101
|
Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Jatropha Curcas Seedling under Chilling Stress. Int J Mol Sci 2019; 20:ijms20010208. [PMID: 30626061 PMCID: PMC6337099 DOI: 10.3390/ijms20010208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023] Open
Abstract
As a promising energy plant for biodiesel, Jatropha curcas is a tropical and subtropical shrub and its growth is affected by one of major abiotic stress, chilling. Therefore, we adopt the phosphoproteomic analysis, physiological measurement and ultrastructure observation to illustrate the responsive mechanism of J. curcas seedling under chilling (4 °C) stress. After chilling for 6 h, 308 significantly changed phosphoproteins were detected. Prolonged the chilling treatment for 24 h, obvious physiological injury can be observed and a total of 332 phosphoproteins were examined to be significantly changed. After recovery (28 °C) for 24 h, 291 phosphoproteins were varied at the phosphorylation level. GO analysis showed that significantly changed phosphoproteins were mainly responsible for cellular protein modification process, transport, cellular component organization and signal transduction at the chilling and recovery periods. On the basis of protein-protein interaction network analysis, phosphorylation of several protein kinases, such as SnRK2, MEKK1, EDR1, CDPK, EIN2, EIN4, PI4K and 14-3-3 were possibly responsible for cross-talk between ABA, Ca2+, ethylene and phosphoinositide mediated signaling pathways. We also highlighted the phosphorylation of HOS1, APX and PIP2 might be associated with response to chilling stress in J. curcas seedling. These results will be valuable for further study from the molecular breeding perspective.
Collapse
|
102
|
Wang X, Guo C, Peng J, Li C, Wan F, Zhang S, Zhou Y, Yan Y, Qi L, Sun K, Yang S, Gong Z, Li J. ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. THE NEW PHYTOLOGIST 2019; 221:341-355. [PMID: 30019753 DOI: 10.1111/nph.15345] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 05/22/2023]
Abstract
Group A protein phosphatase 2Cs (PP2Cs) are abscisic acid (ABA) co-receptors that negatively regulate the ABA signaling pathway by inhibiting the downstream SnRK2 protein kinases. It has long been observed that exogenous ABA treatments dramatically induce the expression of group A PP2C genes, but the underlying molecular mechanisms and the biological significance remain largely unknown. Here, by using GUS reporter transgenic lines in which various lengths of ABI1 and ABI2 promoters were used to drive GUS gene expression, we defined the promoter fragments that confer ABA inducibility to ABI1 and ABI2. We further showed that ABRE-binding factors (ABFs), the bZIP family transcription factors, directly bind to the promoters of group A PP2C genes, and mediate rapid induction of their expression on exogenous ABA treatments. Moreover, our data indicated that ABA dramatically induces the expression of ABF genes and the accumulation of endogenous ABF proteins, and that ABFs themselves are involved in this induction, thus providing another layer of ABA regulation towards ABF proteins in addition to the well-characterized ABA-induced phosphorylation by SnRK2 protein kinases. Together, our data demonstrate that ABFs mediate rapid ABA induction of group A PP2C genes, thus playing a role in the negative feedback regulation of ABA signaling.
Collapse
Affiliation(s)
- Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Can Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaiwen Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
103
|
Artlip T, McDermaid A, Ma Q, Wisniewski M. Differential gene expression in non-transgenic and transgenic "M.26" apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break. HORTICULTURE RESEARCH 2019; 6:86. [PMID: 31666956 PMCID: PMC6804898 DOI: 10.1038/s41438-019-0168-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
The CBF signal pathway is responsible for a significant portion of plant responses to low temperature and freezing. Overexpression of CBF genes in model organisms such as Arabidopsis thaliana enhances abiotic stress tolerance but also reduces growth. In addition to these effects, overexpression of the peach (Prunus persica [L.] Batsch) CBF1 gene in transgenic apple (Malus x domestica Borkh.) line T166 also results in early entry into and late exit from dormancy. Although the regulation of dormancy-induction and dormancy-release occur while the CBF regulon is operative in perennial, woody plants, how overexpression of CBF1 affects these dormancy-related changes in gene expression is incompletely understood. The objective of the present study was to characterize global changes in gene expression in peach CBF1-overexpressing and non-transformed apple bark tissues at different states of dormancy via RNA-seq. RNA-seq bioinformatics data was confirmed by RT-qPCR on a number of genes. Results indicate that the greatest number of significantly differentially expressed genes (DEGs) occurred in April when dormancy release and bud break normally occur but are delayed in Line T166. Genes involved in storage and inactivation of auxin, GA, and cytokinin were generally upregulated in T166 in April, while those for biosynthesis, uptake or signal transduction were generally downregulated in T166. Genes for cell division and cambial growth were also downregulated in T166 relative to the non-transformed line. These data suggest that overexpression of the peach CBF1 gene impacts growth hormone homeostasis and as a result the activation of growth in the spring, and most likely growth cessation in the fall as well.
Collapse
Affiliation(s)
- Timothy Artlip
- USDA-ARS-Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| | - Adam McDermaid
- Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57007 USA
- Present Address: Imagenetics, Sanford Health, Sioux Falls, SD 57007 USA
| | - Qin Ma
- Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57007 USA
- Present Address: SBS-Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Michael Wisniewski
- USDA-ARS-Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| |
Collapse
|
104
|
Wang T, Hua Y, Chen M, Zhang J, Guan C, Zhang Z. Mechanism Enhancing Arabidopsis Resistance to Cadmium: The Role of NRT1.5 and Proton Pump. FRONTIERS IN PLANT SCIENCE 2018; 9:1892. [PMID: 30619437 PMCID: PMC6305759 DOI: 10.3389/fpls.2018.01892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 05/15/2023]
Abstract
Aim: Heavy metal pollution is serious in China, and abscisic acid (ABA) is an important stress hormone. How it regulates plant tolerance to cadmium remains unclear, so we aimed to explore the molecular mechanism responsible for enhanced cadmium resistance in Arabidopsis wild-type and mutant plants and Brassica napus seedlings. Methods: Arabidopsis/B. napus were cultured hydroponically for 28/15 days and then treated with 20/10 μM Cd/Cd+ABA (5 μM) for 3/4 days. Chlorophyll degradation rate, SPAD values, proline, MDA, ABA,NO 3 - , and Cd concentrations were measured in root vacuoles and protoplasts; root to shootNO 3 - and Cd concentration ratios were determined and NRT1.5-, NRT1.8-, BnNRT1.5-, and BnNRT1.8-related gene expression was studied. Results: Cytoplasmic ABA levels in root cells of bglu10 and bglu18 Arabidopsis mutants were significantly lower than those in the wild-type, apparently making the latter more resistant to Cd.NO 3 - long-distance transporter NRT1.5 responded to ABA signaling by downregulating its own expression, while NRT1.8 did not respond. Concomitantly, proton pump activity in wild-type plants was higher than in the bglu10 and bglu18 mutants; thus, moreNO 3 - and Cd accumulated in the vacuoles of wild-type root cells. ABA application inhibited Cd absorption by B. napus. BnNRT1.5 responded to exogenous ABA signal by downregulating its own expression, while the lack of response by BnNRT1.8 resulted in increased amount ofNO 3 - accumulating in the roots to participate in the anti-cadmium reaction. Conclusion: NRT1.5 responds to the ABA signal to inhibit its own expression, whereas unresponsiveness of NRT1.8 causes accumulation ofNO 3 - in the roots; thus, enhancing Cd resistance. In Arabidopsis, because of proton pump action, moreNO 3 - and Cd accumulate in the vacuoles of Arabidopsis root cells, thereby reducing damage by Cd toxicity. However, in B. napus, the addition of exogenous ABA inhibited Cd absorption. Our data provide a sound basis to the theoretical molecular mechanism involved in hormone signaling during response of plants to heavy metal stress.
