101
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
102
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
103
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
104
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
105
|
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234:16724-16738. [PMID: 30908646 DOI: 10.1002/jcp.28490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody-siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
106
|
Cao Y, Huang HY, Chen LQ, Du HH, Cui JH, Zhang LW, Lee BJ, Cao QR. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9763-9776. [PMID: 30776886 DOI: 10.1021/acsami.8b20810] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The combination of gene therapy and chemotherapy has recently received considerable attention for cancer treatment. However, low transfection efficiency and poor endosomal escape of genes from nanocarriers strongly limit the success of the clinical use of small interfering RNA (siRNA). In this study, a novel pH-responsive, surface-modified single-walled carbon nanotube (SWCNT) was designed for the codelivery of doxorubicin (DOX) and survivin siRNA. Polyethylenimine (PEI) was covalently conjugated with betaine, and the resulting PEI-betaine (PB) was further synthesized with the oxidized SWCNT to form SWCNT-PB (SPB), which exhibits an excellent pH-responsive lysosomal escape of siRNA. SPB was modified with the targeting and penetrating peptide BR2 (SPBB), thereby achieving considerably higher uptake of siRNA than SWCNT-PEI (SP) or SPB. Furthermore, SPBB-siRNA presented substantially lower survivin expression and higher apoptotic index than Lipofectamine 2000. DOX and survivin siRNA were adsorbed onto SPB to form DOX-SPBB-siRNA, and siRNA/DOX was released into the cytoplasm and nuclei of adenocarcinomic human alveolar basal epithelial (A549) cells without lysosomal retention. Compared with SPBB-siRNA or DOX-SPBB treatment alone, DOX-SPBB-siRNA significantly reduced tumor volume in A549 cell-bearing nude mice, demonstrating the synergistic effects of DOX and survivin siRNA. Pathological analysis also indicated the potential therapeutic effects of DOX-SPBB-siRNA on tumors without distinct damages to normal tissues. In conclusion, the novel functionalized SWCNT loaded with DOX and survivin siRNA was successfully synthesized, and the nanocomplex exhibited effective antitumor effects both in vitro and in vivo, thereby providing an alternative strategy for the codelivery of antitumor drugs and genes.
Collapse
Affiliation(s)
- Yue Cao
- Department of Pharmacy , Beijing Health Vocational College , Beijing 100053 , People's Republic of China
| | | | | | | | | | | | - Beom-Jin Lee
- College of Pharmacy , Ajou University , Suwon 16499 , Republic of Korea
| | | |
Collapse
|
107
|
Humphreys SC, Thayer MB, Campuzano IDG, Netirojjanakul C, Rock BM. Quantification of siRNA-Antibody Conjugates in Biological Matrices by Triplex-Forming Oligonucleotide ELISA. Nucleic Acid Ther 2019; 29:161-166. [PMID: 30801231 DOI: 10.1089/nat.2018.0770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The potential repertoire of short interfering RNA (siRNA) therapeutics is expanding as targeting strategies evolve. One approach to enable organ-specific delivery has been to directly conjugate siRNA to a monoclonal antibody (siRNA-mAb), analogous to antibody-drug conjugates. Detection of intact siRNA-mAb conjugates presents a bioanalytical challenge given that certain synthetic nucleotide chemical modifications and low-temperature requirements render common oligonucleotide detection assays, such as reverse transcription-polymerase chain reaction, incompatible with the immunoassay component. To circumvent these issues, we developed a triplex-forming oligonucleotide ELISA using locked nucleic acid (LNA) containing oligonucleotide probes. We demonstrate that the incorporation of these LNAs allow for an enrichment and immobilization of siRNA directly conjugated to an antibody at nondenaturing temperatures. Without further requirement for extraction or amplification, we can sensitively and specifically detect intact siRNA-mAb conjugates in complex matrices such as serum and tissue homogenate.
Collapse
Affiliation(s)
- Sara C Humphreys
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| | - Mai B Thayer
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| | - Iain D G Campuzano
- 2 Amgen, Inc., Discovery Attribute Sciences, Amgen Research, Thousand Oaks, California
| | | | - Brooke M Rock
- 1 Amgen, Inc., Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California
| |
Collapse
|
108
|
Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN, Balázsi G, Albert R. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys Biol 2019; 16:031002. [PMID: 30654341 PMCID: PMC6405305 DOI: 10.1088/1478-3975/aaffa1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts: embryonic development, wound healing, and metastasis. We describe the existing experimental systems and manipulations used to better understand the molecular participants and factors that influence EMT and metastasis. We review the mathematical models of the regulatory networks involved in EMT, with a particular emphasis on the network motifs (such as coupled feedback loops) that can generate intermediate hybrid states between the epithelial and mesenchymal states. Ultimately, the understanding gained about these networks should be translated into methods to control phenotypic outcomes, especially in the context of cancer therapeutic strategies. We present emerging theories of how to drive the dynamics of a network toward a desired dynamical attractor (e.g. an epithelial cell state) and emerging synthetic biology technologies to monitor and control the state of cells.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA 02215, USA
- Cancer Program, Eli and Edythe L. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Medical Scientist Training Program, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kevin Farquhar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariola Szenk
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
109
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
110
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|
111
|
Cauchon NS, Oghamian S, Hassanpour S, Abernathy M. Innovation in Chemistry, Manufacturing, and Controls-A Regulatory Perspective From Industry. J Pharm Sci 2019; 108:2207-2237. [PMID: 30794794 DOI: 10.1016/j.xphs.2019.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
This review describes the landscape of novel modalities such as cell and gene therapies, viruses, other novel biologics, oligomers, and emerging technologies, including modern analytics. We summarize the regulatory history and recent landmark developments in some major markets and examine specific chemistry, manufacturing, and controls (CMC) challenges, including suggestions for exploration of potential science-based approaches in support of regulatory strategy development from an industry perspective. In addition, we evaluate the economic factors contributing to patient access to innovation and discuss the impact of regulation. There is a desperate need for a consistent form of regulation where global approaches to regulatory strategies can be harmonized, and specific CMC challenges can be dealt with using the appropriate science and risk-based tools. Although these tools are well described in current guidance documents, the specifics of applicability to complex novel modalities can still result in differing regulatory advice and outcomes. The future goals for efficiently regulating innovative modalities and technologies could be aided by more regulatory harmonization, regulatory education, and industry cooperation through consortia, enabling industry to supply key information to regulators in a transparent yet well-defined manner, and utilizing mutually understood risk-benefit analyses to produce drugs with appropriate safety, efficacy, and quality characteristics.
