101
|
Barr AR, Zyss D, Gergely F. Knock-in and knock-out: the use of reverse genetics in somatic cells to dissect mitotic pathways. Methods Mol Biol 2009; 545:1-19. [PMID: 19475379 DOI: 10.1007/978-1-60327-993-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reverse genetic methods, such as homologous gene targeting, have greatly contributed to our understanding of molecular pathways in mitosis, especially in yeast. The chicken B-lymphocyte line, DT40, represents a unique example among vertebrate somatic cells where homologous gene targeting occurs at very high frequency. DT40 cells therefore provide a useful and accessible somatic genetic system for wide-ranging biochemical and cell biological assays. In this chapter, we describe the main principles of homologous gene targeting, the concept of targeting construct design and the detailed experimental protocol of how to achieve successful knockouts. We also mention methods for conditional disruption of essential genes and conclude with specific procedures for the study of mitosis in DT40 cells.
Collapse
Affiliation(s)
- Alexis R Barr
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
102
|
Tse AN, Sheikh TN, Alan H, Chou TC, Schwartz GK. 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol Pharmacol 2009; 75:124-33. [PMID: 18820127 PMCID: PMC2685054 DOI: 10.1124/mol.108.050807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/26/2008] [Indexed: 11/22/2022] Open
Abstract
The G(2)/M cell cycle checkpoint is regulated by a multitude of signaling pathways after genotoxic stress. Herein, we report that treatment with the 90-kDa heat shock protein (Hsp90) molecular chaperone inhibitor 17-allylamino-17-demethoxygeldanamycin (17AAG) selectively abrogates the G(2)/M checkpoint induced by 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan, in p53-null compared with p53-intact HCT116 colon cancer cells. The basis for this selectivity can be explained in part by the lack of p21 induction in p53-null cells. In accord with published results, we could show that treatment with 17AAG resulted in depletion of Chk1, a known Hsp90 client protein. In addition, we observed a time- and dose-dependent decrease in Wee1 kinase level, a negative regulator of mitosis, after 17AAG treatment in gastrointestinal cancer cells. Depletion of Wee1 protein preceded mitotic entry induced by 17AAG, and this decrease could be partially rescued by cotreatment with a proteasome inhibitor. Coimmunoprecipitation experiments showed that Hsp90 and Wee1 interacted in whole cells, and 17AAG treatment decreased the degradative half-life of Wee1, indicating that Wee1 is another Hsp90 client in mammalian cells. Knockdown of Chk1 and Wee1 by short interfering RNA each resulted in abrogation of the G(2)/M checkpoint induced by SN-38. The combination of SN-38 and 17AAG was shown to be synergistic in p53-null but not in parental HCT116 cells by median effect/combination index analysis. Taken together, 17AAG specifically inhibits the G(2)/M checkpoint in p53-defective cells by down-regulation of two critical checkpoint kinases, Chk1 and Wee1.
Collapse
Affiliation(s)
- Archie N Tse
- Laboratory of New Drug Development, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
103
|
Ashwell S, Janetka JW, Zabludoff S. Keeping checkpoint kinases in line: new selective inhibitors in clinical trials. Expert Opin Investig Drugs 2008; 17:1331-40. [PMID: 18694366 DOI: 10.1517/13543784.17.9.1331] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Checkpoint kinase 1 (Chk1), a serine/threonine kinase, functions as a regulatory kinase in cell cycle progression and is a critical effector of the DNA-damage response. Inhibitors of Chk1 are known to sensitise tumours to a variety of DNA-damaging agents and increase efficacy in preclinical models. OBJECTIVE The most advanced agents are now in Phase I clinical trials; the preclinical profiles of these drugs are compared and contrasted, together with a discussion of some of the opportunities and challenges facing this potentially revolutionary approach to cancer therapy. METHODS A review of the publications and presentations on XL-844, AZD7762 and PF-477736. RESULTS/CONCLUSIONS Chk kinases are part of the DNA damage recognition and response pathways and as such represent attractive targets. Agents that target checkpoint kinases have demonstrated impressive evidence preclinically that this approach will provide tumour-specific potentiating agents and may have broad therapeutic utility.
Collapse
Affiliation(s)
- Susan Ashwell
- AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
104
|
|
105
|
Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O'Connor P, Anderes K. Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther 2008; 7:2394-404. [PMID: 18723486 DOI: 10.1158/1535-7163.mct-07-2391] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoints are present in all phases of the cell cycle and are regarded as the gatekeepers maintaining the integrity of the genome. Many conventional agents used to treat cancer impart damage to the genome and activate cell cycle checkpoints. Many tumors are defective in the tumor suppressor p53 and therefore lack a functional G(1) checkpoint. In these tumors, however, the S-G(2) checkpoints remain intact and, in response to DNA damage, arrest cell cycle progression allowing time for DNA repair. Checkpoint kinase 1 (Chk1) is a key element in the DNA damage response pathway and plays a crucial role in the S-G(2)-phase checkpoints. Inhibiting Chk1 represents a therapeutic strategy for creating a "synthetic lethal" response by overriding the last checkpoint defense of tumor cells against the lethal damage induced by DNA-directed chemotherapeutic agents. Chk1 inhibition is consistent with emerging targeted therapies aiming to exploit molecular differences between normal and cancer cells. Adding a Chk1 inhibitor to DNA-damaging cytotoxic therapy selectively targets tumors with intrinsic checkpoint defects while minimizing toxicity in checkpoint-competent normal cells. PF-00477736 was identified as a potent, selective ATP-competitive small-molecule inhibitor that inhibits Chk1 with a K(i) of 0.49 nM. PF-00477736 abrogates cell cycle arrest induced by DNA damage and enhances cytotoxicity of clinically important chemotherapeutic agents, including gemcitabine and carboplatin. In xenografts, PF-00477736 enhanced the antitumor activity of gemcitabine in a dose-dependent manner. PF-00477736 combinations were well tolerated with no exacerbation of side effects commonly associated with cytotoxic agents.
Collapse
Affiliation(s)
- Alessandra Blasina
- Department of Cancer Biology, Pfizer Global Research & Development, 10724 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ganzinelli M, Carrassa L, Crippa F, Tavecchio M, Broggini M, Damia G. Checkpoint kinase 1 down-regulation by an inducible small interfering RNA expression system sensitized in vivo tumors to treatment with 5-fluorouracil. Clin Cancer Res 2008; 14:5131-41. [PMID: 18698031 DOI: 10.1158/1078-0432.ccr-08-0304] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE After DNA damage, checkpoints pathways are activated in the cells to halt the cell cycle, thus ensuring repair or inducing cell death. To better investigate the role of checkpoint kinase 1 (Chk1) in cellular response to different anticancer agents, Chk1 was knocked down in HCT-116 cell line and in its p53-deficient subline by using small interfering RNAs (siRNA). EXPERIMENTAL DESIGN Chk1 was abrogated by transient transfection of specific siRNA against it, and stable tetracycline-inducible Chk1 siRNA clones were obtained transfecting cells with a plasmid expressing two siRNA against Chk1. The validated inducible system was then translated in an in vivo setting by transplanting the inducible clones in nude mice. RESULTS Transient Chk1 down-regulation sensitized HCT-116 cells, p53-/- more than the p53 wild-type counterpart, to DNA-damaging agents 5-fluorouracil (5-FU), doxorubicin, and etoposide treatments, with no modification of Taxol and PS341 cytotoxic activities. Inhibition of Chk1 protein levels in inducible clones on induction with doxycycline correlated with an increased cisplatin and 5-FU activity. Such effect was more evident in a p53-deficient background. These clones were transplanted in nude mice and a clear Chk1 down-regulation was shown in tumor samples of mice given tetracycline in the drinking water by immunohistochemical detection of Chk1 protein. More importantly, an increased 5-FU antitumor activity was found in tumors with the double Chk1 and p53 silencing. CONCLUSIONS These findings corroborate the fact that Chk1 protein is a molecular target to be inhibited in tumors with a defective G1 checkpoint to increase the selectivity of anticancer treatments.
Collapse
Affiliation(s)
- Monica Ganzinelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
107
|
Mordes DA, Glick GG, Zhao R, Cortez D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 2008; 22:1478-89. [PMID: 18519640 DOI: 10.1101/gad.1666208] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.
