101
|
Butchbach MER, Lumpkin CJ, Harris AW, Saieva L, Edwards JD, Workman E, Simard LR, Pellizzoni L, Burghes AHM. Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy. Exp Neurol 2016; 279:13-26. [PMID: 26892876 PMCID: PMC4834225 DOI: 10.1016/j.expneurol.2016.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analog (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs-glyceryl tributyrate (BA3G) and VX563-on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favorable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| | - Casey J Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jonathan D Edwards
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
102
|
Lin TL, Chen TH, Hsu YY, Cheng YH, Juang BT, Jong YJ. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides. PLoS One 2016; 11:e0154723. [PMID: 27124114 PMCID: PMC4849667 DOI: 10.1371/journal.pone.0154723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/18/2016] [Indexed: 11/27/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies.
Collapse
Affiliation(s)
- Te-Lin Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Heng Chen
- Division of Pediatric Emergency, Department of Emergency, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Yun Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hua Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Departments of Pediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
103
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
104
|
Zhao X, Feng Z, Ling KKY, Mollin A, Sheedy J, Yeh S, Petruska J, Narasimhan J, Dakka A, Welch EM, Karp G, Chen KS, Metzger F, Ratni H, Lotti F, Tisdale S, Naryshkin NA, Pellizzoni L, Paushkin S, Ko CP, Weetall M. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy. Hum Mol Genet 2016; 25:1885-1899. [PMID: 26931466 PMCID: PMC5062580 DOI: 10.1093/hmg/ddw062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.
Collapse
Affiliation(s)
- Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Karen K Y Ling
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Shirley Yeh
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Gary Karp
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sarah Tisdale
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | | | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sergey Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA,
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA,
| |
Collapse
|
105
|
Nizzardo M, Simone C, Rizzo F, Ulzi G, Ramirez A, Rizzuti M, Bordoni A, Bucchia M, Gatti S, Bresolin N, Comi GP, Corti S. Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Sci Rep 2016; 6:21301. [PMID: 26878886 PMCID: PMC4754711 DOI: 10.1038/srep21301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
Neurotoxicity due to the accumulation of mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS); these mutations result in progressive motor neuron death through one or more acquired toxicities. Interestingly, SOD1 is not only responsible for fALS but may also play a significant role in sporadic ALS; therefore, SOD1 represents a promising therapeutic target. Here, we report slowed disease progression, improved neuromuscular function, and increased survival in an in vivo ALS model following therapeutic delivery of morpholino oligonucleotides (MOs) designed to reduce the synthesis of human SOD1. Neuropathological analysis demonstrated increased motor neuron and axon numbers and a remarkable reduction in astrogliosis and microgliosis. To test this strategy in a human model, we treated human fALS induced pluripotent stem cell (iPSC)-derived motor neurons with MOs; these cells exhibited increased survival and reduced expression of apoptotic markers. Our data demonstrated the efficacy of MO-mediated therapy in mouse and human ALS models, setting the stage for human clinical trials.
Collapse
Affiliation(s)
- M. Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C. Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F. Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Ramirez
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M. Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M. Bucchia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S. Gatti
- Centro di Ricerche Chirurgiche Precliniche, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico; Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milano, Italy
| | - N. Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S. Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
106
|
Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin Ther 2016; 36:340-56.e5. [PMID: 24636820 DOI: 10.1016/j.clinthera.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/22/2014] [Accepted: 02/07/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Collapse
|
107
|
Walters BJ, Azam AB, Gillon CJ, Josselyn SA, Zovkic IB. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Front Genet 2016; 6:362. [PMID: 26793235 PMCID: PMC4709581 DOI: 10.3389/fgene.2015.00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Gene editing tools are essential for uncovering how genes mediate normal brain-behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories.
