101
|
Jagadeesan R, Dash S, Palma CSD, Baptista ISC, Chauhan V, Mäkelä J, Ribeiro AS. Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters. SCIENCE ADVANCES 2025; 11:eadl3570. [PMID: 40378216 DOI: 10.1126/sciadv.adl3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in Escherichia coli have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons' responses are influenced by stress-related changes in premature elongation terminations and internal promoters' activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in E. coli under other stresses and in evolutionarily distant bacteria Bacillus subtilis, Corynebacterium glutamicum, and Helicobacter pylori. Our results suggest that the strength, number, and positioning of operons' internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.
Collapse
Affiliation(s)
- Rahul Jagadeesan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suchintak Dash
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cristina S D Palma
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ines S C Baptista
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vatsala Chauhan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno Mäkelä
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Andre S Ribeiro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
102
|
Engelenburg HJ, van den Bosch AM, Chen JA, Hsiao CC, Melief MJ, Harroud A, Huitinga I, Hamann J, Smolders J. Multiple sclerosis severity variant in DYSF-ZNF638 locus associates with neuronal loss and inflammation. iScience 2025; 28:112430. [PMID: 40352730 PMCID: PMC12063138 DOI: 10.1016/j.isci.2025.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The genetic variant rs10191329AA has been identified to associate with faster disability accrual in multiple sclerosis (MS). We investigated the impact of rs10191329AA carriership on MS pathology and flanking genes dysferlin (DYSF) and zinc finger protein 638 (ZNF638) in the Netherlands Brain Bank cohort (n = 290) by comparing rs10191329AA (n = 6) to matched rs10191329CC carriers (n = 12). rs10191329AA carriership associated with more acute axonal stress, reduced layer 2 neuronal density, and a higher proportion of lesions with foamy microglia. In rs10191329AA donors, normal appearing white matter was characterized by a higher proportion of ZNF638+ oligodendrocytes, and normal appearing gray matter showed more DYSF+ cells. Nuclear RNA sequencing showed an upregulation of mitochondrial genes in rs10191329AA carriers. These data suggest that MS severity associates with an increased susceptibility to neurodegeneration and chronic inflammation. Understanding the role of DYSF, ZNF638, and mitochondrial pathways may reveal new therapeutic targets to attenuate MS progression.
Collapse
Affiliation(s)
- Hendrik J. Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Aletta M.R. van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - J.Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Marie-José Melief
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1054 BE Amsterdam, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
103
|
Jing T, Wang Y, Bu Y, Chen X, Feng S, Liu W, Niyazbekova Z, Chen D, Gao X, Ma W. The whole genome analysis of the wild-type and attenuated orf virus reveals that ORF022 facilitates viral replication. BMC Genomics 2025; 26:488. [PMID: 40375129 DOI: 10.1186/s12864-025-11663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Contagious ecthyma is an acute infectious zoonosis caused by orf virus (ORFV). Live-attenuated ORFV vaccines have played a crucial role in preventing contagious ecthyma for decades. However, these vaccines often fail to induce long-lasting immunity. In recent years, numerous ORFV genome sequences have been published, yet genomic data for attenuated strains remain limited. Furthermore, no comprehensive whole-genome-based single nucleotide polymorphisms (SNPs) analysis has been conducted to compare ORFV wild-type and attenuated strains. RESULTS In this study, we performed whole-genome sequencing of ORFV wild-type and attenuated strains from Shaanxi Province. We identified two ORFV strains with genomes shorter than 130 kb, which are closely related to the SC1 attenuated strain from Sichuan Province. Additionally, we noticed that 24 genes in the attenuated strain had SNPs, with the highest number of mutations occurring in the ORF022 gene. The function of the ORF022 gene has not been previously reported. Through in vitro experiments, we demonstrated that overexpression of ORF022 enhances ORFV replication in cells. The RNA-sequencing analysis revealed that ORF022 modulates host inflammation-related signaling pathways, as evidenced by the suppression of TNF, IL-17, and Toll-like receptor signaling pathways. CONCLUSIONS Our findings suggest that the ORF022 in ORFV wild-type strain inhibits the host inflammatory response, reduces the immune response to ORFV, and facilitates viral replication. SNP events in attenuated strains (aFX0910) are one of the reasons for its attenuation. Investigations into the genomic sequences of attenuated viruses and the functional impact of mutated genes provide valuable insights into the mechanisms underlying ORFV attenuation and offer a foundation for the development of more effective ORFV vaccines.
Collapse
Affiliation(s)
- Tian Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yunpeng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yukun Bu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Shutong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wenbo Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, 810016, Xining, China.
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
104
|
Carlson EG, Lopez JC, Yamaguchi Y, Gibson J, Priceman SJ, LaBarge MA. CD105 + fibroblasts support an immunosuppressive niche in women at high risk of breast cancer initiation. Breast Cancer Res 2025; 27:81. [PMID: 40375322 DOI: 10.1186/s13058-025-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Aging is the greatest risk factor for breast cancer, and although epithelial cells are the source of carcinomas, epithelial changes alone do not fully explain cancer susceptibility. Fibroblasts and macrophages are key stromal constituents around the cells of origin for cancer in breast tissue. With age, macrophages surrounding terminal ductal lobular units (TDLUs) become increasingly immunosuppressive. CD105+ fibroblasts intercalate within TDLUs, drive luminal differentiation, and give rise to immunosuppressive cancer-associated fibroblasts in other tissues. We propose that differences in fibroblasts are a crucial component of the stroma that shapes cancer susceptibility. METHODS Primary peri-epithelial fibroblast cultures were established from prophylactic and reduction mammoplasties from 30 women ranging in age from 16 to 70 years and from BRCA1 mutation carriers. Growth characteristics, transcriptional profiles, differentiation potential, and secreted proteins were profiled for fibroblast subtypes from diverse donors. Co-cultures with fibroblasts, macrophages, and T cells were used to ascertain the functional role played by CD105+ fibroblasts in immune cell modulation. RESULTS We found that peri-epithelial CD105+ fibroblasts are enriched in older women as well as women who carry BRCA1 mutations. These CD105+ fibroblasts exhibit robust adipogenesis and secrete factors related to macrophage polarization. Macrophages cocultured with fibroblasts better maintain or enhance polarization states than media alone. CD105+ fibroblasts increased expression of immunosuppressive macrophage genes. CD105+ fibroblasts supported anti-inflammatory macrophage-mediated suppression of T cell proliferation, whereas CD105- fibroblasts significantly reduced the suppressive effect of anti-inflammatory macrophages on T cell proliferation. CONCLUSIONS Establishment of a coculture system to dissect the molecular circuits between CD105+ fibroblasts and macrophages that drive immunosuppressive macrophage polarization has broad utility in understanding mammary gland development and events that precede cancer initiation. CD105+ fibroblasts and macrophages may coordinate to suppress immunosurveillance and increase breast cancer susceptibility.
Collapse
Affiliation(s)
- Eric G Carlson
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Jennifer C Lopez
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope, Duarte, CA, USA.
| |
Collapse
|
105
|
Fall ML, Xu D, Lemoyne P, Clément G, Moffett P, Ritzenthaler C. An Innovative Binding-Protein-Based dsRNA Extraction Method: Comparison of Cost-Effectiveness of Virus Detection Methods Using High-Throughput Sequencing. Mol Ecol Resour 2025:e14111. [PMID: 40370068 DOI: 10.1111/1755-0998.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 05/16/2025]
Abstract
Viral diseases represent a threat to global food production. Managing the impact of viruses on crop production requires the ability to monitor viruses, study their ecology and anticipate outbreaks. Double-stranded RNA (dsRNA) sequencing is a well-established and reliable method of detecting viruses and studying virome-host interactions and ecology. Compared to total RNA extraction, dsRNA extraction eliminates the majority of host RNAs, improving the recovery of viral RNAs. In this study, we developed and evaluated a novel dsRNA extraction method for high-throughput sequencing (HTS) applications based on the Flock House virus (FHV) B2 protein (B2-based method), and compared its performance with that of established cellulose-based and DRB4-based methods (commercial kit), as well as total RNA extraction techniques. The electrostatic properties of B2 have been instrumental in developing a bead-free and resin-free dsRNA extraction method. The B2-based method demonstrated high viral read recovery, achieving proportions exceeding 20% in most samples, and provided better dsRNA purity with less low weight molecule co-extracted RNA than the DRB4-based method and cellulose-based methods. Despite producing overall fewer total reads than the DRB4-based method, the B2-based enrichment for viral-derived dsRNA was better, with a higher percentage of viral reads, making it effective in virome profiling. Furthermore, it had an excellent detection specificity (0.97) and a good detection sensitivity (0.71), minimising false positives and false negatives. In addition, the B2-based method proved to be highly cost-effective, with a per-reaction cost of $4.47, compared to $35.34 for the DRB4-based method. This method offers a practical solution for laboratories with limited resources or for large-scale sampling for viral ecology studies. Future improvements to the B2-based method should focus on optimising sensitivity to Vitivirus species and developing scalable, automated workflows for high-throughput viral detection.
Collapse
Affiliation(s)
- Mamadou L Fall
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Dong Xu
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Pierre Lemoyne
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Geneviève Clément
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Qué-bec, Canada
| | - Peter Moffett
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Qué-bec, Canada
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
106
|
Kiiru S, Kasiano P, Maina J, Mwaniki JN, Songoro E, Kariuki S. Molecular characterization of multidrug-resistant E. coli recovered from diarrheagenic children under 5 years from Mukuru Informal Settlement, Nairobi, Kenya, based on whole-genome sequencing analysis. Microbiol Spectr 2025:e0142024. [PMID: 40372033 DOI: 10.1128/spectrum.01420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/29/2025] [Indexed: 05/16/2025] Open
Abstract
High genomic plasticity within Escherichia coli enables it to acquire and accumulate genetic material through horizontal gene transfer. In this study, we sought to investigate the virulence genes, phylogroups, antibiotic resistance genes, plasmid replicons, multilocus sequence types (MLST), and core genome MLST of multidrug-resistant E. coli recovered from diarrheagenic children under 5 years from Mukuru Informal Settlement in Nairobi, Kenya. A total of 39 multidrug-resistant (MDR) strains had their DNA extracted, and whole-genome sequencing was done using the Illumina HiSeq 2000 platform. Twenty-six E. coli assemblies were analyzed using web-based bioinformatics tools available at the Centre for Genomic Epidemiology and EnteroBase. The isolates were categorized into four main phylogroups, where 10/26 (38.5%) belonged to the B2 phylogroup, 4/26 (15.4%) belonged to D, 3/26 (11.5%) belonged to A, 1/26 (3.8%) belonged to B1, while 8/26 (30.8%) were not determined. FimH30 was predominantly found in the most frequent phylogroup B2 and sequence type (ST) 131. The most common beta-lactam resistance genes were bla TEM-1B and blaCTXM 15, followed by three fluoroquinolone resistance genes [qnrS1 6/26 (23.1%), qnrB4 2/26 (7.7%), and aac(6')-Ib-cr, 8/26 (30.8%)]. Of 26 isolates, 15 had at least one amino acid substitution in the housekeeping genes gyrA (p.S83L), gyrA (p.D87N), parC (p.S80I), parC (p.E84V), parC (p.S57T), and parE (p.I529L), associated with resistance to fluoroquinolones. A total of 40 diverse virulence genes were detected among the isolates. Thirteen different STs were isolated from the E. coli genomes, which included ST 131, ST 3036, ST 38, ST 10, ST 12569, ST 15271, ST 2076, ST 311, ST 3572, ST 394, ST 453, ST 46, and ST 1722. Only two isolates (2/26, 7.7%) from the Municipal City Council clinic were genetically related. Additionally, the most abundant plasmid replicon identified belonged to the IncF family, IncFII(pRSB107), in particular, followed by the Col family. The study highlighted the first E. coli ST46 to harbor the bla NDM5 gene encoded in Col(BS512), IncFII(pRSB107), and IncFIB(AP001918) plasmid replicons in Kenya. We further demonstrated the diversity of MDR E. coli associated with diarrhea in an endemic setting in Kenya. IMPORTANCE This study investigated the molecular characterization of multidrug-resistant Escherichia coli isolated from diarrheagenic children under 5 years of age in Mukuru Informal Settlement in Nairobi, Kenya. This is an important addition to the genomic analysis data of multi-drug resistant diarrheal Escherichia coli in Kenya. The use of whole-genome sequencing to identify and characterize these isolates is valuable and provides valuable insights into the molecular epidemiology of E. coli in the region.
Collapse
Affiliation(s)
- Susan Kiiru
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - Purity Kasiano
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - John Maina
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John Njeru Mwaniki
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edinah Songoro
- Jomo Kenyatta University of Agriculture and Technology, JKUAT, Nairobi, Kenya
| | - Samuel Kariuki
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Drugs for Neglected Diseases initiative, Eastern Africa, Nairobi, Kenya
| |
Collapse
|
107
|
Li J, Zhu L, Li X, Han X, Yi J, Wu Y, Wang M. Characterization and risk-quantification of antibiotic resistome in grain-based and non-grain cropping soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126147. [PMID: 40157487 DOI: 10.1016/j.envpol.2025.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Microbial contamination in soils, encompassing human bacterial pathogens (HBPs), antibiotic resistance genes (ARGs), and virulence factor genes (VFGs), poses a significant threat to human health via the food chain. Currently, there is a lack of comprehensive assessments of microbial contamination and associated health risks of ARGs in agricultural soils. In this study, metagenomic sequencing was used to evaluate microbial contamination in grain-based cropping soils (rice cultivation) and non-grain cropping soils (vegetable cultivation and aquaculture). The results showed that the diversity and abundance of HBPs and VFGs were significantly higher in non-grain soils. Further resistome analysis revealed higher abundances of high-risk (from 0.014 to 0.018-0.023) and "last-resort" ARGs (from 0.007 to 0.034-0.046) in non-grain soils. Besides ARGs abundance, health risk quantification revealed that non-grain soils exhibited 1.49-2.14-fold greater ARG-related risks than grain-based soils. Additionally, stronger network associations were found between HBPs, ARGs, and mobile genetic elements (MGEs) in non-grain soils. This study indicated that the non-grain cropping pattern of soils elevated the risk of microbial contamination and ARGs health risk, which provided an important basis for accurately quantifying the risk of microbial contamination in different agricultural soils.
