101
|
Soriano A, Honore PM, Puerta-Alcalde P, Garcia-Vidal C, Pagotto A, Gonçalves-Bradley DC, Verweij PE. Invasive candidiasis: current clinical challenges and unmet needs in adult populations. J Antimicrob Chemother 2023:7176280. [PMID: 37220664 DOI: 10.1093/jac/dkad139] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Invasive candidiasis (IC) is a serious infection caused by several Candida species, and the most common fungal disease in hospitals in high-income countries. Despite overall improvements in health systems and ICU care in the last few decades, as well as the development of different antifungals and microbiological techniques, mortality rates in IC have not substantially improved. The aim of this review is to summarize the main issues underlying the management of adults affected by IC, focusing on specific forms of the infection: IC developed by ICU patients, IC observed in haematological patients, breakthrough candidaemia, sanctuary site candidiasis, intra-abdominal infections and other challenging infections. Several key challenges need to be tackled to improve the clinical management and outcomes of IC patients. These include the lack of global epidemiological data for IC, the limitations of the diagnostic tests and risk scoring tools currently available, the absence of standardized effectiveness outcomes and long-term data for IC, the timing for the initiation of antifungal therapy and the limited recommendations on the optimal step-down therapy from echinocandins to azoles or the total duration of therapy. The availability of new compounds may overcome some of the challenges identified and increase the existing options for management of chronic Candida infections and ambulant patient treatments. However, early identification of patients that require antifungal therapy and treatment of sanctuary site infections remain a challenge and will require further innovations.
Collapse
Affiliation(s)
- Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Patrick M Honore
- CHU UCL Godinne Namur, UCL Louvain Medical School, Namur, Belgium
| | - Pedro Puerta-Alcalde
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | | | | | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| |
Collapse
|
102
|
Deng R, Meng X, Li R, Wang A, Song Y. Asymptomatic Candida glabrata urinary tract infection in an immunocompetent young female: A case report. Medicine (Baltimore) 2023; 102:e33798. [PMID: 37335701 PMCID: PMC10194443 DOI: 10.1097/md.0000000000033798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Fungal urinary tract infections (UTIs) are becoming increasingly common in hospitalized patients and Candida species are the most prevalent organisms. However, recurrent candiduria in young healthy outpatients is rare thus require further examination to find the etiologic factors. CASE PRESENTATION We described a case of recurrent asymptomatic c caused by azole-resistant C. glabrata in a healthy young female who only had previous use of antibiotics without other risk factors. However, after removal of the predisposing factor and the use of sensitive antifungal agents, the patient's urine cultures remained positive. This phenomenon indicated to us that the patient might have an immune-related genetic deficiency. We found a novel caspase-associated recruitment domain-containing protein 9 (CARD9) gene mutation (c.808-11G > T) which might be the cause of recurrent asymptomatic candiduria in this immune-competent young female without any underlying diseases. CONCLUSIONS We report a case of recurrent asymptomatic candiduria caused by azole-resistant Candida glabrata in a young healthy female with a novel CARD9 mutation. A functional study of this mutation should be performed in the future to determine its effect on asymptomatic fungal UTIs.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xingye Meng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Aiping Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
103
|
Nouri N, Mohammadi SR, Beardsley J, Aslani P, Ghaffarifar F, Roudbary M, Rodrigues CF. Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units-An In Vitro Study. Metabolites 2023; 13:metabo13040580. [PMID: 37110238 PMCID: PMC10143056 DOI: 10.3390/metabo13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata, a WHO 'high-priority' pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7 genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4). Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB resistant, respectively. The minimum inhibitory concentration (MIC50) of TQ against C. glabrata was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates, and EPA6 gene expression was reduced significantly at MIC50 concentration of TQ. TQ seems to have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis.
Collapse
Affiliation(s)
- Noura Nouri
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Justin Beardsley
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, NSW Health, Sydney, NSW 2145, Australia
| | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Célia Fortuna Rodrigues
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
104
|
Alastruey-Izquierdo A, Martín-Galiano AJ. The challenges of the genome-based identification of antifungal resistance in the clinical routine. Front Microbiol 2023; 14:1134755. [PMID: 37152754 PMCID: PMC10157239 DOI: 10.3389/fmicb.2023.1134755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The increasing number of chronic and life-threatening infections caused by antimicrobial resistant fungal isolates is of critical concern. Low DNA sequencing cost may facilitate the identification of the genomic profile leading to resistance, the resistome, to rationally optimize the design of antifungal therapies. However, compared to bacteria, initiatives for resistome detection in eukaryotic pathogens are underdeveloped. Firstly, reported mutations in antifungal targets leading to reduced susceptibility must be extensively collected from the literature to generate comprehensive databases. This information should be complemented with specific laboratory screenings to detect the highest number possible of relevant genetic changes in primary targets and associations between resistance and other genomic markers. Strikingly, some drug resistant strains experience high-level genetic changes such as ploidy variation as much as duplications and reorganizations of specific chromosomes. Such variations involve allelic dominance, gene dosage increments and target expression regime effects that should be explicitly parameterized in antifungal resistome prediction algorithms. Clinical data indicate that predictors need to consider the precise pathogen species and drug levels of detail, instead of just genus and drug class. The concomitant needs for mutation accuracy and assembly quality assurance suggest hybrid sequencing approaches involving third-generation methods will be utilized. Moreover, fatal fast infections, like fungemia and meningitis, will further require both sequencing and analysis facilities are available in-house. Altogether, the complex nature of antifungal resistance demands extensive sequencing, data acquisition and processing, bioinformatic analysis pipelines, and standard protocols to be accomplished prior to genome-based protocols are applied in the clinical setting.
Collapse
Affiliation(s)
- Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
105
|
Smoak RA, Snyder LF, Fassler JS, He BZ. Parallel expansion and divergence of an adhesin family in pathogenic yeasts. Genetics 2023; 223:iyad024. [PMID: 36794645 PMCID: PMC10319987 DOI: 10.1093/genetics/iyad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat-rich region in these proteins diverged extremely rapidly and generated large variations in length and β-aggregation potential, both of which are known to directly affect adhesion. The conserved N-terminal effector domain was predicted to adopt a β-helical fold followed by an α-crystallin domain, making it structurally similar to a group of unrelated bacterial adhesins. Evolutionary analyses of the effector domain in C. auris revealed relaxed selective constraint combined with signatures of positive selection, suggesting functional diversification after gene duplication. Lastly, we found the Hil family genes to be enriched at chromosomal ends, which likely contributed to their expansion via ectopic recombination and break-induced replication. Combined, these results suggest that the expansion and diversification of adhesin families generate variation in adhesion and virulence within and between species and are a key step toward the emergence of fungal pathogens.
Collapse
Affiliation(s)
- Rachel A Smoak
- Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Lindsey F Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Bin Z He
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
106
|
Dalyan Cilo B. Species Distribution and Antifungal Susceptibilities of Candida Species Isolated From Blood Culture. Cureus 2023; 15:e38183. [PMID: 37252597 PMCID: PMC10224711 DOI: 10.7759/cureus.38183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Candida species (spp.) are among the leading agents of bloodstream infections. Candidemias are a major cause of morbidity and mortality. Having an understanding of Candida epidemiology and antifungal susceptibility patterns in each center is crucial in guiding the management of candidemia. In this study, the species distribution and antifungal susceptibility of Candida spp. isolated from blood culture at the University of Health Sciences, Bursa Yuksek Ihtisas Training & Research Hospital were examined and the first data on the epidemiology of candidemia in our center were presented. Methods A total of 236 Candida strains isolated from blood cultures in our hospital over a four-year period were analyzed and their antifungal susceptibilities were studied retrospectively. Strains were identified at the species complex (SC) level by the germ tube test, morphology in cornmeal-tween 80 medium, and the automated VITEK 2 Compact (bioMérieux, Marcy-l'Étoile, France) system. Antifungal susceptibility tests were performed on VITEK 2 Compact (bioMérieux, Marcy-l'Étoile, France) system. The susceptibilities of the strains to fluconazole, voriconazole, micafungin, and amphotericin B were determined according to Clinical and Laboratory Standards Institute (CLSI) guidelines and epidemiologic cut-off values. Results Of the Candida (C.) strains, 131 were C. albicans (55.5%), 40 were C. parapsilosis SC (16.9%), 21 were C. tropicalis (8.9%), 19 were C. glabrata SC (8.1%), eight were C. lusitaniae (3.4%), seven were C. kefyr (3.0%), six were C. krusei (2.6%), two were C. guilliermondii (0.8%) and two were C. dubliniensis (0.8%). Amphotericin B resistance was not detected in Candida strains. Micafungin susceptibility was 98.3%, and four C. parapsilosis SC strains (10%) were intermediate (I) to micafungin. Fluconazole susceptibility was 87.2%. Apart from C. krusei strains which intrinsically resistant to fluconazole, three C. parapsilosis (7.5%), one C. glabrata SC (5.3%) strain were resistant (R) to fluconazole, and one C. lusitaniae (12.5%) strain was wild-type (WT). Voriconazole susceptibility of Candida strains was 98.6%. Two C. parapsilosis SC strains were I to voriconazole, while one strain was R. Conclusion In this study, the first epidemiological data of candidemia agents in our hospital were presented. It was determined that rare and naturally resistant species did not cause any problem in our center yet. C. parapsilosis SC strains showed decreased susceptibility to fluconazole, whereas Candida strains were highly susceptible to the four antifungals tested. Close monitoring of these data will help guide the treatment of candidemia.