Collapse
Affiliation(s)
- Brandon J Walters
- Department of Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada
| | - Amber B Azam
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Colleen J Gillon
- Department of Neuroscience and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Sheena A Josselyn
- Department of Neuroscience and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
108
|
|
109
|
Arnold W, McGovern VL, Sanchez B, Li J, Corlett KM, Kolb SJ, Rutkove SB, Burghes AH. The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy. Neurobiol Dis 2015; 87:116-23. [PMID: 26733414 DOI: 10.1016/j.nbd.2015.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/20/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Significant advances in the development of SMN-restoring therapeutics have occurred since 2010 when very effective biological treatments were reported in mouse models of spinal muscular atrophy. As these treatments are applied in human clinical trials, there is pressing need to define quantitative assessments of disease progression, treatment stratification, and therapeutic efficacy. The electrophysiological measures Compound Muscle Action Potential and Motor Unit Number Estimation are reliable measures of nerve function. In both the SMN∆7 mouse and a pig model of spinal muscular atrophy, early SMN restoration results in preservation of electrophysiological measures. Currently, clinical trials are underway in patients at post-symptomatic stages of disease progression. In this study, we present results from both early and delayed SMN restoration using clinically-relevant measures including electrical impedance myography, compound muscle action potential, and motor unit number estimation to quantify the efficacy and time-sensitivity of SMN-restoring therapy. METHODS SMA∆7 mice were treated via intracerebroventricular injection with antisense oligonucleotides targeting ISS-N1 to increase SMN protein from the SMN2 gene on postnatal day 2, 4, or 6 and compared with sham-treated spinal muscular atrophy and control mice. Compound muscle action potential and motor unit number estimation of the triceps surae muscles were performed at day 12, 21, and 30 by a single evaluator blinded to genotype and treatment. Similarly, electrical impedance myography was measured on the biceps femoris muscle at 12days for comparison. RESULTS Electrophysiological measures and electrical impedance myography detected significant differences at 12days between control and late-treated (4 or 6days) and sham-treated spinal muscular atrophy mice, but not in mice treated at 2days (p<0.01). EIM findings paralleled and correlated with compound muscle action potential and motor unit number estimation (r=0.61 and r=0.50, respectively, p<0.01). Longitudinal measures at 21 and 30days show that symptomatic therapy results in reduced motor unit number estimation associated with delayed normalization of compound muscle action potential. CONCLUSIONS The incomplete effect of symptomatic treatment is accurately identified by both electrophysiological measures and electrical impedance myography. There is strong correlation between these measures and with weight and righting reflex. This study predicts that measures of compound muscle action potential, motor unit number estimation, and electrical impedance myography are promising biomarkers of treatment stratification and effect for future spinal muscular atrophy trials. The ease of application and simplicity of electrical impedance myography compared with standard electrophysiological measures may be particularly valuable in future pediatric clinical trials.
Collapse
Affiliation(s)
- W Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Kaitlyn M Corlett
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Arthur H Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| |
Collapse
|
110
|
Patitucci TN, Ebert AD. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons. Hum Mol Genet 2015; 25:514-23. [PMID: 26643950 DOI: 10.1093/hmg/ddv489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.
Collapse
Affiliation(s)
- Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| |
Collapse
|
111
|
Zhou H, Meng J, Marrosu E, Janghra N, Morgan J, Muntoni F. Repeated low doses of morpholino antisense oligomer: an intermediate mouse model of spinal muscular atrophy to explore the window of therapeutic response. Hum Mol Genet 2015; 24:6265-77. [PMID: 26264577 PMCID: PMC4614699 DOI: 10.1093/hmg/ddv329] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 11/14/2022] Open
Abstract
The human SMN2 transgenic mice are well-established models of spinal muscular atrophy (SMA). While the severe type I mouse model has a rapidly progressive condition mimicking type I SMA in humans, the mild type III mice do not faithfully recapitulate chronic SMA variants affecting children. A SMA mouse model that clinically mimics the features of type II and III SMA in human is therefore needed. In this study, we generated intermediately affected SMA mice by delivering low-dose morpholino oligomer (PMO25) into the existing severe SMA mice. We show that a single low-dose administration of PMO25 moderately extended the survival of severe type I SMA mice. The neuromuscular pathology is also modestly but significantly improved in these mice. A second administration of PMO25 at postnatal day 5 (PND5) demonstrated an additive effect on survival. Additional systemic administration of low-dose PMO25 at 2-week intervals suppressed the occurrence of distal necrosis beyond postnatal day 100, and induced more complete phenotypic rescue than a single bolus high-dose injection at PND0. Our study demonstrates that survival of motor neuron (SMN) is required early at a critical threshold to prevent symptoms and suggests that subsequent systemic administration of low-dose PMO25 in SMA mice can provide therapeutic benefit and phenotypic rescue, presumably via peripheral SMN restoration. Our work also provides additional insight into the time window of response to administration of antisense oligonucleotides to SMA mice with an intermediate phenotype. This information is crucial at a time when a number of therapeutic interventions are in clinical trials in SMA patients.