Collapse
Affiliation(s)
- Jingpeng Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaodi Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuezhu Han
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiaming Yi
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Wu
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
108
|
Suzuki M, Hayashi T, Takahashi K, Nozaki K, Kasuya KI. Exploring biodegradation limits of n-alkanes as polyethylene models using multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179365. [PMID: 40222247 DOI: 10.1016/j.scitotenv.2025.179365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Polyethylene (PE) is widely regarded as non-biodegradable in natural environments, despite reports suggesting partial biotic degradation. Using multi-omics analysis, this study investigated the biodegradation mechanisms of n-alkanes-structural analogs of PE-to determine the threshold carbon number in PE that allows for environmental biodegradation. n-Alkanes with 6-40 carbons (C6-C40) were biodegraded in the soil, whereas C44 and PE were not. 16S rRNA gene amplicon sequence analysis identified distinct microbial communities associated with non-degradable compounds (PEs and C44) and biodegradable alkanes (C6-C40). Notably, the microbial community composition for C40 differed from those associated with biodegradable alkanes below C36. Multi-omics analysis identified the genera Aeromicrobium, Nocardia, Nocardioides, Rhodococcus, Acinetobacter, and Fontimonas as key degraders of n-alkanes at C36 and below, utilizing alkane hydroxylases such as alkane monooxygenase (AlkB), LC-alkane monooxygenase from Acinetobacter (AlmA), and cytochrome P450 (CYP153). Conversely, the biodegradation of C40 was facilitated by taxa, including the order Acidimicrobiales and the genera, Acidovorax, Sphingorhabdus, Prosthecobacter, and Roseimicrobium using AlmA and CYP153-type hydroxylases. This difference in key degraders and alkane hydroxylases may explain the reduced biodegradability of n-alkanes above C40, including PE.
Collapse
Affiliation(s)
- Miwa Suzuki
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Takuya Hayashi
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Kohei Takahashi
- Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Ken-Ichi Kasuya
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan; Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
109
|
Langeberg CJ, Szucs MJ, Sherlock ME, Vicens Q, Kieft JS. Tick-borne flavivirus exoribonuclease-resistant RNAs contain a double loop structure. Nat Commun 2025; 16:4515. [PMID: 40374626 DOI: 10.1038/s41467-025-59657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
Viruses from the Flaviviridae family contain human relevant pathogens that generate subgenomic noncoding RNAs during infection using structured exoribonuclease resistant RNAs (xrRNAs). These xrRNAs block progression of host cell's 5' to 3' exoribonucleases. The structures of several xrRNAs from mosquito-borne and insect-specific flaviviruses reveal a conserved fold in which a ring-like motif encircles the 5' end of the xrRNA. However, the xrRNAs found in tick-borne and no known vector flaviviruses have distinct characteristics, and their 3-D fold was unsolved. Here, we verify the presence of xrRNAs in the encephalitis-causing tick-borne Powassan Virus. We characterize their secondary structure and obtain a mid-resolution map of one of these xrRNAs using cryo-EM, revealing a unique double-loop ring element. Integrating these results with covariation analysis, biochemical data, and existing high-resolution structural information yields a model in which the core of the fold matches the previously solved xrRNA fold, but the expanded double loop ring is remodeled upon encountering the exoribonuclease. These results are representative of a broad class of xrRNAs and reveal a conserved strategy of structure-based exoribonuclease resistance achieved through a unique topology across a viral family of importance to global health.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Matthew J Szucs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- New York Structural Biology Center, New York, NY, USA.
| |
Collapse
|
110
|
Basak S, Saikia K, Konwar AN, Hepat RP, Patra A, Borah R, Bojko J, Mukherjee AK, Thakur D. Phenotypic and molecular insights into a cypovirus isolated from Antheraea assamensis Helfer ( Lepidoptera: Saturniidae) and modelling of its polyhedrin protein structure. J Biomol Struct Dyn 2025:1-15. [PMID: 40372236 DOI: 10.1080/07391102.2025.2501674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/20/2024] [Indexed: 05/16/2025]
Abstract
Antheraea assamensis Helfer (A. assamensis) or Muga silkworm is popularly known for producing golden silk and endemic to the region of Northeast India. The present work characterizes a cypovirus variant infecting A. assamensis larvae, exhibiting characteristic symptoms of flacherie disease. Scanning electron microscope and transmission electron microscope imaging revealed the presence of polyhedral occlusion bodies (OBs) and virion particles measuring 40-50 nm in size. The cypovirus strain comprised of 10 dsRNA genome segments, which were sequenced, assembled and annotated. The encoded viral proteins from different genomic fragments were studied. The phylogenetic analysis of the RNA-dependent RNA polymerase and polyhedrin revealed a close relationship with the previously classified Antheraea mylitta cypovirus 4. The strain was characterized as Antheraea assamensis cypovirus 4 (AaCPV4) with substantial genomic and proteomic evidence that was previously unexplored. The peptide fingerprints of the polyhedrin protein were analysed in the diseased and healthy silkworm lysate by using LC-MS/MS. The polyhedrin protein of AaCPV4 was modelled by different in silico methods and compared with the previously reported cypovirus strains. The multimeric models of polyhedrin were studied and demonstrated the mechanism of formation of OB geometry. Our study provides new insights into the complete genome of AaCPV4 and its viral proteins, which were previously unknown. The present work will help in understanding the differentiation of CPV4 variants infecting Antheraea species and different host adaptations.
Collapse
Affiliation(s)
- Surajit Basak
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rahul P Hepat
- Seri-Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Rajiv Borah
- Trinity Centre for Biomedical Engineering, Dept. of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington, Durham, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, North Yorkshire, UK
| | - Ashis Kumar Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
111
|
Shi Y, Sun Q, Jia F, Xie X, Zhou X, Guo R, Zeng Y, Chen S, Guo Z, Sun W, Guo T, Xia Y, Li W, Zhang L, Shi W, Yu Y. Oncogenic fusions converge on shared mechanisms in initiating astroblastoma. Nature 2025:10.1038/s41586-025-08981-5. [PMID: 40369078 DOI: 10.1038/s41586-025-08981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Chromosomal rearrangements and gene fusions are the initial events in the development of many cancers. Astroblastoma (ABM), a brain cancer of unknown cellular origin and challenging to treat, is associated with diverse in-frame gene fusions, including MN1-BEND2 and MN1-CXXC5 (refs. 1,2). However, it remains unclear whether these gene fusions contribute to tumorigenesis. Here we show in mice that these two ABM-associated fusions converge on similar molecular activities and initiate malignancy specifically in ventral telencephalon neural progenitors. BEND2 and CXXC5 recognize similar DNA motifs, which indicates a convergence on downstream gene regulation. Expression of MN1-BEND2 in ventral telencephalon neural progenitors results in aberrant cell proliferation, impaired differentiation, a perivascular occupancy pattern of cells reminiscent of ABM and acquisition of an ABM-associated transcriptional signature. By contrast, MN1-BEND2 expression in dorsal telencephalon neural progenitors leads to extensive cell death. This cell-type-specific malignancy depends on OLIG2 expression. Mechanistically, both ABM-associated fusion proteins (MN1-BEND2 and MN1-CXXC5) induce overlapping transcriptional responses, including the activation of a therapeutically targetable PDGFRα pathway. Collectively, our data suggest that distinct ABM-associated fusions upregulate shared transcriptional networks to disrupt the normal development of ventral telencephalon neural progenitors, which leads to oncogenic transformation. These findings uncover new avenues for targeted ABM treatment.
Collapse
Affiliation(s)
- Yixing Shi
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Qianqian Sun
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fuchuan Jia
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiangyu Xie
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiangyu Zhou
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Rong Guo
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yangfan Zeng
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shanshan Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Zhenzhen Guo
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Wenli Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Tong Guo
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yu Xia
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Li Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shi
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Yang Yu
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
112
|
Zhao D, Salas-Leiva DE, Williams SK, Dunn KA, Shao JD, Roger AJ. Eukfinder: a pipeline to retrieve microbial eukaryote genome sequences from metagenomic data. mBio 2025; 16:e0069925. [PMID: 40207938 PMCID: PMC12077102 DOI: 10.1128/mbio.00699-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Whole-genome shotgun (WGS) metagenomic sequencing of microbial communities enables the discovery of the functions, physiologies, and evolutionary histories of prokaryotic and eukaryotic microbes. However, metagenomic studies of microbial eukaryotes lag due to challenges in identifying and assembling high-quality genomes from WGS data. To address this problem, we developed Eukfinder, a bioinformatics pipeline that identifies potential eukaryotic sequences from WGS metagenomic data, with a complementary binning workflow for recovering nuclear and mitochondrial genomes. Eukfinder uses two specialized databases for read/contig classification, customizable to specific data sets or environments. We tested Eukfinder on simulated gut microbiome data sets which included varying numbers of reads from the protist Blastocystis, a human gut commensal. We also applied Eukfinder to previously published human gut microbiome WGS metagenomic data to recover new genomes of Blastocystis. Compared to other workflows, Eukfinder offers the potential to recover high-quality, near-complete genomes of diverse eukaryotes, including different Blastocystis subtypes, without relying on a reference genome. With sufficient sequencing depth, Eukfinder outperforms similar tools for recovering eukaryotic genomes from metagenomic data. Eukfinder is a valuable tool for reference-independent and cultivation-free studies of eukaryotic microbial genomes from environmental WGS metagenomic samples. IMPORTANCE Advancements in next-generation sequencing have made whole-genome shotgun (WGS) metagenomic sequencing an efficient method for de novo reconstruction of microbial genomes from various environments. Thousands of new prokaryotic genomes have been characterized; however, the large size and complexity of protistan genomes have hindered the use of WGS metagenomics to sample microbial eukaryotic diversity. Eukfinder enables the recovery of eukaryotic microbial genomes from environmental WGS metagenomic samples. Retrieval of high-quality protistan genomes from diverse metagenomic samples increases the number of reference genomes available. This aids future metagenomic investigations into the functions, physiologies, and evolutionary histories of eukaryotic microbes in the gut microbiome and other ecosystems.
Collapse
Affiliation(s)
- Dandan Zhao
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dayana E. Salas-Leiva
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry, Cambridge University, Cambridge, England, United Kingdom
| | - Shelby K. Williams
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katherine A. Dunn
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason D. Shao
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
113
|
Guérin F, Sassi M, Gravey F, Zouari A, Quenet B, Lecourt M, Ract P, Michaux C, Auzou M, Isnard C, Cattoir V. Lactobacillus delbrueckii subsp. allosunkii and lactis as emerging human uropathogens in elderly patients. J Clin Microbiol 2025; 63:e0207224. [PMID: 40265910 PMCID: PMC12077209 DOI: 10.1128/jcm.02072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/22/2025] [Indexed: 04/24/2025] Open
Abstract
Lactobacillus delbrueckii has been considered a very rare cause of human urinary tract infections (UTIs). However, little is known about its clinical significance and antimicrobial susceptibility, and genomic data from clinical isolates are lacking. This study aimed at analyzing clinical, microbiological, and genomic data of L. delbrueckii urinary isolates. All L. delbrueckii isolates collected from patients hospitalized in a French university hospital from 2014 to 2016 were included. Clinical and biological data were gathered. Species identification was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and MICs were determined using the broth microdilution method. Whole genome sequencing (WGS) was conducted (Illumina MiSeq 2 × 300 bp), and genomes were compared using three approaches (multilocus sequence typing [MLST], average nucleotide identity [ANI], and core genome single nucleotide polymorphism [SNP]). From 2014 to 2016, 48 isolates of L. delbrueckii were recovered from the urine of 48 patients (mean age = 84 years; sex ratio M/F = 0.04). Nearly half (44%) of patients were diagnosed with a UTI, and all had significant cultures (≥105 CFU/mL) with a positive direct examination in >90% of cases. The majority of isolates were susceptible to most antibiotics (especially β-lactams), whereas they seemed intrinsically resistant to fosfomycin and metronidazole. Subspecies identification was consistent across the three approaches, showing that most L. delbrueckii isolates belonged to subspecies allosunkii (n = 40; 83%), followed by subspecies lactis (n = 8; 17%). Two isolates were resistant to tetracycline (MIC >16 mg/L) and both harbored the tet(W) gene. This study demonstrates the uropathogenic role of L. delbruekii subspecies allosunkii and lactis, particularly in elderly female patients.IMPORTANCEThis largest case series of urinary tract infections (UTIs) caused by Lactobacillus delbrueckii clearly demonstrates the uropathogenic role of this species (especially the subspecies allosunkii) in human UTIs, particularly in elderly female patients and those with underlying comorbidities. This study may change practice in two ways: (i) clinical laboratories, which typically consider lactobacilli from urine samples as contaminants, may need to reassess this practice; (ii) patient care can be improved by prescribing appropriate antibiotics for these underdiagnosed UTIs. L. delbrueckii should be considered an actual pathogen when it is significantly found in the urine of predisposed patients with clinical and/or biological signs of infection. While matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry allows reliable identification of L. delbrueckii, there is also a need for better discrimination between subspecies (especially allosunkii and lactis). Since L. delbrueckii isolates are usually susceptible to many antibiotics, we recommend β-lactams (especially aminopenicillins) for the treatment of those UTIs.