Collapse
Affiliation(s)
- Nina S Cauchon
- Department of Global Regulatory Affairs and Safety-CMC, Amgen Inc, Thousand Oaks, California 91320.
| | - Shirley Oghamian
- Department of Global Regulatory Affairs and Safety-CMC, Amgen Inc, Thousand Oaks, California 91320
| | - Soraya Hassanpour
- Department of Global Regulatory Affairs and Safety-CMC, Amgen Inc, Thousand Oaks, California 91320; Rutgers Pharmaceutical Industry Fellowship Program, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Michael Abernathy
- Department of Global Regulatory Affairs and Safety-CMC, Amgen Inc, Thousand Oaks, California 91320
| |
Collapse
|
112
|
Paidikondala M, Nawale GN, Varghese OP. Insights into siRNA Transfection in Suspension: Efficient Gene Silencing in Human Mesenchymal Stem Cells Encapsulated in Hyaluronic Acid Hydrogel. Biomacromolecules 2019; 20:1317-1324. [PMID: 30642167 DOI: 10.1021/acs.biomac.8b01712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small interfering RNAs (siRNAs) are powerful tools for post-transcriptional gene silencing, which offers enormous opportunities for tissue engineering applications. However, poor serum stability, inefficient intracellular delivery, and inevitable toxicity of transfection reagents are the key barriers for their clinical translation. Thus, innovative strategies that allow safe and efficient intracellular delivery of the nucleic acid drugs at the desired site is urgently needed for a smooth clinical translation of therapeutically appealing siRNA-based technology. In this regard, we have developed an innovative siRNA transfection protocol that employs a short incubation time of just 5 min. This allows easy transfection in suspension followed by transplantation of the cells in a hyaluronic acid (HA) hydrogel system. We also report here the unique ability of siRNA to bind HA that was quantified by siRNA release and rheological characterization of the HA-hydrogel. Such interactions also showed promising results to deliver functional siRNA in suspension transfection conditions within 30 min using native HA, although removal of excess HA by centrifugation seem to be essential. In the 2D experiments, suspension transfection of hMSCs with RNAiMAX resulted in ≈90% gene silencing (with or without removal of the excess reagent by centrifugation), while HA demonstrated a modest ≈40% gene silencing after removal of excess reagent after 30 min. Transplantation of such transfected cells in the HA-hydrogel system demonstrated an improved knockdown (≈90% and ≈60% with RNAiMAX and HA respectively after 48 h), with lower cytotoxicity (up to 5-days) as determined by PrestoBlue assay. The gene silencing efficiency in the 2D and 3D conditions were also confirmed at the protein levels by Western blot analysis. We postulate this novel transfection method could be applied for in vivo applications as it allows minimal manipulation of cells that are to be transplanted and reduce toxicity.
Collapse
Affiliation(s)
- Maruthibabu Paidikondala
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| | - Ganesh N Nawale
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| | - Oommen P Varghese
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| |
Collapse
|
113
|
Chernikov IV, Gladkikh DV, Meschaninova MI, Karelina UA, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Fluorophore Labeling Affects the Cellular Accumulation and Gene Silencing Activity of Cholesterol-Modified siRNAs In Vitro. Nucleic Acid Ther 2018; 29:33-43. [PMID: 30562146 DOI: 10.1089/nat.2018.0745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to analyze the effects of fluorophores on the intracellular accumulation and biological activity of small interfering RNA (siRNA) and its cholesterol conjugates. In this study, we used stem-loop real-time PCR and calibration curves to quantitate cellular siRNA accumulation. Attachment of fluorophores significantly affected both the accumulation and biological activity of siRNA conjugates. The severity of this effect depended significantly on the structure of the conjugate; fluorophores (Cy5.5 or Alexa-488) attached to siRNA, facing the side of the duplex opposite to cholesterol, enhanced the unproductive intracellular accumulation of the conjugate when delivered in carrier-free mode. Enhanced cellular accumulation of siRNA conjugates did not result in enhanced biological activity of the conjugate. Moreover, the attachment of a hydrophobic fluorophore, such as Cy5.5, to conventional siRNA also enhanced its apparent intracellular accumulation, but not its biological activity. Thus, the use of fluorescent labels for the study of the intracellular accumulation of siRNA and its conjugates formed with different molecules is possible only for a limited range of structures, and requires verification using alternative methods.
Collapse
Affiliation(s)
- Ivan V Chernikov
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Daniil V Gladkikh
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mariya I Meschaninova
- 2 Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ulyana A Karelina
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Alya G Ven'yaminova
- 2 Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin V Vlassov
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
114
|
|
115
|
Arnold AE, Malek-Adamian E, Le PU, Meng A, Martínez-Montero S, Petrecca K, Damha MJ, Shoichet MS. Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:518-527. [PMID: 29858087 PMCID: PMC5992475 DOI: 10.1016/j.omtn.2018.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
Glioblastoma stem cells (GSCs) are invasive, treatment-resistant brain cancer cells that express downregulated in renal cell carcinoma (DRR), also called FAM107A, a genetic driver of GSC invasion. We developed antibody-antisense oligonucleotide (AON) conjugates to target and reduce DRR/FAM107A expression. Specifically, we used antibodies against antigens expressed on the GSCs, such as CD44 and EphA2, conjugated to chemically modified AONs against DRR/FAM107A, which were designed as chimeras of DNA and 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA) for increased nuclease stability and mRNA affinity. We demonstrate that these therapeutic conjugates successfully internalize, accumulate, and reduce DRR/FAM107A expression in patient-derived GSCs. This is the first example of an antibody-antisense strategy against cancer stem cells.