Collapse
Affiliation(s)
- Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Jinhong Meng
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Elena Marrosu
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Narinder Janghra
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
112
|
Qian Y, McGraw S, Henne J, Jarecki J, Hobby K, Yeh WS. Understanding the experiences and needs of individuals with Spinal Muscular Atrophy and their parents: a qualitative study. BMC Neurol 2015; 15:217. [PMID: 26499462 PMCID: PMC4619513 DOI: 10.1186/s12883-015-0473-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical features of SMA, which range along a spectrum of severity, are relatively well described. In contrast, the literature on how individuals with SMA and their families experience this condition is limited. To address this gap, we undertook a qualitative study with individuals affected by SMA Types I, II and III, parents of those affected, and clinicians. METHODS We completed 16 focus group sessions and 37 interviews in the US with 96 participants including: 21 with individuals with SMA; 64 parents of individuals affected by SMA; and 11 clinicians who specialize in the care of SMA patients. RESULTS The Diagnostic Journey: Families reported substantial diagnostic delays owing to: 1) lack of awareness and knowledge about SMA; 2) the difficulty of distinguishing normal from abnormal development; and 3) the challenge of differential diagnosis. Lack of sensitivity in how clinicians communicated this potentially devastating diagnosis compounded parents' negative impressions. Newborn Screening: Parents generally held positive views about adding SMA to newborn screening panels. For example, it would: 1) enable earlier access to care; 2) shorten the diagnostic journey; and 3) give families more time to prepare to care for a disabled child. Some noted negative outcomes such as prematurely affecting a parent's relationship with a child before symptoms are evident. The Psychosocial Impact of Living with SMA: Ten thematic areas characterized the impact: 1) confronting premature death; 2) making difficult treatment choices; 3) fearing the loss of functional ability; 4) coming to terms with lost expectations; 5) loss of sleep and stress; 6) stigma; 7) limitations on social activities; 8) independence; 9) uncertainty and helplessness; and 10) family finances. CONCLUSIONS The results of this study suggest high levels of burden experienced by individuals with SMA and their families. The difficulties of living with SMA begin with the long and often arduous process of finding a diagnosis for their child. Newborn screening for SMA is seen as an important step toward shortening this journey. The psychosocial effects of coping with SMA are substantial and wide ranging both for the individual living with this condition and family members of affected individuals.
Collapse
Affiliation(s)
- Ying Qian
- SMA Foundation, 888 7th Ave #400, New York, NY, 10106, USA.
| | - Sarah McGraw
- The Henne Group, 116 New Montgomery Street, Suite 812, San Francisco, California, 94105, USA.
| | - Jeff Henne
- The Henne Group, 116 New Montgomery Street, Suite 812, San Francisco, California, 94105, USA.
| | - Jill Jarecki
- Cure SMA, 925 Busse Rd, Elk Grove Village, IL, 60007, USA.
| | - Kenneth Hobby
- Cure SMA, 925 Busse Rd, Elk Grove Village, IL, 60007, USA.
| | - Wei-Shi Yeh
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
113
|
McGovern VL, Iyer CC, Arnold WD, Gombash SE, Zaworski PG, Blatnik AJ, Foust KD, Burghes AHM. SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015; 24:5524-41. [PMID: 26206889 PMCID: PMC4572068 DOI: 10.1093/hmg/ddv283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 12/23/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Chitra C Iyer
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | - Sara E Gombash
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | | | - Anton J Blatnik
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kevin D Foust
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
114
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|
115
|
Abstract
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease.
Collapse
|
116
|
Iyer CC, McGovern VL, Murray JD, Gombash SE, Zaworski PG, Foust KD, Janssen PML, Burghes AHM. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015; 24:6160-73. [PMID: 26276812 DOI: 10.1093/hmg/ddv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, Department of Neurology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA and
| |
Collapse
|
117
|
Nizzardo M, Simone C, Dametti S, Salani S, Ulzi G, Pagliarani S, Rizzo F, Frattini E, Pagani F, Bresolin N, Comi G, Corti S. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Sci Rep 2015; 5:11746. [PMID: 26123042 PMCID: PMC4485234 DOI: 10.1038/srep11746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Dametti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Pagliarani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Frattini
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
118
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
119
|
Balestra D, Barbon E, Scalet D, Cavallari N, Perrone D, Zanibellato S, Bernardi F, Pinotti M. Regulation of a strong F9 cryptic 5'ss by intrinsic elements and by combination of tailored U1snRNAs with antisense oligonucleotides. Hum Mol Genet 2015; 24:4809-16. [PMID: 26063760 PMCID: PMC4527485 DOI: 10.1093/hmg/ddv205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023] Open
Abstract