Collapse
Affiliation(s)
- François Guérin
- INSERM UMR 1230 BRM, Université de Rennes, Rennes, France
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- CHU Rennes, CNR de la Résistance aux Antibiotiques (laboratoire associé ‘Entérocoques’), Rennes, France
| | - Mohamed Sassi
- INSERM UMR 1230 BRM, Université de Rennes, Rennes, France
| | - Francois Gravey
- CHU de Caen, Service de Microbiologie, Caen, France
- INSERM UMR 1311 DYNAMICURE, Normandie Université, Caen, France
| | - Asma Zouari
- CHU Rennes, CNR de la Résistance aux Antibiotiques (laboratoire associé ‘Entérocoques’), Rennes, France
| | | | - Maxime Lecourt
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- CHU Rennes, CNR de la Résistance aux Antibiotiques (laboratoire associé ‘Entérocoques’), Rennes, France
| | - Pauline Ract
- CHU de Caen, Service de Microbiologie, Caen, France
| | | | - Michel Auzou
- CHU de Caen, Service de Microbiologie, Caen, France
| | - Christophe Isnard
- CHU de Caen, Service de Microbiologie, Caen, France
- INSERM UMR 1311 DYNAMICURE, Normandie Université, Caen, France
| | - Vincent Cattoir
- INSERM UMR 1230 BRM, Université de Rennes, Rennes, France
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- CHU Rennes, CNR de la Résistance aux Antibiotiques (laboratoire associé ‘Entérocoques’), Rennes, France
| |
Collapse
|
114
|
Rodrigues FM, Majeres LE, Dilger AC, McCann JC, Cassady CJ, Shike DW, Beever JE. Characterizing differences in the muscle transcriptome between cattle with alternative LCORL-NCAPG haplotypes. BMC Genomics 2025; 26:479. [PMID: 40369436 PMCID: PMC12076881 DOI: 10.1186/s12864-025-11665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The LCORL-NCAPG locus is a major quantitative trait locus (QTL) on bovine chromosome 6 (BTA6) that influences growth and carcass composition in cattle. To further understand the molecular mechanism responsible for the phenotypic changes associated with this locus, twenty-four Charolais-sired calves were selected for muscle transcriptome analysis based on alternative homozygous LCORL-NCAPG haplotypes (i.e., 12 "QQ" and 12 "qq", where "Q" is a haplotype harboring variation associated with increased growth). At 300 days of age, a biopsy of the longissimus dorsi muscle was collected from each animal for RNA sequencing. RESULTS Gene expression analysis identified 733 genes as differentially expressed between QQ and qq animals (q-value < 0.05). Notably, LCORL and genes known to be important regulators of growth such as IGF2 were upregulated in QQ individuals, while genes associated with adiposity such as FASN and LEP were downregulated, reflecting the increase in lean growth associated with this locus. Gene set enrichment analysis demonstrated QQ individuals had downregulation of pathways associated with adipogenesis, alongside upregulation of transcripts for cellular machinery essential for protein synthesis and energy metabolism, particularly ribosomal and mitochondrial components. CONCLUSIONS The differences in the muscle transcriptome between QQ and qq animals imply that muscle hypertrophy may be metabolically favored over accumulation of fat in animals with the QQ haplotype. Our findings also suggest this haplotype could be linked to a difference in LCORL expression that potentially influences the downstream transcriptional effects observed, though further research will be needed to confirm the molecular mechanisms underlying the associated changes in phenotype.
Collapse
Affiliation(s)
- Fernanda Martins Rodrigues
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Biological and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Leif E Majeres
- Department of Animal Science and Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Cassady
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Dan W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan E Beever
- Department of Animal Science and Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
115
|
Jin QY, Torres RC, Yang C, He LH, Liu ZC, Li WQ, Liu WD, Zhang LF, Falush D, Zhang Y, Pan KF. Population structure of Helicobacter pylori and antibiotic resistance-associated variants in a high-risk area of gastric cancer. J Clin Microbiol 2025; 63:e0003325. [PMID: 40214252 PMCID: PMC12077087 DOI: 10.1128/jcm.00033-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025] Open
Abstract
The increasing antibiotic resistance of Helicobacter pylori has had a serious impact on gastric cancer prevention. Our study aimed to profile the genomic characteristics and explore variants associated with resistance in H. pylori strains from a high-risk area of gastric cancer in China. We isolated 153 strains from a community-based cohort and assessed their susceptibility to six antibiotics by MIC Test Strip and genomic characteristics by whole-genome sequencing. Phylogenetic analysis identified the strains as an independent cluster within H. pylori East Asian population (hpEastAsia). HefA, an efflux pump gene, showed the highest differentiation in the Linqu strains compared with the other Chinese strains. Bacterial genome-wide association study (GWAS) identified 86 resistance variants covering 44 genes. Novel resistance variants were found in lon and babA for metronidazole, HP1168 for clarithromycin, hcpC for levofloxacin, and sabA for rifamycin. Two newly identified hefA mutations (R229K and A283V) showed significant associations with metronidazole (P = 0.012) and tetracycline (P = 0.044) resistance, respectively. HefA mutations and GWAS variants were integrated with the significant literature-reported mutations to optimize the prediction models for metronidazole, levofloxacin, clarithromycin, and tetracycline resistance with area under the receiver operating characteristic curves of 0.82-0.93. Double-antibiotic resistance models were established for clinical applicability. Furthermore, hefA expression may play a potential mediating role in the associations between mutations and resistance. This study identified genetic independence in the representative H. pylori strains from a high-risk area of gastric cancer. Optimized resistance prediction panels, including novel hefA mutations and GWAS variants, may provide preliminary guidance for localized precise treatment and helpful experiences for the similar high-risk populations.IMPORTANCEHelicobacter pylori is a remarkable pathogen due to its virulence in gastric cancer and high genetic plasticity. Linqu County in China, a high-risk area of gastric cancer, faces serious antibiotic resistance issues and necessitates genomic profiling of local H. pylori strains. Phylogenetic analysis revealed the Linqu strains as a relatively independent cluster within the hpEastAsia population. Novel antibiotic resistance-associated hefA mutations and variants from our bacterial genome-wide association study in the Linqu strains were optimized to improve the prediction performances for single antibiotic and double-drug combination resistance compared with traditional literature-reported mutations. This study identified relative genetic independence and high differentiation in the representative H. pylori strains from a population with high risk of gastric cancer and high prevalence of antibiotic resistance. The optimized panels with novel variants improve antibiotic resistance prediction models compared with literature-reported mutations, providing guidance for localized precise treatment and suggesting prevention strategies for similar high-risk populations.
Collapse
Affiliation(s)
- Qiu-Yu Jin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University International Cancer Institute, Beijing, China
| | - Roberto C. Torres
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection,Chinese Academy of Sciences, Shanghai, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection,Chinese Academy of Sciences, Shanghai, China
| | - Li- Hua He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases,National Institute for Communicable Disease Control and Prevention,Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zong-Chao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University International Cancer Institute, Beijing, China
| | - Wen-Qing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University International Cancer Institute, Beijing, China
| | | | | | - Daniel Falush
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection,Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology,Peking University Cancer Hospital & Institute, Beijing, China
| | - Kai-Feng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University International Cancer Institute, Beijing, China
| |
Collapse
|
116
|
Bellini NK, de Lima PLC, Pires DDS, da Cunha JPC. Hidden origami in Trypanosoma cruzi nuclei highlights its non-random 3D genomic organization. mBio 2025; 16:e0386124. [PMID: 40243368 PMCID: PMC12077095 DOI: 10.1128/mbio.03861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease and is known for its polycistronic transcription, with about 50% of its genome consisting of repetitive sequences, including coding (primarily multigenic families) and non-coding regions (such as ribosomal DNA, spliced leader [SL], and retroelements, etc). Here, we evaluated the genomic features associated with higher-order chromatin organization in T. cruzi (Brazil A4 strain) by extensive computational processing of high-throughput chromosome conformation capture (Hi-C). Through the mHi-C pipeline, designed to handle multimapping reads, we demonstrated that applying canonical Hi-C processing, which overlooks repetitive DNA sequences, results in a loss of DNA-DNA contacts, misidentifying them as chromatin-folding (CF) boundaries. Our analysis revealed that loci encoding multigenic families of virulence factors are enriched in chromatin loops and form shorter and tighter CF domains than the loci encoding core genes. We uncovered a non-random three-dimensional (3D) genomic organization in which nonprotein-coding RNA loci (transfer RNAs [tRNAs], small nuclear RNAs, and small nucleolar RNAs) and transcription termination sites are preferentially located at the boundaries of the CF domains. Our data indicate 3D clustering of tRNA loci, likely optimizing transcription by RNA polymerase III, and a complex interaction between spliced leader RNA and 18S rRNA loci, suggesting a link between RNA polymerase I and II machineries. Finally, we highlighted a group of genes encoding virulence factors that interact with SL-RNA loci, suggesting a potential regulatory role. Our findings provide insights into 3D genome organization in T. cruzi, contributing to the understanding of supranucleosomal-level chromatin organization and suggesting possible links between 3D architecture and gene expression.IMPORTANCEDespite the knowledge about the linear genome sequence and the identification of numerous virulence factors in the protozoan parasite Trypanosoma cruzi, there has been a limited understanding of how these genomic features are spatially organized within the nucleus and how this organization impacts gene regulation and pathogenicity. By providing a detailed analysis of the three-dimensional (3D) chromatin architecture in T. cruzi, our study contributed to narrowing this gap. We deciphered part of the origami structure hidden in the T. cruzi nucleus, showing the unidimensional genomic features are non-randomly 3D organized in the nuclear organelle. We uncovered the role of nonprotein-coding RNA loci (e.g., transfer RNAs, spliced leader RNA, and 18S RNA) in shaping genomic architecture, offering insights into an additional epigenetic layer that may influence gene expression.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Pedro Leonardo Carvalho de Lima
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - David da Silva Pires
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
117
|
Geonczy SE, Hillary LS, Santos-Medellín C, Sorensen JW, Emerson JB. Patchy burn severity explains heterogeneous soil viral and prokaryotic responses to fire in a mixed conifer forest. mSystems 2025:e0174924. [PMID: 40366158 DOI: 10.1128/msystems.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
Effects of fire on soil viruses and virus-host dynamics are largely unexplored, despite known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we assessed how viral and prokaryotic communities responded to a prescribed burn in a mixed conifer forest. We sequenced 91 viral-size fraction metagenomes (viromes) and 115 16S rRNA gene amplicon libraries from 120 samples: four samples at five timepoints (two before fire and three after fire) at six sites (four treatment, two control). We hypothesized that compositional differences would be most significant between burned and unburned soils, but instead, plot location best distinguished viral communities, more than treatment (burned or not), depth (0-3 or 3-6 cm), or timepoint. For both viruses and prokaryotes, some burned communities resembled unburned controls, while others were significantly different, revealing heterogeneous responses to fire. These patterns were explained by burn severity, here defined by soil chemistry. Viral but not prokaryotic richness decreased significantly with burn severity, and low viromic DNA yields indicated substantial loss of viral biomass at higher severity. The relative abundances of Firmicutes, Actinobacteriota, and the viruses predicted to infect them increased significantly with burn severity, suggesting survival and viral infection of these fire-responsive and potentially spore-forming taxa. The degree of burn severity experienced by each patch of soil, rather than burn status alone, differed over mere meters in the same fire. Therefore, our analyses highlight the importance of high-resolution, paired biogeochemical data to explain soil community responses to fire. IMPORTANCE The impact of fire on the soil microbiome, particularly on understudied soil viral communities, warrants investigation, given known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we collected 120 soil samples before and after a prescribed burn in a mixed conifer forest to assess the impacts of this disturbance on soil viral and prokaryotic communities. We show that simple categorical comparisons of burned and unburned areas were insufficient to reveal the underlying community response patterns. The patchy nature of the fire (indicated by soil chemistry data) led to significant changes in viral and prokaryotic community composition in areas of high burn severity, while communities that experienced lower burn severity were indistinguishable from those in unburned controls. Our results highlight the importance of considering highly resolved burn severity and biogeochemical measurements, even in nearby soils after the same fire, in order to understand soil microbial responses to prescribed burns.
Collapse
Affiliation(s)
- Sara E Geonczy
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Luke S Hillary
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | | | - Jess W Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| |
Collapse
|
118
|
Crouch AL, Severance BM, Creary S, Hood D, Bailey M, Mejias A, Ramilo O, Gillespie M, Ebelt S, Sheehan V, Kopp BT, Anderson MZ. Altered nasal and oral microbiomes define pediatric sickle cell disease. mSphere 2025:e0013725. [PMID: 40366139 DOI: 10.1128/msphere.00137-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Sickle cell disease (SCD) is a chronic blood disorder that disrupts multiple organ systems and can lead to severe morbidity. Persistent and acute symptoms caused by immune system dysregulation in individuals with SCD could contribute to disease either directly or indirectly via dysbiosis of commensal microbes and increased susceptibility to infection. Here, we explored the nasal and oral microbiomes of children with SCD (cwSCD) to uncover potential dysbiotic associations with the blood disorder. Microbiota collected from nasal and oral swabs of 40 cwSCD were compared to eight healthy siblings using shotgun metagenomic sequencing. Commensal taxa were present at similar levels in the nasal and oral microbiome of both groups. However, the nasal microbiomes of cwSCD contained a higher prevalence of Pseudomonadota species, including pathobionts such as Yersinia enterocolitica and Klebsiella pneumoniae. Furthermore, the oral microbiome of cwSCD displayed lower α-diversity and fewer commensal and pathobiont species compared to the healthy siblings. Thus, subtle but notable shifts seem to exist in the nasal and oral microbiomes of cwSCD, suggesting an interaction between SCD and the microbiome that may influence health outcomes. IMPORTANCE The oral and nasal cavities are susceptible to environmental exposures including pathogenic microbes. In individuals with systemic disorders, antibiotic exposure, changes to the immune system, or changes to organ function could influence the composition of the microbes at these sites and the overall health of individuals. Children with sickle cell disease (SCD) commonly experience respiratory infections, such as pneumonia or sinusitis, and may have increased susceptibility to infection because of disrupted microbiota at these body sites. We found that children with SCD (cwSCD) had more pathobiont bacteria in the nasal cavity and reduced bacterial diversity in the oral cavity compared to their healthy siblings. Defining when, why, and how these changes occur in cwSCD could help identify specific microbial signatures associated with susceptibility to infection or adverse outcomes, providing insights into personalized treatment strategies and preventive measures.