Collapse
Affiliation(s)
- Amy E Arnold
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Elise Malek-Adamian
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Phuong U Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Anika Meng
- Division of Engineering Science, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
116
|
Lee BC, Chalouni C, Doll S, Nalle SC, Darwish M, Tsai SP, Kozak KR, Del-Rosario G, Yu SF, Erickson H, Vandlen R. FRET Reagent Reveals the Intracellular Processing of Peptide-Linked Antibody–Drug Conjugates. Bioconjug Chem 2018; 29:2468-2477. [DOI: 10.1021/acs.bioconjchem.8b00362] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Byoung-Chul Lee
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Cecile Chalouni
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sophia Doll
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sam C. Nalle
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Siao Ping Tsai
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoffrey Del-Rosario
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Erickson
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Vandlen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
117
|
Abstract
RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Marco Lucchino
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| |
Collapse
|
118
|
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| | - Xiaohu Gao
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
119
|
Craig K, Abrams M, Amiji M. Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opin Drug Deliv 2018; 15:629-640. [PMID: 29727206 DOI: 10.1080/17425247.2018.1473375] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oligonucleotide therapeutics have the potential to change the way disease is treated due to their ability to modulate gene expression of any therapeutic target in a highly specific and potent manner. Unfortunately, this drug class is plagued with inherently poor pharmacological characteristics, which need to be overcome. The development of a chemical modification library for oligonucleotides has addressed many of the initial challenges, but delivery of these payloads across plasma membranes remains difficult. The latest technological advances in oligonucleotide therapeutics utilizes direct conjugation to targeting ligands, which has improved bioavailability and target tissue exposure many-fold. The success of this approach has resulted in numerous clinical programs over the past 5 years. AREAS COVERED We review the literature on oligonucleotide conjugate strategies which have proven effective preclinically and clinically. We summarize the chemical modifications which allow parenteral administration as well as evaluate the efficacy of a multitude of conjugate approaches including lipids, peptides, carbohydrates, and antibodies. EXPERT OPINION The success of future conjugate strategies will likely rely on the effective combination of characteristics from earlier technologies. High-affinity ligand-receptor interactions can be critical to achieving meaningful accumulation in target tissues, but pharmacokinetic modulators which increase the circulating half-life may also be necessary. Synthesis of these approaches has the potential to bring the next breakthrough in oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kevin Craig
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA.,b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Marc Abrams
- b Department of Preclinical Development , Dicerna Pharmaceuticals, Inc , Cambridge , MA , USA
| | - Mansoor Amiji
- a Department of Pharmaceutical Sciences , School of Pharmacy, Northeastern University , Boston , MA , USA
| |
Collapse
|
120
|
Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH, Osborn MF, Echeverria D, Nikan M, Salomon WE, Roux L, Godinho BMDC, Davis SM, Morrissey DV, Zamore PD, Karumanchi SA, Moore MJ, Aronin N, Khvorova A. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res 2018; 46:2185-2196. [PMID: 29432571 PMCID: PMC5861422 DOI: 10.1093/nar/gky037] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various tissues, independently of the nature of the conjugate or siRNA sequence, and support productive mRNA silencing. Thus, fully chemically stabilized siRNAs may provide a better platform to identify novel moieties (peptides, aptamers, small molecules) for targeted RNAi delivery.
Collapse
Affiliation(s)
- Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Anton A Turanov
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - William E Salomon
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Loïc Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Sarah M Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
- Department of Medicine, University of Massachusetts Medical School, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, USA
| |
Collapse
|
121
|
Paquette M, Beaudoin S, Tremblay MA, Jean S, Lopez AF, Lecomte R, Guérin B, Bentourkia M, Sabbagh R, Leyton JV. NLS-Cholic Acid Conjugation to IL-5Rα-Specific Antibody Improves Cellular Accumulation and In Vivo Tumor-Targeting Properties in a Bladder Cancer Model. Bioconjug Chem 2018; 29:1352-1363. [PMID: 29433309 DOI: 10.1021/acs.bioconjchem.8b00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor-mediated internalization followed by trafficking and degradation of antibody-conjugates (ACs) via the endosomal-lysosomal pathway is the major mechanism for delivering molecular payloads inside target tumor cells. Although a mainstay for delivering payloads with clinically approved ACs in cancer treatment and imaging, tumor cells are often able to decrease intracellular payload concentrations and thereby reduce the effectiveness of the desired application. Thus, increasing payload intracellular accumulation has become a focus of attention for designing next-generation ACs. We developed a composite compound (ChAcNLS) that enables ACs to escape endosome entrapment and route to the nucleus resulting in the increased intracellular accumulation as an interleukin-5 receptor α-subunit (IL-5Rα)-targeted agent for muscle invasive bladder cancer (MIBC). We constructed 64Cu-A14-ChAcNLS, 64Cu-A14-NLS, and 64Cu-A14 and evaluated their performance by employing mechanistic studies for endosome escape coupled to nuclear routing and determining whether this delivery system results in improved 64Cu cellular accumulation. ACs consisting of ∼20 ChAcNLS or NLS moieties per 64Cu-A14 were prepared in good yield, high monomer content, and maintaining high affinity for IL-5Rα. Confocal microscopy analysis demonstrated ChAcNLS mediated efficient endosome escape and nuclear localization. 