Collapse
Affiliation(s)
- Daniel A Mordes
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
108
|
Ashwell S, Zabludoff S. DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 2008; 14:4032-7. [PMID: 18593978 DOI: 10.1158/1078-0432.ccr-07-5138] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insights from cell cycle research have led to the hypothesis that tumors may be selectivity sensitized to DNA-damaging agents, resulting in improved antitumor activity and a wider therapeutic margin. The theory relies primarily on the observation that the majority of tumors are deficient in the G(1)-DNA damage checkpoint pathway, resulting in reliance on S and G(2) phase checkpoints for DNA repair and cell survival. The S and G(2) phase checkpoints are predominantly regulated by checkpoint kinase 1; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G(1) checkpoint signaling pathway that allows for DNA repair and cell survival. There is now a large body of preclinical evidence showing that checkpoint kinase inhibitors do indeed enhance the efficacy of both conventional chemotherapy and radiotherapy, and several agents have recently entered clinical trials. Excitingly, additional therapeutic opportunities for checkpoint kinase inhibitors continue to emerge as biology outside their pivotal role in cell cycle arrest is further elucidated.
Collapse
Affiliation(s)
- Susan Ashwell
- AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham MA 02451, USA.
| | | |
Collapse
|
109
|
Ruzankina Y, Asare A, Brown EJ. Replicative stress, stem cells and aging. Mech Ageing Dev 2008; 129:460-6. [PMID: 18462780 PMCID: PMC2505188 DOI: 10.1016/j.mad.2008.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/14/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
Abstract
DNA synthesis is a remarkably vulnerable phase in the cell cycle. In addition to introduction of errors during semi-conservative replication, the inherently labile structure of the replication fork, as well as numerous pitfalls encountered in the course of fork progression, make the normally stable double stranded molecule susceptible to collapse and recombination. As described in this issue, maintenance of genome integrity in the face of such events is essential to prevent the premature onset of age-related diseases. At the organismal level, the roles for such maintenance are numerous; however, the preservation of stem and progenitor cell pools may be particularly important as indicated by several genetically engineered mouse models. Stresses on stem and progenitor cell pools, in the form of telomere shortening (Terc(-/-)) or other genome maintenance failures (ATR(mKO), Ku86(-/-), LIG4(Y288C), XPD(R722W/R722W), etc.), have been shown to degrade tissue renewal capacity and accelerate the appearance of age-related phenotypes. In the case of telomere shortening, exhaustion of replicative potential appears to be at least partially dependent on the cell cycle regulatory component of the DNA damage response. Therefore, both the genome maintenance mechanisms that counter DNA damage and the cell cycle checkpoint responses to damage strongly influence the onset of age-related diseases and do so, at least in part, by affecting long-term stem and progenitor cell potential.
Collapse
Affiliation(s)
- Yaroslava Ruzankina
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6160, U.S.A
| | - Amma Asare
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6160, U.S.A
| | - Eric J. Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6160, U.S.A
| |
Collapse
|
110
|
Helleday T. Amplifying tumour-specific replication lesions by DNA repair inhibitors - a new era in targeted cancer therapy. Eur J Cancer 2008; 44:921-7. [PMID: 18374562 DOI: 10.1016/j.ejca.2008.02.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 12/27/2022]
Abstract
Many anti-cancer drugs used in the clinic today damage DNA, resulting in cell death either directly or following DNA replication. Many anti-cancer drugs are exclusively toxic to replicating cells and toxic lesions are formed when a replication fork encounters a damaged DNA template. Recent work shows that replication lesions, similar to those produced during anti-cancer therapy, are commonly associated with cancer aetiology. DNA replication lesions are present in cancer cells owing to oncogene expression, hypoxia or defects in the DNA damage response or DNA repair. Here, I review how novel therapies can exploit endogenous replication lesions in cancer cells and convert them to toxic lesions. The aim of these therapies is to produce similar lesions to those produced by DNA damaging anti-cancer drugs. The difference is that the lesions will be cancer-specific and produce milder side-effects in non-cancerous cells.
Collapse
Affiliation(s)
- Thomas Helleday
- Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
111
|
Bennett LN, Larkin C, Gillespie DA, Clarke PR. Claspin is phosphorylated in the Chk1-binding domain by a kinase distinct from Chk1. Biochem Biophys Res Commun 2008; 369:973-6. [DOI: 10.1016/j.bbrc.2008.02.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
112
|
Scorah J, Dong MQ, Yates JR, Scott M, Gillespie D, McGowan CH. A conserved proliferating cell nuclear antigen-interacting protein sequence in Chk1 is required for checkpoint function. J Biol Chem 2008; 283:17250-9. [PMID: 18448427 DOI: 10.1074/jbc.m800369200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human checkpoint kinase 1 (Chk1) is an essential kinase required for cell cycle checkpoints and for coordination of DNA synthesis. To gain insight into the mechanisms by which Chk1 carries out these functions, we used mass spectrometry to identify previously uncharacterized interacting partners of Chk1. We describe a novel interaction between Chk1 and proliferating cell nuclear antigen (PCNA), an essential component of the replication machinery. Binding between Chk1 and PCNA was reduced in the presence of hydroxyurea, suggesting that the interaction is regulated by replication stress. A highly conserved PCNA-interacting protein (PIP) box motif was identified in Chk1. The intact PIP box is required for efficient DNA damage-induced phosphorylation and release of activated Chk1 from chromatin. We find that the PIP box of Chk1 is crucial for Chk1-mediated S-M and G(2)-M checkpoint responses. In addition, we show that mutations in the PIP box of Chk1 lead to decreased rates of replication fork progression and increased aberrant replication. These findings suggest an additional mechanism by which essential components of the DNA replication machinery interact with the replication checkpoint apparatus.
Collapse
Affiliation(s)
- Jennifer Scorah
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
113
|
Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death Differ 2008; 15:889-98. [PMID: 18239674 DOI: 10.1038/cdd.2008.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Checkpoint kinase 1 (Chk1) responds to disruption of DNA replication to maintain the integrity of stalled forks, promote homologous recombination-mediated repair of replication fork lesions, and control inappropriate firing of replication origins. This response is essential for viability as replication inhibitors trigger apoptosis in S-phase cells depleted of Chk1. Given the complex network of cellular responses controlled by Chk1, our aim was to determine which of these protect cells from apoptosis following replication stress. Work with cell-free systems has shown that RPA-ssDNA complex forms following replication inhibition through the uncoupling of replication and helicase complexes. Here we show that replication protein A (RPA) foci form in cells treated with replication inhibitors and that the number of foci dramatically increases together with hyperphosphorylation of RPA34 in Chk1-depleted cells in advance of the induction of apoptosis. RPA foci, RPA34 hyperphosphorylation, and apoptosis were suppressed by siRNA-mediated knockdown of Cdc45, an essential replication helicase cofactor required for both the initiation and elongation steps of DNA replication. In contrast, loss of p21, a negative effector of origin firing, stimulates both the accumulation of RPA foci and apoptosis. Taken together, these results suggest that the loss of control of replication origin firing following Chk1 depletion triggers the accumulation of the RPA-ssDNA complex and apoptosis when replication is blocked.
Collapse
|
114
|
Beyond VEGF: targeting tumor growth and angiogenesis via alternative mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 610:43-53. [PMID: 18593014 DOI: 10.1007/978-0-387-73898-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
115
|
Ha SD, Ng D, Pelech SL, Kim SO. Critical role of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway in recovery from anthrax lethal toxin-induced cell cycle arrest and MEK cleavage in macrophages. J Biol Chem 2007; 282:36230-9. [PMID: 17951252 DOI: 10.1074/jbc.m707622200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | |
Collapse
|
116
|
Delacroix S, Wagner JM, Kobayashi M, Yamamoto KI, Karnitz LM. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 2007; 21:1472-7. [PMID: 17575048 PMCID: PMC1891424 DOI: 10.1101/gad.1547007] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA replication stress triggers the activation of Checkpoint Kinase 1 (Chk1) in a pathway that requires the independent chromatin loading of the ATRIP-ATR (ATR-interacting protein/ATM [ataxia-telangiectasia mutated]-Rad3-related kinase) complex and the Rad9-Hus1-Rad1 (9-1-1) clamp. We show that Rad9's role in Chk1 activation is to bind TopBP1, which stimulates ATR-mediated Chk1 phosphorylation via TopBP1's activation domain (AD), a domain that binds and activates ATR. Notably, fusion of the AD to proliferating cell nuclear antigen (PCNA) or histone H2B bypasses the requirement for the 9-1-1 clamp, indicating that the 9-1-1 clamp's primary role in activating Chk1 is to localize the AD to a stalled replication fork.
