101
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
Affiliation(s)
- Alma Rosa Lezama Toledo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Germán Rivera Monroy
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Felipe Esparza Salazar
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Shalini Jain
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Hariom Yadav
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Cesario Venturina Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| |
Collapse
|
102
|
Shoubridge AP, Fourrier C, Choo JM, Proud CG, Sargeant TJ, Rogers GB. Gut Microbiome Regulation of Autophagic Flux and Neurodegenerative Disease Risks. Front Microbiol 2022; 12:817433. [PMID: 35003048 PMCID: PMC8733410 DOI: 10.3389/fmicb.2021.817433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
The gut microbiome-brain axis exerts considerable influence on the development and regulation of the central nervous system. Numerous pathways have been identified by which the gut microbiome communicates with the brain, falling largely into the two broad categories of neuronal innervation and immune-mediated mechanisms. We describe an additional route by which intestinal microbiology could mediate modifiable risk for neuropathology and neurodegeneration in particular. Autophagy, a ubiquitous cellular process involved in the prevention of cell damage and maintenance of effective cellular function, acts to clear and recycle cellular debris. In doing so, autophagy prevents the accumulation of toxic proteins and the development of neuroinflammation, both common features of dementia. Levels of autophagy are influenced by a range of extrinsic exposures, including nutrient deprivation, infection, and hypoxia. These relationships between exposures and rates of autophagy are likely to be mediated, as least in part, by the gut microbiome. For example, the suppression of histone acetylation by microbiome-derived short-chain fatty acids appears to be a major contributor to upregulation of autophagic function. We discuss the potential contribution of the microbiome-autophagy axis to neurological health and examine the potential of exploiting this link to predict and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Christopher G Proud
- Nutrition, Diabetes and Gut Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
103
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
104
|
Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, Stough C, Gondalia S. The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients 2021; 14:nu14010064. [PMID: 35010939 PMCID: PMC8746300 DOI: 10.3390/nu14010064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Correspondence:
| | - Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Ana Lea
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Grace McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Karen Nolidin
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization, Adelaide, SA 5000, Australia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| |
Collapse
|
105
|
Tarif AMM, Islam MN, Jahan MR, Yanai A, Nozaki K, Masumoto KH, Shinoda K. Immunohistochemical expression and neurochemical phenotypes of huntingtin-associated protein 1 in the myenteric plexus of mouse gastrointestinal tract. Cell Tissue Res 2021; 386:533-558. [PMID: 34665322 DOI: 10.1007/s00441-021-03542-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor and being considered as a core molecule of stigmoid body (STB). Brain/spinal cord regions with abundant STB/HAP1 expression are usually spared from neurodegeneration in stress/disease conditions, whereas the regions with little STB/HAP1 expression are always neurodegenerative targets. The enteric nervous system (ENS) can act as a potential portal for pathogenesis of neurodegenerative disorders. However, ENS is also a neurodegenerative target in these disorders. To date, the expression of HAP1 and its neurochemical characterization have never been examined there. In the current study, we determined the expression of HAP1 in the ENS of adult mice and characterized the morphological relationships of HAP1-immunoreactive (ir) cells with the markers of motor neurons, sensory neurons, and interneurons in the myenteric plexus using Western blotting and light/fluorescence microscopy. HAP1-immunoreaction was present in both myenteric and submucosal plexuses of ENS. Most of the HAP1-ir neurons exhibited STB in their cytoplasm. In myenteric plexus, a large number of calretinin, calbindin, NOS, VIP, ChAT, SP, somatostatin, and TH-ir neurons showed HAP1-immunoreactivity. In contrast, most of the CGRP-ir neurons were devoid of HAP1-immunoreactivity. Our current study is the first to clarify that HAP1 is highly expressed in excitatory motor neurons, inhibitory motor neurons, and interneurons but almost absent in sensory neurons in myenteric plexus. These suggest that STB/HAP1-ir neurons are mostly Dogiel type I neurons. Due to lack of putative STB/HAP1 protectivity, the sensory neurons (Dogiel type II) might be more vulnerable to neurodegeneration than STB/HAP1-expressing motoneurons/interneurons (Dogiel type I) in myenteric plexus.