Collapse
Affiliation(s)
- Audra L Crouch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Beatrice M Severance
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan Creary
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Darryl Hood
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Michael Bailey
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michelle Gillespie
- Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stefanie Ebelt
- Environmental Health and Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | | | - Benjamin T Kopp
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
119
|
Li J, Chang J, Ma J, Zhou W, Yang Y, Wu J, Guan C, Yuan X, Xu L, Yu B, Su F, Ye S, Chen Y, Zhao G, Tang B. Genome-based assessment of antimicrobial resistance of Escherichia coli recovered from diseased swine in eastern China for a 12-year period. mBio 2025; 16:e0065125. [PMID: 40243369 PMCID: PMC12077178 DOI: 10.1128/mbio.00651-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The global rise of antimicrobial resistance (AMR), driven by antibiotic use in healthcare and agriculture, poses a major public health threat. While AMR in clinical settings is well studied, there is a gap in understanding the resistance profiles of Escherichia coli from diseased livestock, particularly regarding zoonotic transmission. This study analyzes 114 E. coli isolates from diseased swine over 12 years, revealing that 99.12% were multidrug-resistant. Resistance was highest for ampicillin and amoxicillin/clavulanic acid (100%), followed by ciprofloxacin (96.49%) and tetracycline (94.74%). Furthermore, 21.05% of isolates were resistant to colistin, and 1.75% to tigecycline. A total of 76 antimicrobial resistance genes (ARGs) were identified, with mcr-1 found in 18.42%, mcr-3 in 4.39%, and tet(X4) in 1.75%. Significant co-occurrence of ARGs and plasmids suggests potential for co-selective dissemination. This study is the first to report enterotoxigenic E. coli (ETEC) strains carrying both mcr-1 and mcr-3 genes. After the 2017 colistin ban in China, mcr-1 detection rates significantly decreased, while florfenicol resistance rates increased in 2018-2021 (94.29%) compared to 2010-2017 (79.55%). This work provides valuable insights into the AMR profiles of E. coli from diseased swine and highlights trends that can inform strategies for monitoring and controlling public health risks associated with zoonotic E. coli transmission.IMPORTANCEThis study highlights the critical role of diseased and deceased swine in the spread of antimicrobial resistance (AMR), providing new insights into the transmission of resistance genes in zoonotic contexts. By analyzing E. coli from diseased swine, we identify key resistance genes such as mcr-1, mcr-3, and tet(X4), which pose significant public health risks, especially regarding last-resort antibiotics like colistin. Moreover, the study identifies novel transmission patterns of mcr genes, including ETEC strains carrying the mcr-3 gene and strains harboring both mcr-1 and mcr-3 genes. The role of plasmids in horizontal gene transfer is also revealed, facilitating rapid AMR spread across species. The long-term persistence of resistant strains highlights the challenges in controlling AMR in livestock. These findings underscore the need for enhanced surveillance and a One Health approach to mitigate AMR risks across animal, human, and environmental health.
Collapse
Affiliation(s)
- Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiang Chang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiangang Ma
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Yue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jing Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chunjiu Guan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yijie Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guoping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
120
|
Helvecio E, Rezende AM, Bezerra MJR, de-Melo-Neto OP, de Melo Santos MAV, Romão TP, Ayres CFJ. Characterization of the transcriptional cellular response in midgut tissue of temephos-resistant Aedes aegypti larvae. Parasit Vectors 2025; 18:174. [PMID: 40369600 PMCID: PMC12076995 DOI: 10.1186/s13071-025-06675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/17/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Resistance to organophosphate compounds is a serious concern in dealing with the control of mosquito vectors. Understanding the genetic and molecular basis of resistance is important not only to create strategies aimed at detecting and monitoring resistance in the field but also to implement efficient control measures and support the development of new insecticides. Despite the extensive literature on insecticide resistance, the molecular basis of metabolic resistance is still poorly understood. METHODS To better understand the mechanisms of Aedes aegypti resistance to temephos, we performed high-throughput sequencing of RNA from the midgut tissue of Aedes aegypti larvae from a temephos-resistant laboratory colony, with long-term and continuous exposure to this insecticide (RecR), as well as from a reference, temephos-susceptible, colony (RecL). Bioinformatic analyses were then performed to assess the biological functions of differentially expressed genes, and the sequencing data were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). RESULTS The transcriptome analysis mapped 6.084 genes, of which 202 were considered upregulated in RecR, including known and new genes representing many detoxification enzyme families, such as cytochrome-P450 oxidative enzymes, glutathione-S-transferases and glucosyl transferases. Other upregulated genes were mainly involved in the cuticle, carbohydrates and lipid biosynthesis. For the downregulated profiles, we found 106 downregulated genes in the RecR colony, with molecules involved in protein synthesis, immunity and apoptosis process. Furthermore, we observed an enrichment of KEGG metabolic pathways related to resistance mechanisms. The results found in RT-qPCR confirm the findings of the transcriptome data. CONCLUSIONS In this study, we investigated transcriptome-level changes maintained in a temephos-resistant Ae. aegypti colony under continuous and prolonged selection pressure. Our results indicate that metabolic resistance might involve a larger and more significant number of detoxification enzymes, with different functional roles, than previously shown with other mechanisms, also contributing to the resistance phenotype in the Ae. aegypti RecR colony.
Collapse
Affiliation(s)
- Elisama Helvecio
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Antonio Mauro Rezende
- Instituto René Rachou-FIOCRUZ, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Maria J R Bezerra
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | | | | | - Tatiany Patrícia Romão
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego S/N Cidade Universitária, Recife, PE, 50740-465, Brazil.
| | | |
Collapse
|
121
|
Wu B, Luo D, Yue Y, Yan H, He M, Ma X, Zhao B, Xu B, Zhu J, Wang J, Jia J, Sun M, Xie Z, Wang X, Huang L. New insights into the cold tolerance of upland switchgrass by integrating a haplotype-resolved genome and multi-omics analysis. Genome Biol 2025; 26:128. [PMID: 40369670 PMCID: PMC12076936 DOI: 10.1186/s13059-025-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a bioenergy and forage crop. Upland switchgrass exhibits superior cold tolerance compared to the lowland ecotype, but the underlying molecular mechanisms remain unclear. RESULTS Here, we present a high-quality haplotype-resolved genome of the upland ecotype "Jingji31." We then conduct multi-omics analysis to explore the mechanism underlying its cold tolerance. By comparative transcriptome analysis of the upland and lowland ecotypes, we identify many genes with ecotype-specific differential expression, particularly members of the cold-responsive (COR) gene family, under cold stress. Notably, AFB1, ATL80, HOS10, and STRS2 gene families show opposite expression changes between the two ecotypes. Based on the haplotype-resolved genome of "Jingji31," we detect more cold-induced allele-specific expression genes in the upland ecotype than in the lowland ecotype, and these genes are significantly enriched in the COR gene family. By genome-wide association study, we detect an association signal related to the overwintering rate, which overlaps with a selective sweep region containing a cytochrome P450 gene highly expressed under cold stress. Heterologous overexpression of this gene in rice alleviates leaf chlorosis and wilting under cold stress. We also verify that expression of this gene is suppressed by a structural variation in the promoter region. CONCLUSIONS Based on the high-quality haplotype-resolved genome and multi-omics analysis of upland switchgrass, we characterize candidate genes responsible for cold tolerance. This study advances our understanding of plant cold tolerance, which provides crop breeding for improved cold tolerance.
Collapse
Affiliation(s)
- Bingchao Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuesen Yue
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xixi Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bingyu Zhao
- College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bin Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610061, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
122
|
Perçin G, Riege K, Fröbel J, Metz J, Culemann S, Lesche M, Reinhardt S, Höfer T, Hoffmann S, Waskow C. Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool. Nat Commun 2025; 16:4428. [PMID: 40368907 PMCID: PMC12078706 DOI: 10.1038/s41467-025-59059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Embryonic macrophages emerge before the onset of definitive hematopoiesis, seed into discrete tissues and contribute to specialized resident macrophages throughout life. Presence of embryonic macrophages in the bone marrow and functional impact on hematopoietic stem cells (HSC) or the niche remains unclear. Here we show that bone marrow macrophages consist of two ontogenetically distinct cell populations from embryonic and adult origin. Newborn mice lacking embryonic macrophages have decreased HSC numbers in the bone marrow suggesting an important function for embryo-derived macrophages in orchestrating HSC trafficking around birth. The establishment of a normal cellular niche space in the bone marrow critically depends on embryonic macrophages that are important for the development of mesenchymal stromal cells, but not other non-hematopoietic niche cells, providing evidence for a specific role for embryo-derived macrophages in the establishment of the niche environment pivotal for the establishment of a normally sized HSC pool.
Collapse
Affiliation(s)
- Gülce Perçin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Konstantin Riege
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jonas Metz
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Stephan Culemann
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Steve Hoffmann
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
123
|
Blanco-Fernandez C, Bobes-Villa M, López A, Menéndez D, Elmer KR, Garcia-Vazquez E, Machado-Schiaffino G. Effect of legacy and emerging pollutants on genome-wide methylation patterns in black hake (Merluccius polli) natural populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118279. [PMID: 40373707 DOI: 10.1016/j.ecoenv.2025.118279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/17/2025]
Abstract
Exposure to pollutants such as non-essential metals and microplastics can have harmful consequences for marine organisms. Detecting the impact of pollutants in wild populations can be especially challenging. Such environmental disturbances might prompt rapid responses in the affected organisms, generating changes in their gene expression mediated by epigenetic regulation. Here we use an epiRADseq approach to determine the effect of four non-essential metals (As, Cd, Hg, Pb) and microplastics (MP) on the methylation pattern of Benguela hake, Merluccius polli, captured in the FAO fishing area 34, along the coasts of Mauritania and Senegal. We analysed 49 hake specimens and generated 44,201 epigenetic loci. Despite moderate levels of pollution identified from tissue analysis, we found significant differentially methylated loci associated with the level of the five pollutants analysed (119 significant loci for As, 134 for Cd, 92 for Hg, 119 for Pb, and 159 for microplastics). Elevated Pb was significantly associated with a reduction in hake condition factor. Differentially methylated loci were associated with diverse pathways associated to responses for all pollutants (e.g. immune response, gene expression regulation), pointing to signs of stress within the population. It is worth noting that all pollutants were differentially methylated for a locus in NLRC3, previously associated with innate immune response in fishes. Overall, we found evidence of the effects of moderate concentration of pollutants in the methylation pattern in wild populations of M. polli.
Collapse
Affiliation(s)
- Carmen Blanco-Fernandez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain
| | - María Bobes-Villa
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain; School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ainhoa López
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain; School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel Menéndez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain; School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, Oviedo 33006, Spain.
| |
Collapse
|
124
|
Ana DP, O SJ, Flavia T, Zhang Y, Jorge FL. Longitudinal host-microbiome dynamics of metatranscription identify hallmarks of progression in periodontitis. MICROBIOME 2025; 13:119. [PMID: 40369640 PMCID: PMC12077055 DOI: 10.1186/s40168-025-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND In periodontitis, the interplay between the host and microbiome generates a self-perpetuating cycle of inflammation of tooth-supporting tissues, potentially leading to tooth loss. Despite increasing knowledge of the phylogenetic compositional changes of the periodontal microbiome, the current understanding of in situ activities of the oral microbiome and the interactions among community members and with the host is still limited. Prior studies on the subgingival plaque metatranscriptome have been cross-sectional, allowing for only a snapshot of a highly variable microbiome, and do not include the transcriptome profiles from the host, a critical element in the progression of the disease. RESULTS To identify the host-microbiome interactions in the subgingival milieu that lead to periodontitis progression, we conducted a longitudinal analysis of the host-microbiome metatranscriptome from clinically stable and progressing sites in 15 participants over 1 year. Our research uncovered a distinct timeline of activities of microbial and host responses linked to disease progression, revealing a significant clinical and metabolic change point (the moment in time when the statistical properties of a time series change) at the 6-month mark of the study, with 1722 genes differentially expressed (DE) in the host and 111,705 in the subgingival microbiome. Genes associated with immune response, especially antigen presentation genes, were highly up-regulated in stable sites before the 6-month change point but not in the progressing sites. Activation of cobalamin, porphyrin, and motility in the microbiome contribute to the progression of the disease. Conversely, inhibition of lipopolysaccharide and glycosphingolipid biosynthesis in stable sites coincided with increased immune response. Correlation delay analysis revealed that the positive feedback loop of activities leading to progression consists of immune regulation and response activation in the host that leads to an increase in potassium ion transport and cobalamin biosynthesis in the microbiome, which in turn induces the immune response. Causality analysis identified two clusters of microbiome genes whose progression can accurately predict the outcomes at specific sites with high confidence (AUC = 0.98095 and 0.97619). CONCLUSIONS A specific timeline of host-microbiome activities characterizes the progression of the disease. The metabolic activities of the dysbiotic microbiome and the host are responsible for the positive feedback loop of reciprocally reinforced interactions leading to progression and tissue destruction. Video Abstract.