Collapse
Affiliation(s)
- Sinny Delacroix
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Jill M. Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Masahiko Kobayashi
- Department of Molecular Pathology and Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | - Ken-ichi Yamamoto
- Department of Molecular Pathology and Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | - Larry M. Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Corresponding author.E-MAIL ; FAX (507) 284-3906
| |
Collapse
|
117
|
Rainey MD, Black EJ, Zachos G, Gillespie DAF. Chk2 is required for optimal mitotic delay in response to irradiation-induced DNA damage incurred in G2 phase. Oncogene 2007; 27:896-906. [PMID: 17684483 DOI: 10.1038/sj.onc.1210702] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether Chk2 contributes to DNA damage-induced arrest in G2 has been controversial. To investigate this issue further, we generated Chk2-deficient DT40 B-lymphoma cells by gene targeting and compared their cell cycle response to ionizing radiation (IR) with wild-type (WT) and isogenic Chk1-deficient counterparts. After moderate doses of IR (4 Gy), we find that Chk2-/- cells which are in G1 or S phase at the time of irradiation arrest efficiently in G2. In contrast, Chk2-/- cells which are in G2 when DNA damage is incurred exhibit an impaired mitotic delay compared to WT, with the result that cells enter mitosis with damaged DNA as judged by the presence of numerous gamma-H2AX foci on condensed chromosomes. Impaired G2 delay as the result of Chk2 deficiency can be detected at very low doses of radiation (0.1 Gy), and may allow division with spontaneous DNA damage, since a higher proportion of mitotic Chk2-/- cells bear spontaneous gamma-H2AX foci and damaged chromosomes during unperturbed growth compared to WT. The contribution of Chk2 to G2/M delay is epistatic to that of Chk1, since Chk1-/- cells exhibit no measurable mitotic delay at any radiation dose tested. We suggest that this function of Chk2 could contribute to tumour suppression, since cell division with low levels of spontaneous damage is likely to promote genetic instability and thus carcinogenesis.
Collapse
Affiliation(s)
- M D Rainey
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | | | | | |
Collapse
|
118
|
O'Driscoll M, Dobyns WB, van Hagen JM, Jeggo PA. Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am J Hum Genet 2007; 81:77-86. [PMID: 17564965 PMCID: PMC1950915 DOI: 10.1086/518696] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/05/2007] [Indexed: 02/03/2023] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) protein, a kinase that regulates a DNA damage-response pathway, is mutated in ATR-Seckel syndrome (ATR-SS), a disorder characterized by severe microcephaly and growth delay. Impaired ATR signaling is also observed in cell lines from additional disorders characterized by microcephaly and growth delay, including non-ATR-SS, Nijmegen breakage syndrome, and MCPH1 (microcephaly, primary autosomal recessive, 1)-dependent primary microcephaly. Here, we examined ATR-pathway function in cell lines from three haploinsufficient contiguous gene-deletion disorders--a subset of blepharophimosis-ptosis-epicanthus inversus syndrome, Miller-Dieker lissencephaly syndrome, and Williams-Beuren syndrome--in which the deleted region encompasses ATR, RPA1, and RFC2, respectively. These three genes function in ATR signaling. Cell lines from these disorders displayed an impaired ATR-dependent DNA damage response. Thus, we describe ATR signaling as a pathway unusually sensitive to haploinsufficiency and identify three further human disorders displaying a defective ATR-dependent DNA damage response. The striking correlation of ATR-pathway dysfunction with the presence of microcephaly and growth delay strongly suggests a causal relationship.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
| | | | | | | |
Collapse
|
119
|
Jeffers LJ, Coull BJ, Stack SJ, Morrison CG. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 2007; 27:139-44. [PMID: 17599047 DOI: 10.1038/sj.onc.1210595] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microcephalin (MCPH1/BRIT1) forms ionizing radiation-induced nuclear foci (IRIF) and is required for DNA damage-responsive S and G(2)-M-phase checkpoints. MCPH1 contains three BRCT domains. Here we report the cloning of chicken Mcph1 (cMcph1) and functional analysis of its individual BRCT domains. Full-length cMcph1 localized to centrosomes throughout the cell cycle and formed IRIF that colocalized with gamma-H2AX. The tandem C-terminal BRCT2 and BRCT3 domains of cMcph1 were necessary for IRIF formation, while the N-terminal BRCT1 was required for centrosomal localization in irradiated cells. Centrosomal targeting of cMcph1 was independent of ATM, Brca1 or Chk1. cMcph1 formed IRIF in ATM- and Brca1-deficient cells, but not in H2AX-deficient cells. Inability to form cMcph1 IRIF impaired the cellular response to DNA damage. These results suggest that the role of microcephalin in the vertebrate DNA damage response is controlled by interaction of the C-terminal BRCT domains with gamma-H2AX.
Collapse
Affiliation(s)
- L J Jeffers
- Department of Biochemistry and NCBES, National University of Ireland-Galway, Galway, Ireland
| | | | | | | |
Collapse
|
120
|
Maya-Mendoza A, Petermann E, Gillespie DAF, Caldecott KW, Jackson DA. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 2007; 26:2719-31. [PMID: 17491592 PMCID: PMC1888675 DOI: 10.1038/sj.emboj.7601714] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/17/2007] [Indexed: 11/09/2022] Open
Abstract
The checkpoint kinase 1 (Chk1) preserves genome integrity when replication is performed on damaged templates. Recently, Chk1 has also been implicated in regulating different aspects of unperturbed S phase. Using mammalian and avian cells with compromised Chk1 activity, we show that an increase in active replicons compensates for inefficient DNA polymerisation. In the absence of damage, loss of Chk1 activity correlates with the frequent stalling and, possibly, collapse of active forks and activation of adjacent, previously suppressed, origins. In human cells, super-activation of replication origins is restricted to pre-existing replication factories. In avian cells, in contrast, Chk1 deletion also correlates with the super-activation of replication factories and loss of temporal continuity in the replication programme. The same phenotype is induced in wild-type avian cells when Chk1 or ATM/ATR is inhibited. These observations show that Chk1 regulates replication origin activation and contributes to S-phase progression in somatic vertebrate cells.
Collapse
Affiliation(s)
| | - Eva Petermann
- Genome damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | | | - Keith W Caldecott
- Genome damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | - Dean A Jackson
- Faculty of Life Sciences, University of Manchester, MIB, Manchester, UK
| |
Collapse
|
121
|
Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol 2007; 27:5806-18. [PMID: 17515603 PMCID: PMC1952133 DOI: 10.1128/mcb.02278-06] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To investigate the contribution of DNA replication initiation and elongation to the intra-S-phase checkpoint, we examined cells treated with the specific topoisomerase I inhibitor camptothecin. Camptothecin is a potent anticancer agent producing well-characterized replication-mediated DNA double-strand breaks through the collision of replication forks with topoisomerase I cleavage complexes. After a short dose of camptothecin in human colon carcinoma HT29 cells, DNA replication was inhibited rapidly and did not recover for several hours following drug removal. That inhibition occurred preferentially in late-S-phase, compared to early-S-phase, cells and was due to both an inhibition of initiation and elongation, as determined by pulse-labeling nucleotide incorporation in replication foci and DNA fibers. DNA replication was actively inhibited by checkpoint activation since 7-hydroxystaurosporine (UCN-01), the specific Chk1 inhibitor CHIR-124, or transfection with small interfering RNA targeting Chk1 restored both initiation and elongation. Abrogation of the checkpoint markedly enhanced camptothecin-induced DNA damage at replication sites where histone gamma-H2AX colocalized with replication foci. Together, our study demonstrates that the intra-S-phase checkpoint is exerted by Chk1 not only upon replication initiation but also upon DNA elongation.