Mutations affecting specific splicing regulatory elements offer suitable models to better understand their interplay and to devise therapeutic strategies. Here we characterize a meaningful splicing model in which numerous Hemophilia B-causing mutations, either missense or at the donor splice site (5'ss) of coagulation F9 exon 2, promote aberrant splicing by inducing the usage of a strong exonic cryptic 5'ss. Splicing assays with natural and artificial F9 variants indicated that the cryptic 5'ss is regulated, among a network of regulatory elements, by an exonic splicing silencer (ESS). This finding and the comparative analysis of the F9 sequence across species showing that the cryptic 5'ss is always paralleled by the conserved ESS support a compensatory mechanism aimed at minimizing unproductive splicing. To recover splicing we tested antisense oligoribonucleotides masking the cryptic 5'ss, which were effective on exonic changes but promoted exon 2 skipping in the presence of mutations at the authentic 5'ss. On the other hand, we observed a very poor correction effect by small nuclear RNA U1 (U1snRNA) variants with increased or perfect complementarity to the defective 5'ss, a strategy previously exploited to rescue splicing. Noticeably, the combination of the mutant-specific U1snRNAs with antisense oligonucleotides produced appreciable amounts of correctly spliced transcripts (from 0 to 20-40%) from several mutants of the exon 2 5'ss. Based on the evidence of an altered interplay among ESS, cryptic and the authentic 5'ss as a disease-causing mechanism, we provide novel experimental insights into the combinatorial correction activity of antisense molecules and compensatory U1snRNAs.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Elena Barbon
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Nicola Cavallari
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Zanibellato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| |
Collapse
|
120
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
121
|
Kaczmarek A, Schneider S, Wirth B, Riessland M. Investigational therapies for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 2015; 24:867-81. [DOI: 10.1517/13543784.2015.1038341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Kaczmarek
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Svenja Schneider
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Brunhilde Wirth
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Markus Riessland
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
122
|
Izumi K, Nakato R, Zhang Z, Edmondson AC, Noon S, Dulik MC, Rajagopalan R, Venditti CP, Gripp K, Samanich J, Zackai EH, Deardorff MA, Clark D, Allen JL, Dorsett D, Misulovin Z, Komata M, Bando M, Kaur M, Katou Y, Shirahige K, Krantz ID. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat Genet 2015; 47:338-44. [PMID: 25730767 PMCID: PMC4380798 DOI: 10.1038/ng.3229] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/30/2015] [Indexed: 12/16/2022]
Abstract
Transcriptional elongation is critical for gene expression regulation during embryogenesis. The super elongation complex (SEC) governs this process by mobilizing paused RNA polymerase II (RNAP2). Using exome sequencing, we discovered missense mutations in AFF4, a core component of the SEC, in three unrelated probands with a new syndrome that phenotypically overlaps Cornelia de Lange syndrome (CdLS) that we have named CHOPS syndrome (C for cognitive impairment and coarse facies, H for heart defects, O for obesity, P for pulmonary involvement and S for short stature and skeletal dysplasia). Transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses demonstrated similar alterations of genome-wide binding of AFF4, cohesin and RNAP2 in CdLS and CHOPS syndrome. Direct molecular interaction of the SEC, cohesin and RNAP2 was demonstrated. These data support a common molecular pathogenesis for CHOPS syndrome and CdLS caused by disturbance of transcriptional elongation due to alterations in genome-wide binding of AFF4 and cohesin.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew C. Edmondson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah Noon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew C. Dulik
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ramkakrishnan Rajagopalan
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Karen Gripp
- Division of Medical Genetics, A. I. duPont Hospital for Children, Wilmington, Delaware
| | - Joy Samanich
- Division of Genetics, Department of Pediatrics, Montefiore Medical Center, Bronx, NY
| | - Elaine H. Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A. Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dinah Clark
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Julian L. Allen
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Ziva Misulovin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Makiko Komata
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Maninder Kaur
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ian D. Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
123
|
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder pathologically characterized by the degeneration of motor neurons in the spinal cord and muscle atrophy. Motor neuron loss often results in severe muscle weakness causing affected infants to die before reaching 2 years of age. Patients with milder forms of SMA exhibit slowly progressive muscle weakness over many years. SMA is caused by the loss of SMN1 and the retention of at least 1 copy of a highly homologous SMN2. An alternative splicing event in the pre-mRNA arising from SMN2 results in the production of low levels of functional SMN protein. To date, there are no effective treatments available to treat patients with SMA. However, over the last 2 decades, the development of SMA mouse models and the identification of therapeutic targets have resulted in a promising drug pipeline for SMA. Here, we highlight some of the therapeutic strategies that have been developed to activate SMN2 expression, modulate splicing of the SMN2 pre-mRNA, or replace SMN1 by gene therapy. After 2 decades of translational research, we now stand within reach of a treatment for SMA.