Collapse
Affiliation(s)
- Duran-Pinedo Ana
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA
| | - Solbiati Jose O
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA
| | - Teles Flavia
- Department of Basic & Translational Sciences, University of Pennsylvania, School of Dental Medicine, 240 South 40 Street, Philadelphia, PA, 19104 - 6030, USA
- Center for Innovation and Precision Dentistry (CiPD), University of Pennsylvania, School of Dental Medicine, 240 South 40 Street, Philadelphia, PA, 19104 - 6030, USA
| | - Yanping Zhang
- Gene Expression & Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, 178 B CGRC, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Frias-Lopez Jorge
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive Gainesville, Gainesville, FL, 32610 - 0424, USA.
| |
Collapse
|
125
|
Yang X, Ma B, Zhao Q, Jia Y, Meng Q, Qin Y, Tang C, Zhang J. High temporal-resolution transcriptome landscape reveals the biological process and regulatory genes of melanin deposition in breast muscle of Silkie chickens during embryonic development. BMC Genomics 2025; 26:476. [PMID: 40360976 PMCID: PMC12070674 DOI: 10.1186/s12864-025-11654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Abnormal deposition of melanin in skeletal muscle is an interesting phenomenon and the Silkie is the most typical example. Melanin deposition involves multiple steps such as neural crest cell migration, melanocyte differentiation, melanosome assembly and melanin biosynthesis, which have already occurred during the embryonic stage of Silkies. However, there is no comprehensive understanding of the dynamic changes in the biological processes and regulatory mechanism underlying melanin deposition in skeletal muscle during chicken embryonic development. RESULTS In this study, high-performance liquid chromatography (HPLC) was used to accurately measure the melanin content in breast muscle across 13 embryonic time points. There was no melanin in breast muscle on embryonic day 8 (E08) to E10, a trace amount of melanin on E11 to E16 and a large amount of melanin on E17 to E21. According to melanin content and deposition pattern, the melanin deposition process in breast muscle was further divided into five stages, including E08 to E10, E11 to E14, E15 to E16, E17 to E18, and E19 to E21. High temporal-resolution transcriptome analysis was performed in the breast muscle of Silkies across 13 embryonic time points. The protein-coding genes (PCGs) and transcriptional factors (TFs) significantly specifically expressed at these five stages were identified. Among these stage-specific genes, stage-specific DEGs between Silkies and Wenchang chickens without melanosis were further screened at each stage. During E08 to E10, three stage-specific DEGs and one stage-specific TF act on neural crest cell migration and melanocyte stem cell differentiation. During E17 to E21, nine stage-specific DEGs and one stage-specific TF act on melanosome assembly and melanin biosynthesis. During E19 to E21, one stage-specific DEG enhances melanin biosynthesis. These stage-specific DEGs and TFs all affect the final melanin content of breast muscle. CONCLUSIONS This study reveals the critical stage of melanin deposition in breast muscle during the embryonic development, and identified the biological processes and functional genes at each stage. This study provides novel insights into the biological process and regulatory mechanism of melanin deposition in skeletal muscle and provides a reference for breeding Silkies with high muscle melanin content.
Collapse
Affiliation(s)
- Xinting Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxiong Jia
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
126
|
Liu L, Gao P, Sheng H, Bakshi A, Schneider D, Xiang D, Babic V, Ren M, Burbridge C, Nguyen H, Wang S, Armenta-Medina A, Mora-Macias J, Sharpe A, Pozniak C, Magalhaes J, Datla R, Kochian L. Guard cell and whole plant expression of AtTOR improves performance under drought and enhances water use efficiency. J Biol Chem 2025:110220. [PMID: 40374165 DOI: 10.1016/j.jbc.2025.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025] Open
Abstract
Water use efficiency is an important target for breeding of improved drought resistance. Minimizing leaf transpirational water loss plays a key role in drought resistance. But this reduces CO2 levels in leaves, which often reduces photosynthetic efficiency and yield. Signaling pathways play important roles in stress responses, and identifying the molecular, biochemical, and physiological determinants underlying drought signaling may offer new drought mitigating strategies. To explore these possibilities, and because of the importance of stomata in drought response and photosynthesis, we employed guard cell (GC) targeted and constitutive overexpression of the Target of Rapamycin (TOR) kinase, a master regulator of signaling networks, in transgenic Arabidopsis. To investigate the impact of these AtTOR transgenes in drought, we conducted physiological and molecular investigations into drought responses, including leaf water loss, photosynthetic CO2 assimilation, stomatal H2O/CO2 conductance, , leaf chlorophyll content, and global gene expression in response to drought in wild type and AtTOR expressing Arabidopsis. Links between both guard cell-localized and whole plant AtTOR overexpression were identified, revealing TOR is involved in conservation of water and sustained photosynthetic performance, along with identification of genes associated with drought response in WT vs. AtTOR-expressing transgenic lines. These findings suggest that targeted guard cell AtTOR expression should help achieve a balance between plant water conservation during drought, and maintaining plant performance, by minimizing reductions in photosynthesis. Manipulation of guard cell AtTOR expression could be an effective avenue for developing crops with enhanced drought resistance and increased yield under drought stress, resulting in enhanced water use efficiency.
Collapse
Affiliation(s)
- Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Huajin Sheng
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Achala Bakshi
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Hanh Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Sheng Wang
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Alma Armenta-Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Javier Mora-Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Andrew Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8 Canada
| | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada.
| | - Leon Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8 Canada.
| |
Collapse
|
127
|
Xiong L, Diwakarla S, Chatzis R, Artaiz O, Macowan M, Zhang S, Garnham A, Morgan PK, Mellett NA, Meikle PJ, Lancaster GI, Marsland BJ, Nutt SL, Seillet C. Acute exposure to high-fat diet impairs ILC3 functions and gut homeostasis. Immunity 2025; 58:1185-1200.e8. [PMID: 40233759 DOI: 10.1016/j.immuni.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Prolonged exposure to a high-fat diet (HFD) exacerbates intestinal disease pathology, yet the early events preceding the development of gut inflammation remain poorly understood. Here, we show that within 48 h, HFD impairs intestinal group 3 innate lymphoid cells (ILC3s) and their capacity to produce interleukin-22 (IL-22), critical for maintaining gut homeostasis. This loss of function was associated with rapid dysbiosis, increased gut permeability, and reduced production of antimicrobial peptides, mucus, and tight-junction proteins. While saturated fatty acids metabolized through oxidation impaired ILC3 function, unsaturated fatty acids sustained IL-22 secretion by ILC3s through the formation of lipid droplets using diacylglycerol O-acyltransferase (DGAT) enzymes. Upon inflammation, saturated fatty acids impaired IL-22 production by ILC3s and increased the susceptibility of the gut to injury. Our findings reveal the differential acute impact of saturated and unsaturated fatty acids on gut homeostasis through distinct metabolic pathways in ILC3s.
Collapse
Affiliation(s)
- Le Xiong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Roxanne Chatzis
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Olivia Artaiz
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Macowan
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
| | - Graeme I Lancaster
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Benjamin J Marsland
- Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology, University of Monash, Melbourne, Melbourne, VIC 3004, Australia.
| |
Collapse
|
128
|
Zhai R, Zhao C, Chang L, Liu J, Zhao T, Jiang J, Zhu W. The gut-liver axis plays a limited role in mediating the liver's heat susceptibility of Chinese giant salamander. BMC Genomics 2025; 26:475. [PMID: 40360994 PMCID: PMC12070647 DOI: 10.1186/s12864-025-11644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The Chinese giant salamander (CGS, Andrias davidianus), a flagship amphibian species, is highly vulnerable to high temperatures, posing a significant threat under future climate change. Previous research linked this susceptibility to liver energy deficiency, accompanied by shifts in gut microbiota and reduced food conversion rates, raising questions about the role of the gut-liver axis in mediating heat sensitivity. This study investigated the responses of Chinese giant salamander larvae to a temperature gradient (10-30 °C), assessing physiological changes alongside histological, gut metagenomic, and tissue transcriptomic analyses. Temperatures above 20 °C led to mortality, which resulted in delayed growth. Histological and transcriptomic data revealed metabolic exhaustion and liver fibrosis in heat-stressed salamanders, underscoring the liver's critical role in heat sensitivity. While heat stress altered the gut microbiota's community structure, their functional profiles, especially in nutrient absorption and transformation, remained stable. Both gut and liver showed temperature-dependent transcriptional changes, sharing some common variations in actins, heat shock proteins, and genes related to transcription and translation. However, their energy metabolism exhibited opposite trends: it was downregulated in the liver but upregulated in the gut, with the gut showing increased activity in the pentose phosphate pathway and oxidative phosphorylation, potentially countering metabolic exhaustion. Our findings reveal that the liver of the larvae exhibits greater thermal sensitivity than the gut, and the gut-liver axis plays a limited role in mediating thermal intolerance. This study enhances mechanistic understanding of CGS heat susceptibility, providing a foundation for targeted conservation strategies in the face of climate change.
Collapse
Affiliation(s)
- Runliang Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chunlin Zhao
- School of Biological and Chemical Engineering, School of Agriculture, Panzhihua University, Panzhihua, 617000, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiongyu Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tian Zhao
- College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
129
|
Pereira S, Rubina M, Roga A, Selga T, Skinderskis E, Gudrā D, Kalniņa I, Vonda K, Fridmanis D, Muter O. Evaluation of functional capacity and plastic-degrading potential of Bacillus spp. and other bacteria derived from the Getliņi landfill (Latvia). ENVIRONMENTAL RESEARCH 2025:121849. [PMID: 40373994 DOI: 10.1016/j.envres.2025.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The mechanisms of plastic biodegradation by microorganisms remain poorly understood because of high variability in environmental conditions. This study aimed to isolate, identify, and characterise bacteria with plastic-degrading potential derived from the Getliņi EKO landfill (Riga, Latvia). Among the bacteria selected, Bacillus was the predominant genus identified, whereas Pseudomonas dominated the metagenome. Comparative testing revealed the highest non-specific esterase activity in cultures of B. licheniformis and B. altitudinis. Following a 6-week batch experiment, a newly developed bacterial consortium biologically reduced the weight of untreated low-density polyethylene (LDPE), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) by 19.44%, 5.99%, and 2.58%, respectively. Thermally pre-treated PET and acid pre-treated HDPE resulted in greater weight losses than their respective untreated forms. Scanning electron microscopy primarily showed single cells and microcolonies attached to the granule surfaces. Microbial respiration and fluorescein diacetate hydrolysis tests suggested that the granules had a stimulating effect on the metabolic activity of planktonic cells. Cultures with untreated LDPE and PET exhibited the highest ecotoxicity for Thamnocephalus platyurus, reducing ingestion activity by 60.39% and 71.25% of the control, respectively. In conclusion, the Getliņi EKO landfill appears to be a promising sampling source for bacteria capable of biodegrading fossil-based polymers. Further refinement of methods for the isolation and evaluation of plastic degraders will provide new insights into the potential of microbial resources for plastic degradation.
Collapse
Affiliation(s)
- Sara Pereira
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia; Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta Rubina
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Tūrs Selga
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Edmunds Skinderskis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Dita Gudrā
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Ineta Kalniņa
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Kārlis Vonda
- Getliņi EKO Ltd., 57 Kaudzisu Str., Rumbula, LV-2121 Ropažu, Latvia
| | - Dāvids Fridmanis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Olga Muter
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia.
| |
Collapse
|
130
|
Barkan R, Cooke I, Watson SA, Strugnell JM. Synthesis of transcriptomic studies reveals a core response to heat stress in abalone (genus Haliotis). BMC Genomics 2025; 26:474. [PMID: 40361012 PMCID: PMC12070547 DOI: 10.1186/s12864-025-11680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND As climate change causes marine heat waves to become more intense and frequent, marine species increasingly suffer from heat stress. This stress can result in reduced growth, disrupted breeding cycles, vulnerability to diseases and pathogens, and increased mortality rates. Abalone (genus Haliotis) are an ecologically significant group of marine gastropods and are among the most highly valued seafood products. However, heat stress events have had devastating impacts on both farmed and wild populations. Members of this genus are among the most susceptible marine species to climate change impacts, with over 40% of all abalone species listed as threatened with extinction. This has motivated researchers to explore the genetics linked to heat stress in abalone. A substantial portion of publicly available studies has employed transcriptomic approaches to investigate abalone genetic response to heat stress. However, to date, no meta-analysis has been conducted to determine the common response to heat stress (i.e. the core response) across the genus. This study uses a standardized bioinformatic pipeline to reanalyze and compare publicly available RNA-seq datasets from different heat stress studies on abalone. RESULTS Nine publicly available RNA-seq datasets from nine different heat-stress studies on abalone from seven different abalone species and three hybrids were included in the meta-analysis. We identified a core set of 74 differentially expressed genes (DEGs) in response to heat stress in at least seven out of nine studies. This core set of DEGs mainly included genes associated with alternative splicing, heat shock proteins (HSPs), Ubiquitin-Proteasome System (UPS), and other protein folding and protein processing pathways. CONCLUSIONS The detection of a consistent set of genes that respond to heat stress across various studies, despite differences in experimental design (e.g. stress intensity, species studied-geographical distribution, preferred temperature range, etc.), strengthens our proposal that these genes are key elements of the heat stress response in abalone. The identification of the core response to heat stress in abalone lays an important foundation for future research. Ultimately, this study will aid conservation efforts and aquaculture through the identification of resilient populations, genetic-based breeding programs, possible manipulations such as early exposure to stress, gene editing and the use of immunostimulants to enhance thermal tolerance.