Collapse
Affiliation(s)
- Burcu Dalyan Cilo
- Section of Medical Mycology, University of Health Sciences, Bursa Yuksek Ihtisas Training & Research Hospital, Bursa, TUR
| |
Collapse
|
107
|
Vargas-Espíndola LA, Cuervo-Maldonado SI, Enciso-Olivera JL, Gómez-Rincón JC, Jiménez-Cetina L, Sánchez-Pedraza R, García-Guzmán K, López-Mora MJ, Álvarez-Moreno CA, Cortés JA, Garzón-Herazo JR, Martínez-Vernaza S, Sierra-Parada CR, Murillo-Sarmiento BA. Fungemia in Hospitalized Adult Patients with Hematological Malignancies: Epidemiology and Risk Factors. J Fungi (Basel) 2023; 9:jof9040400. [PMID: 37108856 PMCID: PMC10142635 DOI: 10.3390/jof9040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Fungemia in hematologic malignancies (HM) has high mortality. This is a retrospective cohort of adult patients with HM and fungemia between 2012 and 2019 in institutions of Bogotá, Colombia. The epidemiological, clinical, and microbiological characteristics are described, and risk factors related to mortality are analyzed. One hundred five patients with a mean age of 48 years (SD 19.0) were identified, 45% with acute leukemia and 37% with lymphomas. In 42%, the HM was relapsed/refractory, 82% ECOG > 3, and 35% received antifungal prophylaxis; 57% were in neutropenia, with an average duration of 21.8 days. In 86 (82%) patients, Candida spp. was identified, and other yeasts in 18%. The most frequent of the isolates were non-albicans Candida (61%), C. tropicalis (28%), C. parapsilosis (17%), and C. krusei (12%). The overall 30-day mortality was 50%. The survival probability at day 30 in patients with leukemia vs. lymphoma/multiple myeloma (MM0 group was 59% (95% CI 46-76) and 41% (95% CI 29-58), p = 0.03, respectively. Patients with lymphoma or MM (HR 1.72; 95% CI 0.58-2.03) and ICU admission (HR 3.08; 95% CI 1.12-3.74) were associated with mortality. In conclusion, in patients with HM, non-albicans Candida species are the most frequent, and high mortality was identified; moreover, lymphoma or MM and ICU admission were predictors of mortality.
Collapse
Affiliation(s)
- Luz Alejandra Vargas-Espíndola
- Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
- Infectious Diseases Group, Instituto Nacional de Cancerología, Bogota 111511, Colombia
| | - Sonia I Cuervo-Maldonado
- Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
- Infectious Diseases Group, Instituto Nacional de Cancerología, Bogota 111511, Colombia
- GREICAH-Grupo de Investigacion Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Bogotá 111321, Colombia
| | | | - Julio C Gómez-Rincón
- Infectious Diseases Group, Instituto Nacional de Cancerología, Bogota 111511, Colombia
| | - Leydy Jiménez-Cetina
- Microbiology Laboratory, Instituto Nacional de Cancerología, Bogota 111511, Colombia
| | - Ricardo Sánchez-Pedraza
- Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
- GREICAH-Grupo de Investigacion Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Bogotá 111321, Colombia
| | - Katherine García-Guzmán
- Infectious Diseases Group, Instituto Nacional de Cancerología, Bogota 111511, Colombia
- GREICAH-Grupo de Investigacion Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas, Bogotá 111321, Colombia
| | | | | | | | | | | | - Claudia R Sierra-Parada
- Laboratorio Clínico y de Patología, Clínica Colsanitas, Grupo Keralty, Bogotá 111221, Colombia
| | | |
Collapse
|
108
|
Ceballos-Garzon A, Peñuela A, Valderrama-Beltrán S, Vargas-Casanova Y, Ariza B, Parra-Giraldo CM. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front Cell Infect Microbiol 2023; 13:1136217. [PMID: 37026059 PMCID: PMC10070958 DOI: 10.3389/fcimb.2023.1136217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Methods Over a four-year period, 123 Candida bloodstream isolates were collected at a quaternary care hospital. The isolates were identified by MALDI-TOF MS and their fluconazole (FLC) susceptibility patterns were assessed according to CLSI guidelines. Subsequently, sequencing of ERG11, TAC1 or MRR1, and efflux pump activity were performed for resistant isolates. Results Out of 123 clinical strains,C. albicans accounted for 37.4%, followed by C. tropicalis 26.8%, C. parapsilosis 19.5%, C. auris 8.1%, C. glabrata 4.1%, C. krusei 2.4% and C. lusitaniae 1.6%. Resistance to FLC reached 18%; in addition, a high proportion of isolates were cross-resistant to voriconazole. Erg11 amino acid substitutions associated with FLC-resistance (Y132F, K143R, or T220L) were found in 11/19 (58%) of FLCresistant isolates. Furthermore, novel mutations were found in all genes evaluated. Regarding efflux pumps, 8/19 (42%) of FLC-resistant Candida spp strains showed significant efflux activity. Finally, 6/19 (31%) of FLC-resistant isolates neither harbored resistance-associated mutations nor showed efflux pump activity. Among FLC-resistant species, C. auris 7/10 (70%) and C. parapsilosis 6/24 (25%) displayed the highest percentages of resistance (C. albicans 6/46, 13%). Discussion Overall, 68% of FLC-resistant isolates exhibited a mechanism that could explain their phenotype (e.g. mutations, efflux pump activity, or both). We provide evidence that isolates from patients admitted to a Colombian hospital harbor amino acid substitutions related to resistance to one of the most commonly used molecules in the hospital setting, with Y132F being the most frequently detected.
Collapse
Affiliation(s)
- Andres Ceballos-Garzon
- Unidad de Proteomica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana Peñuela
- Unidad de Proteomica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
- Laboratorio Clínico, Área de Microbiología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Sandra Valderrama-Beltrán
- Unidad de Infectología, Departamento de Medicina Interna, Facultad de Medicina, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yerly Vargas-Casanova
- Unidad de Proteomica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Beatriz Ariza
- Laboratorio Clínico, Área de Microbiología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Claudia M. Parra-Giraldo
- Unidad de Proteomica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
109
|
Husni R, Bou Zerdan M, Samaha N, Helou M, Mahfouz Y, Saniour R, Hourani S, Kolanjian H, Afif C, Azar E, El Jisr T, Mokhbat J, Abboud E, Feghali R, Abboud E, Matta H, Karayakouboglo G, Matar M, Moghnieh R, Daoud Z. Characterization and susceptibility of non-albicans Candida isolated from various clinical specimens in Lebanese hospitals. Front Public Health 2023; 11:1115055. [PMID: 36969669 PMCID: PMC10036786 DOI: 10.3389/fpubh.2023.1115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Invasive fungal infections have presented a challenge in treatment. In the past, it was known that the frontrunner in such infections is Candida albicans with little emphasis placed on non-albicans Candida species (NAC). Studies worldwide have shown a rise in fungal infections attributed to non-albicans Candida species. The aim of this study is to describe the epidemiology of NAC infections along with an overview of resistance in Lebanese hospitals. METHODS This is a two-year observational multi-central descriptive study. Between September 2016 and May of 2018, a total of 1000 isolates were collected from 10 different hospitals distributed all over the country. For the culture, Sabouraud Dextrose Agar was used. Antifungal Susceptibility was evaluated by determining the Minimum Inhibitory Concentration (MIC) in broth (microdilution) of the different antifungal treatments. RESULTS Out of the 1000 collected isolates, Candida glabrata, being the most isolated species (40.8%), followed by Candida tropicalis: 231(23.1%), Candida parapsilosis: 103(10.3%), and other NAC species at lower percentage. Most of these isolates (88.67%) were susceptible to posaconazole, 98.22% were susceptible to micafungin, and 10% were susceptible to caspofungin. CONCLUSION The change of etiology of fungal infections involving a significant increase in NAC cases is alarming due to the different antifungal susceptibility patterns and the lack of local guidelines to guide the treatment. In this context, proper identification of such organisms is of utmost importance. The data presented here can help in establishing guidelines for the treatment of candida infections to decrease morbidity and mortality. Future surveillance data are needed.
Collapse
Affiliation(s)
- Rola Husni
- Lebanese American University, School of Medicine, Beirut, Lebanon
- Department of Internal Medicine, Lebanese American University-Rizk Hospital, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University Hospital, Syracuse, NY, United States
| | - Nadia Samaha
- Georgetown University School of Medicine, Washington, DC, United States
| | - Mariana Helou
- Lebanese American University, School of Medicine, Beirut, Lebanon
- Department of Internal Medicine, Lebanese American University-Rizk Hospital, Beirut, Lebanon
| | - Youssef Mahfouz
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Rim Saniour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sawsan Hourani
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Harout Kolanjian
- Lebanese American University, School of Medicine, Beirut, Lebanon
- Department of Internal Medicine, Lebanese American University-Rizk Hospital, Beirut, Lebanon
| | - Claude Afif
- Department of Internal Medicine, Saint George Hospital-University Medical Center, Beirut, Lebanon
| | - Eid Azar
- Department of Internal Medicine, Saint George Hospital-University Medical Center, Beirut, Lebanon
| | - Tamima El Jisr
- Department of Laboratory, Makased General Hospital, Beirut, Lebanon
| | - Jacques Mokhbat
- Lebanese American University, School of Medicine, Beirut, Lebanon
- Department of Internal Medicine, Lebanese American University-Rizk Hospital, Beirut, Lebanon
| | - Emma Abboud
- Department of Laboratory, Mount Liban Hospital, Hazmiyeh, Lebanon
| | - Rita Feghali
- Department of Laboratory, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Edmond Abboud
- Department of Laboratory, The Middle East Institute of Health University Hospital, Mount Lebanon, Lebanon
| | - Hiam Matta
- Saint Georges Ajaltoun Hospital, Ajaltoun, Lebanon
| | | | - Madonna Matar
- Department of Internal Medicine, Notre Dame de Secours University Hospital, Byblos, Lebanon
| | - Rima Moghnieh
- Lebanese American University, School of Medicine, Beirut, Lebanon
- Department of Internal Medicine, Lebanese American University-Rizk Hospital, Beirut, Lebanon
| | - Ziad Daoud
- College of Medicine, Central Michigan University, Saginaw, MI, United States
- Department of Clinical Microbiology and Infection Prevention, Michigan Health Clinics, Saginaw, MI, United States
| |
Collapse
|
110
|
Arastehfar A, Daneshnia F, Cabrera N, Penalva-Lopez S, Sarathy J, Zimmerman M, Shor E, Perlin DS. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat Commun 2023; 14:1183. [PMID: 36864040 PMCID: PMC9981703 DOI: 10.1038/s41467-023-36882-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Suyapa Penalva-Lopez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
111
|
Nasri E, Vaezi A, Falahatinejad M, Rizi MH, Sharifi M, Sadeghi S, Ataei B, Mirhendi H, Fakhim H. Species distribution and susceptibility profiles of oral candidiasis in hematological malignancy and solid tumor patients. Braz J Microbiol 2023; 54:143-149. [PMID: 36378415 PMCID: PMC9943986 DOI: 10.1007/s42770-022-00863-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Oral colonization and infection by Candida species are common in cancer patients receiving chemoradiotherapy, which has significantly increased in recent years. This study aimed to evaluate the frequency, distribution, and antifungal susceptibility profiles of Candida species isolates in patients with hematological malignancy and solid tumors. This study was conducted on a total of 45 cancer patients undergoing treatment with concurrent chemoradiotherapy within 2019-2020. The identification of Candida species was accomplished based on conventional examination and molecular assays. The minimum inhibitory concentrations were determined based on the guidelines of Clinical and Laboratory Standards Institute. The highest prevalence rates of oral candidiasis were observed in patients with chronic lymphoid leukemia (24.4%) and lymphoma (20%). The majority of the patients had oral candidiasis caused by non-albicans Candida species (64.4%). The results of the multiplex PCR for the identification of Candida glabrata, Candida nivariensis, Candida bracarensis, and species-specific Candida parapsilosis complex showed that all isolate amplification products at 397 bp and 171 bp were related to C. glabrata and C. parapsilosis, respectively. There was a significant difference in the Candida species distribution between the hematological malignancies and solid tumors patients. The results of MIC showed that clotrimazole, voriconazole, and caspofungin were the most effective antifungal drugs against oral non-Candida albicans isolates. An understanding of the epidemiology of oral candidiasis among hematological malignancies and solid tumors patients is currently imperative to guide optimal empirical treatment strategies for affected patients.