Collapse
Affiliation(s)
- Tao Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Yingpeng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Moxian Chen
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chunyun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| |
Collapse
|
105
|
Fang Q, Wang Q, Mao H, Xu J, Wang Y, Hu H, He S, Tu J, Cheng C, Tian G, Wang X, Liu X, Zhang C, Luo K. AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. PLANT CELL REPORTS 2018; 37:1499-1511. [PMID: 30014159 DOI: 10.1007/s00299-018-2321-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 05/15/2023]
Abstract
AtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis. AmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, our results suggest that the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China.
| | - Qiong Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hui Mao
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Jing Xu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Ying Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hao Hu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Shuai He
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Junchu Tu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chao Cheng
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Guozheng Tian
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaopeng Liu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chi Zhang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Keming Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
106
|
Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:683-695. [PMID: 30146417 DOI: 10.1016/j.plaphy.2018.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 05/21/2023]
Abstract
ERF proteins are plant-specific transcription factors that play significant roles in plant defense against various stresses. However, only little information regarding stress-related ERF genes is available in tomato (Solanum lycopersicum, Sl). In this study, a tomato ERF gene, SlERF84, was cloned and functionally characterized. The nucleus localization of SlERF84-sGFP was confirmed through a transient expression assay. Transactivation assays in yeast demonstrated that SlERF84 functions as a transcriptional activator. Real-time PCR analysis revealed that SlERF84 could be markedly induced by drought, salt and by several phytohormones (ABA, MeJA and ACC). Overexpression of SlERF84 in Arabidopsis endows transgenic plants with ABA hypersensitivity and enhanced tolerance to drought and salt stress. Histochemical staining assay showed that SlERF84 renders transgenic plants better ROS-scavenging capability. Pathogen inoculation assay revealed that SlERF84 might negatively modulate plant defense response to Pseudomonas syringae pv. tomato DC3000. Moreover, the transcript levels of pathogenesis-related genes AtPR1 and AtPR3 were compromised in transgenic Arabidopsis, as compared to that in Col-0 plants when inoculated with Pseudomonas syringae pv. tomato DC3000. These results suggest that SlERF84 functions as a stress-responsive transcription factor in differentially modulation of abiotic and biotic stress tolerance, and may have applications in the engineering of economically important crops.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
107
|
Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC PLANT BIOLOGY 2018; 18:226. [PMID: 30305032 PMCID: PMC6180487 DOI: 10.1186/s12870-018-1454-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chunmiao Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jiahui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009 China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
108
|
Liu Y, Li L, Zhang L, Lv Q, Zhao Y, Li X. Isolation and identification of wheat gene TaDIS1 encoding a RING finger domain protein, which negatively regulates drought stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:49-59. [PMID: 30107881 DOI: 10.1016/j.plantsci.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 05/16/2023]
Abstract
Drought stress is a major factor that limits the yield and quality in wheat. In this study, we identified an orthologue of the rice gene OsDIS1 (Oryza sativa drought-induced SINA protein 1) in wheat (Triticum aestivum L.) called TaDIS1. TaDIS1 encodes a putative 301 amino acid protein with a C3HC4 RING finger conserved domain at the N-terminal and a SINA domain at the C-terminal. TaDIS1 contains three exons and two introns. qRT-PCR analysis showed that TaDIS1 expression was induced by PEG6000, NaCl, and abscisic acid (ABA) treatment. We generated TaDIS1-overexpressing transgenic Arabidopsis lines. Under drought stress conditions, the transgenic Arabidopsis plants had a lower germination rate, relative water content, and proline contents, with higher water loss, chlorophyll loss, relative electrical conductivity, and malondialdehyde contents compared with the wild type. The antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activity levels were lower in the transgenic plants. The TaDIS1-overexpressing plants had shorter roots with greater growth inhibition in response to mannitol treatment than the wild type, with increased hypersensitivity to ABA during seed germination and early seedling growth. The expression of stress-related genes in transgenic plants under drought stress suggests that TaDIS1 may function negatively in drought stress by regulating the stress response-related genes.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
109
|
Du S, Yu C, Tang L, Lu L. Applications of SERS in the Detection of Stress-Related Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E757. [PMID: 30257510 PMCID: PMC6215319 DOI: 10.3390/nano8100757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022]
Abstract
A wide variety of biotic and abiotic stresses continually attack plants and animals, which adversely affect their growth, development, reproduction, and yield realization. To survive under stress conditions, highly sophisticated and efficient tolerance mechanisms have been evolved to adapt to stresses, which consist of the variation of effector molecules playing vital roles in physiological regulation. The development of a sensitive, facile, and rapid analytical methods for stress factors and effector molecules detection is significant for gaining deeper insight into the tolerance mechanisms. As a nondestructive analysis technique, surface-enhanced Raman spectroscopy (SERS) has unique advantages regarding its biosensing applications. It not only provides specific fingerprint spectra of the target molecules, conformation, and structure, but also has universal capacity for simultaneous detection and imaging of targets owing to the narrow width of the Raman vibrational bands. Herein, recent progress on biotic and abiotic stresses, tolerance mechanisms and effector molecules is summarized. Moreover, the development and promising future trends of SERS detection for stress-related substances combined with nanomaterials as substrates and SERS tags are discussed. This comprehensive and critical review might shed light on a new perspective for SERS applications.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lin Tang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
110
|
Wang J, Lian W, Cao Y, Wang X, Wang G, Qi C, Liu L, Qin S, Yuan X, Li X, Ren S, Guo YD. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci Rep 2018; 8:13349. [PMID: 30190519 PMCID: PMC6127341 DOI: 10.1038/s41598-018-31690-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/22/2018] [Indexed: 01/01/2023] Open
Abstract
NACs are one of the largest transcription factor families in plants and are involved in the response to abiotic stress. BoNAC019, a homologue of AtNAC019, was isolated from cabbage (Brassica oleracea). BoNAC019 was localized in the nucleus and functioned as a transcriptional activator. The expression of BoNAC019 was induced by dehydration, salt, abscisic acid (ABA), and H2O2 treatments. BoNAC019 overexpressing plants were generated to explore the function of BoNAC019 in response to drought stress. Overexpression (OE) of BoNAC019 reduced drought tolerance with lower survival rate, higher water loss rate, lower proline content and ABA content. The seed germination and root length assays of BoNAC019-OE plants showed decreased sensitivity to ABA. Under drought condition, antioxidant enzymes and anthocyanin content decreased in BoNAC019 -OE plants, resulting in the accumulation of more reactive oxygen species (ROS), which cause damage to plants. Several stress-responsive genes, antioxidant enzymatic genes, anthocyanin biosynthetic genes and ABA signaling genes were down-regulated under drought condition while the ABA catabolism genes were induced in BoNAC019-OE plants under both normal and drought conditions. Our results demonstrated that BoNAC019 might participated in regulating drought tolerance by inducing ABA catabolism genes and decreasing ABA content.