64Cu-A14-ChAcNLS increased 64Cu cellular accumulation in HT-1376 and HT-B9 cells relative to 64Cu-A14 and 64Cu-A14-NLS. In addition, we tested 64Cu-A14-ChAcNLS in vivo to evaluate its tissue distribution properties and, ultimately, tumor uptake and targeting. A model of human IL-5Rα MIBC was developed by implanting NOD/SCID mice with subcutaneous HT-1376 or HT-B9MIBC tumors, which grow containing high and low IL-5Rα-positive tumor cell densities, respectively. ACs were intravenously injected, and daily blood sampling, biodistribution at 48 and 96 h, and positron emission tomography (PET) at 24 and 48 h were performed. Region of interest (ROI) analysis was also performed on reconstructed PET images. Pharmacokinetic analysis and biodistribution studies showed that 64Cu-A14-ChAcNLS had faster clearance rates from the blood and healthy organs relative to 64Cu-A14. However, 64Cu-A14-ChAcNLS maintained comparable tumor accumulation relative to 64Cu-A14. This resulted in 64Cu-A14-ChAcNLS having superior tumor/normal tissue ratios at both 48 and 96 h biodistribution time points. Visualization of AC distribution by PET and ROI analysis confirmed that 64Cu-A14-ChAcNLS had improved targeting of MIBC tumor relative to 64Cu-A14. In addition, 64Cu-A14 modified with only NLS had poor tumor targeting. This was a result of poor tumor uptake due to extremely rapid clearance. Thus, the overall findings in this model of human IL-5Rα-positive MIBC describe an endosome escape-nuclear localization cholic-acid-linked peptide that substantially enhances AC cellular accumulation and tumor targeting.
Collapse
Affiliation(s)
| | | | | | | | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology , The University of South Australia , Frome Road , Adelaide , South Australia 5000 , Australia
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | - Brigitte Guérin
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | - M'hamed Bentourkia
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| | | | - Jeffrey V Leyton
- Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS , UdeS , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada.,Sherbrooke Pharmacology Institute , 3001 12 Avenue Nord , Sherbrooke , Québec J1H 5N4 , Canada
| |
Collapse
|
122
|
Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, Brinkmann U. The Role of micro RNAs in Breast Cancer Metastasis: Preclinical Validation and Potential Therapeutic Targets. Cancer Genomics Proteomics 2018; 15:17-39. [PMID: 29275360 PMCID: PMC5822183 DOI: 10.21873/cgp.20062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the approval of several molecular therapies in the last years, breast cancer-associated death ranks as the second highest in women. This is due to metastatic disease, which represents a challenge for treatment. A better understanding of the molecular mechanisms of metastasis is, therefore, of paramount importance. In this review we summarize the role of micro RNAs (miRs) involved in metastasis of breast cancer. We present an overview on metastasis-promoting, -suppressing and context-dependent miRs with both activities. We have categorized the corresponding miRs according to their target classes, interaction with stromal cells or exosomes. The pathways affected by individual miRs are outlined in regard to in vitro properties, activity in metastasis-related in vivo models and clinical significance. Current approaches that may be suitable for therapeutic inhibition or restauration of miR activity are outlined. Finally, we discuss the delivery bottlenecks which present as a major challenge in nucleic acid (miR)-based therapies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Gwendlyn Kollmorgen
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
123
|
Bai X, Kong M, Wu X, Feng C, Park H, Chen X. A multi-responsive biomimetic nano-complex platform for enhanced gene delivery. J Mater Chem B 2018; 6:5910-5921. [DOI: 10.1039/c8tb02038h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA interference (RNAi) is widely regarded as a promising technology for disease treatment, yet one major obstacle for its clinical application is the lack of enhanced siRNA delivery vehicles to circumvent complex extra- and intracellular barriers.
Collapse
Affiliation(s)
- Xiaoyu Bai
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Ming Kong
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Xuanjin Wu
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Chao Feng
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| | - Hyunjin Park
- Graduate School Biotechnology
- Korea University
- Seoul 136-701
- South Korea
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P. R. China
| |
Collapse
|
124
|
Targeted Delivery of siRNA Therapeutics to Malignant Tumors. JOURNAL OF DRUG DELIVERY 2017; 2017:6971297. [PMID: 29218233 PMCID: PMC5700508 DOI: 10.1155/2017/6971297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/10/2017] [Indexed: 01/11/2023]
Abstract
Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.
Collapse
|
125
|
Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci 2017; 188:26-36. [PMID: 28864225 PMCID: PMC5617340 DOI: 10.1016/j.lfs.2017.08.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest type of primary brain tumor with a prognosis of 14months after diagnosis. Current treatment for GBM patients includes "total" tumor resection, temozolomide-based chemotherapy, radiotherapy or a combination of these options. Although, several targeted therapies, gene therapy, and immunotherapy are currently in the clinic and/or in clinical trials, the overall survival of GBM patients has hardly improved over the last two decades. Therefore, novel multitarget modalities are urgently needed. Recently, RNA interference (RNAi) has emerged as a novel strategy for the treatment of most cancers, including GBM. RNAi-based therapies consist of using small RNA oligonucleotides to regulate protein expression at the post-transcriptional level. Despite the therapeutic potential of RNAi molecules, systemic limitations including short circulatory stability and low release into the tumor tissue have halted their progress to the clinic. The effective delivery of RNAi molecules through the blood-brain barrier (BBB) represents an additional challenge. This review focuses on connecting the translational process of RNAi-based therapies from in vitro evidence to pre-clinical studies. We delineate the effect of RNAi in GBM cell lines, describe their effectiveness in glioma mouse models, and compare the proposed drug carriers for the effective transport of RNAi molecules through the BBB to reach the tumor in the brain. Furthermore, we summarize the most important obstacles to overcome before RNAi-based therapy becomes a reality for GBM treatment.