Collapse
Affiliation(s)
- Elahe Nasri
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Cancer Prevention Research Center Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsane Vaezi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Falahatinejad
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahnaz Hosseini Rizi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Cancer Prevention Research Center Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Sadeghi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ataei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
112
|
Comparison of Three β-Glucan Tests for the Diagnosis of Invasive Candidiasis in Intensive Care Units. J Clin Microbiol 2023; 61:e0169122. [PMID: 36700626 PMCID: PMC9945570 DOI: 10.1128/jcm.01691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The (1→3)-β-d-glucan (BDG) is a marker of invasive fungal infection that can be detected in serum by different commercial kits. In this study, we compared the performance of the Fungitell assay (FA), the Fungitell STAT assay (STAT), and the Wako β-glucan test (WA) for the diagnosis of invasive candidiasis (IC) in the intensive care unit (ICU). Patients for whom at least one BDG testing was required for a clinical suspicion of IC were retrospectively enrolled. A total of 85 serum samples from 56 patients were tested by the three BDG tests. The rate of IC was 23% (13/56) with a predominance of noncandidemic (intra-abdominal) IC. STAT and WA results exhibited overall good correlation with those obtained by FA (Spearman's coefficient R = 0.90 and R = 0.89, respectively). For the recommended cutoffs of positivity, sensitivity and specificity for IC diagnosis were 77%/51% (FA, 80 pg/mL), 69%/53% (STAT, ratio 1.2), and 54%/65% (WA, 7 pg/mL), respectively. Optimal performance was obtained at 50 pg/mL (FA), ratio 1.3 (STAT), and 3.3 pg/mL (WA) with sensitivity/specificity of 85%/51%, 69%/57%, and 77%/58%, respectively. Overall, the three BDG tests showed comparable but limited performance in this setting with positive and negative predictive values for an estimated IC prevalence of 20% that were in the range of 30 to 35% and 85 to 95%, respectively.
Collapse
|
113
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
114
|
Kim SH, Mun SJ, Kang JS, Moon C, Kim HT, Lee HY. Multifaceted Evaluation of Antibiotic Therapy as a Factor Associated with Candidemia in Non-Neutropenic Patients. J Fungi (Basel) 2023; 9:jof9020270. [PMID: 36836385 PMCID: PMC9960229 DOI: 10.3390/jof9020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
We aimed to evaluate various aspects of antibiotic therapy as factors associated with candidemia in non-neutropenic patients. A retrospective, matched, case-control study was conducted in two teaching hospitals. Patients with candidemia (cases) were compared to patients without candidemia (controls), matched by age, intensive care unit admission, duration of hospitalization, and type of surgery. Logistic regression analyses were performed to identify factors associated with candidemia. A total of 246 patients were included in the study. Of 123 candidemia patients, 36% had catheter-related bloodstream infections (CRBSIs). Independent factors in the whole population included immunosuppression (adjusted odds ratio [aOR] = 2.195; p = 0.036), total parenteral nutrition (aOR = 3.642; p < 0.001), and anti-methicillin-resistant S. aureus (MRSA) therapy for ≥11 days (aOR = 5.151; p = 0.004). The antibiotic factor in the non-CRBSI population was anti-pseudomonal beta-lactam treatment duration of ≥3 days (aOR = 5.260; p = 0.008). The antibiotic factors in the CRBSI population included anti-MRSA therapy for ≥11 days (aOR = 10.031; p = 0.019). Antimicrobial stewardship that reduces exposure to these antibacterial spectra could help prevent the development of candidemia.
Collapse
Affiliation(s)
- Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Seok Jun Mun
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea
- Correspondence: ; Tel.: +82-51-890-6986; Fax: +82-51-890-6341
| | - Jin Suk Kang
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea
| | - Chisook Moon
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea
| | - Hyoung-Tae Kim
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Ho Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
115
|
Nunes IPF, Crugeira PJL, Sampaio FJP, de Oliveira SCPS, Azevedo JM, Santos CLO, Soares LGP, Samuel IDW, Persheyev S, de Ameida PF, Pinheiro ALB. Evaluation of dual application of photodynamic therapy-PDT in Candida albicans. Photodiagnosis Photodyn Ther 2023; 42:103327. [PMID: 36773756 DOI: 10.1016/j.pdpdt.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to evaluate, in vitro, the efficacy of photodynamic therapy - PDT using dimethyl methylene blue zinc chloride double salt (DMMB) and red LED light on planktonic cultures of Candida albicans. The tests were performed using the ATCC 90,028 strain grown at 37 °C for 24 h, according to a growth curve of C. albicans. The colonies were resuspended in sterile saline adjusted to a concentration of 2 × 108 cells / mL, with three experimental protocols being tested (Protocol 1, 2 and 3) with a fixed concentration of 750 ɳg/mL obtained through the IC50, and energy density 20 J/cm2. Protocol 1 was carried out using conventional PDT, Protocol 2 was applied double PDT in a single session, and Protocol 3 was applied double PDT in two sessions with a 24 h interval. The results showed logarithmic reductions of 3 (4.252575 ± 0.068526) and 4 logs (2.669533 ± 0.058592) of total fungal load in protocols 3 and 2 respectively in comparison to the Control (6.633547 ± 0.065384). Our results indicated that double application in a single session of PDT was the most effective approach for inhibiting the proliferation of Candida albicans (99.991% inhibition).
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Pedro J L Crugeira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Fernando J P Sampaio
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Susana C P S de Oliveira
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; School of Dentistry, Ruy Barbosa Wyden University Center University (UniRuy Wyden), Av. Luís Viana Filho, 3172 - Paralela, Salvador - BA CEP: 41720-200, Brazil
| | - Juliana M Azevedo
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil; Department of Biology, Feira de Santana State University, Feira de Santa, BA 44036-900, Brazil
| | - Caio L O Santos
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Saydulla Persheyev
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Paulo F de Ameida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
116
|
Dangarembizi R, Wasserman S, Hoving JC. Emerging and re-emerging fungal threats in Africa. Parasite Immunol 2023; 45:e12953. [PMID: 36175380 PMCID: PMC9892204 DOI: 10.1111/pim.12953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
The emergence of deadly fungal infections in Africa is primarily driven by a disproportionately high burden of human immunodeficiency virus (HIV) infections, lack of access to quality health care, and the unavailability of effective antifungal drugs. Immunocompromised people in Africa are therefore at high risk of infection from opportunistic fungal pathogens such as Cryptococcus neoformans and Pneumocystis jirovecii, which are associated with high morbidity, mortality, and related socioeconomic impacts. Other emerging fungal threats include Emergomyces spp., Histoplasma spp., Blastomyces spp., and healthcare-associated multi-drug resistant Candida auris. Socioeconomic development and the Covid-19 pandemic may influence shifts in epidemiology of invasive fungal diseases on the continent. This review discusses the epidemiology, clinical manifestations, and current management strategies available for these emerging fungal diseases in Africa. We also discuss gaps in knowledge, policy, and research to inform future efforts at managing these fungal threats.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Neuroscience Institute, Faculty of Health SciencesUniversity of Cape Town, Groote Schuur HospitalCape TownSouth Africa
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Division of Infectious Diseases and HIV Medicine, Department of MedicineUniversity of Cape Town, Groote Schuur HospitalCape TownSouth Africa
| | - Jennifer Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Division of Immunology, Department of Pathology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
117
|
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. CURRENT FUNGAL INFECTION REPORTS 2023; 17:36-48. [PMID: 36718372 PMCID: PMC9878498 DOI: 10.1007/s12281-023-00451-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The purpose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings. Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of colonized patients to prevent further transmission. Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly pathogenic yeast in healthcare settings and prevent/control outbreaks.