Collapse
Affiliation(s)
- Roy Barkan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
131
|
Wang J, Chen K, Zhang R, Huang Y, Chen J. A haplotype-resolved genome assembly and gene expression map of Cushion willow. Sci Data 2025; 12:785. [PMID: 40360525 PMCID: PMC12075806 DOI: 10.1038/s41597-025-05132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Salix brachista, commonly known as Cushion willow, is a common component of subnival alpine assemblages and a dioecious or monoecious plant with a creeping stem and numerous lateral branches. Cushion willow takes cuttings more easier and has a specific sex system, making it a suitable system for studying the evolution of plant sex determination, adaptive evolution of alpine plants, and mining stress resistance gene resource that cope with the hostile alpine environment. Therefore, Cushion willow has potential value in genetic improvements for willows used as bioenergy crops, in gardening, and as ornamental plants. However, the genome of Cushion willow still contains some un-assembled repetitive sequences, and there is limited availability of a gene expression atlas, which hinders its potential use for the aforementioned purposes. Here, we updated the genome of Cushion willow to be haplotype-resolved and near telomere-to-telomere, and obtained a high-quality transcriptomic map. Our research provides a potential model species for alpine adaptive research, sex determination evolution studies, and improving willow crops.
Collapse
Affiliation(s)
- Jindan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaiyun Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
| | - Rengang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, Yunnan, P. R. China.
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, P. R. China.
| |
Collapse
|
132
|
Yeung ST, Damani-Yokota P, Thannickal SA, Bartnicki E, Bernier ED, Barnett CR, Khairallah C, Duerr R, Noval MG, Segal LN, Stapleford KA, Khanna KM. Nerve- and airway-associated interstitial macrophages mitigate SARS-CoV-2 pathogenesis via type I interferon signaling. Immunity 2025; 58:1327-1342.e5. [PMID: 40286790 DOI: 10.1016/j.immuni.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Despite vaccines, rapidly mutating viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to threaten human health due to an impaired immunoregulatory pathway and a hyperactive immune response. Our understanding of the local immune mechanisms used by tissue-resident macrophages to safeguard the host from excessive inflammation during SARS-CoV-2 infection remains limited. Here, we found that nerve- and airway-associated interstitial macrophages (NAMs) are required to control mouse-adapted SARS-CoV-2 (MA-10) infection. Control mice restricted lung viral distribution and survived infection, whereas NAM depletion enhanced viral spread and inflammation and led to 100% mortality. Mechanistically, type I interferon receptor (IFNAR) signaling by NAMs was critical for limiting inflammation and viral spread, and IFNAR deficiency in CD169+ macrophages mirrored NAM-depleted outcomes and abrogated their expansion. These findings highlight the essential protective role of NAMs in regulating viral spread and inflammation, offering insights into SARS-CoV-2 pathogenesis and underscoring the importance of NAMs in mediating host immunity and disease tolerance.
Collapse
Affiliation(s)
- Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eduardo D Bernier
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Clea R Barnett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Camille Khairallah
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, Vaccine Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leopoldo N Segal
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
133
|
Shevchenko AY, Ursalov GI, Eromasova NI, Shelyakin PV, Gelfand MS, Tutukina MN, Abramov AA, Vishnivetskaya TA, Rivkina EM. Microbial diversity of high-elevated fumarole fields, low-biomass communities on the boundary between ice and fire. Sci Rep 2025; 15:16600. [PMID: 40360685 PMCID: PMC12075824 DOI: 10.1038/s41598-025-99782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Fumarole fields on active volcanoes are habitats that host unique microbial ecosystems. However, DNA extraction from them for further analysis is rather challenging. In this study, we compared two different ways of sample homogenization for DNA extraction to further profile the microbial communities of active fumarolic fields from Elbrus and Ushkovsky volcanoes and the frozen fumarole deposits of Fujiyama. Vertical homogenizer gave significantly higher DNA concentrations for the Elbrus samples, and more archaeal amplicon sequence variants for Elbrus and Ushkovsky samples compared to the horizontal one. This suggests that vertical homogenizer might be preferable for DNA extraction from sandy and rocky soils. Independent of the homogenizer type, the dominant phyla for Elbrus were Acidobacteriota and Pseudomonadota, and Crenarchaeota for Ushkovsky. The bacterial community of Fuji was less diverse, with Actinomycetota, Pseudomonadota and Bacillota being the dominant phyla. Thus, the studied fumaroles showed distinct microbial profiles, revealing unique adaptations to their respective extreme environments. Within the fungal community, Ascomycota, Basidiomycota and Chytridiomycota were the most dominant phyla for all three volcanoes, but their abundance varied. This study offers the first comprehensive analysis of microbial and fungal communities of active and frozen fumarolic fields, and demonstrates that the choice of methodology can significantly influence the understanding of microbial diversity in extreme environments.
Collapse
Affiliation(s)
- Alla Yu Shevchenko
- Center for Molecular and Cellular Biology, Moscow, Russia.
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | | | - Natalya I Eromasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Pavel V Shelyakin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Maria N Tutukina
- Center for Molecular and Cellular Biology, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Andrey A Abramov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | | | - Elizaveta M Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
134
|
George C, Kortheerakul C, Khunthong N, Sharma C, Luo D, Chan KG, Daroch M, Hyde KD, Lee PKH, Goh KM, Waditee-Sirisattha R, Pointing SB. Spatial scale modulates stochastic and deterministic influence on biogeography of photosynthetic biofilms in Southeast Asian hot springs. ENVIRONMENTAL MICROBIOME 2025; 20:50. [PMID: 40361225 PMCID: PMC12070648 DOI: 10.1186/s40793-025-00711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Hot springs, with their well-characterized major abiotic variables and island-like habitats, are ideal systems for studying microbial biogeography. Photosynthetic biofilms are a major biological feature of hot springs but despite this large-scale studies are scarce, leaving critical questions about the drivers of spatial turnover unanswered. Here, we analysed 395 photosynthetic biofilms from neutral-alkaline hot springs (39-66 °C, pH 6.4-9.0) across a 2100 km latitudinal gradient in Southeast Asia. The Cyanobacteria-dominated communities were categorized into six biogeographic regions, each characterized by a distinct core microbiome and biotic interactions. We observed a significant decline in the explanatory power of major abiotic variables with increasing spatial scale, from 62.6% locally, 55% regionally, to 26.8% for the inter-regional meta-community. Statistical null models revealed that deterministic environmental filtering predominated at local and regional scales, whereas stochastic ecological drift was more influential at the inter-regional scale. These findings enhance our understanding of the differential contribution of ecological drivers and highlight the importance of spatial scale in shaping biogeographic distributions for microorganisms.
Collapse
Affiliation(s)
- Christaline George
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Chananwat Kortheerakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitthiya Khunthong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitrabhanu Sharma
- Centre of Excellence in Fungal Research & School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Danli Luo
- School of Energy and Environment & State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kok-Gan Chan
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Kevin D Hyde
- Centre of Excellence in Fungal Research & School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Patrick K H Lee
- School of Energy and Environment & State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kian Mau Goh
- Department of Biosciences, Universiti Teknologi Malaysia, 81310, Bahru, Johor, Malaysia.
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
135
|
Song WL, Lin D, Chen X, Dai Q, Rao G, Chen YJ, Chen SL. Spatiotemporal patterns of soil myxomycetes in subtropical managed forests and their potential interactions with bacteria. Appl Environ Microbiol 2025:e0047925. [PMID: 40358238 DOI: 10.1128/aem.00479-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Soil myxomycetes are crucial soil protists with important ecological functions. Yet, our understanding of their diversity patterns in managed forests and the interactions with their food is far behind other taxa. This study investigates the spatiotemporal patterns of soil myxomycetes in four northern subtropical managed forest types across seasons and aims to identify assembly processes, main predictors of myxomycete communities, and the potential interactions between myxomycetes and bacteria. Results showed that no significant difference in α diversity of myxomycete communities among forest types was observed, but a significant difference was observed in community structures. Significant differences were observed in α diversity and community structures of myxomycetes among seasons. Deterministic processes in each forest type and season dominated myxomycete community assemblies. Soil physicochemical properties and bacterial communities have a significant direct impact on the myxomycete community, while forest types, seasons, and enzyme activities have an indirect effect. There is a significant synergistic covariation between the soil myxomycete community and bacterial community. The genera of the phyla Acidobacteriota, Actinobacteriota, and Bacteroidota have a strong correlation with the richness of myxomycete genera. Overall, this study provides new insight into the diversity of soil myxomycetes and their influence by bacteria, crucial for myxomycetes ecology.IMPORTANCESoil myxomycetes are an important component of soil protists. Our study revealed for the first time the community structure of soil myxomycetes in managed forests of the northern subtropical regions and systematically investigated the seasonal variation patterns of soil myxomycetes. Meanwhile, we further investigated the potential interactions between soil myxomycetes and bacteria. This study will greatly enhance our understanding of the ecology of soil myxomycetes and their biological roles.
Collapse
Affiliation(s)
- Wen-Long Song
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Di Lin
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xia Chen
- Dr. Sun Yat-Sen Mausoleum Administration, Nanjing, Jiangsu, China
| | - Qun Dai
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, Jiangsu, China
| | - Gu Rao
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ya-Jing Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
136
|
Ferreira MA, Teixeira RM, Brustolini OJB, Saia TFF, Jean-Baptiste J, Ribeiro NGA, Breves SS, Sampaio FR, Santos EGD, Leon BA, Oliveira CC, Duarte CEM, Lima LL, Oliveira LL, Ramos HJO, Reis PAB, Fontes EPB. The immune NIK1/RPL10/LIMYB signaling module regulates photosynthesis and translation under biotic and abiotic stresses. Nat Commun 2025; 16:4433. [PMID: 40360515 PMCID: PMC12075613 DOI: 10.1038/s41467-025-59571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Photosynthesis and translation are targets of metabolic control and development in plants, yet how stress signals coordinately regulate these opposing energy-producing and consuming processes remains enigmatic. Here, we unravel a growth control circuit that ties photosynthesis to translational control in response to biotic and abiotic signals. Our findings reveal that the L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), a key player of the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)/ RIBOSOMAL PROTEIN L10 (RPL10) antiviral signaling pathway, not only downregulates translation genes, but also represses photosynthesis-related genes and photosynthesis itself. LIMYB repressor activity, regulated by phosphorylation, is crucial for the decline in photosynthesis under stress. NIK1 activation by PAMPs or the phosphomimetic NIK1-T474D represses photosynthesis-related genes and photosynthesis in control but not in limyb lines. Furthermore, heat and osmotic stress also activate the NIK1/RPL10/LIMYB signaling circuit in wild type. These stresses induce NIK1 phosphorylation, but not marker gene repression, in limyb, indicating that LIMYB connects NIK1 activation to stress-mediated downregulation of translation- and photosynthesis-related genes. This coordinated repression via the NIK1/RPL10/LIMYB module may help plants adapt to changing environments.
Collapse
Affiliation(s)
- Marco Aurélio Ferreira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Ruan M Teixeira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Otávio J B Brustolini
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, Brazil
| | - Thainá F F Saia
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - James Jean-Baptiste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Nathalia G A Ribeiro
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sâmera S Breves
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fellipe R Sampaio
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eulálio G D Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Borys A Leon
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Celio C Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratório de Investigação Biológica, Department of Biomedical Sciences and Health, Universidade do Estado de Minas Gerais, Passos, Brazil
| | - Lucas L Lima
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro L Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
137
|
Zhang Y, Huang M, Liu Y, Yang M, Hou Y, Huang CF, Wang NN, Li L. The RAE1-STOP1 module regulates ABA sensitivity in early seedlings of Arabidopsis. BMC PLANT BIOLOGY 2025; 25:627. [PMID: 40360986 PMCID: PMC12070514 DOI: 10.1186/s12870-025-06635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
The SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) transcription factor plays a pivotal role in maintaining cellular ion balance and governing aluminum tolerance in plants. Abscisic acid (ABA) participates in aluminum tolerance by inducing the expression of several genes that are STOP1 targets. However, the interplay between ABA signaling and STOP1-mediated gene expression remains poorly understood. The F-box protein RAE1, an SCF-type E3 ligase component, recognizes STOP1 and controls its ubiquitination and degradation. This study revealed that exogenous ABA supplementation reduced STOP1 levels by promoting the expression of RAE1. Notably, both RAE1 loss-of-function mutants and STOP1 overexpressing lines showed enhanced sensitivity to exogenous ABA treatment, which correlated with early stage post-transcriptional upregulation of ABSCISIC ACID INSENSITIVE5 (ABI5). Our observations suggest that RAE1 operates as an ABA-responsive factor, exerting control over STOP1 homeostasis to regulate ABA responses in Arabidopsis. Interestingly, the STOP1 dysfunctional alleles exhibit ABA sensitivity despite a reduction in ABI5, with similar expression levels of ABA-responsive genes, except for the ABI5 repressor MFT, compared to the rae1 and STOP1 overexpression lines. This may suggest a bidirectional role of STOP1 in ABA sensitivity and highlights the critical importance of maintaining STOP1 homeostasis to balance growth and stress tolerance.