Collapse
Affiliation(s)
- Jennifer A Seiler
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
122
|
Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res 2007; 13:1591-600. [PMID: 17332306 DOI: 10.1158/1078-0432.ccr-06-1750] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE DNA-damaging agents, such as etoposide, while clinically useful in leukemia therapy, are limited by DNA repair pathways that are not well understood. 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of the molecular chaperone heat shock protein 90 (Hsp90), inhibits growth and induces apoptosis in FLT3(+) leukemia cells. In this study, we evaluated the effects of etoposide and 17-AAG in leukemia cells and the roles of Hsp90, FMS-like tyrosine kinase 3 (FLT3), checkpoint kinase 1 (Chk1), Rad51, and topoisomerase II in this inhibition. EXPERIMENTAL DESIGN The single and combined effects of 17-AAG and etoposide and the mechanism of these effects were evaluated. FLT3 and the DNA repair-related proteins, Chk1 and Rad51, were studied in small interfering RNA (siRNA)-induced cell growth inhibition experiments in human leukemia cells with wild-type or mutated FLT3. RESULTS We found that etoposide and the Hsp90/FLT3 inhibitor 17-AAG, had synergistic inhibitory effects on FLT3(+) MLL-fusion gene leukemia cells. Cells with an internal tandem duplication (ITD) FLT3 (Molm13 and MV4;11) were more sensitive to etoposide/17-AAG than leukemias with wild-type FLT3 (HPB-Null and RS4;11). A critical role for FLT3 was shown in experiments with FLT3 ligand and siRNA targeted to FLT3. An important role for topoisomerase II and the DNA repair-related proteins, Chk1 and Rad51, in the synergistic effects was suggested from the results. CONCLUSIONS The repair of potentially lethal DNA damage by etoposide in leukemia cells is dependent on intact and functioning FLT3 especially leukemias with ITD-FLT3. These data suggest a rational therapeutic strategy for FLT3(+) leukemias that combines etoposide or other DNA-damaging agents with Hsp90/FLT3 inhibitors such as 17-AAG.
Collapse
Affiliation(s)
- Qing Yao
- The Cancer Center, University of Minnesota MMC 806, 420 Delaware St. SE, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
123
|
Bourke E, Dodson H, Merdes A, Cuffe L, Zachos G, Walker M, Gillespie D, Morrison CG. DNA damage induces Chk1-dependent centrosome amplification. EMBO Rep 2007; 8:603-9. [PMID: 17468739 PMCID: PMC2002539 DOI: 10.1038/sj.embor.7400962] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/09/2007] [Accepted: 03/14/2007] [Indexed: 01/19/2023] Open
Abstract
Centrosomal abnormalities are frequently observed in cancers and in cells with defective DNA repair. Here, we used light and electron microscopy to show that DNA damage induces centrosome amplification, not fragmentation, in human cells. Caffeine abrogated this amplification in both ATM (ataxia telangiectasia, mutated)- and ATR (ATM and Rad3-related)-defective cells, indicating a complementary role for these DNA-damage-responsive kinases in promoting centrosome amplification. Inhibition of checkpoint kinase 1 (Chk1) by RNA-mediated interference or drug treatment suppressed DNA-damage-induced centrosome amplification. Radiation-induced centrosome amplification was abrogated in Chk1(-/-) DT40 cells, but occurred at normal levels in Chk1(-/-) cells transgenically expressing Chk1. Expression of kinase-dead Chk1, or Chk1S345A, through which the phosphatidylinositol-3-kinase cannot signal, failed to restore centrosome amplification, showing that signalling to Chk1 and Chk1 catalytic activity are necessary to promote centrosome overduplication after DNA damage.
Collapse
Affiliation(s)
- Emer Bourke
- Department of Biochemistry and NCBES, National University of Ireland–Galway, University Road, Galway, Ireland
| | - Helen Dodson
- Department of Biochemistry and NCBES, National University of Ireland–Galway, University Road, Galway, Ireland
| | - Andreas Merdes
- CNRS-Pierre Fabre, 3 Rue des Satellites, 31400 Toulouse, France
| | - Lorraine Cuffe
- Department of Biochemistry and NCBES, National University of Ireland–Galway, University Road, Galway, Ireland
| | - George Zachos
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Mark Walker
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Gillespie
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ciaran G Morrison
- Department of Biochemistry and NCBES, National University of Ireland–Galway, University Road, Galway, Ireland
- Tel: +353 91 49 20 56; Fax: +353 91 49 55 04; E-mail:
| |
Collapse
|
124
|
Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC, Gillespie DA. Chk1 is required for spindle checkpoint function. Dev Cell 2007; 12:247-60. [PMID: 17276342 PMCID: PMC7115955 DOI: 10.1016/j.devcel.2007.01.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/01/2006] [Accepted: 01/10/2007] [Indexed: 11/28/2022]
Abstract
The spindle checkpoint delays anaphase onset in cells with mitotic spindle defects. Here, we show that Chk1, a component of the DNA damage and replication checkpoints, protects vertebrate cells against spontaneous chromosome missegregation and is required to sustain anaphase delay when spindle function is disrupted by taxol, but not when microtubules are completely depolymerized by nocodazole. Spindle checkpoint failure in Chk1-deficient cells correlates with decreased Aurora-B kinase activity and impaired phosphorylation and kinetochore localization of BubR1. Furthermore, Chk1 phosphorylates Aurora-B and enhances its catalytic activity in vitro. We propose that Chk1 augments spindle checkpoint signaling and is required for optimal regulation of Aurora-B and BubR1 when kinetochores produce a weakened signal. In addition, Chk1-deficient cells exhibit increased resistance to taxol. These results suggest a mechanism through which Chk1 could protect against tumorigenesis through its role in spindle checkpoint signaling.
Collapse
Affiliation(s)
- George Zachos
- Beatson Institute for Cancer Research, Garscube Estate, Switchback
Road, Glasgow G61 1BD, United Kingdom
- Correspondence:
(G.Z.), (D.A.F.G.)
| | - Elizabeth J. Black
- Beatson Institute for Cancer Research, Garscube Estate, Switchback
Road, Glasgow G61 1BD, United Kingdom
| | - Mark Walker
- Beatson Institute for Cancer Research, Garscube Estate, Switchback
Road, Glasgow G61 1BD, United Kingdom
| | - Mary T. Scott
- Beatson Institute for Cancer Research, Garscube Estate, Switchback
Road, Glasgow G61 1BD, United Kingdom
| | - Paola Vagnarelli
- Welcome Trust Centre for Cell Biology, University of Edinburgh,
Michael Swann Building, King’s Buildings,Mayfield Road, Edinburgh EH9 3JR,
United Kingdom
| | - William C. Earnshaw
- Welcome Trust Centre for Cell Biology, University of Edinburgh,
Michael Swann Building, King’s Buildings,Mayfield Road, Edinburgh EH9 3JR,
United Kingdom
| | - David A.F. Gillespie
- Beatson Institute for Cancer Research, Garscube Estate, Switchback
Road, Glasgow G61 1BD, United Kingdom
- Faculty of Biomedical and Life Sciences, University of Glasgow,
Glasgow G12 8QQ, United Kingdom
- Correspondence:
(G.Z.), (D.A.F.G.)
| |
Collapse
|
125
|
Tao ZF, Wang L, Stewart KD, Chen Z, Gu W, Bui MH, Merta P, Zhang H, Kovar P, Johnson E, Park C, Judge R, Rosenberg S, Sowin T, Lin NH. Structure-based design, synthesis, and biological evaluation of potent and selective macrocyclic checkpoint kinase 1 inhibitors. J Med Chem 2007; 50:1514-27. [PMID: 17352464 DOI: 10.1021/jm061247v] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the crystallographic analysis of a urea-checkpoint kinase 1 (Chk1) complex and molecular modeling, a class of macrocyclic Chk1 inhibitors were designed and their biological activities were evaluated. An efficient synthetic methodology for macrocyclic ureas was developed with Grubbs metathesis macrocyclization as the key step. The structure-activity relationship studies demonstrated that the macrocyclization retains full Chk1 inhibition activity and that the 4-position of the phenyl ring can tolerate a wide variety of substituents. These novel Chk1 inhibitors exhibit excellent selectivity over a panel of more than 70 kinases. Compounds 5b, 5c, 5f, 15, 16d, 17g, 17h, 17k, 18d, and 22 were identified as ideal Chk1 inhibitors, which showed little or no single-agent activity but significantly potentiate the cytotoxicities of the DNA-damaging antitumor agents doxorubicin and camptothecin. These novel Chk1 inhibitors abrogate the doxorubicin-induced G2 and camptothecin-induced S checkpoint arrests, confirming that their potent biological activities are mechanism-based through Chk1 inhibition.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R, Hirao A, Liu Q, Elledge SJ, Mak TW. Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci U S A 2007; 104:3805-10. [PMID: 17360434 PMCID: PMC1820665 DOI: 10.1073/pnas.0611584104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Indexed: 12/22/2022] Open
Abstract
Chk1 is a checkpoint kinase and an important regulator of mammalian cell division. Because null mutation of Chk1 in mice is embryonic lethal, we used the Cre-loxP system and the Lck promoter to generate conditional mutant mice in which Chk1 was deleted only in the T lineage. In the absence of Chk1, the transition of CD4(-)CD8(-) double-negative (DN) thymocytes to CD4(+)CD8(+) double-positive (DP) cells was blocked due to an increase in apoptosis at the DN2 and DN3 stages. Strikingly, loss of Chk1 activated the checkpoint kinase Chk2 as well as the tumor suppressor p53 in these thymocytes. However, the developmental defects caused by Chk1 deletion were not rescued by p53 inactivation. Significantly, even though Chk1 deletion is highly lethal in proliferating tissues, we succeeded in using in vivo methods to generate Chk1/Chk2 double-knockout T cells. Analysis of these T cells revealed an interesting interaction between Chk1 and Chk2 functions that partially rescued the apoptosis of the double-mutant cells. Thus, Chk1 is both critical for the survival of proliferating cells and engages in cross-talk with the Chk2 checkpoint kinase pathway. These factors have implications for the targeting of Chk1 as an anticancer therapy.