Collapse
Affiliation(s)
- Jinfang Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiran Lian
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yunyun Cao
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gongle Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chuandong Qi
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Sijia Qin
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Yuan
- Shandong Huasheng Agriculture Co., Ltd, Shandong, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co., Ltd, Shandong, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA, 23806, USA
| | - Yang-Dong Guo
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
111
|
Quan W, Hu Y, Mu Z, Shi H, Chan Z. Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:150-157. [PMID: 29883897 DOI: 10.1016/j.plaphy.2018.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
PYR/PYLs function as ABA receptors and are key regulators during plant drought stress response. Previously we screened drought tolerance of Arabidopsis ABA receptors PYR/PYLs under the control of five different promoters. In this study, we characterized drought stress tolerance of AtPYL5 transgene under the control of one guard cell specific promoter, pGC1. pGC1::AtPYL5 transgenic Arabidopsis exhibited reduced transpiration rate and decreased water loss after drought treatment. Transformation of pGC1::AtPYL5 in Arabidopsis also decreased oxidative stress damage and improved photosynthesis under drought stress condition. These results indicated that pGC1::AtPYL5 construct is effective and might pave new way to develop genetically engineered plants to improve drought stress tolerance.
Collapse
Affiliation(s)
- Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yuanlei Hu
- College of Life Science, Peking University, Beijing 100871, China
| | - Zixin Mu
- College of Life Science, Northwest A&F University, Shaan'xi 712100, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhulong Chan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| |
Collapse
|
112
|
Abstract
Food security for a growing world population remains one of the most challenging tasks. Rapid climate change accelerates the loss of arable land used for crop production, while it simultaneously imposes increasing biotic and abiotic stresses on crop plants. Analysis and molecular understanding of the factors governing stress tolerance is in the focus of scientific and applied research. One plant is often mentioned in the context with stress resistance—Chenopodium quinoa. Through improved breeding strategies and the use of next generation approaches to study and understand quinoa’s salinity tolerance, an important step towards securing food supply is taken.
Collapse
|
113
|
Song S, Xu Y, Huang D, Miao H, Liu J, Jia C, Hu W, Valarezo AV, Xu B, Jin Z. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:163-169. [PMID: 29778840 DOI: 10.1016/j.plaphy.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research(Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ana Valeria Valarezo
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Zhiqiang Jin
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
114
|
Keshishian EA, Hallmark HT, Ramaraj T, Plačková L, Sundararajan A, Schilkey F, Novák O, Rashotte AM. Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. PLANT DIRECT 2018; 2:e00071. [PMID: 31245735 PMCID: PMC6508850 DOI: 10.1002/pld3.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 06/02/2023]
Abstract
Cytokinins are well-known to be involved in processes responsible for plant growth and development. More recently, these hormones have begun to be associated with stress responses as well. However, it is unclear how changes in cytokinin biosynthesis, signaling, or transport relate to stress effects. This study examines in parallel how two different stresses, salt, and oxidative stress, affect changes in both cytokinin levels and whole plant transcriptome response. Solanum lycopersicum seedlings were given a short-term (6 hr) exposure to either salt (150 mM NaCl) or oxidative (20 mM H2O2) stress and then examined to determine both changes in cytokinin levels and transcriptome. LC-MS/MS was used to determine the levels of 22 different types of cytokinins in tomato plants including precursors, active, transported, and conjugated forms. When examining cytokinin levels we found that salt treatment caused an increase in both active and inactive cytokinin levels and oxidative stress caused a decrease in these levels. RNA-sequencing analyses of these same stress-treated tissues revealed 6,643 significantly differentially expressed genes (DEGs). Although many DEGs are similar between the two stresses, approximately one-third of the DEGs in each treatment were unique to that stress. Several cytokinin-related genes were among the DEGs. Examination of photosystem II efficiency revealed that cytokinins affect physiological response to stress in tomato, further validating the changes in cytokinin levels seen in planta.
Collapse
Affiliation(s)
| | | | | | - Lenka Plačková
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | | | - Faye Schilkey
- National Center for Genome ResourcesSanta FeNew Mexico
| | - Ondřej Novák
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of SciencesOlomoucCzech Republic
| | | |
Collapse
|
115
|
The Cold-Regulated Genes of Blueberry and Their Response to Overexpression of VcDDF1 in Several Tissues. Int J Mol Sci 2018; 19:ijms19061553. [PMID: 29882876 PMCID: PMC6032386 DOI: 10.3390/ijms19061553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/13/2022] Open
Abstract
Expression of blueberry cold-regulated genes (VcCORs) could play a role in the variable cold hardiness of blueberry tissues. In this study, transcriptome comparisons were conducted to reveal expression of VcCORs in non-acclimated leaves, flower buds, and flowers of both non-transgenic and transgenic blueberries containing an overexpressed blueberry DWARF AND DELAYED FLOWERING gene (VcDDF1) as well as in fully chilled flower buds of non-transgenic blueberry. In non-transgenic blueberries, 57.5% of VcCOR genes showed differential expression in at least one of the three pairwise comparisons between non-acclimated leaves, flower buds, and flowers, and six out of nine dehydration-responsive element-binding factors showed differential expression. In addition, expression of VcDDF1 was not cold-inducible in non-transgenic blueberries and had higher expression in flowers than in leaves or non-acclimated flower buds. In transgenic blueberries, overexpression of VcDDF1 resulted in higher VcDDF1 expression in leaves than in flower buds and flowers. VcDDF1 overexpression enhanced expression of blueberry CBF1 and CBF3 in leaves and repressed expression of CBF3 in both flower buds and flowers. Overall, the results revealed tissue-specific expression patterns of VcCORs. The responses of VcCORs to overexpression of VcDDF1 suggest that it is possible to increase plant cold hardiness through overexpression of a non-cold-inducible gene.