Collapse
Affiliation(s)
- Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| |
Collapse
|
124
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
125
|
Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L, Meyer K, Kolb SJ, Schümperli D, Kaspar BK, Burghes AHM. A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol 2015; 77:399-414. [PMID: 25516063 DOI: 10.1002/ana.24332] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/29/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.
Collapse
Affiliation(s)
- Sandra I Duque
- Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, OH
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Hua Y, Liu YH, Sahashi K, Rigo F, Bennett CF, Krainer AR. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev 2015; 29:288-97. [PMID: 25583329 PMCID: PMC4318145 DOI: 10.1101/gad.256644.114] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but restoring SMN in motor neurons only partially rescues SMA in mouse models. Hua et al. address the relative importance of SMN restoration in the CNS versus peripheral tissues in mouse models by using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.
Collapse
Affiliation(s)
- Yimin Hua
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Kentaro Sahashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Frank Rigo
- Isis Pharmaceuticals, Carlsbad, California 92010, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
127
|
Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000PRIME REPORTS 2015; 7:04. [PMID: 25705387 PMCID: PMC4311279 DOI: 10.12703/p7-04] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
Collapse
Affiliation(s)
- Daniel M Iascone
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Christopher E Henderson
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Justin C Lee
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
128
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
129
|
Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2014; 51:157-67. [PMID: 25346245 DOI: 10.1002/mus.24497] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q-SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produces reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early-phase clinical trials.
Collapse
Affiliation(s)
- W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center, The Ohio State University, 395 West 12th Avenue, Columbus, Ohio, 43210, USA; Department of Physical Medicine and Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
130
|
Wee CD, Havens MA, Jodelka FM, Hastings ML. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells. PLoS One 2014; 9:e115205. [PMID: 25506695 PMCID: PMC4266657 DOI: 10.1371/journal.pone.0115205] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.
Collapse
Affiliation(s)
- Claribel D. Wee
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mallory A. Havens
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Francine M. Jodelka
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Michelle L. Hastings
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
131
|
Biotherapies of neuromuscular disorders. Rev Neurol (Paris) 2014; 170:799-807. [PMID: 25459122 DOI: 10.1016/j.neurol.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/25/2014] [Indexed: 11/21/2022]
Abstract
This review focuses on the most recent data on biotherapeutic approaches, using DNA, RNA, recombinant proteins, or cells as therapeutic tools or targets for the treatment of neuromuscular diseases. Many of these novel technologies have now reached the clinical stage and have or are about to move to the market. Others, like genome editing are still in an early stage but hold great promise.
Collapse
|
132
|
Gombash Lampe SE, Kaspar BK, Foust KD. Intravenous injections in neonatal mice. J Vis Exp 2014:e52037. [PMID: 25407048 DOI: 10.3791/52037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intravenous injection is a clinically applicable manner to deliver therapeutics. For adult rodents and larger animals, intravenous injections are technically feasible and routine. However, some mouse models can have early onset of disease with a rapid progression that makes administration of potential therapies difficult. The temporal (or facial) vein is just anterior to the ear bud in mice and is clearly visible for the first two days after birth on either side of the head using a dissecting microscope. During this window, the temporal vein can be injected with volumes up to 50 μl. The injection is safe and well tolerated by both the pups and the dams. A typical injection procedure is completed within 1-2 min, after which the pup is returned to the home cage. By the third postnatal day the vein is difficult to visualize and the injection procedure becomes technically unreliable. This technique has been used for delivery of adeno-associated virus (AAV) vectors, which in turn can provide almost body-wide, stable transgene expression for the life of the animal depending on the viral serotype chosen.
Collapse
Affiliation(s)
| | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital Research Institute, Ohio State University
| | | |
Collapse
|
133
|
Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, Michels O, Govoni A, Fitzgerald J, Morales P, Foust KD, Mendell JR, Burghes AHM, Kaspar BK. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 2014; 23:477-87. [PMID: 25358252 DOI: 10.1038/mt.2014.210] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura Ferraiuolo
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leah Schmelzer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lyndsey Braun
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vicki McGovern
- Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Shibi Likhite
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Olivia Michels
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alessandra Govoni
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Pablo Morales
- Mannheimer Foundation, Inc., Homestead, Florida, USA
| | - Kevin D Foust
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jerry R Mendell
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA [3] Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Arthur H M Burghes
- Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Brian K Kaspar
- 1] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA [2] Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA [3] Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
134
|
Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther 2014; 24:69-86. [PMID: 24506781 DOI: 10.1089/nat.2013.0461] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing is an important regulator of the transcriptome. However, mutations may cause alteration of splicing patterns, which in turn leads to disease. During the past 10 years, exon skipping has been looked upon as a powerful tool for correction of missplicing in disease and progress has been made towards clinical trials. In this review, we discuss the use of antisense oligonucleotides to correct splicing defects through exon skipping, with a special focus on diseases affecting the nervous system, and the latest stage achieved in its progress.