Collapse
Affiliation(s)
- Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
- Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| |
Collapse
|
106
|
Parodi B, Kerlero de Rosbo N. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease? Front Immunol 2021; 12:718220. [PMID: 34621267 PMCID: PMC8490747 DOI: 10.3389/fimmu.2021.718220] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
A large and expending body of evidence indicates that the gut-brain axis likely plays a crucial role in neurological diseases, including multiple sclerosis (MS). As a whole, the gut-brain axis can be considered as a bi-directional multi-crosstalk pathway that governs the interaction between the gut microbiota and the organism. Perturbation in the commensal microbial population, referred to as dysbiosis, is frequently associated with an increased intestinal permeability, or "leaky gut", which allows the entrance of exogeneous molecules, in particular bacterial products and metabolites, that can disrupt tissue homeostasis and induce inflammation, promoting both local and systemic immune responses. An altered gut microbiota could therefore have significant repercussions not only on immune responses in the gut but also in distal effector immune sites such as the CNS. Indeed, the dysregulation of this bi-directional communication as a consequence of dysbiosis has been implicated as playing a possible role in the pathogenesis of neurological diseases. In multiple sclerosis (MS), the gut-brain axis is increasingly being considered as playing a crucial role in its pathogenesis, with a major focus on specific gut microbiota alterations associated with the disease. In both MS and its purported murine model, experimental autoimmune encephalomyelitis (EAE), gastrointestinal symptoms and/or an altered gut microbiota have been reported together with increased intestinal permeability. In both EAE and MS, specific components of the microbiota have been shown to modulate both effector and regulatory T-cell responses and therefore disease progression, and EAE experiments with germ-free and specific pathogen-free mice transferred with microbiota associated or not with disease have clearly demonstrated the possible role of the microbiota in disease pathogenesis and/or progression. Here, we review the evidence that can point to two possible consequences of the gut-brain axis dysfunction in MS and EAE: 1. A pro-inflammatory intestinal environment and "leaky" gut induced by dysbiosis could lead to an altered communication with the CNS through the cholinergic afferent fibers, thereby contributing to CNS inflammation and disease pathogenesis; and 2. Neuroinflammation affecting efferent cholinergic transmission could result in intestinal inflammation as disease progresses.
Collapse
Affiliation(s)
- Benedetta Parodi
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology and Maternal-Fetal Medicine (DINOGMI), University of Genoa, Genoa, Italy.,TomaLab, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
107
|
Picó S, Parras A, Santos-Galindo M, Pose-Utrilla J, Castro M, Fraga E, Hernández IH, Elorza A, Anta H, Wang N, Martí-Sánchez L, Belloc E, Garcia-Esparcia P, Garrido JJ, Ferrer I, Macías-García D, Mir P, Artuch R, Pérez B, Hernández F, Navarro P, López-Sendón JL, Iglesias T, Yang XW, Méndez R, Lucas JJ. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Sci Transl Med 2021; 13:eabe7104. [PMID: 34586830 DOI: 10.1126/scitranslmed.abe7104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sara Picó
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Alberto Parras
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Julia Pose-Utrilla
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Margarita Castro
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Enrique Fraga
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Ivó H Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Facultad de Ciencias, Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ainara Elorza
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Héctor Anta
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Nan Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laura Martí-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Paula Garcia-Esparcia
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Juan J Garrido
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC), Madrid 28002, Spain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel Macías-García
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Belén Pérez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Félix Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - José Luis López-Sendón
- Department of Neurology, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Teresa Iglesias
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| |
Collapse
|
108
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
109
|
Fields E, Vaughan E, Tripu D, Lim I, Shrout K, Conway J, Salib N, Lee Y, Dhamsania A, Jacobsen M, Woo A, Xue H, Cao K. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021; 70:101385. [PMID: 34098113 PMCID: PMC8373677 DOI: 10.1016/j.arr.2021.101385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disorder caused by extended trinucleotide CAG repetition in the HTT gene. Wild-type huntingtin protein (HTT) is essential, involved in a variety of crucial cellular functions such as vesicle transportation, cell division, transcription regulation, autophagy, and tissue maintenance. The mutant HTT (mHTT) proteins in the body interfere with HTT's normal cellular functions and cause additional detrimental effects. In this review, we discuss multiple approaches targeting DNA and RNA to reduce mHTT expression. These approaches are categorized into non-allele-specific silencing and allele-specific-silencing using Single Nucleotide Polymorphisms (SNPs) and haplogroup analysis. Additionally, this review discusses a potential application of recent CRISPR prime editing technology in targeting HD.
Collapse
Affiliation(s)
- Eric Fields
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Erik Vaughan
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Deepika Tripu
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Isabelle Lim
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Katherine Shrout
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Jessica Conway
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Nicole Salib
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Yubin Lee
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Akash Dhamsania
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Michael Jacobsen
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Ashley Woo
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States
| | - Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Kan Cao
- Gemstone Honors Program, University of Maryland, College Park, MD 20742, United States; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
110
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
111
|
Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest 2021; 131:e143775. [PMID: 34196307 DOI: 10.1172/jci143775] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) affect essential functions not only in the CNS, but also cause persistent gut dysfunctions, suggesting that they have an impact on both CNS and gut-innervating neurons. Although the CNS biology of NDs continues to be well studied, how gut-innervating neurons, including those that connect the gut to the brain, are affected by or involved in the etiology of these debilitating and progressive disorders has been understudied. Studies in recent years have shown how CNS and gut biology, aided by the gut-brain connecting neurons, modulate each other's functions. These studies underscore the importance of exploring the gut-innervating and gut-brain connecting neurons of the CNS and gut function in health, as well as the etiology and progression of dysfunction in NDs. In this Review, we discuss our current understanding of how the various gut-innervating neurons and gut physiology are involved in the etiology of NDs, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, to cause progressive CNS and persistent gut dysfunction.