Collapse
Affiliation(s)
- Suhail Ahmad
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| | - Mohammad Asadzadeh
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| |
Collapse
|
118
|
The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans. NPJ Biofilms Microbiomes 2023; 9:6. [PMID: 36697414 PMCID: PMC9877000 DOI: 10.1038/s41522-023-00371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-β amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.
Collapse
|
119
|
Hohmann FB, Chaves RCDF, Olivato GB, de Souza GM, Galindo VB, Silva Jr M, Martino MDV, de Menezes FG, Corrêa TD. Characteristics, risk factors, and outcomes of bloodstream Candida infections in the intensive care unit: a retrospective cohort study. J Int Med Res 2023; 51:3000605221131122. [PMID: 36659829 PMCID: PMC9893083 DOI: 10.1177/03000605221131122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The main objective was to assess the clinical characteristics, associated factors, and outcomes of patients admitted to the ICU for candidemia. The secondary objective was to examine the relationship of candidemia with the length of stay and mortality. METHODS The analysis was a retrospective single-center cohort study addressing the effect of invasive candidemia on outcomes. This study was performed in a medical-surgical ICU located in a tertiary private hospital in São Paulo, Brazil. Data was collected through the review of the hospital database. RESULTS In total, 18,442 patients were included in our study, including 22 patients with candidemia. The median age was similar in patients with and without candidemia [67 (56-84) vs. 67 (51-80)]. Most patients were male, and the proportion of men was higher among patients with candidemia (77% vs. 55.3%). The rates of renal replacement therapy (40.9% vs. 3.3%), mechanical ventilation (63.6% vs. 29.6%), and parenteral nutrition (40.9% vs. 4.8%) were higher in patients with candidemia than in those without candidemia. The mortality rate (77.3% vs. 11.9%) and length of hospital stay [42 days (23.0-78.8) vs. 8 days (5.0-17.0)] were significantly higher in patients with candidemia. CONCLUSIONS Patients with candidemia are prone to longer hospital stay and mortality. In addition, we found associations of candidemia with the use of invasive mechanical ventilation, renal replacement therapy, and parenteral nutrition.
Collapse
Affiliation(s)
- Fábio Barlem Hohmann
- Department of Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil,Fábio Barlem Hohmann, Intensive Care Unit, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701, 5th floor, São Paulo, Brazil, ZIP CODE: 05651-901.
| | - Renato Carneiro de Freitas Chaves
- Department of Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil,Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, Brazil,Takaoka Anestesia, São Paulo, Brazil
| | | | | | | | - Moacyr Silva Jr
- Department of Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil,Department of Hospital Infection Control Service, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Fernando Gatti de Menezes
- Department of Hospital Infection Control Service, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Thiago Domingos Corrêa
- Department of Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
120
|
Azevedo MJ, Araujo R, Campos J, Campos C, Ferreira AF, Falcão-Pires I, Ramalho C, Zaura E, Pinto E, Sampaio-Maia B. Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother-Child Pairs in Early Life. Int J Mol Sci 2023; 24:ijms24021449. [PMID: 36674962 PMCID: PMC9867488 DOI: 10.3390/ijms24021449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Yeast acquisition begins at birth; however, the contribution of the mother on yeast transmission to the offspring and associated resistance is yet to be clarified. The aim of this study was to explore the vertical transmission of yeasts and their antifungal susceptibility profile in early life. Oral, fecal, and breastmilk samples were collected from 73 mother-child pairs four to twelve weeks after delivery and cultured on Sabouraud dextrose agar with chloramphenicol. The isolates were identified by MALDI-TOF MS. The vertical transmission was studied by microsatellite genotyping. Antifungal susceptibility was determined for fluconazole, voriconazole, miconazole, anidulafungin, and nystatin by broth microdilution assay, following CLSI-M60 guidelines. A total of 129 isolates were identified from 53% mother-child pairs. We verified the vertical transmission of Candida albicans (n = three mother-child pairs) and Candida parapsilosis (n = one mother-child pair) strains, including an antifungal resistant strain transmitted from breastmilk to the gut of a child. Most isolates were susceptible to the tested antifungals, with the exception of four C. albicans isolates and one R. mucilaginosa isolate. The vertical transmission of yeasts happens in early life. This is the first work that demonstrated the role of the mother as a source of transmission of antifungal-resistant yeasts to the child.
Collapse
Affiliation(s)
- Maria João Azevedo
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Ricardo Araujo
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Campos
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Campos
- Serviço de Patologia Clínica, Departamento de Patologia e Medicina Laboratorial, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | | | - Inês Falcão-Pires
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Carla Ramalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Department of Gynecology and Obstetrics, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Eugénia Pinto
- Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Benedita Sampaio-Maia
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
- Correspondence:
| |
Collapse
|
121
|
He Z, Huo X, Piao J. Rapid preparation of Candida genomic DNA: combined use of enzymatic digestion and thermal disruption. AMB Express 2023; 13:1. [PMID: 36592236 PMCID: PMC9807692 DOI: 10.1186/s13568-022-01500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/07/2022] [Indexed: 01/03/2023] Open
Abstract
Nucleic acid based molecular technologies are the most promising tools for the early diagnosis of Candida infection. A simple and effective DNA preparation method is of critical for standardizing and applying molecular diagnostics in clinic laboratories. The goal of this study was to develop a Candida DNA preparation method that was quick to do, easy to perform, and bio-safe. Snailase and lyticase were screened and combined in this work to enhance the lysis of Candida cells. The lysis solution composition and metal bath were optimized to boost amplification efficiency and biosafety. A duplex real-time PCR was established to evaluate the sensitivity and specificity of the preparation method. Using the supernatant from the rapid preparation method as templates, the duplex PCR sensitivities for five common Candida species were determined to be as low as 100 CFUs. When compared to conventional preparation methods, the samples prepared by our method showed higher PCR detection sensitivity. PCR identification and ITS sequencing were 100% consistent, which was better than biochemical identification. This study demonstrates a rapid method for Candida DNA preparation that has the potential to be used in clinical laboratories. Meanwhile, the practical application of the method for clinical samples needs to be proven in future investigations.
Collapse
Affiliation(s)
- Zhengxin He
- grid.452440.30000 0000 8727 6165Basic Medical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, 050082 Hebei People’s Republic of China
| | - Xiaosai Huo
- grid.452440.30000 0000 8727 6165Basic Medical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, 050082 Hebei People’s Republic of China
| | - Jingzi Piao
- grid.412557.00000 0000 9886 8131College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 Liaoning People’s Republic of China
| |
Collapse
|
122
|
Lyons N, Berman J. Protocols for Measuring Tolerant and Heteroresistant Drug Responses of Pathogenic Yeasts. Methods Mol Biol 2023; 2658:67-79. [PMID: 37024696 DOI: 10.1007/978-1-0716-3155-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The classic definition of antimicrobial susceptibility to antifungal drugs ignores the persistence of subpopulations that survive in the presence of a drug. Even in entirely clonal populations, small subpopulations of yeast can grow in the presence of a drug, sometimes up to extremely high drug concentrations, such that they may be clinically relevant. Identifying and quantifying the incidence with which these subpopulations arise is an essential step in understanding how pathogenic yeast, such as Candida species (i.e., C. albicans, C. glabrata, C. auris, C. tropicalis, C. parapsilosis, and others) as well as Cryptococcus species, behave in response to antifungal therapeutics. Here we describe simple in vitro protocols for the quantification of drug responses with subpopulation resolution.
Collapse
Affiliation(s)
- Naomi Lyons
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
123
|
Leite-Andrade MC, de Araújo Neto LN, Buonafina-Paz MDS, de Assis Graciano dos Santos F, da Silva Alves AI, de Castro MCAB, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Baj T, Neves RP. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against Candida parapsilosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248884. [PMID: 36558017 PMCID: PMC9788451 DOI: 10.3390/molecules27248884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Yeasts from the Candida parapsilosis complex are clinically relevant due to their high virulence and pathogenicity potential, such as adherence to epithelial cells and emission of filamentous structures, as well as their low susceptibility to antifungals. D-limonene, a natural compound, emerges as a promising alternative with previously described antibacterial, antiparasitic, and antifungal activity; however, its mechanisms of action and antivirulence activity against C. parapsilosis complex species have not been elucidated. Therefore, in the present study, we aimed to evaluate the antifungal and antivirulence action, as well as the mechanism of action of D-limonene against isolates from this complex. D-limonene exhibited relevant antifungal activity against C. parapsilosis complex yeasts, as well as excellent antivirulence activity by inhibiting yeast morphogenesis and adherence to the human epithelium. Furthermore, the apoptotic mechanism induced by this compound, which is not induced by oxidative stress, represents an important target for the development of new antifungal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratório de Parasitologia e Laboratório de Imunologia IAM, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Edna Mori
- Faculdade CECAPE College, São José, Juazeiro do Norte 63024-015, CE, Brazil
| | | | - Isaac Moura Araújo
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
- Correspondence: (H.D.M.C.); (T.B.)