Collapse
Affiliation(s)
- Kavitha Siva
- 1 Center for Integrative Biology (CIBIO), University of Trento , Trento, Italy
| | | | | |
Collapse
|
135
|
Seo J, Ottesen EW, Singh RN. Antisense methods to modulate pre-mRNA splicing. Methods Mol Biol 2014; 1126:271-83. [PMID: 24549671 DOI: 10.1007/978-1-62703-980-2_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dynamic process of pre-mRNA splicing is regulated by combinatorial control exerted by overlapping cis-elements that are unique to every exon and its flanking intronic sequences. Splicing cis-elements are usually 4-8-nucleotide-long linear motifs that furnish interaction sites for specific proteins. Secondary and higher-order RNA structures exert an additional layer of control by providing accessibility to cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate alternative splicing in vivo. Consistently, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of aberrant splicing in pathological conditions. Here we describe the application of an ASO-based approach for the enhanced production of the full-length mRNA of SMN2 in spinal muscular atrophy patient cells.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
136
|
Borg R, Cauchi RJ. GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci 2014; 8:325. [PMID: 25360080 PMCID: PMC4197776 DOI: 10.3389/fnins.2014.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development.
Collapse
Affiliation(s)
- Rebecca Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| |
Collapse
|
137
|
Abstract
Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.
Collapse
Affiliation(s)
- Tomoyuki Awano
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Jeong-Ki Kim
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Umrao R. Monani
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Department of Neurology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| |
Collapse
|
138
|
Braun S. Gene-based therapies of neuromuscular disorders: an update and the pivotal role of patient organizations in their discovery and implementation. J Gene Med 2014; 15:397-413. [PMID: 24123726 DOI: 10.1002/jgm.2747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022] Open
Abstract
This review updates the state-of-the art accomplishments of the multifaceted gene-based therapies, which include DNA or RNA as either therapeutic tools or targets for the treatment of neuromuscular diseases. It also provides insights into the key role that patient organizations have played in research and development; in particular, by addressing bottlenecks and generating boundary conditions that have contributed to scientific breakthroughs, and the effectiveness of innovation processes. Several gene therapy methods have reached the clinical stage and are now addressing both specific and classical issues related to this novel technology. Not ready yet for clinical application, genome editing is at its infancy. More rapidly progressing, RNA-based therapeutics, and especially exon skipping, exon inclusion and stop codon readthrough strategies, are about to move to the market. Most importantly, patients were at the forefront of this discovery process, from basic knowledge to innovation and translational research in a rapidly growing field of unmet medical needs. In recent years, Duchenne muscular dystrophy was the fertile ground for new therapeutic concepts that have been extended to other neuromuscular disorders, such as spinal muscular atrophy, myotonic dystrophies or fascioscapulohumeral dystrophy. In line with their longstanding policy, patient organizations will keep working in a proactive manner to bring together all stakeholders with a view to working out truly therapeutic solutions over a long-term perspective.
Collapse
|
139
|
A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e174. [PMID: 25004100 PMCID: PMC4121513 DOI: 10.1038/mtna.2014.23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
Recent reports underscore the unparalleled potential of antisense-oligonucleotide (ASO)-based approaches to ameliorate various pathological conditions. However, in vivo studies validating the effectiveness of a short ASO (<10-mer) in the context of a human disease have not been performed. One disease with proven amenability to ASO-based therapy is spinal muscular atrophy (SMA). SMA is a neuromuscular disease caused by loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Correction of aberrant splicing of the remaining paralog, SMN2, can rescue mouse models of SMA. Here, we report the therapeutic efficacy of an 8-mer ASO (3UP8i) in two severe models of SMA. While 3UP8i modestly improved survival and function in the more severe Taiwanese SMA model, it dramatically increased survival, improved neuromuscular junction pathology, and tempered cardiac deficits in a new, less severe model of SMA. Our results expand the repertoire of ASO-based compounds for SMA therapy, and for the first time, demonstrate the in vivo efficacy of a short ASO in the context of a human disease.