Collapse
Affiliation(s)
- Eunice L Lozada-Delgado
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00927, United States; Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Nilmary Grafals-Ruiz
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States.
| |
Collapse
|
126
|
Lykkemark S, Mandrup OA, Jensen MB, Just J, Kristensen P. A novel excision selection method for isolation of antibodies binding antigens expressed specifically by rare cells in tissue sections. Nucleic Acids Res 2017; 45:e107. [PMID: 28369551 PMCID: PMC5499801 DOI: 10.1093/nar/gkx207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
There is a growing appreciation of single cell technologies to provide increased biological insight and allow development of improved therapeutics. The central dogma explains why single cell technologies is further advanced in studies targeting nucleic acids compared to proteins, as nucleic acid amplification makes experimental detection possible. Here we describe a novel method for single round phage display selection of antibody fragments from genetic libraries targeting antigens expressed by rare cells in tissue sections. We present and discuss the results of two selections of antibodies recognizing antigens expressed by perivascular cells surrounding capillaries located in a human brain section; with the aim of identifying biomarkers expressed by pericytes. The area targeted for selection was identified by a known biomarker and morphological appearance, however in situ hybridizations to nucleic acids can also be used for the identification of target cells. The antibody selections were performed directly on the tissue sections followed by excision of the target cells using a glass capillary attached to micromanipulation equipment. Antibodies bound to the target cells were characterized using ELISA, immunocytochemistry and immunohistochemistry. The described method will provide a valuable tool for the discovery of novel biomarkers on rare cells in all types of tissues.
Collapse
Affiliation(s)
- Simon Lykkemark
- Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.,Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, 8000 Aarhus C, Denmark
| | - Ole Aalund Mandrup
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mads Bjørnkjær Jensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jesper Just
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
127
|
Yang NJ, Kauke MJ, Sun F, Yang LF, Maass KF, Traxlmayr MW, Yu Y, Xu Y, Langer RS, Anderson DG, Wittrup KD. Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res 2017. [PMID: 28641400 PMCID: PMC5570165 DOI: 10.1093/nar/gkx546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein-based methods of siRNA delivery are capable of uniquely specific targeting, but are limited by technical challenges such as low potency or poor biophysical properties. Here, we engineered a series of ultra-high affinity siRNA binders based on the viral protein p19 and developed them into siRNA carriers targeted to the epidermal growth factor receptor (EGFR). Combined in trans with a previously described endosome-disrupting agent composed of the pore-forming protein Perfringolysin O (PFO), potent silencing was achieved in vitro with no detectable cytotoxicity. Despite concerns that excessively strong siRNA binding could prevent the discharge of siRNA from its carrier, higher affinity continually led to stronger silencing. We found that this improvement was due to both increased uptake of siRNA into the cell and improved pharmacodynamics inside the cell. Mathematical modeling predicted the existence of an affinity optimum that maximizes silencing, after which siRNA sequestration decreases potency. Our study characterizing the affinity dependence of silencing suggests that siRNA-carrier affinity can significantly affect the intracellular fate of siRNA and may serve as a handle for improving the efficiency of delivery. The two-agent delivery system presented here possesses notable biophysical properties and potency, and provide a platform for the cytosolic delivery of nucleic acids.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monique J Kauke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fangdi Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucy F Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katie F Maass
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael W Traxlmayr
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yao Yu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Yingda Xu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Robert S Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
128
|
Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q, Zhang Z. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS NANO 2017; 11:9536-9549. [PMID: 28858473 DOI: 10.1021/acsnano.7b05465] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8+ T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8+ T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.
Collapse
Affiliation(s)
- Yuan Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yanfeng Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Guoqiang Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Lisen Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiang Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
129
|
|
130
|
Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release 2017; 259:3-15. [DOI: 10.1016/j.jconrel.2017.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
|
131
|
Tietze S, Schau I, Michen S, Ennen F, Janke A, Schackert G, Aigner A, Appelhans D, Temme A. A Poly(Propyleneimine) Dendrimer-Based Polyplex-System for Single-Chain Antibody-Mediated Targeted Delivery and Cellular Uptake of SiRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700072. [PMID: 28544767 DOI: 10.1002/smll.201700072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Therapeutics based on small interfering RNAs (siRNAs) offer a great potential to treat so far incurable diseases or metastatic cancer. However, the broad application of siRNAs using various nonviral carrier systems is hampered by unspecific toxic side effects, poor pharmacokinetics due to unwanted delivery of siRNA-loaded nanoparticles into nontarget organs, or rapid renal excretion. In order to overcome these obstacles, several targeting strategies using chemically linked antibodies and ligands have emerged. This study reports a new modular polyplex carrier system for targeted delivery of siRNA, which is based on transfection-disabled maltose-modified poly(propyleneimine)-dendrimers (mal-PPI) bioconjugated to single chain fragment variables (scFvs). To achieve targeted delivery into tumor cells expressing the epidermal growth factor receptor variant III (EGFRvIII), monobiotinylated anti-EGFRvIII scFv fused to a Propionibacterium shermanii transcarboxylase-derived biotinylation acceptor (P-BAP) is bioconjugated to mal-PPI through a novel coupling strategy solely based on biotin-neutravidin bridging. In contrast to polyplexes containing an unspecific control scFv-P-BAP, the generated EGFRvIII-specific polyplexes are able to exclusively deliver siRNA to tumor cells and tumors by receptor-mediated endocytosis. These results suggest that receptor-mediated uptake of otherwise noninternalized mal-PPI-based polyplexes is a promising avenue to improve siRNA therapy of cancer, and introduce a novel strategy for modular bioconjugation of protein ligands to nanoparticles.