Collapse
|
116
|
Ashoub A, Müller N, Jiménez-Gómez JM, Brüggemann W. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. PHYSIOLOGIA PLANTARUM 2018; 163:18-29. [PMID: 29111595 DOI: 10.1111/ppl.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA-sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Niels Müller
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Wolfgang Brüggemann
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| |
Collapse
|
117
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
118
|
Di F, Jian H, Wang T, Chen X, Ding Y, Du H, Lu K, Li J, Liu L. Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus. Genes (Basel) 2018. [PMID: 29534558 PMCID: PMC5867877 DOI: 10.3390/genes9030156] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) is an endogenous phytohormone that plays important roles in the regulation of plant growth, development, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein is a core regulatory component of ABA signaling networks in plants. However, no details regarding this family in Brassica napus are available. Here, 46 PYLs were identified in the B. napus genome. Based on phylogenetic analysis, BnPYR1 and BnPYL1-3 belong to subfamily I, BnPYL7-10 belong to subfamily II, and BnPYL4-6 and BnPYL11-13 belong to subfamily III. Analysis of BnPYL conserved motifs showed that every subfamily contained four common motifs. By predicting cis-elements in the promoters, we found that all BnPYL members contained hormone- and stress-related elements and that expression levels of most BnPYLs were relatively higher in seeds at the germination stage than those in other organs or at other developmental stages. Gene Ontology (GO) enrichment showed that BnPYL genes mainly participate in responses to stimuli. To identify crucial PYLs mediating the response to abiotic stress in B. napus, expression changes in 14 BnPYL genes were determined by quantitative real-time RT-PCR after drought, heat, and salinity treatments, and identified BnPYR1-3, BnPYL1-2, and BnPYL7-2 in respond to abiotic stresses. The findings of this study lay a foundation for further investigations of PYL genes in B. napus.
Collapse
Affiliation(s)
- Feifei Di
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Hongju Jian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Tengyue Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Xueping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Yiran Ding
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
119
|
Jin Y, Zhai S, Wang W, Ding X, Guo Z, Bai L, Wang S. Identification of genes from the ICE-CBF-COR pathway under cold stress in Aegilops- Triticum composite group and the evolution analysis with those from Triticeae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018. [PMID: 29515316 PMCID: PMC5834981 DOI: 10.1007/s12298-017-0495-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adverse environmental conditions limit various aspects of plant growth, productivity, and ecological distribution. To get more insights into the signaling pathways under low temperature, we identified 10 C-repeat binding factors (CBFs), 9 inducer of CBF expression (ICEs) and 10 cold-responsive (CORs) genes from Aegilops-Triticum composite group under cold stress. Conserved amino acids analysis revealed that all CBF, ICE, COR contained specific and typical functional domains. Phylogenetic analysis of CBF proteins from Triticeae showed that these CBF homologs were divided into 11 groups. CBFs from Triticum were found in every group, which shows that these CBFs generated prior to the divergence of the subfamilies of Triticeae. The evolutionary relationship among the ICE and COR proteins in Poaceae were divided into four groups with high multispecies specificity, respectively. Moreover, expression analysis revealed that mRNA accumulation was altered by cold treatment and the genes of three types involved in the ICE-CBF-COR signaling pathway were induced by cold stress. Together, the results make CBF, ICE, COR genes family in Triticeae more abundant, and provide a starting point for future studies on transcriptional regulatory network for improvement of chilling tolerance in crop.
Collapse
Affiliation(s)
- Ya’nan Jin
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Shanshan Zhai
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Wenjia Wang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Xihan Ding
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Liping Bai
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| |
Collapse
|
120
|
Salt stress tolerance of transgenic rice (Oryza sativa L.) expressing AtDREB1A gene under inducible or constitutive promoters. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
121
|
Zhu T, Wu Y, Yang X, Chen W, Gong Q, Liu X. The Asparagine-Rich Protein NRP Facilitates the Degradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis. MOLECULAR PLANT 2018; 11:257-268. [PMID: 29175650 DOI: 10.1016/j.molp.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The phytohormone abscisic acid (ABA) plays critical roles in abiotic stress responses and plant development. In germinating seeds, the phytochrome-associated protein phosphatase, FyPP3, negatively regulates ABA signaling by dephosphorylating the transcription factor ABI5. However, whether and how FyPP3 is regulated at the posttranscriptional level remains unclear. Here, we report that an asparagine-rich protein, NRP, interacts with FyPP3 and tethers FyPP3 to SYP41/61-positive endosomes for subsequent degradation in the vacuole. Upon ABA treatment, the expression of NRP was induced and NRP-mediated FyPP3 turnover was accelerated. Consistently, ABA-induced FyPP3 turnover was abolished in an nrp null mutant. On the other hand, FyPP3 can dephosphorylate NRP in vitro, and overexpression of FyPP3 reduced the half-life of NRP in vivo. Genetic analyses showed that NRP has a positive role in ABA-mediated seed germination and gene expression, and that NRP is epistatic to FyPP3. Taken together, our results identify a new regulatory circuit in the ABA signaling network, which links the intracellular trafficking with ABA signaling.
Collapse
Affiliation(s)
- Tong Zhu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanying Wu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaotong Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenli Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqiu Gong
- Tianjin Key Laboratory of Protein Science, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
122
|
Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture. SUSTAINABILITY 2018. [DOI: 10.3390/su10020391] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
123
|
|
124
|
Yao W, Zhao K, Cheng Z, Li X, Zhou B, Jiang T. Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1121. [PMID: 30233602 PMCID: PMC6131821 DOI: 10.3389/fpls.2018.01121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/11/2018] [Indexed: 05/20/2023]
Abstract
NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in Populus alba × Populus glandulosa and Populus simonii × Populus nigra. Among 170 NAC members, NAC57 gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of NAC57 gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the NAC57 gene was cloned from P. alba × P. glandulosa and transformed into Arabidopsis thaliana. Under salt stress, transgenic Arabidopsis overexpressing NAC57 showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the NAC57 gene plays an important role in salt stress responses.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Tingbo Jiang,
| |
Collapse
|
125
|
Wang X, Shi X, Chen S, Ma C, Xu S. Evolutionary Origin, Gradual Accumulation and Functional Divergence of Heat Shock Factor Gene Family with Plant Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:71. [PMID: 29456547 PMCID: PMC5801592 DOI: 10.3389/fpls.2018.00071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 05/09/2023]
Abstract
Plants, as sessile organisms, evolved a complex and functionally diverse heat shock factor (HSF) gene family to cope with various environmental stresses. However, the limited evolution studies of the HSF gene family have hindered our understanding of environmental adaptations in plants. In this study, a comprehensive evolution analysis on the HSF gene family was performed in 51 representative plant species. Our results demonstrated that the HSFB group which lacks a typical AHA activation domain, was the most ancient, and is under stronger purifying selection pressure in the subsequent evolutionary processes. While, dramatic gene expansion and functional divergence occurred at evolution timescales corresponding to plant land inhabit, which contribute to the emergence and diversification of the HSFA and HSFC groups in land plants. During the plant evolution, the ancestral functions of HSFs were maintained by strong purifying pressure that acted on the DNA binding domain, while the variable oligomerization domain and motif organization of HSFs underwent functional divergence and generated novel subfamilies. At the same time, variations were further accumulated with plant evolution, and this resulted in remarkable functional diversification among higher plant lineages, including distinct HSF numbers and selection pressures of several HSF subfamilies between monocots and eudicots, highlighting the fundamental differences in different plant lineages in response to environmental stresses. Taken together, our study provides novel insights into the evolutionary origin, pattern and selection pressure of plant HSFs and delineates critical clues that aid our understanding of the adaptation processes of plants to terrestrial environments.