Collapse
Affiliation(s)
- Kathrin Zaugg
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | - Yu-Wen Su
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Patrick T. Reilly
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Yasmin Moolani
- Institute of Medical Science, University of Toronto, MARS Centre, 101 College Street, Toronto, ON, Canada M5G 2C1
| | - Carol C. Cheung
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | | | - Atsushi Hirao
- Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Quinghua Liu
- **Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038; and
| | - Stephen J. Elledge
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Tak W. Mak
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| |
Collapse
|
127
|
Vogel C, Hager C, Bastians H. Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res 2007; 67:339-45. [PMID: 17210716 DOI: 10.1158/0008-5472.can-06-2548] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The novel concept of anticancer treatment termed "G(2) checkpoint abrogation" aims to target p53-deficient tumor cells and is currently explored in clinical trials. The anticancer drug UCN-01 is used to abrogate a DNA damage-induced G(2) cell cycle arrest leading to mitotic entry and subsequent cell death, which is poorly defined as "mitotic cell death" or "mitotic catastrophe." We show here that UCN-01 treatment results in a mitotic arrest that requires an active mitotic spindle checkpoint, involving the function of Mad2, Bub1, BubR1, Mps1, Aurora B, and survivin. During the mitotic arrest, hallmark parameters of the mitochondria-associated apoptosis pathway become activated. Interestingly, this apoptotic response requires the spindle checkpoint protein Mad2, suggesting a proapoptotic function for Mad2. However, although survivin and Aurora B are also required for the mitotic arrest, both proteins are part of an antiapoptotic pathway that restrains the UCN-01-induced apoptosis by promoting hyperphosphorylation of Bcl-2 and by inhibiting the activation of Bax. Consequently, inhibition of the antiapoptotic pathway by genetic ablation of survivin or by pharmacologic inhibitors of Aurora B or cyclin-dependent kinase 1 lead to a significant enhancement of apoptosis and therefore act synergistically with UCN-01. Thus, by defining the mechanism of cell death on G(2) checkpoint abrogation we show a highly improved strategy for an anticancer treatment by the combined use of UCN-01 with abrogators of the survivin/Aurora B-dependent antiapoptotic pathway that retains the selectivity for p53-defective cancer cells.
Collapse
Affiliation(s)
- Celia Vogel
- Institute for Molecular Biology and Tumor Research, Philipps University of Marburg, Emil-Mannkopff-Strasse 2, D-35037 Marburg, Germany
| | | | | |
Collapse
|
128
|
Barkley LR, Ohmori H, Vaziri C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 2007; 47:392-408. [PMID: 17652783 PMCID: PMC3103048 DOI: 10.1007/s12013-007-0032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.
Collapse
Affiliation(s)
- Laura R Barkley
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
129
|
Abstract
Some of the most effective anticancer treatments in clinical use induce DNA damage. The majority of treatments cause severe side effects because they do not specifically target cancer cells but also affect other proliferating cells. Detection of genomic lesions activates the DNA damage response, which determines cell fate according to the extent of damage. If the damage is manageable, the DNA damage response arrests cell cycle progression and induces DNA repair to prevent replication of damaged DNA. If the damage is beyond repair, cells undergo apoptosis. Recently we have shown that the DNA damage response also alerts the innate immune system by inducing the expression of ligands for the activating immune receptor NKG2D. The potential of cancer drugs that target components of the DNA damage response and therapeutic hypotheses to improve current cancer therapies are discussed.
Collapse
Affiliation(s)
- Stephan Gasser
- Immunology Programme, Centre for Life Sciences, Singapore.
| |
Collapse
|
130
|
Sodhi A, Chauhan P. Interaction between cisplatin treated murine peritoneal macrophages and L929 cells: involvement of adhesion molecules, cytoskeletons, upregulation of Ca2+ and nitric oxide dependent cytotoxicity. Mol Immunol 2006; 44:2265-76. [PMID: 17188358 DOI: 10.1016/j.molimm.2006.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/15/2022]
Abstract
Murine peritoneal macrophages on treatment with cisplatin (10 microg/ml) showed increased binding to L929 cells. Cisplatin treated macrophage on co-incubation with L929 cells form a distinct cytoplasmic contact between the two cells. The plasmalemmae of the two cells fuse over a large surface area. The formation of contact between the cisplatin treated macrophage and L929 cell results in the induction of apoptosis in L929 cell. Untreated macrophages did not form a contact with L929 cells and no apoptosis is observed in L929 cells. Immunofluorescence microscopical studies clearly show the participation of cytoskeleton and the adhesion molecules in the formation of contact between the two cells. Further, a significant enhancement of the expression of iNOS and cytosolic Ca2+ was observed in cisplatin treated macrophages co-incubated with L929 cells. Cisplatin treated macrophages produced significant amount of NO when co-incubated with L929 cells, while there was minimal production of NO by untreated macrophages co-incubated with L929 cells. Cisplatin treated macrophage-induced L929 cell death was NO dependent, since L-NMMA (500 microM) significantly inhibited the cytotoxicity of L929 cells. The addition of excess L-arginine (2mM) reversed the L-NMMA induced inhibition of NO production and L929 cell cytotoxicity.
Collapse
Affiliation(s)
- Ajit Sodhi
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|
131
|
Chen Z, Xiao Z, Gu WZ, Xue J, Bui MH, Kovar P, Li G, Wang G, Tao ZF, Tong Y, Lin NH, Sham HL, Wang JYJ, Sowin TJ, Rosenberg SH, Zhang H. Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int J Cancer 2006; 119:2784-94. [PMID: 17019715 DOI: 10.1002/ijc.22198] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The majority of cancer therapeutics induces DNA damage to kill cells. Normal proliferating cells undergo cell cycle arrest in response to DNA damage, thus allowing DNA repair to protect the genome. DNA damage induced cell cycle arrest depends on an evolutionarily conserved signal transduction network in which the Chk1 kinase plays a critical role. In mammalian cells, the p53 and RB pathways further augment the cell cycle arrest response to prevent catastrophic cell death. Given the fact that most tumor cells suffer defects in the p53 and RB pathways, it is likely that tumor cells would depend more on the Chk1 kinase to maintain cell cycle arrest than would normal cells. Therefore Chk1 inhibition could be used to specifically sensitize tumor cells to DNA-damaging agents. We have previously shown that siRNA-mediated Chk1 knockdown abrogates DNA damage-induced checkpoints and potentiates the cytotoxicity of several DNA-damaging agents in p53-deficient cell lines. In this study, we have developed 2 potent and selective Chk1 inhibitors, A-690002 and A-641397, and shown that these compounds abrogate cell cycle checkpoints and potentiate the cytotoxicity of topoisomerase inhibitors and gamma-radiation in p53-deficient but not in p53-proficient cells of different tissue origins. These results indicate that it is feasible to achieve a therapeutic window with 1 or more Chk1 inhibitors in potentiation of cancer therapy based on the status of the p53 pathway in a wide spectrum of tumor types.