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
- Correspondence: (H.D.M.C.); (T.B.)
| | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
124
|
Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022; 13:1573-1589. [PMID: 36120738 PMCID: PMC9487756 DOI: 10.1080/21505594.2022.2123325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of laboratory, Shantou Municipal Skin Hospital, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahat Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences Gomal University, Dera Ismail Khan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
125
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
126
|
Tóth Z, Bozó A, Kovács R, Balogh B, Balázs B, Forgács L, Kelentey B, Majoros L. The In Vitro Activity of Fluconazole, Amphotericin B and Echinocandins Against Cyberlindnera fabianii Planktonic Cells and Biofilms. Mycopathologia 2022; 188:111-118. [PMID: 36399230 PMCID: PMC10169879 DOI: 10.1007/s11046-022-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
AbstractUntil recently, little was known about the susceptibility pattern of Cyberlindnera fabianii (Cy. fabianii) planktonic cells and biofilms regarding the most frequently administered systemic antifungals, despite the high mortality rate and its potential role in catheter-related infections. In the current study, the activity of fluconazole, amphotericin B and echinocandins (anidulafungin, caspofungin and micafungin) was determined against planktonic and sessile cells of Cy. fabianii clinical isolates (n = 8). Planktonic minimum inhibitory concentrations (MICs) ranged from 1 to 2, from 0.25 to 1, from 0.015 to 0.06, from 0.03 to 0.12 and from 0.25 to 0.5 mg/l for fluconazole, amphotericin B, anidulafungin, caspofungin and micafungin, respectively. One-day-old biofilms were highly resistant to fluconazole (MIC ranged from 512 to > 512) compared to planktonic counterparts, but not to amphotericin B (MIC ranged from 0.25 to 2 mg/l) and echinocandins (MIC ranged from 0.06 to 2 mg/l). Based on the calculated planktonic killing rates, the highest activity was observed in the case of anidulafungin (k values ranged from 0.37 to 2.09), while micafungin, caspofungin, amphotericin B and fluconazole exerted 0.46–1.47, 0.14–0.86, −0.03 to 2.08 and −0.15 to 0.09 killing rate value ranges, respectively. The obtained in vitro planktonic and sessile susceptibility patterns suggest that echinocandins and amphotericin B may be the most reliable treatment option for the treatment of Cy. fabianii infections.
Collapse
|
127
|
Meyahnwi D, Siraw BB, Reingold A. Epidemiologic features, clinical characteristics, and predictors of mortality in patients with candidemia in Alameda County, California; a 2017–2020 retrospective analysis. BMC Infect Dis 2022; 22:843. [DOI: 10.1186/s12879-022-07848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Bloodstream infections caused by Candida species are responsible for significant morbidity and mortality worldwide, with an ever-changing epidemiology. We conducted this study to assess trends in the epidemiologic features, risk factors and Candida species distribution in candidemia patients in Alameda County, California.
Methods
We analyzed data collected from patients in Alameda County, California between 2017 and 2020 as part of the California Emerging Infections Program (CEIP). This is a laboratory-based, active surveillance program for candidemia. In our study, we included incident cases only.
Results
During the 4-year period from January 1st, 2017, to December 31st, 2020, 392 incident cases of candidemia were identified. The mean crude annual cumulative incidence was 5.9 cases per 100,000 inhabitants (range 5.0–6.5 cases per 100,000 population). Candida glabrata was the most common Candida species and was present as the only Candida species in 149 cases (38.0%), followed by Candida albicans, 130 (33.2%). Mixed Candida species were present in 13 patients (3.3%). Most of the cases of candidemia occurred in individuals with one or more underlying conditions. Multivariate regression models showed that age ≥ 65 years (RR 1.66, CI 1.28–2.14), prior administration of systemic antibiotic therapy, (RR 1.84, CI 1.06–3.17), cirrhosis of the liver, (RR 2.01, CI 1.51–2.68), and prior admission to the ICU (RR1.82, CI 1.36–2.43) were significant predictors of mortality.
Conclusions
Non-albicans Candida species currently account for the majority of candidemia cases in Alameda County.
Collapse
|
128
|
Pais P, Galocha M, Takahashi-Nakaguchi A, Chibana H, Teixeira MC. Multiple genome analysis of Candida glabrata clinical isolates renders new insights into genetic diversity and drug resistance determinants. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:174-189. [PMID: 36448018 PMCID: PMC9662024 DOI: 10.15698/mic2022.11.786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
The emergence of drug resistance significantly hampers the treatment of human infections, including those caused by fungal pathogens such as Candida species. Candida glabrata ranks as the second most common cause of candidiasis worldwide, supported by rapid acquisition of resistance to azole and echinocandin antifungals frequently prompted by single nucleotide polymorphisms (SNPs) in resistance associated genes, such as PDR1 (azole resistance) or FKS1/2 (echinocandin resistance). To determine the frequency of polymorphisms and genome rearrangements as the possible genetic basis of C. glabrata drug resistance, we assessed genomic variation across 94 globally distributed isolates with distinct resistance phenotypes, whose sequence is deposited in GenBank. The genomes of three additional clinical isolates were sequenced, in this study, including two azole resistant strains that did not display Gain-Of-Function (GOF) mutations in the transcription factor encoding gene PDR1. Genomic variations in susceptible isolates were used to screen out variants arising from genome diversity and to identify variants exclusive to resistant isolates. More than half of the azole or echinocandin resistant isolates do not possess exclusive polymorphisms in PDR1 or FKS1/2, respectively, providing evidence of alternative genetic basis of antifungal resistance. We also identified copy number variations consistently affecting a subset of chromosomes. Overall, our analysis of the genomic and phenotypic variation across isolates allowed to pinpoint, in a genome-wide scale, genetic changes enriched specifically in antifungal resistant strains, which provides a first step to identify additional determinants of antifungal resistance. Specifically, regarding the newly sequenced strains, a set of mutations/genes are proposed to underlie the observed unconventional azole resistance phenotype.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel C. Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
129
|
Rai MN, Parsania C, Rai R. Mapping the mutual transcriptional responses during Candida albicans and human macrophage interactions by dual RNA-sequencing. Microb Pathog 2022; 173:105864. [DOI: 10.1016/j.micpath.2022.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
130
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
131
|
Trevijano-Contador N, Torres-Cano A, Carballo-González C, Puig-Asensio M, Martín-Gómez MT, Jiménez-Martínez E, Romero D, Nuvials FX, Olmos-Arenas R, Moretó-Castellsagué MC, Fernández-Delgado L, Rodríguez-Sevilla G, Aguilar-Sánchez MM, Ayats-Ardite J, Ardanuy-Tisaire C, Sanchez-Romero I, Muñoz-Algarra M, Merino-Amador P, González-Romo F, Megías-Lobón G, García-Campos JA, Mantecón-Vallejo MÁ, Alcoceba E, Escribano P, Guinea J, Durán-Valle MT, Fraile-Torres AM, Roiz-Mesones MP, Lara-Plaza I, de Ayala AP, Simón-Sacristán M, Collazos-Blanco A, Nebreda-Mayoral T, March-Roselló G, Alcázar-Fuoli L, Zaragoza O. Global Emergence of Resistance to Fluconazole and Voriconazole in Candida parapsilosis in Tertiary Hospitals in Spain During the COVID-19 Pandemic. Open Forum Infect Dis 2022; 9:ofac605. [PMID: 36467290 PMCID: PMC9709632 DOI: 10.1093/ofid/ofac605] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/03/2022] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Candida parapsilosis is a frequent cause of candidemia worldwide. Its incidence is associated with the use of medical implants, such as central venous catheters or parenteral nutrition. This species has reduced susceptibility to echinocandins, and it is susceptible to polyenes and azoles. Multiple outbreaks caused by fluconazole-nonsusceptible strains have been reported recently. A similar trend has been observed among the C. parapsilosis isolates received in the last 2 years at the Spanish Mycology Reference Laboratory. METHODS Yeast were identified by molecular biology, and antifungal susceptibility testing was performed using the European Committee on Antimicrobial Susceptibility Testing protocol. The ERG11 gene was sequenced to identify resistance mechanisms, and strain typing was carried out by microsatellite analysis. RESULTS We examined the susceptibility profile of 1315 C. parapsilosis isolates available at our reference laboratory between 2000 and 2021, noticing an increase in the number of isolates with acquired resistance to fluconazole, and voriconazole has increased in at least 8 different Spanish hospitals in 2020-2021. From 121 recorded clones, 3 were identified as the most prevalent in Spain (clone 10 in Catalonia and clone 96 in Castilla-Leon and Madrid, whereas clone 67 was found in 2 geographically unrelated regions, Cantabria and the Balearic Islands). CONCLUSIONS Our data suggest that concurrently with the coronavirus disease 2019 pandemic, a selection of fluconazole-resistant C. parapsilosis isolates has occurred in Spain, and the expansion of specific clones has been noted across centers. Further research is needed to determine the factors that underlie the successful expansion of these clones and their potential genetic relatedness.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Cristina Carballo-González
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Mireia Puig-Asensio
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, CB21/13/00009), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Martín-Gómez
- Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emilio Jiménez-Martínez
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Daniel Romero
- Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Xavier Nuvials
- Intensive Care Unit, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Olmos-Arenas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | | | | | | | | | - Josefina Ayats-Ardite
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Carmen Ardanuy-Tisaire
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES-CB06/06/0037), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Sanchez-Romero
- Microbiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - María Muñoz-Algarra
- Microbiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Paloma Merino-Amador
- Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense School of Medicine, Madrid, Spain
| | - Fernando González-Romo
- Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense School of Medicine, Madrid, Spain
| | - Gregoria Megías-Lobón
- Department of Clinical Microbiology, Hospital Universitario de Burgos, Burgos, Castilla y León, Spain
| | - Jose Angel García-Campos
- Department of Clinical Microbiology, Hospital Universitario de Burgos, Burgos, Castilla y León, Spain
| | | | - Eva Alcoceba
- Clinical Microbiology Department, Hospital Universitari Son Espases, Mallorca, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES-CB06/06/0058), Madrid, Spain
| | | | | | - María Pía Roiz-Mesones
- Microbiology Department, Marqués de Valdecilla Universitary Hospital and Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria,Spain
| | - Isabel Lara-Plaza
- Microbiology Department, Marqués de Valdecilla Universitary Hospital and Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria,Spain
| | | | - María Simón-Sacristán