Collapse
|
140
|
Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet 2014; 23:6302-17. [PMID: 25035419 DOI: 10.1093/hmg/ddu349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh(Q7/Q150) knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
Collapse
Affiliation(s)
- Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Zachary Cordner
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Jennifer L Pruitt
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Manik Bhat
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ellen E Ladenheim
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Timothy H Moran
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Department of Neurology, and Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
141
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
142
|
Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, Fey RA, Gaus H, Hua Y, Grundy JS, Krainer AR, Henry SP, Bennett CF. Pharmacology of a central nervous system delivered 2'-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 2014; 350:46-55. [PMID: 24784568 PMCID: PMC4056267 DOI: 10.1124/jpet.113.212407] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443-mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Seung J Chun
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Daniel A Norris
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Sam Lee
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - John Matson
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Robert A Fey
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Hans Gaus
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Yimin Hua
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - John S Grundy
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Adrian R Krainer
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - Scott P Henry
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| | - C Frank Bennett
- Isis Pharmaceuticals, Carlsbad, California (F.R., S.J.C., D.A.N., G.H., S.L., J.M., R.A.F., H.G., J.S.G., S.P.H., C.F.B.); and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Y.H., A.R.K.)
| |
Collapse
|
143
|
Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, Khoo B. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 2014; 25:587-98. [PMID: 24826963 DOI: 10.1089/hum.2013.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne muscular dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase 1 clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exon-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Last, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case.
Collapse
Affiliation(s)
- Petra Disterer
- 1 Institute for Liver and Digestive Health, Division of Medicine, University College London , London, NW3 2PF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
144
|
Hunter G, Roche SL, Somers E, Fuller HR, Gillingwater TH. The influence of storage parameters on measurement of survival motor neuron (SMN) protein levels: implications for pre-clinical studies and clinical trials for spinal muscular atrophy. Neuromuscul Disord 2014; 24:973-7. [PMID: 25047670 DOI: 10.1016/j.nmd.2014.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 12/18/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN) protein. A growing number of potential therapeutic strategies for SMA are entering pre-clinical and clinical testing, including gene therapy and antisense oligonucleotide-based approaches. For many such studies SMN protein levels are used as one major readout of treatment efficacy, often necessitating comparisons between samples obtained at different times and/or using different protocols. Whether differences in tissue sampling strategies or storage parameters have an influence on measurable SMN levels remains to be determined. We assessed murine SMN protein immunoreactivity over time and under differing tissue storage conditions. SMN protein levels, measured using sensitive quantitative fluorescent western blotting, declined rapidly over a period of several days following sample collection, especially when protein was extracted immediately and stored at -20°C. Storage of samples at lower temperatures (-80°C), and as intact tissue, led to significantly better preservation of SMN immunoreactivity. However, considerable deterioration in measurable SMN levels occurred, even under optimal storage conditions. These issues need to be taken into consideration when designing and interpreting pre-clinical and clinical SMA studies where SMN protein levels are being measured.
Collapse
Affiliation(s)
- Gillian Hunter
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah L Roche
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Eilidh Somers
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Institute for Science and Technology in Medicine, Keele University, Keele, UK.
| |
Collapse
|
145
|
Luo YB, Mitrpant C, Adams AM, Johnsen RD, Fletcher S, Mastaglia FL, Wilton SD. Antisense oligonucleotide induction of progerin in human myogenic cells. PLoS One 2014; 9:e98306. [PMID: 24892300 PMCID: PMC4044034 DOI: 10.1371/journal.pone.0098306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/30/2014] [Indexed: 01/16/2023] Open
Abstract
We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA) transcript in human myogenic cells. The progerin transcript (LMNA Δ150) lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS). HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model to investigate the role of progerin in premature muscle ageing.
Collapse
Affiliation(s)
- Yue-Bei Luo
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chalermchai Mitrpant
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Abbie M. Adams
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Russell D. Johnsen
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Frank L. Mastaglia
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Australia
| | - Steve D. Wilton
- Centre for Neuromuscular and Neurological Disorders, Australian Neuro-Muscular Research Institute, University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| |
Collapse
|
146
|
Absence of an intron splicing silencer in porcine Smn1 intron 7 confers immunity to the exon skipping mutation in human SMN2. PLoS One 2014; 9:e98841. [PMID: 24892836 PMCID: PMC4043917 DOI: 10.1371/journal.pone.0098841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Spinal Muscular Atrophy is caused by homozygous loss of SMN1. All patients retain at least one copy of SMN2 which produces an identical protein but at lower levels due to a silent mutation in exon 7 which results in predominant exclusion of the exon. Therapies targeting the splicing of SMN2 exon 7 have been in development for several years, and their efficacy has been measured using either in vitro cellular assays or in vivo small animal models such as mice. In this study we evaluated the potential for constructing a mini-pig animal model by introducing minimal changes in the endogenous porcine Smn1 gene to maintain the native genomic structure and regulation. We found that while a Smn2-like mutation can be introduced in the porcine Smn1 gene and can diminish the function of the ESE, it would not recapitulate the splicing pattern seen in human SMN2 due to absence of a functional ISS immediately downstream of exon 7. We investigated the ISS region and show here that the porcine ISS is inactive due to disruption of a proximal hnRNP A1 binding site, while a distal hnRNP A1 binding site remains functional but is unable to maintain the functionality of the ISS as a whole.