Collapse
Affiliation(s)
- Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Siyuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Shengbao Xu
| |
Collapse
|
126
|
Mittal S, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, Thirunavukkarasu N. Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement. Front Chem 2017; 5:115. [PMID: 29312925 PMCID: PMC5742180 DOI: 10.3389/fchem.2017.00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022] Open
Abstract
Calcium dependent protein kinases (CDPKs) play significant role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72) and major food crops such as rice (78) and sorghum (91). We comprehensively studied the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency in the studied species was one of the reasons for the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. The expression assay showed 5, 6, 11, and 9 were the commonly and differentially expressed drought-related orthologous genes in maize, Arabidopsis, rice, and sorghum, respectively. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3, and sorghum: 2) showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA, and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection, and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance through different ABA and MAPK signaling cascades. These selected candidate genes could be targeted in development of drought tolerant genotypes in maize, rice, and sorghum through appropriate breeding approaches. Our comparative experiments of CDPK genes could also be extended in the drought stress breeding programmes of the related species.
Collapse
Affiliation(s)
- Shikha Mittal
- Division of Genetics, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Atmakuri R. Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR), New Delhi, India
| | - Prashant A. Jain
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, India
| | - Prasanta K. Dash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | |
Collapse
|
127
|
Wei Q, Zhang F, Sun F, Luo Q, Wang R, Hu R, Chen M, Chang J, Yang G, He G. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:112-123. [PMID: 29223332 DOI: 10.1016/j.plantsci.2017.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 05/24/2023]
Abstract
MYB transcription factors are involved in the regulation of plant development and response to biotic and abiotic stress. In this study, TaMyb1D, a novel subgroup 4 gene of the R2R3-MYB subfamily, was cloned from wheat (Triticum aestivum L.). TaMyb1D was localized in the nucleus and functioned as a transcriptional repressor. The overexpression of TaMyb1D in tobacco (Nicotiana tabacum) plants repressed the expression of genes related to phenylpropanoid metabolism and down-regulated the accumulation of lignin in stems and flavonoids in leaves. These changes affected plant development under normal conditions. The expression of TaMyb1D was ubiquitous and up-regulated by PEG6000 and H2O2 treatments in wheat. TaMyb1D-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate during drought stress, as well as higher chlorophyll content in leaves during oxidative stress. The transgenic plants showed a lower leakage of ions as well as reduced malondialdehyde and H2O2 levels during conditions of drought and oxidative stresses. In addition, TaMyb1D up-regulated the expression levels of ROS- and stress-related genes in response to drought stress. Therefore, the overexpression of TaMyb1D enhanced tolerance to drought and oxidative stresses in tobacco plants. Our study demonstrates that TaMyb1D functions as a negative regulator of phenylpropanoid metabolism and a positive regulator of plant tolerance to drought and oxidative stresses.
Collapse
Affiliation(s)
- Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fusheng Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
128
|
Santos ICD, Almeida AAFD, Pirovani CP, Costa MGC, Silva MFDGFD, Bellete BS, Freschi L, Soares Filho W, Coelho Filho MA, Gesteira ADS. Differential accumulation of flavonoids and phytohormones resulting from the canopy/rootstock interaction of citrus plants subjected to dehydration/rehydration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:147-158. [PMID: 28866236 DOI: 10.1016/j.plaphy.2017.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 05/08/2023]
Abstract
Water scarcity can elicit drastic changes in plant metabolic and hormonal regulation, which may be of fundamental importance to stress tolerance. The study of plant the metabolic alterations in response to water deficit, especially the effects of the rootstocks level, is important to elucidate the mechanisms associated to drought tolerance. To verify the influence of rootstock and grafting on the tolerance to drought in citrus plants, we analyzed the growth, phytohormone levels and flavonoid profiles in grafted and ungrafted citrus plants subjected to different soil water regimes on plant status (well-watered, moderate drought and severe drought and rehydrated) under field conditions. The experiments were conducted under field conditions in the Brazilian Agricultural Research Corporation (EMBRAPA), Cruz das Almas, BA, Brazil. Water deficit reduced the total leaf area per plant in all canopy/rootstock combinations. Self-grafting reduce root volume, area and length when compared to ungrafted plants. Drought-induced increases in salicylic acid and abscisic acid associated with concomitant reductions in indoleacetic acid were observed in most canopy/rootstock combinations. However, plants with 'Sunki Maravilha' rootstocks exhibited the most pronounced changes in hormonal levels upon drought stress. Associated to these hormonal changes, drought also significantly affected flavonoid content and profile in both leaves and roots of the distinct citrus combinations. Glycosylated (GFs) and polimethoxylated flavonoids were predominantly found in leaves, whereas prenylated coumarins were found in the roots. Leaf levels of GFs (vicenin, F11, rutin and rhoifolin) were particularly modulated by drought in plants with 'Rangpur Santa Cruz' lime rootstock, whereas root levels of prenylated coumarins were most regulated by drought in plants with the 'Sunki Maravilha' root system. Taken together, these data indicate that the impacts of water deficit restriction on growth, hormonal balance and flavonoid profiles significantly varies depending on the canopy/rootstock combinations.
Collapse
Affiliation(s)
- Ivanildes C Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos P Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Maria Fatima das Graças Fernandes da Silva
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Barbara Sayuri Bellete
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Walter Soares Filho
- Embrapa Mandioca e Fruticultura, Rua Embrapa s/n, CP 007, Cruz das Almas, BA, Brazil
| | | | | |
Collapse
|
129
|
Shi H, Liu W, Yao Y, Wei Y, Chan Z. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:24-31. [PMID: 28716417 DOI: 10.1016/j.plantsci.2017.05.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 05/03/2023]
Abstract
Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses.