- Microbiology and Parasitology Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Ana Collazos-Blanco
- Microbiology and Parasitology Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Teresa Nebreda-Mayoral
- Microbiology and Immunology Unit, Universitary Clinic Hospital of Valladolid, Valladolid, Spain
| | - Gabriel March-Roselló
- Microbiology and Immunology Unit, Universitary Clinic Hospital of Valladolid, Valladolid, Spain
| | - Laura Alcázar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
132
|
Liu X, Fang R, Feng R, Li Q, Su M, Hou C, Zhuang K, Dai Y, Lei N, Jiang Y, Liu Y, Ran Y. Cage-modified hypocrellin against multidrug-resistant Candida spp. with unprecedented activity in light-triggered combinational photodynamic therapy. Drug Resist Updat 2022; 65:100887. [DOI: 10.1016/j.drup.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
133
|
Conte M, Eletto D, Pannetta M, Petrone AM, Monti MC, Cassiano C, Giurato G, Rizzo F, Tessarz P, Petrella A, Tosco A, Porta A. Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis. Front Cell Infect Microbiol 2022; 12:1031814. [PMID: 36389164 PMCID: PMC9647175 DOI: 10.3389/fcimb.2022.1031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Anna M. Petrone
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Maria C. Monti
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Department of Pharmacy, University of Naples ‘Federico II’, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Peter Tessarz
- Max Planck Research Group “Chromatin and Ageing”, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
134
|
Wang Q, Cai X, Li Y, Zhao J, Liu Z, Jiang Y, Meng L, Li Y, Pan S, Ai X, Zhang F, Li R, Zheng B, Wan Z, Liu W. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Front Microbiol 2022; 13:1006375. [PMID: 36274705 PMCID: PMC9583154 DOI: 10.3389/fmicb.2022.1006375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
To have a comprehensive understanding of epidemiology and antifungal susceptibilities in pathogenic yeasts, the China Antifungal Resistance Surveillance Trial (CARST-fungi) study was conducted. All yeast isolates were identified by ribosomal DNA sequencing. Antifungal susceptibilities were performed using CLSI M27-A4 broth microdilution method. Sequence and expression level of resistant-related genes in resistant/non-wide-type (NWT) Candida isolates were analyzed. Totally 269 nonduplicate yeast isolates from 261 patients were collected. About half of the yeast isolates (127, 47.2%) were recovered from blood, followed by ascetic fluid (46, 17.1%). C. albicans remained the most prevalent (120, 44.6%), followed by C. parapsilosis complex (50, 18.6%), C. tropicalis (40, 14.9%), and C. glabrata (36, 13.4%). Fourteen (11.7%) C. albicans isolates and 1 (2.0%) C. parapsilosis isolate were resistant/NWT to triazoles. Only 42.5% (17/40) C. tropicalis were susceptible/WT to all the triazoles, with 19 (47.5%) isolates NWT to posaconazole and 8 (20%) cross-resistant to triazoles. Among C. glabrata, 20 (55.6%) and 8 (22.2%) isolates were resistant/NWT to voriconazole and posaconazole, respectively, and 4 (10.3%) isolates were cross-resistant to triazoles. Isavuconazole was the most active triazole against common Candida isolates. Except for 2 isolates of C. glabrata cross-resistant to echinocandins which were also NWT to POS and defined as multidrug-resistant, echinocandins exhibit good activity against common Candida species. All isolates were WT to AMB. For less common species, Rhodotorula mucilaginosa exhibited high MICs to echinocandins and FLC, and 1 isolate of Trichosporon asahii showed high MICs to all the antifungals except AMB. Among triazole-resistant Candida isolates, ERG11 mutations were detected in 10/14 C. albicans and 6/23 C. tropicalis, while 21/23 C. tropicalis showed MDR1 overexpression. Overexpression of CDR1, CDR2, and SNQ2 exhibited in 14, 13, and 8 of 25 triazole-resistant C. glabrata isolates, with 5 isolates harboring PDR1 mutations and 2 echinocandins-resistant isolates harboring S663P mutation in FKS2. Overall, the CARST-fungi study demonstrated that although C. albicans remain the most predominant species, non-C. albicans species accounted for a high proportion. Triazole-resistance is notable among C. tropicalis and C. glabrata. Multidrug-resistant isolates of C. glabrata and less common yeast have been emerging.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Xuan Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jianhong Zhao
- Department of Clinical Laboratory Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Jiang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Meng
- Lanzhou University Second Hospital, Lanzhou, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyang Pan
- First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoman Ai
- Department of Medical Laboratory, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Zhang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
- *Correspondence: Wei Liu,
| |
Collapse
|
135
|
Artemisinin Targets Transcription Factor PDR1 and Impairs Candida glabrata Mitochondrial Function. Antioxidants (Basel) 2022; 11:antiox11101855. [PMID: 36290580 PMCID: PMC9598568 DOI: 10.3390/antiox11101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
A limited number of antifungal drugs, the side-effect of clinical drugs and the emergence of resistance create an urgent need for new antifungal treatment agents. High-throughput drug screening and in-depth drug action mechanism analyzation are needed to address this problem. In this study, we identified that artemisinin and its derivatives possessed antifungal activity through a high-throughput screening of the FDA-approved drug library. Subsequently, drug-resistant strains construction, a molecular dynamics simulation and a transcription level analysis were used to investigate artemisinin’s action mechanism in Candida glabrata. Transcription factor pleiotropic drug resistance 1 (PDR1) was an important determinant of artemisinin’s sensitivity by regulating the drug efflux pump and ergosterol biosynthesis pathway, leading to mitochondrial dysfunction. This dysfunction was shown by a depolarization of the mitochondrial membrane potential, an enhancement of the mitochondrial membrane viscosity and an upregulation of the intracellular ROS level in fungi. The discovery shed new light on the development of antifungal agents and understanding artemisinin’s action mechanism.
Collapse
|
136
|
Kajihara T, Yahara K, Nagi M, Kitamura N, Hirabayashi A, Hosaka Y, Abe M, Miyazaki Y, Sugai M. Distribution, trends, and antifungal susceptibility of Candida species causing candidemia in Japan, 2010-2019: A retrospective observational study based on national surveillance data. Med Mycol 2022; 60:6696379. [PMID: 36095139 PMCID: PMC9521341 DOI: 10.1093/mmy/myac071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing incidence of candidemia and the emergence of drug-resistant Candida species are major concerns worldwide. Therefore, long-term surveillance studies are required. Here, we provide one of the largest longitudinal overviews of the trends in the prevalence of Candida species using national data of 57 001 candidemia isolates obtained from more than 2000 hospitals for the 2010-2019 period in the Japan Nosocomial Infections Surveillance database. The proportion of Candida species, except Candida krusei and Candida guilliermondii, was almost the same during the study period. The proportion of C. guilliermondii surpassed that of C. krusei in 2014. The incidence of candidemia due to C. albicans (p < 0.0001), C. parapsilosis (p = 0.0002), and C. tropicalis (p < 0.0001) have decreased significantly over this period. Azole susceptibility of Candida tropicalis was low, with 17.8% of isolates resistant to fluconazole and 13.5% resistant to voriconazole. The micafungin susceptibility of C. glabrata was low, with 8.0% of isolates showing resistance. The resistance rate of C. krusei toward amphotericin B fluctuated considerably (between 3.2% and 35.7%) over this period. The incidence rate of candidemia caused by C. parapsilosis and C. guilliermondii in hospitals responsible for bone marrow transplantation was significantly higher than that in other hospitals. Overall, our study suggests that in Japan, the species distribution of Candida was almost the same in this period and similar to that reported in North America and Europe. A relatively high resistance to azoles and micafungin was observed in C. glabrata, C. tropicalis, and C. krusei isolates, which require continued surveillance.
Collapse
Affiliation(s)
- Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Minoru Nagi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan.,Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Yumiko Hosaka
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Masahiro Abe
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| |
Collapse
|
137
|
Gow NAR, Johnson C, Berman J, Coste AT, Cuomo CA, Perlin DS, Bicanic T, Harrison TS, Wiederhold N, Bromley M, Chiller T, Edgar K. The importance of antimicrobial resistance in medical mycology. Nat Commun 2022; 13:5352. [PMID: 36097014 PMCID: PMC9466305 DOI: 10.1038/s41467-022-32249-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
Prior to the SARS-CoV-2 pandemic, antibiotic resistance was listed as the major global health care priority. Some analyses, including the O'Neill report, have predicted that deaths due to drug-resistant bacterial infections may eclipse the total number of cancer deaths by 2050. Although fungal infections remain in the shadow of public awareness, total attributable annual deaths are similar to, or exceeds, global mortalities due to malaria, tuberculosis or HIV. The impact of fungal infections has been exacerbated by the steady rise of antifungal drug resistant strains and species which reflects the widespread use of antifungals for prophylaxis and therapy, and in the case of azole resistance in Aspergillus, has been linked to the widespread agricultural use of antifungals. This review, based on a workshop hosted by the Medical Research Council and the University of Exeter, illuminates the problem of antifungal resistance and suggests how this growing threat might be mitigated.
Collapse
Affiliation(s)
- Neil A R Gow
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Carolyn Johnson
- Medical Research Council, Polaris House, Swindon, SN2 1FL, UK.
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 418 Britannia Building, Ramat Aviv, 69978, Israel
| | - Alix T Coste
- Microbiology Institute, University Hospital Lausanne, rue du Bugnon 48, 1011, Lausanne, Switzerland
| | - Christina A Cuomo
- (CAC) Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian health, Nutley, NJ, 07110, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Thomas S Harrison
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mike Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tom Chiller
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| | - Keegan Edgar
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| |
Collapse
|
138
|
The Changing Landscape of Invasive Fungal Infections in ICUs: A Need for Risk Stratification to Better Target Antifungal Drugs and the Threat of Resistance. J Fungi (Basel) 2022; 8:jof8090946. [PMID: 36135671 PMCID: PMC9500670 DOI: 10.3390/jof8090946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
The landscape of invasive candidiasis and invasive aspergillosis has changed dramatically in intensive care units over the past two decades. Today, we are faced with new risk factors such as the emergence of resistance, but are also equipped with new therapeutic strategies and diagnostic tools which are changing epidemiological data and diagnostic algorithms. Some common points need to be addressed: (i) the best way to use microbiological tools and to integrate their results in decisional algorithms; (ii) the need to find the optimum balance between under-diagnosis and overtreatment; (iii) and the need to decipher pathophysiology. In this short review, we will try to illustrate these points.