Collapse
Affiliation(s)
- Zehan Chen
- Cancer Research, Abbott Laboratories, Abbott Park, IL 60064-6101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Xiao Z, Xue J, Sowin TJ, Zhang H. Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol Cancer Ther 2006; 5:1935-43. [PMID: 16928813 DOI: 10.1158/1535-7163.mct-06-0077] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian cells initiate cell cycle arrest at different phases of the cell cycle in response to various forms of genotoxic stress to allow time for DNA repair, and thus preserving their genomic integrity. The protein kinases checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2), and mitogen-activated protein kinase-activated protein kinase 2 (MK2) have all been shown to be involved in cell cycle checkpoint control. Recently, cell cycle checkpoint abrogation has been proposed as one way to sensitize cancer cells to DNA-damaging agents due to the expected induction of mitotic catastrophe. Due to their overlapping substrate spectra and redundant functions, it is still not clear which kinase is mainly responsible for the cell cycle arrests conferred by clinically relevant chemotherapeutics. Thus, the issue remains about which kinase is the most therapeutically relevant target and, more importantly, whether multiple kinases might need to be targeted to achieve the best efficacy in light of recent studies showing superior efficacy for pan-receptor tyrosine kinase inhibitors. To clarify this issue, we investigated the roles of the three kinases in response to different genotoxic stresses through small interfering RNA-mediated specific target knockdowns. Our result showed that only the down-regulation of Chk1, but not of Chk2 or MK2, abrogated camptothecin- or 5-fluorouracil-induced S-phase arrest or doxorubicin-induced G(2)-phase arrest. This was followed by mitotic catastrophe and apoptosis. Moreover, double inhibition of Chk1 and Chk2 failed to achieve better efficacy than Chk1 inhibition alone; surprisingly, inhibition of MK2, in addition to Chk1 suppression, partially reversed the checkpoint abrogation and negated mitotic catastrophe. We further showed that this is due to the fact that in MK2-deficient cells, Cdc25A protein, which is critically required for the mitotic progression following checkpoint abrogation, becomes greatly depleted. In summary, our findings show that Chk1 is the only relevant checkpoint kinase as a cancer drug target and inhibition of other checkpoint kinases in addition to Chk1 would be nonproductive.
Collapse
Affiliation(s)
- Zhan Xiao
- Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6101, USA
| | | | | | | |
Collapse
|
133
|
Takami Y, Ono T, Fukagawa T, Shibahara KI, Nakayama T. Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol Biol Cell 2006; 18:129-41. [PMID: 17065558 PMCID: PMC1751324 DOI: 10.1091/mbc.e06-05-0426] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-gamma are required for cell viability. These observations highlighted the essential role of CAF-1-dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.
Collapse
Affiliation(s)
- Yasunari Takami
- *Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | - Tatsuo Fukagawa
- Molecular Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | - Tatsuo Nakayama
- *Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan
- Department of Life Science, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan; and
| |
Collapse
|
134
|
Jaklevic B, Uyetake L, Lemstra W, Chang J, Leary W, Edwards A, Vidwans S, Sibon O, Tin Su T. Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 2006; 174:1963-72. [PMID: 17028317 PMCID: PMC1698627 DOI: 10.1534/genetics.106.064477] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell cycle checkpoints contribute to survival after exposure to ionizing radiation (IR) by arresting the cell cycle and permitting repair. As such, yeast and mammalian cells lacking checkpoints are more sensitive to killing by IR. We reported previously that Drosophila larvae mutant for grp (encoding a homolog of Chk1) survive IR as well as wild type despite being deficient in cell cycle checkpoints. This discrepancy could be due to differences either among species or between unicellular and multicellular systems. Here, we provide evidence that Grapes is needed for survival of Drosophila S2 cells after exposure to similar doses of IR, suggesting that multicellular organisms may utilize checkpoint-independent mechanisms to survive irradiation. The dispensability of checkpoints in multicellular organisms could be due to replacement of damaged cells by regeneration through increased nutritional uptake and compensatory proliferation. In support of this idea, we find that inhibition of nutritional uptake (by starvation or onset of pupariation) or inhibition of growth factor signaling and downstream targets (by mutations in cdk4, chico, or dmyc) reduced the radiation survival of larvae. Further, some of these treatments are more detrimental for grp mutants, suggesting that the need for compensatory proliferation is greater for checkpoint mutants. The difference in survival of grp and wild-type larvae allowed us to screen for small molecules that act as genotype-specific radiation sensitizers in a multicellular context. A pilot screen of a small molecule library from the National Cancer Institute yielded known and approved radio-sensitizing anticancer drugs. Since radiation is a common treatment option for human cancers, we propose that Drosophila may be used as an in vivo screening tool for genotype-specific drugs that enhance the effect of radiation therapy.
Collapse
Affiliation(s)
- Burnley Jaklevic
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol 2006; 25:406-11. [PMID: 16848682 DOI: 10.1089/dna.2006.25.406] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to genotoxic stress, which can be caused by environmental or endogenous genotoxic insults such as ionizing or ultraviolet radiation, various chemicals and reactive cellular metabolites, cell cycle checkpoints which slow down or arrest cell cycle progression can be activated, allowing the cell to repair or prevent the transmission of damaged or incompletely replicated chromosomes. Checkpoint machineries can also initiate pathways leading to apoptosis and the removal of a damaged cell from a tissue. The balance between cell cycle arrest and damage repair on one hand and the initiation of cell death, on the other hand, could determine if cellular or DNA damage is compatible with cell survival or requires cell elimination by apoptosis. Defects in these processes may lead to hypersensitivity to cellular stress, and susceptibility to DNA damage, genomic defects, and resistance to apoptosis, which characterize cancer cells. In this article, we have noted recent studies of DNA damage-dependent cell cycle checkpoints, which may be significant in preventing genomic instability.
Collapse
|
136
|
Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L, Nussenzweig A. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 2006; 443:222-5. [PMID: 16906133 DOI: 10.1038/nature05112] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 07/25/2006] [Indexed: 12/11/2022]
Abstract
The ATM (ataxia telangiectasia mutated) protein kinase is activated under physiological and pathological conditions that induce DNA double-strand breaks (DSBs). Loss of ATM or failure of its activation in humans and mice lead to defective cellular responses to DSBs, such as cell cycle checkpoints, radiation sensitivity, immune dysfunction, infertility and cancer predisposition. A widely used biological marker to identify the active form of ATM is the autophosphorylation of ATM at a single, conserved serine residue (Ser 1981 in humans; Ser 1987 in mouse). Here we show that Atm-dependent responses are functional at the organismal and cellular level in mice that express a mutant form of Atm (mutation of Ser to Ala at position 1987) as their sole Atm species. Moreover, the mutant protein does not exhibit dominant-negative interfering activity when expressed physiologically or overexpressed in the context of Atm heterozygous mice. These results suggest an alternative mode for stimulation of Atm by DSBs in which Atm autophosphorylation at Ser 1987, like trans-phosphorylation of downstream substrates, is a consequence rather than a cause of Atm activation.
Collapse
Affiliation(s)
- Manuela Pellegrini
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1360, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Tang J, Erikson RL, Liu X. Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1). Proc Natl Acad Sci U S A 2006; 103:11964-9. [PMID: 16873548 PMCID: PMC1567681 DOI: 10.1073/pnas.0604987103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the essential function of checkpoint kinase 1 (Chk1) in DNA damage response has been well established, the role of Chk1 in normal cell cycle progression is unclear. By using RNAi to specifically deplete Chk1, we determined loss-of-function phenotypes in HeLa cells. A vector-based RNAi approach showed that Chk1 is required for normal cell proliferation and survival, inasmuch as a dramatic cell-cycle arrest at G(2)/M phase and massive apoptosis were observed in Chk1-deficient cells. Coupling of siRNA with cell synchronization further revealed that Chk1 depletion leads to metaphase block, as indicated by various mitotic markers. Neither bipolar spindle formation nor centrosome functions were affected by Chk1 depletion; however, the depleted cells exhibited chromosome misalignment during metaphase, chromosome lagging during anaphase, and kinetochore defects within the regions of misaligned/lagging chromosomes. Moreover, we showed that Chk1 is a negative regulator of polo-like kinase 1 (Plk1), in either the absence or presence of DNA damage. Finally, Chk1 depletion leads to the activation of the spindle checkpoint because codepletion of spindle checkpoint proteins rescues the Chk1 depletion-induced mitotic arrest.