Collapse
Affiliation(s)
- Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Isabell Schau
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franka Ennen
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Andreas Janke
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden German Cancer Research Center (DKFZ) Heidelberg, German and National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University Medicine Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden German Cancer Research Center (DKFZ) Heidelberg, German and National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| |
Collapse
|
132
|
Bjorge JD, Pang A, Fujita DJ. Delivery of gene targeting siRNAs to breast cancer cells using a multifunctional peptide complex that promotes both targeted delivery and endosomal release. PLoS One 2017; 12:e0180578. [PMID: 28666009 PMCID: PMC5493434 DOI: 10.1371/journal.pone.0180578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
RNA interference has been used to dissect the importance of individual gene products in various human disease processes, including cancer. Small-interfering RNA, or siRNA, is one of the tools utilized in this regard, but specially-designed delivery agents are required to allow the siRNA to gain optimal access to the cell interior. Our laboratory has utilized two different siRNA-binding delivery peptides containing a polyarginine core, and modified by myristoylation and targeting motifs (iRGD or Lyp-1). A third peptide was designed to assist with endosomal release. Various ratios of the peptides and siRNA were combined and assayed for the ability to form stable complexes, and optimized ratios were determined. The complexes were found to form particles, with the majority having a diameter of 100-300 nm, as visualized by electron microscopy. These siRNA complexes have enhanced protection from nucleases present in serum, as compared to "naked" unprotected siRNA. The particles were internalized by the cells and could be detected in the cell cytoplasm by confocal fluorescence microscopy. In functional assays, peptide/siRNA complexes were shown to cause the knock down of corresponding targeted proteins. The peptide with the LyP-1 targeting motif was more effective at knockdown in MDA-MB-231 breast cancer cells than the peptide with the iRGD motif. Inclusion of the endosomal release peptide in the complexes greatly enhanced the peptide/siRNA effects. Peptide/siRNA complexes simultaneously targeting Stat3 and c-Myc caused a marked reduction in anchorage-independent growth, a property correlated with tumorigenicity. This study demonstrates the ability of a peptide-based siRNA-delivery system to deliver siRNA into breast cancer cells and cause both protein knockdown and suppression of the malignant phenotype. Such peptide complexes are likely to become highly useful siRNA-delivery vehicles for the characterization, and potentially for the treatment, of human cancer.
Collapse
Affiliation(s)
- Jeffrey D. Bjorge
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JDB); (DF)
| | - Andy Pang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donald J. Fujita
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JDB); (DF)
| |
Collapse
|
133
|
The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharm Res 2017; 34:1339-1363. [PMID: 28389707 DOI: 10.1007/s11095-017-2134-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Ten years after Fire and Melo's Nobel Prize for discovery of gene silencing by double-stranded RNA, a remarkable progress was achieved in RNA interference (RNAi). Changes in the chemical structure of synthetic oligonucleotides make them more stable and specific, and new delivery strategies became progressively available. The attention of pharmaceutical industry rapidly turned to RNAi, as an opportunity to explore new drug targets. This review addresses nine small-interfering RNAs (siRNAs) and one unique microRNA (miRNA) inhibitor, which entered the phase 2-3 clinical trials. The siRNAs in focus are PF-04523655, TKM-080301, Atu027, SYL040012, SYL1001, siG12D-LODER (phase 2), QPI-1002, QPI-1007, and patisiran (phase 3). Regarding miRNAs, their content can be down- or up-regulated, by using miRNA inhibitors (AntimiRs) or miRNA mimics. Miravirsen is an AntimiR-122 for hepatitis C virus infection. The flexibility of RNAi technology is easily understood taking into account: (i) the different drug targets (i.e. p53, caspase 2, PKN3, β2-adrenergic receptor, mutated KRAS, microRNAs); (ii) therapeutic conditions, including ophthalmic diseases, kidney injury, amyloidosis, pancreatic cancer, viral hepatitis; and (iii) routes of administration (ocular, intravenous, subcutaneous, intratumoral). Although some issues are still matters of concern (delivery, toxicity, cost, and biological barriers), RNAi definitively opens a wide avenue for drug development.
Collapse
|
134
|
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017; 35:238-248. [PMID: 28244990 PMCID: PMC5517098 DOI: 10.1038/nbt.3765] [Citation(s) in RCA: 815] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency are derived primarily from the chemical structure of the oligonucleotide whereas their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design show appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized with a combination of sugar, backbone, nucleobase, and 3'- and 5'-terminal modifications. A portfolio of chemistries can be used to confer drug-like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. One outstanding challenge in oligonucleotide chemical development is the optimization of chemical architectures to ensure long-term safety. There are multiple designs that enable effective targeting of the liver, but a second challenge is to develop architectures that enable robust clinical efficacy in additional tissues.
Collapse
Affiliation(s)
- Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
135
|
Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 2017; 35:222-229. [PMID: 28244992 DOI: 10.1038/nbt.3802] [Citation(s) in RCA: 784] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
RNA-based therapeutics, such as small-interfering (siRNAs), microRNAs (miRNAs), antisense oligonucleotides (ASOs), aptamers, synthetic mRNAs and CRISPR-Cas9, have great potential to target a large part of the currently undruggable genes and gene products and to generate entirely new therapeutic paradigms in disease, ranging from cancer to pandemic influenza to Alzheimer's disease. However, for these RNA modalities to reach their full potential, they first need to overcome a billion years of evolutionary defenses that have kept RNAs on the outside of cells from invading the inside of cells. Overcoming the lipid bilayer to deliver RNA into cells has remained the major problem to solve for widespread development of RNA therapeutics, but recent chemistry advances have begun to penetrate this evolutionary armor.
