-terminal region in HsTRX-A accompanies the increased hydrophilicity and acidic residue content but does not affect the structure of the active site. These observations offer insights into molecular evolution for haloadaptation and potential applications in halophilic protein-related biotechnology.
Collapse
Affiliation(s)
- Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Chie Shibazaki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
146
|
Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep 2019; 9:19130. [PMID: 31836723 PMCID: PMC6911004 DOI: 10.1038/s41598-019-55240-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/β-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Collapse
Affiliation(s)
- Katie Pollock
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Cancer Research UK Beatson Institute, Drug Discovery Programme, Glasgow, G61 1BD, United Kingdom
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mariola Zaleska
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mirco Meniconi
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mark Pfuhl
- School of Cardiovascular Medicine and Sciences and Randall Centre, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| | - Sebastian Guettler
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| |
Collapse
|
147
|
Wildner S, Griessner I, Stemeseder T, Regl C, Soh WT, Stock LG, Völker T, Alessandri C, Mari A, Huber CG, Stutz H, Brandstetter H, Gadermaier G. Boiling down the cysteine-stabilized LTP fold - loss of structural and immunological integrity of allergenic Art v 3 and Pru p 3 as a consequence of irreversible lanthionine formation. Mol Immunol 2019; 116:140-150. [DOI: 10.1016/j.molimm.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
|
148
|
Chen X, Liu H, Xie W, Yang Y, Wang Y, Fan Y, Hua Y, Zhu L, Zhao J, Lu T, Chen Y, Zhang Y. Investigation of Crystal Structures in Structure-Based Virtual Screening for Protein Kinase Inhibitors. J Chem Inf Model 2019; 59:5244-5262. [PMID: 31689093 DOI: 10.1021/acs.jcim.9b00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinases are important drug targets in several therapeutic areas ,and structure-based virtual screening (SBVS) is an important strategy in discovering lead compounds for kinase targets. However, there are multiple crystal structures available for each target, and determining which one is the most favorable is a key step in molecular docking for SBVS due to the ligand induce-fit effect. This work aimed to find the most desirable crystal structures for molecular docking by a comprehensive analysis of the protein kinase database which covers 190 different kinases from all eight main kinase families. Through an integrated self-docking and cross-docking evaluation, 86 targets were eventually evaluated on a total of 2608 crystal structures. Results showed that molecular docking has great capability in reproducing conformation of crystallized ligands and for each target, the most favorable crystal structure was selected, and the AGC family outperformed the other family targets based on RMSD comparison. In addition, RMSD values, GlideScore, and corresponding bioactivity data were compared and demonstrated certain relationships. This work provides great convenience for researchers to directly select the optimal crystal structure in SBVS-based kinase drug design and further validates the effectiveness of molecular docking in drug discovery.
Collapse
Affiliation(s)
- Xingye Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Wuchen Xie
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yan Yang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yuchen Wang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yuanrong Fan
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Lu Zhu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Junnan Zhao
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| |
Collapse
|
149
|
A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proc Natl Acad Sci U S A 2019; 116:24500-24506. [PMID: 31727844 PMCID: PMC6900541 DOI: 10.1073/pnas.1916916116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint blockade of programmed death-1 (PD-1) by monoclonal antibody drugs has transformed the treatment of cancer. Small-molecule PD-1 drugs have the potential to offer increased efficacy, safety, and global access. Despite substantial efforts, such small-molecule drugs have been out of reach. We identify a prominent pocket on the ligand-binding surface of human PD-1 that appears to be an attractive small-molecule drug target. The pocket forms when PD-1 is bound to one of its ligands, PD-L2. Our high-resolution crystal structure of the human PD-1/PD-L2 complex facilitates virtual drug-screening efforts and opens additional avenues for the design and discovery of small-molecule PD-1 inhibitors. Our work provides a strategy that may enable discovery of small-molecule inhibitors of other “undruggable” protein–protein interactions. Immune checkpoint blockade of programmed death-1 (PD-1) by monoclonal antibody drugs has delivered breakthroughs in the treatment of cancer. Nonetheless, small-molecule PD-1 inhibitors could lead to increases in treatment efficacy, safety, and global access. While the ligand-binding surface of apo-PD-1 is relatively flat, it harbors a striking pocket in the murine PD-1/PD-L2 structure. An analogous pocket in human PD-1 may serve as a small-molecule drug target, but the structure of the human complex is unknown. Because the CC′ and FG loops in murine PD-1 adopt new conformations upon binding PD-L2, we hypothesized that mutations in these two loops could be coupled to pocket formation and alter PD-1’s affinity for PD-L2. Here, we conducted deep mutational scanning in these loops and used yeast surface display to select for enhanced PD-L2 binding. A PD-1 variant with three substitutions binds PD-L2 with an affinity two orders of magnitude higher than that of the wild-type protein, permitting crystallization of the complex. We determined the X-ray crystal structures of the human triple-mutant PD-1/PD-L2 complex and the apo triple-mutant PD-1 variant at 2.0 Å and 1.2 Å resolution, respectively. Binding of PD-L2 is accompanied by formation of a prominent pocket in human PD-1, as well as substantial conformational changes in the CC′ and FG loops. The structure of the apo triple-mutant PD-1 shows that the CC′ loop adopts the ligand-bound conformation, providing support for allostery between the loop and pocket. This human PD-1/PD-L2 structure provide critical insights for the design and discovery of small-molecule PD-1 inhibitors.
Collapse
|
150
|
Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies. J Comput Aided Mol Des 2019; 33:887-903. [PMID: 31628659 DOI: 10.1007/s10822-019-00235-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
In the current "genomic era" the number of identified genes is growing exponentially. However, the biological function of a large number of the corresponding proteins is still unknown. Recognition of small molecule ligands (e.g., substrates, inhibitors, allosteric regulators, etc.) is pivotal for protein functions in the vast majority of the cases and knowledge of the region where these processes take place is essential for protein function prediction and drug design. In this regard, computational methods represent essential tools to tackle this problem. A significant number of software tools have been developed in the last few years which exploit either protein sequence information, structure information or both. This review describes the most recent developments in protein function recognition and binding site prediction, in terms of both freely-available and commercial solutions and tools, detailing the main characteristics of the considered tools and providing a comparative analysis of their performance.
Collapse
|