Collapse
Affiliation(s)
- Jiabin Tang
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biochemistry and the Cancer Center, Purdue University, West Lafayette, IN 47907; and
| | - Raymond L. Erikson
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Xiaoqi Liu
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Department of Biochemistry and the Cancer Center, Purdue University, West Lafayette, IN 47907; and
- The Walther Cancer Institute, Indianapolis, IN 46202
| |
Collapse
|
138
|
Durkin SG, Arlt MF, Howlett NG, Glover TW. Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 2006; 25:4381-8. [PMID: 16732333 DOI: 10.1038/sj.onc.1209466] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Common fragile sites are specific regions of the genome that form gaps and breaks on metaphase chromosomes when DNA synthesis is partially inhibited. Fragile sites and their associated genes show frequent deletions and other rearrangements in cancer cells, and may be indicators of DNA replication stress early in tumorigenesis. We have previously shown that the DNA damage response proteins ATR, BRCA1 and FANCD2 play critical roles in maintaining the stability of fragile site regions. To further elucidate the pathways regulating fragile site stability, we have investigated the effects of depletion of the cell cycle checkpoint kinases, CHK1 and CHK2 on common fragile site stability in human cells. We demonstrate that both CHK1 and CHK2 are activated following treatment of cells with low doses of aphidicolin that induce fragile site breakage. Furthermore, we show that depletion of CHK1, but not CHK2, using short-interfering RNA (siRNA) leads to highly destabilized chromosomes and specific common fragile site breakage. In many cells, CHK1 depletion resulted in extensive chromosome fragmentation, which was distinct from endonucleolytic cleavage commonly associated with apoptosis. These findings demonstrate a critical role for the CHK1 kinase in regulating chromosome stability, and in particular, common fragile site stability.
Collapse
Affiliation(s)
- S G Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
139
|
Bomgarden RD, Lupardus PJ, Soni DV, Yee MC, Ford JM, Cimprich KA. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J 2006; 25:2605-14. [PMID: 16675950 PMCID: PMC1478198 DOI: 10.1038/sj.emboj.7601123] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 04/07/2006] [Indexed: 11/08/2022] Open
Abstract
An essential component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-activating structure is single-stranded DNA. It has been suggested that nucleotide excision repair (NER) can lead to activation of ATR by generating such a signal, and in yeast, DNA damage processing through the NER pathway is necessary for checkpoint activation during G1. We show here that ultraviolet (UV) radiation-induced ATR signaling is compromised in XPA-deficient human cells during S phase, as shown by defects in ATRIP (ATR-interacting protein) translocation to sites of UV damage, UV-induced phosphorylation of Chk1 and UV-induced replication protein A phosphorylation and chromatin binding. However, ATR signaling was not compromised in XPC-, CSB-, XPF- and XPG-deficient cells. These results indicate that damage processing is not necessary for ATR-mediated S-phase checkpoint activation and that the lesion recognition function of XPA may be sufficient. In contrast, XP-V cells deficient in the UV bypass polymerase eta exhibited enhanced ATR signaling. Taken together, these results suggest that lesion bypass and not lesion repair may raise the level of UV damage that can be tolerated before checkpoint activation, and that XPA plays a critical role in this activation.
Collapse
Affiliation(s)
- Ryan D Bomgarden
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Patrick J Lupardus
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Deena V Soni
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Muh-Ching Yee
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - James M Ford
- Departments of Medicine and Genetics, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
- Department of Molecular Pharmacology, CCSR, Stanford University School of Medicine, 269 Campus Drive, Rm 3215a Stanford, CA 94305-5174, USA. Tel.: +1 650 498 4720; Fax: +1 650 725 4665; E-mail:
| |
Collapse
|
140
|
Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 2006; 26:2661-74. [PMID: 16537910 PMCID: PMC1430322 DOI: 10.1128/mcb.26.7.2661-2674.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gene encoding the SNF5/Ini1 core subunit of the SWI/SNF chromatin remodeling complex is a tumor suppressor in humans and mice, with an essential role in early embryonic development. To investigate further the function of this gene, we have generated a Cre/lox-conditional mouse line. We demonstrate that Snf5 deletion in primary fibroblasts impairs cell proliferation and survival without the expected derepression of most retinoblastoma protein-controlled, E2F-responsive genes. Furthermore, Snf5-deficient cells are hypersensitive to genotoxic stress, display increased aberrant mitotic features, and accumulate phosphorylated p53, leading to elevated expression of a specific subset of p53 target genes, suggesting a role for Snf5 in the DNA damage response. p53 inactivation does not rescue the proliferation defect caused by Snf5 deficiency but reduces apoptosis and strongly accelerates tumor formation in Snf5-heterozygous mice.
Collapse
Affiliation(s)
- Agnes Klochendler-Yeivin
- Department of Animal and Cell Biology, The Institute for Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
141
|
Robinson HMR, Jones R, Walker M, Zachos G, Brown R, Cassidy J, Gillespie DAF. Chk1-dependent slowing of S-phase progression protects DT40 B-lymphoma cells against killing by the nucleoside analogue 5-fluorouracil. Oncogene 2006; 25:5359-69. [PMID: 16619043 DOI: 10.1038/sj.onc.1209532] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chk1 plays a crucial role in the DNA damage and replication checkpoints in vertebrates and may therefore be an important determinant of tumour cell responses to genotoxic anticancer drugs. To evaluate this concept we compared the effects of the nucleoside analogue 5-fluorouracil (5FU) on cell cycle progression and clonogenic survival in DT40 B-lymphoma cells with an isogenic mutant derivative in which Chk1 function was ablated by gene targeting. We show that 5FU activates Chk1 in wild-type DT40 cells and that 5FU-treated cells accumulate in the S phase of the cell cycle due to slowing of the overall rate of DNA replication. In marked contrast, Chk1-deficient DT40 cells fail to slow DNA replication upon initial exposure to 5FU, despite equivalent inhibition of the target enzyme thymidylate synthase, and instead accumulate progressively in the G1 phase of the following cell cycle. This G1 accumulation cannot be reversed rapidly by exogenous thymidine or removal of 5FU, and is associated with increased incorporation of 5FU into genomic DNA and severely diminished clonogenic survival. Taken together, these results demonstrate that a Chk1-dependent replication checkpoint which slows S phase progression can protect tumour cells against the cytotoxic effects of 5FU.
Collapse
|
142
|
Petermann E, Maya-Mendoza A, Zachos G, Gillespie DAF, Jackson DA, Caldecott KW. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 2006; 26:3319-26. [PMID: 16581803 PMCID: PMC1446959 DOI: 10.1128/mcb.26.8.3319-3326.2006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/14/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1(-/-) chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1(-/-) cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3(-/-) DT40 cells. Rather, we observed an increased number of replication fibers in Chk1(-/-) cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1(-/-) cells are associated with the accumulation of aberrant replication fork structures.
Collapse
Affiliation(s)
- Eva Petermann
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| | | | | | | | | | | |
Collapse
|
143
|
Ho CC, Siu WY, Lau A, Chan WM, Arooz T, Poon RYC. Stalled replication induces p53 accumulation through distinct mechanisms from DNA damage checkpoint pathways. Cancer Res 2006; 66:2233-41. [PMID: 16489026 DOI: 10.1158/0008-5472.can-05-1790] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stalled replication forks induce p53, which is required to maintain the replication checkpoint. In contrast to the well-established mechanisms of DNA damage-activated p53, the downstream effectors and upstream regulators of p53 during replication blockade remain to be deciphered. Hydroxyurea triggered accumulation of p53 through an increase in protein stability. The requirement of p53 accumulation for the replication checkpoint was not due to p21(CIP1/WAF1) as its down-regulation with short-hairpin RNA did not affect the checkpoint. Similar to DNA damage, stalled replication triggered the activation of the MRN-ataxia telangiectasia mutated (ATM)/ATM and Rad3-related-CHK1/CHK2 axis. Down-regulation of CHK1 or CHK2, however, reduced p53 basal expression but not the hydroxyurea-dependent induction. Moreover, p53 was still stabilized in ataxia telangiectasia cells or in cells treated with caffeine, suggesting that ATM was not a critical determinant. These data also suggest that the functions of ATM, CHK1, and CHK2 in the replication checkpoint were not through the p53-p21(CIP1/WAF1) pathway. In contrast, induction of p53 by hydroxyurea was defective in cells lacking NBS1 and BLM. In this connection, the impaired replication checkpoint in several other genetic disorders has little correlation with the ability to stabilize p53. These data highlighted the different mechanisms involved in the stabilization of p53 after DNA damage and stalled replication forks.
Collapse
Affiliation(s)
- Chui Chui Ho
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | |
Collapse
|
144
|
Liu JS, Kuo SR, Melendy T. Phosphorylation of replication protein A by S-phase checkpoint kinases. DNA Repair (Amst) 2006; 5:369-80. [PMID: 16412704 DOI: 10.1016/j.dnarep.2005.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/26/2022]
Abstract
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.