Collapse
|
136
|
Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev 2017; 110-111:157-168. [PMID: 27530388 PMCID: PMC5305781 DOI: 10.1016/j.addr.2016.08.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022]
Abstract
siRNA is considered as a potent therapeutic agent because of its high specificity and efficiency in suppressing genes that are overexpressed during disease development. For nearly two decades, a significant amount of efforts has been dedicated to bringing the siRNA technology into clinical uses. However, only limited success has been achieved to date, largely due to the lack of a cell type-specific, safe, and efficient delivery technology to carry siRNA into the target cells' cytosol where RNA interference takes place. Among the emerging candidate nanocarriers for siRNA delivery, peptides have gained popularity because of their structural and functional diversity. A variety of peptides have been discovered for their ability to translocate siRNA into living cells via different mechanisms such as direct penetration through the cellular membrane, endocytosis-mediated cell entry followed by endosomolysis, and receptor-mediated uptake. This review is focused on the multiple roles played by peptides in siRNA delivery, such as membrane penetration, endosome disruption, targeting, as well as the combination of these functionalities.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA.
| |
Collapse
|
137
|
Chernikov IV, Gladkikh DV, Meschaninova MI, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:209-220. [PMID: 28325287 PMCID: PMC5363506 DOI: 10.1016/j.omtn.2016.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
Abstract
Chemical modifications are an effective way to improve the therapeutic properties of small interfering RNAs (siRNAs), making them more resistant to degradation in serum and ensuring their delivery to target cells and tissues. Here, we studied the carrier-free biodistribution and biological activity of a nuclease-resistant anti-MDR1 cholesterol-siRNA conjugate in healthy and tumor-bearing severe combined immune deficiency (SCID) mice. The attachment of cholesterol to siRNA provided its efficient accumulation in the liver and in tumors, and reduced its retention in the kidneys after intravenous and intraperitoneal injection. The major part of cholesterol-siRNA after intramuscular and subcutaneous injections remained in the injection place. Confocal microscopy data demonstrated that cholesterol-siRNA spread deep in the tissue and was present in the cytoplasm of almost all the liver and tumor cells. The reduction of P-glycoprotein level in human KB-8-5 xenograft overexpressing the MDR1 gene by 60% was observed at days 5–6 after injection. Then, its initial level recovered by the eighth day. The data showed that, regardless of the mode of administration (intravenous, intraperitoneal, or peritumoral), cholesterol-siMDR efficiently reduced the P-glycoprotein level in tumors. The designed anti-MDR1 conjugate has potential as an adjuvant therapeutic for the reversal of multiple drug resistance of cancer cells.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Mariya I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
138
|
Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Ther 2016; 17:325-338. [PMID: 27977315 DOI: 10.1080/14712598.2017.1273344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Generating effective RNAi-based therapies with the potential to achieve leukemia remission remains critical unmet need. Despite a growing number of leukemia clinical trials, tissue specific delivery of therapeutic siRNA is a major roadblock in translating its clinical potential. The most recent reports in the antibody-siRNA-conjugates (ARCs) field add new dimensions to leukemic therapy, where a covalently ligated therapeutic antisense-RNA with the potential to repress the oncogenic transcript is selectively delivered into the cancer cells. Despite ARC localization to leukemic cells due to high affinity antigen-antibody interactions, multiple challenges exist to unlock the therapeutic potential of siRNA targeting. Areas covered: This review focuses on antibody and siRNA-based therapies for leukemia as well as potential antibody engineering-based strategies to generate an optimal ARC platform. Expert opinion: In vitro and clinical results have revealed that non-targeted delivery and inefficient cellular internalization of therapeutic siRNA are major contributing factors for the lack of efficacy in leukemia patients. Rational antibody design and selective protein engineering with the potential to neutralize siRNA charge, stabilize ARC complex, restrict off-targeted delivery, optimize endosomal escape, and extend serum half-life will generate clinically relevant leukemic therapies that are safe, selective, and effective.
Collapse
Affiliation(s)
- Jogender Tushir-Singh
- a Laboratory of Novel Biologics, Department of Biochemistry & Molecular Genetics , University of Virginia Cancer Center, University of Virginia School of Medicine , Charlottesville , VA , USA
| |
Collapse
|
139
|
Smekalova EM, Kotelevtsev YV, Leboeuf D, Shcherbinina EY, Fefilova AS, Zatsepin TS, Koteliansky V. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie 2016; 131:159-172. [DOI: 10.1016/j.biochi.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
|
140
|
A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat Commun 2016; 7:13580. [PMID: 27882923 PMCID: PMC5476801 DOI: 10.1038/ncomms13580] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
The efficient and precise delivery of siRNA to target cells is critical to successful gene therapy. While novel nanomaterials enhance delivery efficiency, it still remains challenging for precise gene delivery to overcome nonspecific adsorption and off-target effect. Here we design a dual lock-and-key system to perform cell-subtype-specific recognition and siRNA delivery. The siRNA is self-assembled in an oligonucleotide nano vehicle that is modified with a hairpin structure to act as both the ‘smart key’ and the delivery carrier. The auto-cleavable hairpin structure can be activated on site at target cell membrane by reacting with two aptamers as ‘dual locks’ sequentially, which leads to cell-subtype discrimination and precise siRNA delivery for high efficient gene silencing. The success of this strategy demonstrates the precise delivery of siRNA to specific target cells by controlling multiple parameters, thus paving the way for application of RNAi in accurate diagnosis and intervention. Delivery of siRNA to target cells is essential for in vivo gene therapy. Here the authors demonstrate an oligonucleotide aptamer that targets therapeutic siRNA to a specific cell type.