Collapse
Affiliation(s)
- Alpana Singh
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering.,Department of Neurology.,Solomon H. Snyder Department of Neuroscience, and.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| |
Collapse
|
112
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
113
|
Du G, Dong W, Yang Q, Yu X, Ma J, Gu W, Huang Y. Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington's Disease. Front Immunol 2021; 11:603594. [PMID: 33679692 PMCID: PMC7933529 DOI: 10.3389/fimmu.2020.603594] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that gut dysbiosis may play a regulatory role in the onset and progression of Huntington’s disease (HD). However, any alterations in the fecal microbiome of HD patients and its relation to the host cytokine response remain unknown. The present study investigated alterations and host cytokine responses in patients with HD. We enrolled 33 HD patients and 33 sex- and age- matched healthy controls. Fecal microbiota communities were determined through 16S ribosomal DNA gene sequencing, from which we analyzed fecal microbial richness, evenness, structure, and differential abundance of individual taxa between HD patients and healthy controls. HD patients were evaluated for their clinical characteristics, and the relationships of fecal microbiota with these clinical characteristics were analyzed. Plasma concentrations of interferon gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor necrosis factor alpha were measured by Meso Scale Discovery (MSD) assays, and relationships between microbiota and cytokine levels were analyzed in the HD group. HD patients showed increased α-diversity (richness), β-diversity (structure), and altered relative abundances of several taxa compared to those in healthy controls. HD-associated clinical characteristics correlated with the abundances of components of fecal microbiota at the genus level. Genus Intestinimonas was correlated with total functional capacity scores and IL-4 levels. Our present study also revealed that genus Bilophila were negatively correlated with proinflammatory IL-6 levels. Taken together, our present study represents the first to demonstrate alterations in fecal microbiota and inflammatory cytokine responses in HD patients. Further elucidation of interactions between microbial and host immune responses may help to better understand the pathogenesis of HD.
Collapse
Affiliation(s)
- Gang Du
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueying Yu
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Neurology Department, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Weihong Gu
- Neurology Department, China-Japan Friendship Hospital, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
114
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
115
|
Xu HM, Huang HL, Zhou YL, Zhao HL, Xu J, Shou DW, Liu YD, Zhou YJ, Nie YQ. Fecal Microbiota Transplantation: A New Therapeutic Attempt from the Gut to the Brain. Gastroenterol Res Pract 2021; 2021:6699268. [PMID: 33510784 PMCID: PMC7826222 DOI: 10.1155/2021/6699268] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gut dysbacteriosis is closely related to various intestinal and extraintestinal diseases. Fecal microbiota transplantation (FMT) is a biological therapy that entails transferring the gut microbiota from healthy individuals to patients in order to reconstruct the intestinal microflora in the latter. It has been proved to be an effective treatment for recurrent Clostridium difficile infection. Studies show that the gut microbiota plays an important role in the pathophysiology of neurological and psychiatric disorders through the microbiota-gut-brain axis. Therefore, reconstruction of the healthy gut microbiota is a promising new strategy for treating cerebral diseases. We have reviewed the latest research on the role of gut microbiota in different nervous system diseases as well as FMT in the context of its application in neurological, psychiatric, and other nervous system-related diseases (Parkinson's disease, Alzheimer's disease, multiple sclerosis, epilepsy, autism spectrum disorder, bipolar disorder, hepatic encephalopathy, neuropathic pain, etc.).
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di-Wen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yan-Di Liu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
116
|
An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiol Dis 2020; 148:105199. [PMID: 33249136 DOI: 10.1016/j.nbd.2020.105199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.
Collapse
|
117
|
Abstract
The innate immune system in the central nervous system (CNS) is mainly represented by specialized tissue-resident macrophages, called microglia. In the past years, various species-, host- and tissue-specific as well as environmental factors were recognized that essentially affect microglial properties and functions in the healthy and diseased brain. Host microbiota are mostly residing in the gut and contribute to microglial activation states, for example, via short-chain fatty acids (SCFAs) or aryl hydrocarbon receptor (AhR) ligands. Thereby, the gut microorganisms are deemed to influence numerous CNS diseases mediated by microglia. In this review, we summarize recent findings of the interaction between the host microbiota and the CNS in health and disease, where we specifically highlight the resident gut microbiota as a crucial environmental factor for microglial function as what we coin "the microbiota-microglia axis."
Collapse
Affiliation(s)
- Omar Mossad
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Daniel Erny
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
118
|
Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int J Mol Sci 2020; 21:E7551. [PMID: 33066156 PMCID: PMC7589356 DOI: 10.3390/ijms21207551] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| |
Collapse
|