Collapse
|
147
|
Tsai LK, Chen CL, Ting CH, Lin-Chao S, Hwu WL, Dodge JC, Passini MA, Cheng SH. Systemic administration of a recombinant AAV1 vector encoding IGF-1 improves disease manifestations in SMA mice. Mol Ther 2014; 22:1450-1459. [PMID: 24814151 DOI: 10.1038/mt.2014.84] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/24/2014] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy is a progressive motor neuron disease caused by a deficiency of survival motor neuron. In this study, we evaluated the efficacy of intravenous administration of a recombinant adeno-associated virus (AAV1) vector encoding human insulin-like growth factor-1 (IGF-1) in a severe mouse model of spinal muscular atrophy. Measurable quantities of human IGF-1 transcripts and protein were detected in the liver (up to 3 months postinjection) and in the serum indicating that IGF-1 was secreted from the liver into systemic circulation. Spinal muscular atrophy mice administered AAV1-IGF-1 on postnatal day 1 exhibited a lower extent of motor neuron degeneration, cardiac and muscle atrophy as well as a greater extent of innervation at the neuromuscular junctions compared to untreated controls at day 8 posttreatment. Importantly, treatment with AAV1-IGF-1 prolonged the animals' lifespan, increased their body weights and improved their motor coordination. Quantitative polymerase chain reaction and western blot analyses showed that AAV1-mediated expression of IGF-1 led to an increase in survival motor neuron transcript and protein levels in the spinal cord, brain, muscles, and heart. These data indicate that systemically delivered AAV1-IGF-1 can correct several of the biochemical and behavioral deficits in spinal muscular atrophy mice through increasing tissue levels of survival motor neuron.
Collapse
Affiliation(s)
- Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chien-Lin Chen
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Hung Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - James C Dodge
- Genzyme, a Sanofi Company, Framingham, Massachusetts, USA
| | | | - Seng H Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, USA
| |
Collapse
|
148
|
Shabanpoor F, Gait MJ. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry. Chem Commun (Camb) 2014; 49:10260-2. [PMID: 24064913 PMCID: PMC3816334 DOI: 10.1039/c3cc46067c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and convenient solid-phase synthesis method using Cu(i)-mediated alkyne–azide click chemistry for attachment of an azide derivative of a fluorescent label to an alkyne derivative of a peptide conjugated to a morpholino oligonucleotide (PMO).
We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide–PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.
Collapse
|
149
|
|
150
|
Osman EY, Miller MR, Robbins KL, Lombardi AM, Atkinson AK, Brehm AJ, Lorson CL. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models. Hum Mol Genet 2014; 23:4832-45. [PMID: 24781211 DOI: 10.1093/hmg/ddu198] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of Survival Motor Neuron-1 (SMN1). In all SMA patients, a nearly identical copy gene called SMN2 is present, which produces low levels of functional protein owing to an alternative splicing event. To prevent exon-skipping, we have targeted an intronic repressor, Element1 (E1), located upstream of SMN2 exon 7 using Morpholino-based antisense oligonucleotides (E1(MO)-ASOs). A single intracerebroventricular injection in the relatively severe mouse model of SMA (SMNΔ7 mouse model) elicited a robust induction of SMN protein, and mean life span was extended from an average survival of 13 to 54 days following a single dose, consistent with large weight gains and a correction of the neuronal pathology. Additionally, E1(MO)-ASO treatment in an intermediate SMA mouse (SMN(RT) mouse model) significantly extended life span by ∼700% and weight gain was comparable with the unaffected animals. While a number of experimental therapeutics have targeted the ISS-N1 element of SMN2 pre-mRNA, the development of E1 ASOs provides a new molecular target for SMA therapeutics that dramatically extends survival in two important pre-clinical models of disease.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Madeline R Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA, Genetics Area Program, Christopher S. Bond Life Sciences Center Room 403, University of Missouri, Columbia, MO 65211, USA and
| | - Kate L Robbins
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Abby M Lombardi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arleigh K Atkinson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Amanda J Brehm
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA, Genetics Area Program, Christopher S. Bond Life Sciences Center Room 403, University of Missouri, Columbia, MO 65211, USA and
| |
Collapse
|