Collapse
Affiliation(s)
- Yuqing Zhang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Min Huang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ning Ning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
138
|
Liu S, Yan H, Feng X, Luo X, Lv Y, Lei C, Chen N, Ma Y. Admixture and selection offer insights for the conservation and breeding of Guyuan cattle. BMC Biol 2025; 23:128. [PMID: 40361071 PMCID: PMC12077033 DOI: 10.1186/s12915-025-02213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The admixture between taurine and indicine cattle increases breed diversity and provides new genetic resources for human and natural selection. The climate of northwestern China is typified by cold and arid conditions, and cattle in this region are primarily taurine breeds. However, Guyuan cattle inhabit a transitional zone in northwestern China, typified by semi-arid and semi-humid climates. It is hypothesized that Guyuan cattle have a little of indicine ancestry. These results suggest that Guyuan cattle are a valuable genetic resource. RESULTS We established a conservation population of Guyuan cattle in their native habitat. We found that Guyuan cattle were an admixture between 78.09% East Asian taurine (EAT) and 20.26% East Asian indicine (EAI) ancestries. The admixture in Guyuan cattle was dated to 255 years ago. Notably, we identified Guyuan cattle as a unique genetic resource, representing a transitional breed between northern and central Chinese cattle with distinct admixture proportions. We revealed that the selection signals in Guyuan cattle with excess EAT ancestry were associated with reproduction, immunity, body length, cold climate adaptation, pigmentation, muscle development, residual feed intake, and fat deposition and that the selection signals in Guyuan cattle with excess EAI ancestry were associated with disease resistance. Remarkably, we discovered valuable single nucleotide polymorphisms (SNPs) in the promoter regions of the RBM39 and NEK6 genes, which may play key roles in regulating muscle development and disease resistance. CONCLUSIONS Our results suggest that Guyuan cattle are a newly identified genetic resource, and the native taurine and indicine ancestries in Guyuan cattle remain a valuable genetic resource of conservation and breeding.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Molecular Cell Breeding of Ruminants in Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xue Feng
- Key Laboratory of Molecular Cell Breeding of Ruminants in Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yang Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Yun Ma
- Key Laboratory of Molecular Cell Breeding of Ruminants in Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
139
|
Laso-Pérez R, Rivas-Santisteban J, Fernandez-Gonzalez N, Mundy CJ, Tamames J, Pedrós-Alió C. Nitrogen cycling during an Arctic bloom: from chemolithotrophy to nitrogen assimilation. mBio 2025:e0074925. [PMID: 40353658 DOI: 10.1128/mbio.00749-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
In the Arctic, phytoplankton blooms are recurring phenomena occurring during the spring-summer seasons and influenced by the strong polar seasonality. Bloom dynamics are affected by nutrient availability, especially nitrogen, which is the main limiting nutrient in the Arctic. This study aimed to investigate the changes in an Arctic microbial community using omics approaches during a phytoplankton bloom focusing on the nitrogen cycle. Using metagenomic and metatranscriptomic samples from the Dease Strait (Canada) from March to July (2014), we reconstructed 176 metagenome-assembled genomes. Bacteria dominated the microbial community, although archaea reached up to 25% of metagenomic abundance in early spring, when Nitrososphaeria archaea actively expressed genes associated with ammonia oxidation to nitrite (amt, amo, nirK). The resulting nitrite was presumably further oxidized to nitrate by a Nitrospinota bacterium that highly expressed a nitrite oxidoreductase gene (nxr). Since May, the constant increase in chlorophyll a indicated the occurrence of a phytoplankton bloom, promoting the successive proliferation of different groups of chemoorganotrophic bacteria (Bacteroidota, Alphaproteobacteria, Gammaproteobacteria). These bacteria showed different strategies to obtain nitrogen, whether it be from organic or inorganic sources, according to the expression patterns of genes encoding transporters for nitrogen compounds. In contrast, during summer, the chemolithotrophic organisms thriving during winter reduced their relative abundance and the expression of their catabolic genes. Based on our functional analysis, we see a transition from a community where nitrogen-based chemolitotrophy plays a relevant role to a chemoorganotrophic community based on the carbohydrates released during the phytoplankton bloom, where different groups seem to specialize in different nitrogen sources.IMPORTANCEThe Arctic is one of the environments most affected by anthropogenic climate change. It is expected that the rise in temperature and change in ice cover will impact the marine microbial communities and the associated biogeochemical cycles. In this regard, nitrogen is the main nutrient limiting Arctic phytoplankton blooms. In this study, we combine genetic and expression data to study the nitrogen cycle at the community level over a time series covering from March to July. Our results indicate the importance of different taxa (from archaea to bacteria) and processes (from chemolithoautotrophy to incorporation of different nitrogen sources) in the cycling of nitrogen during this period. This study provides a baseline for future research that should include additional methodologies like biogeochemical analysis to fully understand the changes occurring on these communities due to global change.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Rivas-Santisteban
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nuria Fernandez-Gonzalez
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Christopher J Mundy
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Canada
| | - Javier Tamames
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
140
|
Chen P, Zhong Z, Jin WX, Sun J, Sun SC. Chromosome-scale assembly of Artemia tibetiana genome, first aquatic invertebrate genome from Tibet Plateau. Sci Data 2025; 12:777. [PMID: 40355476 PMCID: PMC12069563 DOI: 10.1038/s41597-025-05136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Genomic-level studies on the adaptive evolution of animals in the Qinghai-Tibet Plateau have been rapidly increasing. However, most studies are concentrated on vertebrates, and there are few reports on invertebrates. Here, we report the chromosome-level genome assembly for the brine shrimp Artemia tibetiana from Kyêbxang Co, a high-altitude (4620 m above sea level) salt lake on the plateau, based on the combination of Illumina, Nanopore long-reads and Hi-C sequencing data. The assembled genome is 1.69 Gb, and 94.83% of the assembled sequences are anchored to 21 pseudo-chromosomes. Approximately 75% of the genome was identified as repetitive sequences, which is higher than most crustaceans documented so far. A total of 17,988 protein-coding genes were identified, among them 14,388 were functionally annotated. This genomic resource provides the foundation for whole-genome level investigation on the genetic adaptation of Artemia to the harsh conditions in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Panpan Chen
- Fisheries College, Ocean University of China, Qingdao, 266000, China
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Zhaoyan Zhong
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Wei-Xin Jin
- Fisheries College, Ocean University of China, Qingdao, 266000, China
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Jin Sun
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China.
| | - Shi-Chun Sun
- Fisheries College, Ocean University of China, Qingdao, 266000, China.
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China.
| |
Collapse
|
141
|
Hou YC, Tseng SM, Kuo TC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. The role of glutamine and leucine supplementation in liver metabolic reprogramming during sepsis. Life Sci 2025; 374:123708. [PMID: 40360090 DOI: 10.1016/j.lfs.2025.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
AIMS Glutamine (Gln) and leucine (Leu) are amino acids known for modulating various biological functions. This study aimed to identify metabolism-related genes and their transcriptional pattern changes after Gln and/or Leu administration using next-generation sequencing technology in the liver during sepsis, a condition known to lead to liver metabolic reprogramming and damage. MATERIALS AND METHODS C57BL/6J mice were randomly assigned to a sham control group (C) and four septic groups subjected to cecal ligation and puncture (CLP). The septic groups were as follows: S group, sepsis control with saline injection after CLP; Gln group, injected with Gln after CLP; Leu group, injected with Leu after CLP; and GL group, injected with Gln plus Leu after CLP. All mice were sacrificed on day 4 after the operation, and liver samples were collected for further analysis. KEY FINDINGS Gln and/or Leu administration during sepsis significantly altered the hepatic transcriptome with different gene expression patterns. Notably, the G group had the highest number of gene changes among the amino acid-treated groups. Gln administration was associated with more pronounced downregulation of leukocyte inflammatory genes. Carbohydrate metabolic pathways were suppressed, but the oxidative phosphorylation pathway was enhanced by Gln administration, potentially improving metabolic reprogramming during sepsis. SIGNIFICANCE Gln and/or Leu treatment showed promise in alleviating sepsis-induced liver injury; however, only Gln administration alone demonstrated beneficial effects on hepatic macronutrient and energy metabolism during sepsis. These results highlight the potential therapeutic significance of specific amino acids on attenuating hepatic metabolic dysregulation and injury in septic insult.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shang-Ming Tseng
- Department of Traumatology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
142
|
Muratoğlu B, Özdemir C, Eylem CC, Reçber T, Nemutlu E, Yet İ, Uçkan-Çetinkaya D. Circadian rhythm and aryl hydrocarbon receptor crosstalk in bone marrow adipose tissue and implications in leukemia. Sci Rep 2025; 15:16387. [PMID: 40350529 PMCID: PMC12066725 DOI: 10.1038/s41598-025-93169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/05/2025] [Indexed: 05/14/2025] Open
Abstract
Leukemic cells modulate the bone marrow microenvironment to enhance their survival. Lipolysis in bone marrow adipose tissue (BMAT) has emerged as a critical factor supporting leukemic cell survival, yet understanding its primary role in leukemia development remains limited. Fanconi anemia (FA), characterized by a predisposition to acute myeloid leukemia (AML) and hypersensitivity to environmental toxins, is a transitional model for studying leukemic transformation. İntegrated multi-omics analyses were conducted on BMAT-derived mesenchymal stem/stromal cells (MSCs) from healthy donors (HD), AML, and FA patients. These analyses revealed intricate interactions among genes, metabolites, and lipids. Particularly noteworthy were the effects observed following the inhibition of aryl hydrocarbon receptor (AhR) signaling by StemRegenin1 (SR1). BMAT-MSCs showed increased expression of epithelial-mesenchymal transition (EMT) genes in FA and AML, suggesting a potential shift towards cancer-associated fibroblasts in the dysregulated marrow microenvironment. Identification of potential circadian rhythm biomarkers (NPAS2, PER2, BHLHE40, PER3, CIART) in BMAT-MSCs indicates a link between related lipid metabolism genes (e.g., PTGS1, PIK3R1) and SR1 treatment, implicating them in lipolysis processes. Dysregulation of circadian rhythm-related genes (CIART, BHLHE40, NPAS2) in AML BMAT-MSCs, along with changes in circulating lipid metabolites like palmitate suggests their role in shaping the leukemia microenvironment. Upregulation of FABP5 and CD36 suggests a novel molecular mechanism involving FABP5 in AhR-mediated circadian regulation and identifies CD36 as a potential partner for FABP5 in BMAT-MSCs. Overall, this study unveils the interplay between AhR signaling, circadian rhythm, and the leukemia microenvironment in BMAT-MSCs, offering new insights into leukemia pathogenesis and therapeutic opportunities.
Collapse
Affiliation(s)
- Bihter Muratoğlu
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cansu Özdemir
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - İdil Yet
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Division of Hematology, Department of Pediatrics, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
143
|
Acford-Palmer H, Tadesse FG, Manko E, Phelan JE, Higgins M, Osborne A, Kristan M, Walker T, Bousema T, Messenger LA, Clark TG, Campino S. Genome wide population genetics and molecular surveillance of insecticide resistance in Anopheles stephensi mosquitoes from Awash Sebat Kilo in Ethiopia. Sci Rep 2025; 15:16443. [PMID: 40355632 PMCID: PMC12069653 DOI: 10.1038/s41598-025-95814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Since the detection of the Asian mosquito Anopheles stephensi in Dijbouti in 2012, it has spread throughout the Horn of Africa. This invasive vector continues to expand across the continent and is a significant threat to malaria control programs. Vector control methods, including insecticide-treated nets and indoor residual spraying, have substantially reduced the malaria burden. However, the increasing prevalence of mosquitoes resistant to insecticides, including An. stephensi populations, undermines ongoing malaria elimination efforts. Understanding population structure, gene flow between populations, and the distribution of insecticide resistance mutations is essential for guiding effective malaria control strategies. Here, we generated whole genome sequencing data for An. stephensi sourced from Awash Sebat Kilo, Ethiopia (n = 27) and compared with South Asian populations (n = 45; India and Pakistan) to assess genomic diversity, population structure, and uncovering insecticide resistance mutations. Population structure analysis using genome-wide single nucleotide polymorphisms (n = 15,533,476) revealed Ethiopian isolates clustering as a distinct ancestral group, separate from South Asian isolates. Three insecticide resistance-associated SNPs (gaba gene: A296S and V327I; vgsc L1014F) were detected. Evidence of ongoing selection was found in several loci, including genes previously associated with neonicotinoids, ivermectin, DDT, and pyrethroid resistance. This study represents the first whole genome population genetics study of invasive An. stephensi, revealing genomic differences from South Asian populations, which can be used for future assessments of vector population dispersal and detection of insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fitsum G Tadesse
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Malaria and NTD Directorate, Armauer Hansen Research Institute, ALERT Hospital Compound, Addis Ababa, Ethiopia
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
- Parasitology and Vector Biology (PARAVEC), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
144
|
Van Swearingen AED, Lee MR, Rogers LW, Sibley AB, Shi P, Qin X, Goodin M, Seale K, Owzar K, Anders CK. Genomic and immune profiling of breast cancer brain metastases. Acta Neuropathol Commun 2025; 13:99. [PMID: 40355907 PMCID: PMC12070617 DOI: 10.1186/s40478-025-02001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Brain metastases (BrM) arising from breast cancer (BC) are an increasing consequence of advanced disease, with up to half of patients with metastatic HER2 + or triple negative BC experiencing central nervous system (CNS) recurrence. The genomic alterations driving CNS recurrence, along with contributions of the immune microenvironment, particularly by intrinsic subtype, remain unclear. METHODS We characterized the genomic and immune landscape of BCBrM from a cohort of 42 patients by sequencing whole-exome DNA (WES) and total RNA libraries from frozen and FFPE BrM and FFPE extracranial tumors (ECT). Analyses included PAM50 intrinsic subtypes, somatic mutations, copy number variations (CNV), pathway alterations, immune cell type deconvolution, and associations with clinical outcomes RESULTS: Intrinsic subtype calls were concordant for the majority of BrM-ECT pairs (60%). Across all BrM and ECT samples, the most common somatic gene mutation was TP53 (64%, 30/47). For patients with matched FFPE BrM-FFPE ECT, alterations tended to be conserved across tissue type, although differential somatic mutations and CNV in specific genes were observed. Several genomic pathways were differentially expressed between patient-matched BrM-ECT; MYC targets, DNA damage repair, cholesterol homeostasis, and oxidative phosphorylation were higher in BrM, while immune-related pathways were lower in BrM. Deconvolution of immune populations between BrM-ECT demonstrated activated dendritic cell populations were higher in BrM compared to ECT. Increased expression of several oncogenic preselected pathways in BrM were associated with inferior survival, including DNA damage repair, inflammatory response, and oxidative phosphorylation CONCLUSIONS: Collectively, this study illustrates that while some genomic alterations are shared between BrM and ECT, there are also unique aspects of BrM including somatic mutations, CNV, pathway alterations, and immune landscape. A deeper understanding of differences inherent to BrM will contribute to the development of BrM-tailored therapeutic strategies. Additional analyses are warranted in larger cohorts, particularly with additional matched BrM-ECT.