Collapse
Affiliation(s)
- Jen-Sing Liu
- Department of Microbiology & Immunology, and the Witebsky Center for Microbial Pathogenesis & Immunology, University at Buffalo, School of Medicine & Biomedical Sciences, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
145
|
Pommier Y, Barcelo J, Rao VA, Sordet O, Jobson AG, Thibaut L, Miao Z, Seiler J, Zhang H, Marchand C, Agama K, Redon C. Repair of topoisomerase I-mediated DNA damage. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:179-229. [PMID: 16891172 PMCID: PMC2576451 DOI: 10.1016/s0079-6603(06)81005-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topoisomerase I (Top1) is an abundant and essential enzyme. Top1 is the selective target of camptothecins, which are effective anticancer agents. Top1-DNA cleavage complexes can also be trapped by various endogenous and exogenous DNA lesions including mismatches, abasic sites and carcinogenic adducts. Tyrosyl-DNA phosphodiesterase (Tdp1) is one of the repair enzymes for Top1-DNA covalent complexes. Tdp1 forms a multiprotein complex that includes poly(ADP) ribose polymerase (PARP). PARP-deficient cells are hypersensitive to camptothecins and functionally deficient for Tdp1. We will review recent developments in several pathways involved in the repair of Top1 cleavage complexes and the role of Chk1 and Chk2 checkpoint kinases in the cellular responses to Top1 inhibitors. The genes conferring camptothecin hypersensitivity are compiled for humans, budding yeast and fission yeast.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Juana Barcelo
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - V. Ashutosh Rao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Andrew G. Jobson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Laurent Thibaut
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Zheyong Miao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Jennifer Seiler
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| | - Christophe Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS
| |
Collapse
|
146
|
Wang B, David MD, Schrader JW. Absence of caprin-1 results in defects in cellular proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4274-82. [PMID: 16177067 DOI: 10.4049/jimmunol.175.7.4274] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is a cytoplasmic phosphoprotein that is the prototype of a novel family of highly conserved proteins. Its levels, except in the brain, are tightly correlated with cellular proliferation. We disrupted caprin-1 alleles in the chicken B lymphocyte line DT40 using homologous recombination. We readily obtained clones with one disrupted allele (31% of transfectants), but upon transfection of heterozygous cells we obtained a 10-fold lower frequency of clones with disruption of the remaining allele. Clones of caprin-1-null DT40 cells exhibited marked reductions in their proliferation rate. To obviate the problem that we had selected for caprin-1-null clones with characteristics that partially compensated for the lack of Caprin-1, we generated clones of DT40 cells heterozygous for the caprin-1 gene in which, during disruption of the remaining wild-type allele of the chicken caprin-1 gene, the absence of endogenous Caprin-1 would be complemented by conditional expression of human Caprin-1. Suppression of expression of human Caprin-1 resulted in slowing of the proliferation rate, due to prolongation of the G1 phase of the cell cycle, formally demonstrating that Caprin-1 was essential for normal cellular proliferation.
Collapse
Affiliation(s)
- Bin Wang
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
147
|
Foloppe N, Fisher LM, Francis G, Howes R, Kierstan P, Potter A. Identification of a buried pocket for potent and selective inhibition of Chk1: prediction and verification. Bioorg Med Chem 2005; 14:1792-804. [PMID: 16289938 DOI: 10.1016/j.bmc.2005.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/10/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Inhibition of the Chk1 kinase by small molecules binding to its active site is a strategy of great therapeutic interest for oncology. We report how computational modelling predicted the binding mode of ligands of special interest to the Chk1 ATP site, for representatives of an indazole series and debromohymenialdisine. These binding modes were subsequently confirmed by X-ray crystallography. The binding mode of a potent indazole derivative involves non-conventional C-H...O and N-H...pi-aromatic interactions with the protein. These interactions are formed in a buried pocket at the periphery of the ATP-binding site, the importance of which has previously been overlooked for ligand design against Chk1. It is demonstrated that filling this pocket can confer ligands with dramatically enhanced affinity for Chk1. Structural arguments in conjunction with assay data explain why targeting this pocket is also advantageous for selective binding to Chk1. Structural overlays of known inhibitors complexed with Chk1 show that only the indazole series utilizes the pocket of interest. Therefore, the analysis presented here should prove helpful in guiding future structure-based ligand design efforts against Chk1.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB1 6GB, UK.
| | | | | | | | | | | |
Collapse
|
148
|
Rodriguez R, Meuth M. Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 2005; 17:402-12. [PMID: 16280359 PMCID: PMC1345677 DOI: 10.1091/mbc.e05-07-0594] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cells respond to DNA replication stress by triggering cell cycle checkpoints, repair, or death. To understand the role of the DNA damage response pathways in determining whether cells survive replication stress or become committed to death, we examined the effect of loss of these pathways on cellular response to agents that slow or arrest DNA synthesis. We show that replication inhibitors such as excess thymidine, hydroxyurea, and camptothecin are normally poor inducers of apoptosis. However, these agents become potent inducers of death in S-phase cells upon small interfering RNA-mediated depletion of the checkpoint kinase Chk1. This death response is independent of p53 and Chk2. p21-deficient cells, on the other hand, produce a more robust apoptotic response upon Chk1 depletion. p21 is normally induced only late after thymidine treatment. In Chk1-depleted cells p21 induction occurs earlier and does not require p53. Thus, Chk1 plays a primary role in the protection of cells from death induced by replication fork stress, whereas p21 mediates through its role in regulating entry into S phase. These findings are of potential importance to cancer therapy because we demonstrate that the efficacy of clinically relevant agents can be enhanced by manipulation of these signaling pathways.
Collapse
Affiliation(s)
- Rene Rodriguez
- Institute for Cancer Studies, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | | |
Collapse
|
149
|
Clarke C, Clarke P. DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. Biochem J 2005; 388:705-12. [PMID: 15707391 PMCID: PMC1138979 DOI: 10.1042/bj20041966] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-cycle checkpoints induced by DNA damage or replication play critical roles in the maintenance of genomic integrity during cell proliferation. Biochemical analysis of checkpoint pathways has been greatly facilitated by the use of cell-free systems made from Xenopus eggs. In the present study, we describe a human cell-free system that reproduces a DNA-dependent checkpoint pathway acting on the Chk1 protein kinase. In this system, double-stranded DNA oligonucleotides induce the phosphorylation of Chk1 at activating sites targeted by ATR [ATM (ataxia telangiectasia mutated)- and Rad3-related] and ATM kinases. Phosphorylation of Chk1 is dependent on the interaction of Claspin, a protein first identified in Xenopus as a Chk1-binding protein. We show that the DNA-dependent binding of Chk1 to Claspin requires two phosphorylation sites, Thr916 and Ser945, which lie within the Chk1-binding domain of Claspin. Using a phosphopeptide derived from the consensus motif of these sites, we show that the interaction of Claspin with Chk1 is required for the ATR/ATM-dependent phosphorylation of Chk1. Using a panel of protein kinase inhibitors, we provide evidence that Chk1 is phosphorylated at an additional site in response to activation of the checkpoint response, probably by autophosphorylation. Claspin is phosphorylated in the Chk1-binding domain in an ATR/ATM-dependent manner and is also targeted by additional kinases in response to double-stranded DNA oligonucleotides. This cell-free system will facilitate further biochemical analysis of the Chk1 pathway in humans.
Collapse
Affiliation(s)
- Catriona A. L. Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Paul R. Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
150
|
Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 2005; 19:607-18. [PMID: 16137618 DOI: 10.1016/j.molcel.2005.07.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 02/03/2005] [Accepted: 07/20/2005] [Indexed: 11/18/2022]
Abstract
The Chk1 kinase is a major effector of S phase checkpoint signaling during the cellular response to genotoxic stress. Here, we report that replicative stress induces the polyubiquitination and degradation of Chk1 in human cells. This response is triggered by phosphorylation of Chk1 at Ser-345, a known target site for the upstream activating kinase ATR. The ubiquitination of Chk1 is mediated by E3 ligase complexes containing Cul1 or Cul4A. Treatment of cells with the anticancer agent camptothecin (CPT) triggers Chk1 destruction, which blocks recovery from drug-induced S phase arrest and leads to cell death. These findings indicate that ATR-dependent phosphorylation of Chk1 delivers a signal that both activates Chk1 and marks this protein for proteolytic degradation. Proteolysis of activated Chk1 may promote checkpoint termination under normal conditions, and may play an important role in the cytotoxic effects of CPT and related anticancer drugs.
Collapse
Affiliation(s)
- You-Wei Zhang
- Signal Transduction Program, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|