Collapse
|
139
|
Fais R, Rizzato C, Franconi I, Tavanti A, Lupetti A. Synergistic Activity of the Human Lactoferricin-Derived Peptide hLF1-11 in Combination with Caspofungin against Candida Species. Microbiol Spectr 2022; 10:e0124022. [PMID: 35876581 PMCID: PMC9430458 DOI: 10.1128/spectrum.01240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Candida species are the main fungal opportunistic pathogens causing systemic infections that are often associated with drug resistance and biofilm production on medical devices. The pressing need for new antifungal agents led to an increased interest in the use of combination therapies. The present study was aimed at investigating potential synergistic activity of the human lactoferrin-derived hLF1-11 peptide with caspofungin against caspofungin-resistant or -susceptible C. albicans, C. parapsilosis, and C. glabrata strains. Synergism was evaluated by the checkerboard assay, measuring cellular metabolic activity against Candida planktonic and sessile cells. A fractional inhibitory concentration (FIC) index of ≤0.5 was interpreted as synergy. Synergism was evaluated by killing assays on planktonic cells. A cell viability assay was performed with biofilm formation inhibition and preformed biofilm. Synergy for killing and viability assays was defined as a ≥2-log-CFU/mL reduction in comparison with the most active constituent. hLF1-11 and caspofungin exerted (i) synergistic effects against planktonic cells of all the tested strains, yielding drastic caspofungin MIC reduction, (ii) synergistic effects on the inhibition of biofilm formation against biofilm producer strains, yielding caspofungin BIC reduction, and (iii) synergistic effects on preformed biofilm assessed by measuring metabolic activity (FIC range, 0.28 to 0.37) against biofilm-producing strains and by cell viability assay in C. albicans SC5314. The synergistic effect observed between caspofungin and hLF1-11 against Candida spp. is of potential clinical relevance, representing a promising novel approach to target caspofungin-resistant Candida species infections. Further studies elucidating the mechanisms of action of such a synergistic effect are needed. IMPORTANCE The present study describes a synergistic effect between a conventional antifungal drug, caspofungin, and a synthetic peptide derived from human lactoferrin, hLF1-11, against Candida species. These yeasts are able to cause severe systemic fungal infections in immunocompromised hosts. In addition, they can form biofilms in medical implanted devices. Recently, caspofungin-resistant Candida strains have emerged, thus highlighting the need to develop different therapeutic strategies. In in vitro studies, this drug combination is able to restore sensitivity to caspofungin in caspofungin-resistant strains of Candida species, both in free-living cells and in cells organized in biofilms. This synergism could represent a promising novel approach to target infections caused by caspofungin-resistant Candida species.
Collapse
Affiliation(s)
- Roberta Fais
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Iacopo Franconi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
140
|
Lamoth F, Lewis RE, Kontoyiannis DP. Investigational Antifungal Agents for Invasive Mycoses: A Clinical Perspective. Clin Infect Dis 2022; 75:534-544. [PMID: 34986246 DOI: 10.1093/cid/ciab1070] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
Treatment of invasive fungal infections (IFIs) remains challenging, because of the limitations of the current antifungal agents (ie, mode of administration, toxicity, and drug-drug interactions) and the emergence of resistant fungal pathogens. Therefore, there is an urgent need to expand our antifungal armamentarium. Several compounds are reaching the stage of phase II or III clinical assessment. These include new drugs within the existing antifungal classes or displaying similar mechanism of activity with improved pharmacologic properties (rezafungin and ibrexafungerp) or first-in-class drugs with novel mechanisms of action (olorofim and fosmanogepix). Although critical information regarding the performance of these agents in heavily immunosuppressed patients is pending, they may provide useful additions to current therapies in some clinical scenarios, including IFIs caused by azole-resistant Aspergillus or multiresistant fungal pathogens (eg, Candida auris, Lomentospora prolificans). However, their limited activity against Mucorales and some other opportunistic molds (eg, some Fusarium spp.) persists as a major unmet need.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service and Institute of Microbiology, University Hospital of Lausanne and Lausanne University, Lausanne, Switzerland
| | - Russell E Lewis
- Clinic of Infectious Diseases, S'Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italyand
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
141
|
Epigenetic Regulation of Antifungal Drug Resistance. J Fungi (Basel) 2022; 8:jof8080875. [PMID: 36012862 PMCID: PMC9409733 DOI: 10.3390/jof8080875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
In medical mycology, epigenetic mechanisms are emerging as key regulators of multiple aspects of fungal biology ranging from development, phenotypic and morphological plasticity to antifungal drug resistance. Emerging resistance to the limited therapeutic options for the treatment of invasive fungal infections is a growing concern. Human fungal pathogens develop drug resistance via multiple mechanisms, with recent studies highlighting the role of epigenetic changes involving the acetylation and methylation of histones, remodeling of chromatin and heterochromatin-based gene silencing, in the acquisition of antifungal resistance. A comprehensive understanding of how pathogens acquire drug resistance will aid the development of new antifungal therapies as well as increase the efficacy of current antifungals by blocking common drug-resistance mechanisms. In this article, we describe the epigenetic mechanisms that affect resistance towards widely used systemic antifungal drugs: azoles, echinocandins and polyenes. Additionally, we review the literature on the possible links between DNA mismatch repair, gene silencing and drug-resistance mechanisms.
Collapse
|
142
|
Yamin D, Akanmu MH, Al Mutair A, Alhumaid S, Rabaan AA, Hajissa K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:188. [PMID: 36006280 PMCID: PMC9416642 DOI: 10.3390/tropicalmed7080188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A reliable estimate of Candida parapsilosis antifungal susceptibility in candidemia patients is increasingly important to track the spread of C. parapsilosis bloodstream infections and define the true burden of the ongoing antifungal resistance. A systematic review and meta-analysis (SRMA) were conducted aiming to estimate the global prevalence and identify patterns of antifungal resistance. A systematic literature search of the PubMed, Scopus, ScienceDirect and Google Scholar electronic databases was conducted on published studies that employed antifungal susceptibility testing (AFST) on clinical C. parapsilosis isolates globally. Seventy-nine eligible studies were included. Using meta-analysis of proportions, the overall pooled prevalence of three most important antifungal drugs; Fluconazole, Amphotericin B and Voriconazole resistant C. parapsilosis were calculated as 15.2% (95% CI: 9.2-21.2), 1.3% (95% CI: 0.0-2.9) and 4.7% (95% CI: 2.2-7.3), respectively. Based on study enrolment time, country/continent and AFST method, subgroup analyses were conducted for the three studied antifungals to determine sources of heterogeneity. Timeline and regional differences in C. parapsilosis prevalence of antifungal resistance were identified with the same patterns among the three antifungal drugs. These findings highlight the need to conduct further studies to assess and monitor the growing burden of antifungal resistance, to revise treatment guidelines and to implement regional surveillance to prevent further increase in C. parapsilosis drug resistance emerging recently.
Collapse
Affiliation(s)
- Dina Yamin
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Mutiat Hammed Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| |
Collapse
|
143
|
Prevalence of Fungal Drug Resistance in COVID-19 Infection: a Global Meta-analysis. CURRENT FUNGAL INFECTION REPORTS 2022; 16:154-164. [PMID: 35990407 PMCID: PMC9376562 DOI: 10.1007/s12281-022-00439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Purpose Secondary bacterial or fungal infections are one of the most important medical complications among patients with Coronavirus Disease 2019 (COVID-19). The emergence of multidrug-resistant (MDR) candida can cause many problems such as treatment failure, adverse clinical outcomes, and even disease outbreaks. This systematic review and meta-analysis aims to investigate the prevalence and outcomes of fungal drug-resistant in COVID-19 patients. Methods PubMed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for peer reviewed-articles published in English up to May 20, 2021. Heterogeneity across studies was evaluated using Cochrane’s Q test and the I2 index. The pooled point prevalence and their corresponding 95% confidence intervals (CIs) were considered to estimate the prevalence of fungal drug resistance infection in COVID-19 patients. Results Eight eligible articles were included in our meta-analysis. The number of COVID-19 patients with fungal co-infection varied from 5 to 35 among selected studies. The overall pooled prevalence of fungal drug resistance among patients with co-infections of fungal and COVID-19 was 69% (95% CI: 37%, 94%) by using a random-effects model. In terms of specific species, the pooled meta-analysis for Candida Auris was estimated to be 100% (95%CI: 98%, 100%; I2 = 0%), for Multi-Candida 59% (95%CI: 38%, 79%; I2 = 12.5%), and for Aspergillus 15% (95%CI: 0%, 42%; I2 = 0%). Conclusion Our study shows the high prevalence of fungal drug resistance in COVID-19 patients and emphasizes the need to strengthen antimicrobial stewardship programs, close monitoring for treatment failure, and the emergence of resistance upon treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12281-022-00439-9.
Collapse
|
144
|
Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018: Data From 65 Middle- and High-Income Countries. Drugs 2022; 82:1193-1205. [PMID: 35960433 PMCID: PMC9402496 DOI: 10.1007/s40265-022-01751-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Background Understanding the trend of global antifungal agent consumption could assist with identification of global healthcare policy inadequacies and promote accessibility and availability of antifungal agents. Methods Using pharmaceutical sales data from the IQVIA-multinational integrated data analysis system database, we assessed use of systemic antifungal agents in humans in 27 middle- and 38 high-income countries from 2008 through 2018. Results Consumption of systemic antifungal agents increased from 0.50 (in 2008) to 0.92 defined daily dose (DDD)/1000 inhabitants/day (in 2018), with a compound annual growth rate of 6.2%. High-income countries remain major consumers of antifungal agents with large variance in quantities consumed, with a gradual decline in consumption in recent years. Consumption in middle-income countries increased. Itraconazole (0.32 DDD/1000 inhabitants/day), terbinafine (0.30 DDD/1000 inhabitants/day), and fluconazole (0.23 DDD/1000 inhabitants/day) were the most commonly used antifungal agents in middle- and high-income countries in 2018. Following incorporation into the World Health Organization Essential Medicines List, itraconazole consumption in middle-income countries surged. Consumption of ketoconazole slowly declined, with 5.04% annual decrease, probably due to labelling changes in 2013 to reflect hepatotoxicity concerns. The use of polyenes (0.004 DDD/1000 inhabitants/day) and echinocandins (0.003 DDD/1000 inhabitants/day) were lowest among all the antifungal drug classes. Conclusion Global consumption of triazoles and terbinafine has gradually increased in middle- and high-income countries. Life-saving antifungal agents, including echinocandins and polyenes, are available only parenterally and may be underutilized, mainly in middle-income countries. Future research on country-specific epidemiology is warranted to guide health policy coordination to ensure equitable access to appropriate use of antifungal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s40265-022-01751-x.