Collapse
Affiliation(s)
- Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Wen Liu
- Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yue Yao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
130
|
Basu S, Rabara R. Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
131
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
132
|
Fukushima A, Iwasa M, Nakabayashi R, Kobayashi M, Nishizawa T, Okazaki Y, Saito K, Kusano M. Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1464. [PMID: 28894456 PMCID: PMC5581396 DOI: 10.3389/fpls.2017.01464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 05/29/2023]
Abstract
Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1) and plants overexpressing the gene encoding γ-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditions-oxidative stress elicited by methyl viologen and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. As a common oxidative stress response, several flavonoids that we assessed showed overaccumulation, whereas the mild phosphate stress resulted in increased levels of specific kaempferol- and quercetin-glycosides. Remarkably, in addition to a significant increased level of sugar, osmolytes, and lipids as mild oxidative stress-responsive metabolites, short-chain aliphatic glucosinolates over-accumulated in the mutants, whereas the level of long-chain aliphatic glucosinolates and specific lipids decreased. Coordinated gene expressions related to glucosinolate and flavonoid biosynthesis also supported the metabolite responses in the pad2-1 mutant. Our results suggest that glutathione synthesis mutants accelerate transcriptional regulatory networks to control the biosynthetic pathways involved in glutathione-independent scavenging metabolites, and that they might reconfigure the metabolic networks in primary and secondary metabolism, including lipids, glucosinolates, and flavonoids. This work provides a basis for the elucidation of the molecular mechanisms involved in the metabolic and transcriptional regulatory networks in response to combined low glutathione content with mild oxidative and nutrient stress in A. thaliana.
Collapse
Affiliation(s)
| | - Mami Iwasa
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Nissan Chemical Industries, Ltd.Funabashi, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | | | | | - Yozo Okazaki
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| |
Collapse
|
133
|
Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Ge X, Zhang X, Li F. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC PLANT BIOLOGY 2017; 17:142. [PMID: 28830364 PMCID: PMC5568319 DOI: 10.1186/s12870-017-1078-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. RESULTS The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. CONCLUSIONS Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.
Collapse
Affiliation(s)
- Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xioaqian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Ge Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| |
Collapse
|
134
|
Zhu CY, Liu W, Kang LF, Xu Q, Xing SL, Fan YY, Song ZH, Yan J, Li JQ, Sang T. Haplotypes Phased from Population Transcriptomes Detecting Selection in the Initial Adaptation of Miscanthus lutarioriparius to Stressful Environments. THE PLANT GENOME 2017; 10. [PMID: 28724071 DOI: 10.3835/plantgenome2016.11.0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adaptation is a characteristic that enhances the survival or reproduction of organisms; selection is the critical process leading to adaptive evolution. Therefore, detecting selection is important in studying evolutionary biology. Changes in allele frequency are fundamental to adaptive evolution. The allele frequency of entire genes at the genomic scale is more intensive and precise for analyzing selection effects, compared with simple sequence repeat and single nucleotide polymorphism (SNP) alleles from nuclear gene fragments. Here, we analyzed 29,094 SNPs derived from 80 individuals of 14 L. Liou ex S.L. Chen & Renvoize populations planted near their native habitat (Jiangxia, Hubei Province, JH) and a stressful environment (Qingyang, Gansu Province, QG) to detect selection during initial adaptation. The nucleotide diversity of over 60% of genes was decreased in QG compared with JH, suggesting that most genes were undergoing selection in the stressful environment. We explored a new approach based on haplotype data inferred from RNA-seq data to analyze the change in frequency between two sites and to detect selection signals. In total, 402 and 51 genes were found to be targets of positive and negative selection, respectively. Among these candidate genes, the enrichment of abiotic stress-response genes and photosynthesis-related genes might have been responsible for establishment in the stressful environment. This is the first study assessing the change in allele frequency at the genomic level during adaptation. The method in which allele frequency detects selection during initial adaptation using population RNA-seq data would be useful for developing evolutionary biology.
Collapse
|
135
|
Wang H, Qin F. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1110. [PMID: 28713401 PMCID: PMC5491614 DOI: 10.3389/fpls.2017.01110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Agricultural College, Yangtze UniversityJingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
136
|
Song GQ, Gao X. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants. BMC PLANT BIOLOGY 2017; 17:106. [PMID: 28629320 PMCID: PMC5477172 DOI: 10.1186/s12870-017-1053-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/06/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). RESULTS The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. CONCLUSION A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xuan Gao
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000 China
| |
Collapse
|
137
|
Dong W, Song Y, Zhao Z, Qiu NW, Liu X, Guo W. The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem Biophys Res Commun 2017; 490:225-230. [PMID: 28602696 DOI: 10.1016/j.bbrc.2017.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022]
Abstract
MYB-type proteins are known to participate in many stress responses, although their role in legumes is still less clear. Here, the isolation and characterization of MtMYBS1, an R2R3 MYB gene isolated from the model legume Medicago truncatula, is described. MtMYBS1 transcription was inducible by NaCl, polyethylene glycol or abscisic acid (ABA). When tested in yeast, its product was shown to have transactivational activity. The constitutive expression of MtMYBS1 in Arabidopsis thaliana seedlings mitigated the restriction on root growth imposed by either salinity or osmotic stress and raised their sensitivity to ABA. It also resulted in the plants being able to overcome several growth constraints and promoted activity in both the ABA-dependent and -independent stress-responsive pathways. In particular, it enhanced the transcription of P5CS, a gene which encodes a component of proline synthesis. MtMYBS1 may prove to be a useful gene for manipulating the salinity tolerance of legumes.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Jinan, 250100, PR China
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Zhong Zhao
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Nian Wei Qiu
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Xijiang Liu
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Weihua Guo
- Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
138
|
Cavaiuolo M, Cocetta G, Spadafora ND, Müller CT, Rogers HJ, Ferrante A. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia. PLoS One 2017; 12:e0178119. [PMID: 28558066 PMCID: PMC5448768 DOI: 10.1371/journal.pone.0178119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2017] [Indexed: 11/25/2022] Open
Abstract
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
139
|
Bundó M, Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2963-2975. [PMID: 28472292 PMCID: PMC5853374 DOI: 10.1093/jxb/erx145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/05/2017] [Indexed: 05/21/2023]
Abstract
Plant growth and productivity is negatively affected by different stresses. Most stresses trigger calcium signals that initiate acclimation responses in plants. The multigene family of plant calcium-dependent protein kinases (CPKs) functions in multiple stress responses by transducing calcium signals into phosphorylation events. This work reports that the OsCPK10 isoform positively mediates tolerance to different stresses in rice plants by enhancing their antioxidant capacity and protecting them from reactive oxygen species (ROS) damage, with the uncontrolled generation of ROS being a common feature of these stresses. Here, we show that the constitutive accumulation of an HA-tagged OsCPK10 full-length protein enhances the hydrogen peroxide detoxifying capacity of rice plants during desiccation. This is achived by modulating the accumulation of catalase proteins, which reduces the extent of lipid peroxidation and protects the integrity of cell membranes, resulting in drought tolerance. OsCPK10HA accumulation also confers blast disease resistance by interfering with fungal necrotrophic growth via a reduction in the accumulation of hydrogen peroxide. Furthermore, we show by bimolecular complementation assays that OsCPK10 is a plasma membrane protein that physically interacts in vivo with catalase A. OsCPK10 therefore appears to be a good molecular target to improve tolerance to abiotic stresses as well as to blast disease, which limit rice crop productivity.