Collapse
|
141
|
Saneyoshi H, Iketani K, Kondo K, Saneyoshi T, Okamoto I, Ono A. Synthesis and Characterization of Cell-Permeable Oligonucleotides Bearing Reduction-Activated Protecting Groups on the Internucleotide Linkages. Bioconjug Chem 2016; 27:2149-56. [PMID: 27598574 DOI: 10.1021/acs.bioconjchem.6b00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-permeable oligodeoxyribonucleotides (ODNs) bearing reduction-activated protecting groups were synthesized as oligonucleotide pro-drugs. Although these oligonucleotides were amenable to solid-phase DNA synthesis and purification, the protecting group on their phosphodiester moiety could be readily cleaved by nitroreductase and NADH. Moreover, these compounds exhibited good nuclease resistance against 3'-exonuclease and endonuclease and good stability in human serum. Fluorescein-labeled ODNs modified with reduction-activated protecting groups showed better cellular uptake compared with that of naked ODNs.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Koichi Iketani
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kazuhiko Kondo
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takeo Saneyoshi
- Brain Science Institute RIKEN , 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
142
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
143
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
144
|
Ganesh S, Koser ML, Cyr WA, Chopda GR, Tao J, Shui X, Ying B, Chen D, Pandya P, Chipumuro E, Siddiquee Z, Craig K, Lai C, Dudek H, Monga SP, Wang W, Brown BD, Abrams MT. Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin. Mol Cancer Ther 2016; 15:2143-54. [PMID: 27390343 DOI: 10.1158/1535-7163.mct-16-0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/29/2016] [Indexed: 01/30/2023]
Abstract
The Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level and therefore can be applied to previously undruggable targets. Lipid nanoparticles (LNP) represent an elegant solution for the delivery of RNAi-triggering oligonucleotides to disease-relevant tissues, but have been mostly restricted to applications in the liver. In this study, we systematically tuned the composition of a prototype LNP to enable tumor-selective delivery of a Dicer-substrate siRNA (DsiRNA) targeting CTNNB1, the gene encoding β-catenin. This formulation, termed EnCore-R, demonstrated pharmacodynamic activity in subcutaneous human tumor xenografts, orthotopic patient-derived xenograft (PDX) tumors, disseminated hematopoietic tumors, genetically induced primary liver tumors, metastatic colorectal tumors, and murine metastatic melanoma. DsiRNA delivery was homogeneous in tumor sections, selective over normal liver and independent of apolipoprotein-E binding. Significant tumor growth inhibition was achieved in Wnt-dependent colorectal and hepatocellular carcinoma models, but not in Wnt-independent tumors. Finally, no evidence of accelerated blood clearance or sustained liver transaminase elevation was observed after repeated dosing in nonhuman primates. These data support further investigation to gain mechanistic insight, optimize dose regimens, and identify efficacious combinations with standard-of-care therapeutics. Mol Cancer Ther; 15(9); 2143-54. ©2016 AACR.
Collapse
Affiliation(s)
- Shanthi Ganesh
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts.
| | | | - Wendy A Cyr
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Junyan Tao
- University of Pittsburgh Medical Center, Pittsburgh, Pittsburgh
| | - Xue Shui
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bo Ying
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Dongyu Chen
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Purva Pandya
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Kevin Craig
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Chengjung Lai
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Henryk Dudek
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Weimin Wang
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bob D Brown
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Marc T Abrams
- Dicerna Pharmaceuticals, Inc., Cambridge, Massachusetts
| |
Collapse
|
145
|
Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 2016; 237:1-13. [PMID: 27369865 DOI: 10.1016/j.jconrel.2016.06.036] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 12/31/2022]
Abstract
Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases.
Collapse
|
146
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 610] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
147
|
Li J, Liu J, Li S, Hao Y, Chen L, Zhang X. Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion. Oncotarget 2016; 7:13782-96. [PMID: 26883109 PMCID: PMC4924678 DOI: 10.18632/oncotarget.7368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
The major obstacle to developing siRNA delivery is their extracellular and intracellular barriers. Herein, a humanized anti-EGFR monoclonal antibody h-R3 was developed to modify the self-assembled binary complexes (dendriplexes) of PAMAM and siRNA via electrostatic interactions, and two common ligands HSA and EGF were used as a control. Compared to dendriplexes, h-R3/EGF/HSA-dendriplexes showed increased particle size, decreased zeta potentials and lower cytotoxicity. Moreover, h-R3-dendriplexes presented greater cellular uptake and excellent endosomal escape ability in HepG2 cells. Ex vivo fluorescence imaging revealed that h-R3-dendriplexes showed higher targeted delivery and gene expression in the tumors than dendriplexes, HSA-dendriplexes and EGF-dendriplexes, which was in agreement with confocal results of cryosections. Furthermore, h-R3-dendriplexes for siPLK1 delivery indicated efficient gene silencing, potentiated cell growth inhibition and cell apoptosis, and suppressed cellular migration/invasion. These results indicate that h-R3-dendriplexes represent a great potential to be used as efficient targeted siRNA delivery carriers.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Shengnan Li
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| |
Collapse
|
148
|
Diao Y, Liu J, Ma Y, Su M, Zhang H, Hao X. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo. Cancer Biol Ther 2016; 17:498-506. [PMID: 26954374 DOI: 10.1080/15384047.2016.1156266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy.
Collapse
Affiliation(s)
- Yanjun Diao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China.,b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Jiayun Liu
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Yueyun Ma
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Mingquan Su
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Hongyi Zhang
- b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Xiaoke Hao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
149
|
Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. Int J Mol Sci 2015; 16:28912-30. [PMID: 26690119 PMCID: PMC4691089 DOI: 10.3390/ijms161226142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs) for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA.
Collapse
|
150
|
Suzuki Y, Hyodo K, Tanaka Y, Ishihara H. siRNA-lipid nanoparticles with long-term storage stability facilitate potent gene-silencing in vivo. J Control Release 2015; 220:44-50. [DOI: 10.1016/j.jconrel.2015.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022]
|