Collapse
|
145
|
A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochim Biophys Acta Gen Subj 2022; 1866:130218. [PMID: 35905923 DOI: 10.1016/j.bbagen.2022.130218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 μM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 μM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.
Collapse
|
146
|
da Silva-Junio AG, Frias IAM, Lima-Neto RG, Migliolo L, E Silva PS, Oliveira MDL, Andrade CAS. Electrochemical biosensor based on Temporin-PTA peptide for detection of microorganisms. J Pharm Biomed Anal 2022; 216:114788. [PMID: 35525110 DOI: 10.1016/j.jpba.2022.114788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022]
Abstract
Bacterial and fungal infections are challenging due to their low susceptibility and resistance to antimicrobial drugs. For this reason, antimicrobial peptides (AMP) emerge as excellent alternatives to overcome these problems. At the same time, their active insertion into the cell wall of microorganisms can be availed for biorecognition applications in biosensing platforms. Temporin-PTA (T-PTA) is an AMP found in the skin secretions of the Malaysian fire frog Hylarana picturata, which presents antibacterial activity against MRSA, Escherichia coli, and Bacillus subtilis. In this work, T-PTA was explored as an innovative sensing layer aiming for the electrochemical differentiation of Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecalis, Candida albicans, and C. tropicalis based on the structural differences of their membranes. The biosensor was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In this approach, the different structural features of each microorganism resulted in different adherence degrees and, therefore, different electrochemical responses. The transducing layer was fabricated by the self-assembling of a 4-mercaptobenzoic acid (MBA) monolayer and gold-capped magnetic nanoparticles (Fe3O4@Au) implemented to improve the electrical signal of the biointeraction. We found that each interaction, expressed in variations of electron transfer resistance and anodic peak current, demonstrated a singular response from which the platform can discriminate all different microorganisms. We found expressive sensitivity towards Gram-negative species, especially K. pneumoniae. A detection limit of 101 CFU.mL-1 and a linear range of 101 to 105 CFU.mL-1 were obtained. The T-PTA biosensor platform is a promising and effective tool for microbial identification.
Collapse
Affiliation(s)
- Alberto G da Silva-Junio
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil
| | - Patrícia S E Silva
- S-Inova Biotech, Programa de Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
147
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
148
|
Hwang YY, Kang OK, Park CE, Hong SN, Kim YK, Huh HJ, Lee NY. Frequency of Candida Strains Isolated from Candidiasis Patients at A Tertiary Hospital over the Last 10 Years. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yu-Yean Hwang
- Department of Laboratory Medicine, Samsung Medical Center, Seoul, Korea
| | - On-Kyun Kang
- Department of Laboratory Medicine, Samsung Medical Center, Seoul, Korea
| | - Chang-Eun Park
- Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Korea
| | - Sung-No Hong
- Department of Clinical Laboratory Science, Dongnam Health University, Suwon, Korea
| | - Young-Kwon Kim
- Department of Health Sciences, The Graduate School of Konyang University, Daejeon, Korea
| | - Hee-Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam-Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
149
|
Logan C, Hemsley C, Fife A, Edgeworth J, Mazzella A, Wade P, Goodman A, Hopkins P, Wyncoll D, Ball J, Planche T, Schelenz S, Bicanic T. A multisite evaluation of antifungal use in critical care: implications for antifungal stewardship. JAC Antimicrob Resist 2022; 4:dlac055. [PMID: 35756574 PMCID: PMC9217759 DOI: 10.1093/jacamr/dlac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background ICUs are settings of high antifungal consumption. There are few data on prescribing practices in ICUs to guide antifungal stewardship implementation in this setting. Methods An antifungal therapy (AFT) service evaluation (15 May-19 November 2019) across ICUs at three London hospitals, evaluating consumption, prescribing rationale, post-prescription review, de-escalation and final invasive fungal infection (IFI) diagnostic classification. Results Overall, 6.4% of ICU admissions (305/4781) received AFT, accounting for 11.41 days of therapy/100 occupied bed days (DOT/100 OBD). The dominant prescribing mode was empirical (41% of consumption), followed by targeted (22%), prophylaxis (18%), pre-emptive (12%) and non-invasive (7%). Echinocandins were the most commonly prescribed drug class (4.59 DOT/100 OBD). In total, 217 patients received AFT for suspected or confirmed IFI; 12%, 10% and 23% were classified as possible, probable or proven IFI, respectively. Hence, in 55%, IFI was unlikely. Proven IFI (n = 50) was mostly invasive candidiasis (92%), of which 48% had been initiated on AFT empirically before yeast identification. Where on-site (1 → 3)-β-d-glucan (BDG) testing was available (1 day turnaround), in those with suspected but unproven invasive candidiasis, median (IQR) AFT duration was 10 (7-15) days with a positive BDG (≥80 pg/mL) versus 8 (5-9) days with a negative BDG (<80 pg/mL). Post-prescription review occurred in 79% of prescribing episodes (median time to review 1 [0-3] day). Where suspected IFI was not confirmed, 38% episodes were stopped and 4% de-escalated within 5 days. Conclusions Achieving a better balance between promptly treating IFI patients and avoiding inappropriate antifungal prescribing in the ICU requires timely post-prescription review by specialist multidisciplinary teams and improved, evidence-based-risk prescribing strategies incorporating rapid diagnostics to guide AFT start and stop decisions.
Collapse
Affiliation(s)
- C Logan
- Corresponding author. E-mail:
| | - C Hemsley
- Department of Infectious Diseases, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - A Fife
- Infection Sciences, King’s College Hospital NHS Foundation Trust, London, UK
| | - J Edgeworth
- Department of Infectious Diseases, Guy’s & St Thomas’ NHS Foundation Trust, London, UK,Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King’s College London Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - A Mazzella
- Clinical Infection Group, St George’s University Hospitals NHS Foundation Trust, London, UK,Institute of Infection & Immunity, St George’s University of London, London, UK
| | - P Wade
- Department of Infectious Diseases, Guy’s & St Thomas’ NHS Foundation Trust, London, UK,Directorate of Pharmacy & Medicines Optimisation, Guy’s & St Thomas’s NHS Foundation Trust, London, UK
| | - A Goodman
- Department of Infectious Diseases, Guy’s & St Thomas’ NHS Foundation Trust, London, UK,Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King’s College London Guy’s & St Thomas’ NHS Foundation Trust, London, UK,MRC Clinical Trials Unit at University College London, London, UK
| | - P Hopkins
- Department of Critical Care, King’s College Hospital NHS Foundation Trust, London, UK
| | - D Wyncoll
- Department of Critical Care, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - J Ball
- Department of Critical Care, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - T Planche
- Clinical Infection Group, St George’s University Hospitals NHS Foundation Trust, London, UK,Institute of Infection & Immunity, St George’s University of London, London, UK
| | - S Schelenz
- Infection Sciences, King’s College Hospital NHS Foundation Trust, London, UK
| | - T Bicanic
- Clinical Infection Group, St George’s University Hospitals NHS Foundation Trust, London, UK,Institute of Infection & Immunity, St George’s University of London, London, UK
| |
Collapse
|
150
|
Gao Y, Tang M, Li Y, Niu X, Li J, Fu C, Wang Z, Liu J, Song B, Chen H, Gao X, Guan X. Machine-learning based prediction and analysis of prognostic risk factors in patients with candidemia and bacteraemia: a 5-year analysis. PeerJ 2022; 10:e13594. [PMID: 35726257 PMCID: PMC9206432 DOI: 10.7717/peerj.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Bacteraemia has attracted great attention owing to its serious outcomes, including deterioration of the primary disease, infection, severe sepsis, overwhelming septic shock or even death. Candidemia, secondary to bacteraemia, is frequently seen in hospitalised patients, especially in those with weak immune systems, and may lead to lethal outcomes and a poor prognosis. Moreover, higher morbidity and mortality associated with candidemia. Owing to the complexity of patient conditions, the occurrence of candidemia is increasing. Candidemia-related studies are relatively challenging. Because candidemia is associated with increasing mortality related to invasive infection of organs, its pathogenesis warrants further investigation. We collected the relevant clinical data of 367 patients with concomitant candidemia and bacteraemia in the first hospital of China Medical University from January 2013 to January 2018. We analysed the available information and attempted to obtain the undisclosed information. Subsequently, we used machine learning to screen for regulators such as prognostic factors related to death. Of the 367 patients, 231 (62.9%) were men, and the median age of all patients was 61 years old (range, 52-71 years), with 133 (36.2%) patients aged >65 years. In addition, 249 patients had hypoproteinaemia, and 169 patients were admitted to the intensive care unit (ICU) during hospitalisation. The most common fungi and bacteria associated with tumour development and Candida infection were Candida parapsilosis and Acinetobacter baumannii, respectively. We used machine learning to screen for death-related prognostic factors in patients with candidemia and bacteraemia mainly based on integrated information. The results showed that serum creatinine level, endotoxic shock, length of stay in ICU, age, leukocyte count, total parenteral nutrition, total bilirubin level, length of stay in the hospital, PCT level and lymphocyte count were identified as the main prognostic factors. These findings will greatly help clinicians treat patients with candidemia and bacteraemia.
Collapse
Affiliation(s)
- Yali Gao
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingsui Tang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingyi Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Fu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zihan Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiayi Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuhao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|