Collapse
Affiliation(s)
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
140
|
Bai J, Mao J, Yang H, Khan A, Fan A, Liu S, Zhang J, Wang D, Gao H, Zhang J. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genet 2017; 18:41. [PMID: 28506210 PMCID: PMC5433004 DOI: 10.1186/s12863-017-0506-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/08/2017] [Indexed: 11/30/2022] Open
Abstract
Background The SnRKs (sucrose non-fermenting 1 related protein kinase) are a gene family coding for Ser/Thr protein kinases and play important roles in linking the tolerance and metabolic responses of plants to abiotic stresses. To date, no genome-wide characterization of the sucrose non-ferment 1 related protein kinase 2 (SnRK2) subfamily has been conducted in potato (Solanum tuberosum L.). Results In this study, eight StSnRK2 genes (StSnRK2.1- StSnRK2.8) were identified in the genome of the potato (Solanum tuberosum L.) cultivar ‘Longshu 3’, with similar characteristics to SnRK2 from other plant species in gene structure, motif distribution and secondary structures. The C-terminal regions were highly divergent among StSnRK2s, while they all carried the similar Ser/Thr protein kinase domain. The fluorescence of GFP fused with StSnRK2.1, StSnRK2.2, StSnRK2.6, StSnRK2.7 and StSnRK2.8 was detected in the nucleus and cytoplasm of onion epidermal cells with StSnRK2.3 and StSnRK2.4 mainly associated to the nucleus while StSnRK2.5 to subcellular organelles. Expression level analysis by qRT-PCR showed that StSnRK2.1, 2.2, 2.5 and 2.6 were more than 1 fold higher in the root than in the leaf, tuber and stem tissues. The expressions of StSnRK2.3, 2.7, and 2.8 were at least 1.5 folds higher in the leaf and stem than in the root, but lower in the tuber. The expression of StSnRK2.4 was also significantly (P < 0.05) higher in leaf, stem, and tuber than in the root. From the perspective of the relative expressions of StSnRK2 genes in potato, ABA treatment had a different effect from NaCl and PEG treatments. Conclusion In the present study, we identified and characterized eight SnRK2s in the potato genome. The eight StSnRK2s exhibit similar gene structure and secondary structures in potato to the SnRK2s found in other plant species. The relative expression of eight genes varied among various tissues (roots, leaves, tubers, and stems) and abiotic stresses (ABA, NaCl and PEG-6000) with the prolongation of treatments. This study provides valuable information for the future functional dissection of potato SnRK2 genes in stress signal transduction, plant growth and development. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0506-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangping Bai
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China. .,College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Juan Mao
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Hongyu Yang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Awais Khan
- International Potato Center (CIP), Avenida La Molina 1895, La Molina Apartado, 1558, Lima, Peru
| | - Aqi Fan
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Siyan Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Junlian Zhang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Di Wang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China.,College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Huijuan Gao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, People's Republic of China
| | - Jinlin Zhang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, People's Republic of China. .,State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, People's Republic of China.
| |
Collapse
|
141
|
Subburaj S, Zhu D, Li X, Hu Y, Yan Y. Molecular Characterization and Expression Profiling of Brachypodium distachyon L. Cystatin Genes Reveal High Evolutionary Conservation and Functional Divergence in Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:743. [PMID: 28536593 PMCID: PMC5423411 DOI: 10.3389/fpls.2017.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 05/26/2023]
Abstract
Cystatin is a class of proteins mainly involved in cysteine protease inhibition and plant growth and development, as well as tolerance under various abiotic stresses. In this study, we performed the first comprehensive analysis of the molecular characterization and expression profiling in response to various abiotic stresses of the cystatin gene family in Brachypodium distachyon, a novel model plant for Triticum species with huge genomes. Comprehensive searches of the Brachypodium genome database identified 25 B. distachyon cystatin (BdC) genes that are distributed unevenly on chromosomes; of these, nine and two were involved in tandem and segmental duplication events, respectively. All BdC genes had similar exon/intron structural organization, with three conserved motifs similar to those from other plant species, indicating their high evolutionary conservation. Expression profiling of 10 typical BdC genes revealed ubiquitous expression in different organs at varying expression levels. BdC gene expression in seedling leaves was particularly highly induced by various abiotic stresses, including the plant hormone abscisic acid and various environmental cues (cold, H2O2, CdCl2, salt, and drought). Interestingly, most BdC genes were significantly upregulated under multiple abiotic stresses, including BdC15 under all stresses, BdC7-2 and BdC10 under five stresses, and BdC7-1, BdC2-1, BdC14, and BdC12 under four stresses. The putative metabolic pathways of cytastin genes in response to various abiotic stresses mainly involve the aberrant protein degradation pathway and reactive oxygen species (ROS)-triggered programmed cell death signaling pathways. These observations provide a better understanding of the structural and functional characteristics of the plant cystatin gene family.
Collapse
|
142
|
Udawat P, Jha RK, Mishra A, Jha B. Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:582. [PMID: 28473839 PMCID: PMC5397517 DOI: 10.3389/fpls.2017.00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/31/2017] [Indexed: 05/12/2023]
Abstract
An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1) that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT) and Vector Control (VC) plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase), Nt-CAT (catalase), Nt-SOD (superoxide dismutase), Nt-DREB (dehydration responsive element binding factor), and Nt-AP2 (apetala2) genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic tolerance in crops.