Collapse
Affiliation(s)
| | - Marissa R Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Layne W Rogers
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander B Sibley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael Goodin
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Katelyn Seale
- Duke Cancer Institute, Duke University Hospital, Durham, NC, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Carey K Anders
- Department of Medical Oncology, Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University, 10 Searle Center Drive, Campus Box 3881, Durham, NC, 27710, USA.
| |
Collapse
|
145
|
Zhang J, Gu R, Miao X, Schmidt RH, Xu Z, Lu J, Ma Y, Yang T, Wang P, Liu Y, Wang X, Du X, Zheng N, Zhen S, Liang C, Xie Y, Wu Y, Li L, Reif JC, Jiang Y, Wang J, Fu J, Zhang H. GWAS-based population genetic analysis identifies bZIP29 as a heterotic gene in maize. PLANT COMMUNICATIONS 2025; 6:101289. [PMID: 39985171 DOI: 10.1016/j.xplc.2025.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Understanding the role of heterotic genes in contributing to heterosis is essential for advancing hybrid breeding. We analyzed plant height (PH), ear height (EH), and transcriptomic data from a maize hybrid population. Genome-wide association studies (GWASs) revealed that dominance effects of quantitative trait loci (QTLs) play a significant role in hybrid traits and mid-parent heterosis. By integrating GWAS, expression GWAS (eGWAS), and module eGWAS analysis, we prioritized six candidate heterotic genes underlying six QTLs, including one QTL that spans the bZIP29 gene. In the hybrid population, bZIP29 exhibits additive expression and dominance effects for both hybrid traits and mid-parent heterosis, with its favorable allele correlating positively with PH and EH. bZIP29 demonstrates dominance or over-dominance patterns in hybrids derived from crosses between transgenic and wild-type lines, contingent upon its expression. A tsCUT&Tag assay revealed that bZIP29 protein binds directly to a gene regulated by its associated expression QTL (eQTL) and six genes within expression modules governed by its associated module-eQTLs (meQTLs). Regulatory networks involving bZIP29 are more extensive in hybrid subpopulations than in the parental population. This study offers insights into key heterotic genes and networks that underpin the robust growth of hybrid maize.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Renate H Schmidt
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Zhenxiang Xu
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Ma
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingxi Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Yong Jiang
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
146
|
Petschner P, Kumar S, Nguyen DA, Torok D, Gal Z, Baksa D, Gecse K, Kokonyei G, Mamitsuka H, Juhasz G. The interictal transcriptomic map of migraine without aura. J Headache Pain 2025; 26:109. [PMID: 40350427 PMCID: PMC12067696 DOI: 10.1186/s10194-025-02033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The present study aimed to deliver a replicable transcriptomic map of migraine without aura (MO) and its comprehensive, genome- and drug discovery focused analysis to identify hypotheses for future research- and clinical attempts. METHODS We recruited 30 controls and 22 MO patients without serious chronic comorbidities/regular medication intake. RNA-sequencing was conducted interictally at two different time points to identify replicable differential gene expression and enriched pathways. Subsequent refining and functional analyses were performed, including: 1) testing additional patient factors, 2) running genetic association analysis on migraine in the UK Biobank (UKB) and our cohort, and 3) predicting drug binding with AutoDock Vina and machine learning to proteins of transcriptomic changes. RESULTS Difference in CYP26B1 was identified as key alteration in migraine. Gene set enrichment analysis identified 88 replicated, significant, exclusively downregulated core pathways, including metabolic, cardiovascular, and immune system-related gene sets and 69 leading genes, like CORIN. Logistic regression of leading genes' and vitamin A pathway-related polymorphisms identified 11 significant polymorphisms in LRP1. Confirmatory analyses excluded a substantial impact of sex, allergy and different vitamin A/retinol intake. Binding simulations and predictions pointed to potential future drug molecules, like tetrandrine and probucol. CONCLUSION The replicable transcriptomic map of MO and functional analyses: 1) identified pathomechanisms related to metabolic, cardiovascular and immune system related processes on a molecular level, 2) reported gene level hits, 3) proposed novel potential etiology, like LRP1-induced decreased retinoic acid signaling, and 4) delivered novel drug candidates for the disorder.
Collapse
Affiliation(s)
- Peter Petschner
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611 - 0011, Japan.
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary.
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary.
- Research Unit for Realization of Sustainable Society, Kyoto University, Uji, Kyoto, 611 - 0111, Japan.
| | - Sahel Kumar
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
| | - Duc A Nguyen
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611 - 0011, Japan
- Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Pazmany Peter Catholic University, Budapest, 1088, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary
| | - Gyongyi Kokonyei
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, 1064, Hungary
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611 - 0011, Japan
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, 1089, Hungary.
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, 1089, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, 1089, Hungary.
| |
Collapse
|
147
|
Träger C, Kaiser M, Freudenstein D, Heckscher S, Dettmer K, Oefner PJ, Liebisch G, Hiergeist A, Gessner A, Lee DH, Angstwurm K, Linker RA, Haase S. A probiotic approach identifies a Treg-centred immunoregulation via modulation of gut microbiota metabolites in people with multiple sclerosis and healthy individuals. EBioMedicine 2025; 116:105743. [PMID: 40359627 DOI: 10.1016/j.ebiom.2025.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Modulation of the gut microbiota composition has been suggested as a potential disease modifying therapy in immune-mediated diseases such as multiple sclerosis (MS). However, a conclusive mechanism linking gut microbiota modulation to peripheral immune responses has remained elusive so far. METHODS In this exploratory cohort study, people with MS (pwMS) and healthy controls (HC) supplemented a lactobacilli-rich probiotic for two or six weeks and were additionally investigated six weeks after the last intake. Immune cell phenotyping was performed in blood samples, complemented by mRNA expression analysis, serum cytokine measurements, and Treg suppression assays. Besides gut microbiota composition analysis, metabolite production was investigated in stool and serum. Links between metabolites and peripheral immune system were investigated in in vitro T cell differentiation assays. FINDINGS In peripheral blood, Treg cells increased in both groups, while Th1 cells were significantly reduced in pwMS. This promotion of a regulatory immunophenotype was complemented by increased concentrations of IL-10 in serum and higher expression of IL10 and CTLA4. Functional assays revealed an enhanced suppressive capacity of Treg cells due to the probiotic intervention. The tryptophan metabolite indole-3-acetate (IAA) increased in stool and serum samples of pwMS during the probiotic intake. In vitro, IAA specifically enhanced the formation of IL-10 secreting T cells together with CYP1a1 expression. This effect was blocked by addition of an aryl hydrocarbon receptor (AHR) inhibitor. INTERPRETATION A lactobacilli-enriched probiotic promotes a regulatory immunophenotype in pwMS, probably by enhancing AHR agonists in the gut. It may be of interest as add-on therapy in immune-mediated diseases such as MS. FUNDING This study has in part been funded by Novartis Pharma GmbH and BMBF grant no. 01EJ2202B.
Collapse
Affiliation(s)
- Constantin Träger
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Kaiser
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - David Freudenstein
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Simon Heckscher
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
148
|
Zhang X, Zhong R, Wu J, Tan Z, Jiao J. Dietary selection of distinct gastrointestinal microorganisms drives fiber utilization dynamics in goats. MICROBIOME 2025; 13:118. [PMID: 40350460 PMCID: PMC12067950 DOI: 10.1186/s40168-025-02112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Dietary fiber is crucial to animal productivity and health, and its dynamic utilization process is shaped by the gastrointestinal microorganisms in ruminants. However, we lack a holistic understanding of the metabolic interactions and mediators of intestinal microbes under different fiber component interventions compared with that of their rumen counterparts. Here, we applied nutritional, amplicon, metagenomic, and metabolomic approaches to compare characteristic microbiome and metabolic strategies using goat models with fast-fermentation fiber (FF) and slow-fermentation fiber (SF) dietary interventions from a whole gastrointestinal perspective. RESULTS The SF diet selected fibrolytic bacteria Fibrobacter and Ruminococcus spp. and enriched for genes encoding for xylosidase, endoglucanase, and galactosidase in the rumen and cecum to enhance cellulose and hemicellulose utilization, which might be mediated by the enhanced microbial ATP production and cobalamin biosynthesis potentials in the rumen. The FF diet favors pectin-degrading bacteria Prevotella spp. and enriched for genes encoding for pectases (PL1, GH28, and CE8) to improve animal growth. Subsequent SCFA patterns and metabolic pathways unveiled the favor of acetate production in the rumen and butyrate production in the cecum for SF goats. Metagenomic binning verified this distinct selection of gastrointestinal microorganisms and metabolic pathways of different fiber types (fiber content and polysaccharide chemistry). CONCLUSIONS These findings provide novel insights into the key metabolic pathways and distinctive mechanisms through which dietary fiber types benefit the host animals from the whole gastrointestinal perspective. Video Abstract.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Rongzhen Zhong
- Jilin Province Feed Processing and Ruminant Precision Breeding Cross Regional Cooperation Technology Innovation Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jian Wu
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Jinzhen Jiao
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- Yuelushan Laboratory, Changsha, Hunan, 410128, China.
| |
Collapse
|
149
|
Ding Y, Ke J, Hong T, Zhang A, Wu X, Jiang X, Shao S, Gong M, Zhao S, Shen L, Chen S. Microbial diversity and ecological roles of halophilic microorganisms in Dingbian (Shaanxi, China) saline-alkali soils and salt lakes. BMC Microbiol 2025; 25:287. [PMID: 40350492 PMCID: PMC12066067 DOI: 10.1186/s12866-025-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Halophilic microorganisms abound in numerous hypersaline environments, such as salt lakes, salt mines, solar salterns, and salted seafood. In the northwest of Dingbian county (Shaanxi province, China), there exists a belt of hypersaline habitats extending from the west to the north consisting of saline-alkali soil and salt lakes. Theoretically, such a hypersaline environment has a high probability of containing abundant halophilic archaea communities. Nevertheless, there is nearly no systematic research on halophilic archaea in this area. Here, we employed a combination of culture-dependent and culture-independent methods to analyze the collected samples. The high-throughput sequencing results of the archaeal 16S rRNA gene indicated that the richness of halophilic archaea in saline-alkali soils was significantly higher than that in salt lakes. In saline-alkali soils, the Natronomonas genus of archaea was more predominant compared to other genera, while in salt lakes, the Halonotius, Halorubrum, and Haloarcula genera of archaea had relatively higher abundances. However, the dominant families of halophilic archaea in both environments were mainly Haloferacaceae (30.96-72%), Halomicrobiaceae (17-53.19%) and Nanosalinaceae (1-19.08%). Based on the outcomes of pure culture experiments, a total of 26 genera and 98 strains were identified. Among the identified halophilic microorganisms, the predominant species were Halorubrum and Fodinibius, accounting for 33.67% and 13.27%, respectively. The remainder were mostly low-abundance groups within the community, and 22 potential novel taxa were discovered. Additionally, metagenomic technology was employed in our research. The analysis results demonstrated that the microorganisms in this area possess metabolic pathways capable of degrading various pollutants such as atrazine, methane, and dioxins, suggesting that some microorganisms in this area play a positive role in environmental remediation. This study roughly reveals the diversity composition and dominant species of halophilic archaea in these hypersaline environments and provides a scientific basis for the possible ecological functions of microorganisms in this area during long-term survival. It also offers scientific evidence for the development and utilization of halophilic microbial resources and ecological protection.
Collapse
Affiliation(s)
- Yue Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xue Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shilong Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shengda Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
150
|
Lin Q, Du X, Ren F, Liu Y, Gong G, Ge S, Li W, Li Z, Zhou L, Duan M, Li XY, Wang GZ, Xiao R, Gui JF, Mei J. Anti-Müllerian hormone signalling sustains circadian homeostasis in zebrafish. Nat Commun 2025; 16:4359. [PMID: 40348785 PMCID: PMC12065890 DOI: 10.1038/s41467-025-59528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Circadian clocks temporally orchestrate the behavioural and physiological rhythms. The core molecules establishing the circadian clock are clear; however, the critical signalling pathways that cause or favour the homeostasis are poorly understood. Here, we report that anti-Müllerian hormone (Amh)-mediated signalling plays an important role in sustaining circadian homeostasis in zebrafish. Notably, amh knockout dampens molecular clock oscillations and disrupts both behavioural and hormonal circadian rhythms, which are recapitulated in bmpr2a null mutants. Somatotropes and gonadotropes are identified as Amh-targeted pituitary cell populations. Single-cell transcriptome analysis further reveals a lineage-specific regulation of pituitary clock by Amh. Moreover, Amh-induced effect on clock gene expression can be abolished by blocking Smad1/5/9 phosphorylation and bmpr2a knockout. Mechanistically, Amh binds to its receptors, Bmpr2a/Bmpr1bb, which in turn activate Smad1/5/9 by phosphorylation and promote circadian gene expression. Our findings reveal a key hormone signalling pathway for circadian homeostasis in zebrafish with implications for rhythmic organ functions and circadian health.
Collapse
Affiliation(s)
- Qiaohong Lin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xian Du
- Department of Hematology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Department of Laboratory, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ren
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ying Liu
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Gaorui Gong
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Si Ge
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Duan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xi-Yin Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Xiao
- Department of Hematology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Jian-Fang Gui
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Jie Mei
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|