Collapse
Affiliation(s)
- Pushpika Udawat
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Rajesh K. Jha
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| |
Collapse
|
143
|
Pi Z, Zhao ML, Peng XJ, Shen SH. Phosphoproteomic Analysis of Paper Mulberry Reveals Phosphorylation Functions in Chilling Tolerance. J Proteome Res 2017; 16:1944-1961. [PMID: 28357858 DOI: 10.1021/acs.jproteome.6b01016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paper mulberry is a valuable woody species with a good chilling tolerance. In this study, phosphoproteomic analysis, physiological measurement, and mRNA quantification were employed to explore the molecular mechanism of chilling (4 °C) tolerance in paper mulberry. After chilling for 6 h, 427 significantly changed phosphoproteins were detected in paper mulberry seedlings without obvious physiological injury. When obvious physiological injury occurred after chilling for 48 h, a total of 611 phosphoproteins were found to be significantly changed at the phosphorylation level. Several protein kinases, especially CKII, were possibly responsible for these changes according to conserved sequence analysis. The results of Gene Ontology analysis showed that phosphoproteins were mainly responsible for signal transduction, protein modification, and translation during chilling. Additionally, transport and cellular component organization were enriched after chilling for 6 and 48 h, respectively. On the basis of the protein-protein interaction network analysis, a protein kinase and phosphatases hub protein (P1959) were found to be involved in cross-talk between Ca2+, BR, ABA, and ethylene-mediated signaling pathways. We also highlighted the phosphorylation of BpSIZ1 and BpICE1 possibly impacted on the CBF/DREB-responsive pathway. From these results, we developed a schematic for the chilling tolerance mechanism at phosphorylation level.
Collapse
Affiliation(s)
- Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mei-Ling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xian-Jun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| | - Shi-Hua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| |
Collapse
|
144
|
Trebichalský P, Tóth T, Bajčan D, Harangozo Ľ, Vollmannová A. Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis. POTRAVINARSTVO 2017. [DOI: 10.5219/719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA) and auxin (IAA) play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA) and abscisic acid (ABA), after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1) and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1): N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1) in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to control variant. Decline in amount of ABA in barley grain was observed only after treatment with GABA, also in comparison to variant treated with water. Other mixtures of morphoregulators in combination with herbicide had not strong influence on contents of tested plant hormones in barley grain of variety Kompakt.
Collapse
|
145
|
Koguchi M, Yamasaki K, Hirano T, Sato MH. Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1295907. [PMID: 28277968 PMCID: PMC5399895 DOI: 10.1080/15592324.2017.1295907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
VASCULAR PLANT ONE-ZINC FINGER (VOZ)1/and VOZ2 have an ability to bind to the specific cis-element in the AVP1 promoter of Arabidopsis, which function on the PhyB-dependent flowering and possibly in various stress responses as potential transcription factors, although nuclear localization of VOZ proteins is still unclear. In this study, we found that VOZ2 is dispersed throughout the cytoplasm under normal growth conditions, whereas VOZ2 is transferred not only to the nucleus but also to the cytoplasmic foci under heat stress conditions. The VOZ2 foci predominantly co-localized with a marker of stress granules (SGs), which were cytoplasmic granular structures for mRNA storage and decay under abiotic stress conditions. We also demonstrated that GFP-VOZ2 with a nuclear localization signal was rapidly degraded via the ubiquitin/proteasome pathway under the heat stress conditions. Also, stress-related expression of DREB2A in the voz1voz2 mutant was significantly upregulated by heat stress as compared with that in the wild-type Arabidopsis. Our results suggest that VOZ2 is localized to SGs and nucleus under heat stress conditions, and functions as a transcriptional repressor of DREB2A in Arabidopsis.
Collapse
Affiliation(s)
- Misaki Koguchi
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Kanako Yamasaki
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Masa H. Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
- CONTACT Masa H. Sato Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
146
|
Li W, Jia L, Wang L. Chemical signals and their regulations on the plant growth and water use efficiency of cotton seedlings under partial root-zone drying and different nitrogen applications. Saudi J Biol Sci 2017; 24:477-487. [PMID: 28386170 PMCID: PMC5372376 DOI: 10.1016/j.sjbs.2017.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/28/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022] Open
Abstract
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3−), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3− concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3− concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3− and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.
Collapse
Affiliation(s)
- Wenrao Li
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liguo Jia
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Lei Wang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
147
|
Identification and functional characterization of four novel aldo/keto reductases in Anabaena sp. PCC 7120 by integrating wet lab with in silico approaches. Funct Integr Genomics 2017; 17:413-425. [DOI: 10.1007/s10142-017-0547-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
|
148
|
Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. FRONTIERS IN PLANT SCIENCE 2017; 8:172. [PMID: 28232845 PMCID: PMC5299014 DOI: 10.3389/fpls.2017.00172] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant-microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms.
Collapse
Affiliation(s)
- Kamlesh K. Meena
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Ajay M. Sorty
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Utkarsh M. Bitla
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Khushboo Choudhary
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Priyanka Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Dhananjaya P. Singh
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Ratna Prabha
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Pramod K. Sahu
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasi, India
| | - Kishor K. Krishanani
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Paramjit S. Minhas
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| |
Collapse
|
149
|
Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. PLANTA 2017; 245:283-295. [PMID: 27730410 DOI: 10.1007/s00425-016-2605-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, and waterlogging tolerance to the physical map of barley through meta-analysis. The positions of these MQTL were refined and candidate genes were identified. Drought, salinity and waterlogging are three major abiotic stresses limiting barley yield worldwide. Breeding for abiotic stress-tolerant crops has drawn increased attention, and a large number of quantitative trait loci (QTL) for drought, salinity, and waterlogging tolerance in barley have been detected. However, very few QTL have been successfully used in marker-assisted selection (MAS) in breeding. In this study, we summarized 632 QTL for drought, salinity and waterlogging tolerance in barley. Among all these QTL, only 195 major QTL were used to conduct meta-analysis to refine QTL positions for MAS. Meta-analysis was used to map the summarized major QTL for drought, salinity, and waterlogging tolerance from different mapping populations on the barley physical map. The positions of identified meta-QTL (MQTL) were used to search for candidate genes for drought, salinity, and waterlogging tolerance in barley. Both MQTL3H.4 and MQTL6H.2 control drought tolerance in barley. Fine-mapped QTL for salinity tolerance, HvNax4 and HvNax3, were validated on MQTL1H.4 and MQTL7H.2, respectively. MQTL2H.1 and MQTL5H.3 were also the target regions for improving salinity tolerance in barley. MQTL4H.4 is the main region controlling waterlogging tolerance in barley with fine-mapped QTL for aerenchyma formation under waterlogging conditions. Detected and refined MQTL and candidate genes are crucial for future successful MAS in barley breeding.
Collapse
Affiliation(s)
- Xuechen Zhang
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Anthony Koutoulis
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia.
| |
Collapse
|
150
|
Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis. PLoS One 2017; 12:e0170578. [PMID: 28125637 PMCID: PMC5268478 DOI: 10.1371/journal.pone.0170578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.
Collapse
|