101
|
Zou W, Beggs KM, Sparkenbaugh EM, Jones AD, Younis HS, Roth RA, Ganey PE. Sulindac metabolism and synergy with tumor necrosis factor-alpha in a drug-inflammation interaction model of idiosyncratic liver injury. J Pharmacol Exp Ther 2009; 331:114-21. [PMID: 19638570 PMCID: PMC2766217 DOI: 10.1124/jpet.109.156331] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/27/2009] [Indexed: 01/08/2023] Open
Abstract
Sulindac (SLD) is a nonsteroidal anti-inflammatory drug (NSAID) that has been associated with a greater incidence of idiosyncratic hepatotoxicity in human patients than other NSAIDs. In previous studies, cotreatment of rats with SLD and a modestly inflammatory dose of lipopolysaccharide (LPS) led to liver injury, whereas neither SLD nor LPS alone caused liver damage. In studies presented here, further investigation of this animal model revealed that the concentration of tumor necrosis factor-alpha (TNF-alpha) in plasma was significantly increased by LPS at 1 h, and SLD enhanced this response. Etanercept, a soluble TNF-alpha receptor, reduced SLD/LPS-induced liver injury, suggesting a role for TNF-alpha. SLD metabolites in plasma and liver were determined by LC/MS/MS. Cotreatment with LPS did not increase the concentrations of SLD or its metabolites, excluding the possibility that LPS contributed to liver injury through enhanced exposure to SLD or its metabolites. The cytotoxicities of SLD and its sulfide and sulfone metabolites were compared in primary rat hepatocytes and HepG2 cells; SLD sulfide was more toxic in both types of cells than SLD or SLD sulfone. TNF-alpha augmented the cytotoxicity of SLD sulfide in primary hepatocytes and HepG2 cells. These results suggest that TNF-alpha can enhance SLD sulfide-induced hepatotoxicity, thereby contributing to liver injury in SLD/LPS-cotreated rats.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Molecular Genetics, Center for Integrative Toxicology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 2009; 5:1159-74. [PMID: 19637986 PMCID: PMC4110978 DOI: 10.1517/17425250903160664] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of drug-liver interactions is an integral part of predicting the safety profile of new drugs. Existing model systems range from in vitro cell culture models to FDA-mandated animal tests. Data from these models often fail, however, to predict human liver toxicity, resulting in costly failures of clinical trials. In vitro screens based on cultured hepatocytes are now commonly used in early stages of development, but many toxic responses in vivo seem to be mediated by a complex interplay among several different cell types. We discuss some of the evolving trends in liver cell culture systems applied to drug safety assessment and describe an experimental model that captures complex liver physiology through incorporation of heterotypic cell-cell interactions, 3D architecture and perfused flow. We demonstrate how heterotypic interactions in this system can be manipulated to recreate an inflammatory environment and apply the model to test compounds that potentially exhibit idiosyncratic drug toxicity. Finally, we provide a perspective on how the range of existing and emerging in vitro liver culture approaches, from simple to complex, might serve needs across the range of stages in drug discovery and development, including applications in molecular therapeutics.
Collapse
Affiliation(s)
- Ajit Dash
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Walker Inman
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Keith Hoffmaster
- Novartis Institute of Biomedical Research, 350 Massachusetts Avenue, Cambridge, Massachusetts, MA 02139, USA
| | - Samantha Sevidal
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - Joan Kelly
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - R Scott Obach
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - Linda G Griffith
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Steven R Tannenbaum
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| |
Collapse
|
103
|
Deng X, Luyendyk JP, Ganey PE, Roth RA. Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models. Pharmacol Rev 2009; 61:262-82. [PMID: 19805476 PMCID: PMC2763781 DOI: 10.1124/pr.109.001727] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as "idiosyncratic." Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
104
|
Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 2009; 11:2245-63. [PMID: 19361274 PMCID: PMC2819802 DOI: 10.1089/ars.2009.2611] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/10/2009] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-alpha (TNF) is a key cytokine that has been shown to play important physiologic (e.g., inflammation) and pathophysiologic (e.g., various liver pathologies) roles. In liver and other tissues, TNF treatment results in the simultaneous activation of an apoptotic pathway (i.e., TRADD, RIP, JNK) and a survival pathway mediated by NF-kappaB transcription of survival genes (i.e., GADD45beta, Mn-SOD, cFLIP). The cellular response (e.g., proliferation versus apoptosis) to TNF is determined by the balance between the apoptotic signaling pathway and the NF-kappaB survival pathway stimulated by TNF. Reactive oxygen species (ROS) are important modulators of signaling pathways and can regulate both apoptotic signaling and NF-kappaB transcription triggered by TNF. ROS are important in mediating the sustained activation of JNK, to help mediate apoptosis after TNF treatment. In some cells, ROS are second messengers that mediate apoptosis after TNF stimulation. Conversely, ROS can cause redox modifications that inhibit NF-kappaB activation, which can lead to cell death triggered by TNF. Consequently, the redox status of cells can determine the biologic response that TNF will induce in cells. In many liver pathologies, ROS generated extrinsically (e.g., inflammation) or intrinsically (i.e., drugs, toxins) may act in concert with TNF to promote hepatocyte death and liver injury through redox inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Derick Han
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9121, USA.
| | | | | | | | | |
Collapse
|
105
|
Shaw PJ, Beggs KM, Sparkenbaugh EM, Dugan CM, Ganey PE, Roth RA. Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity. Toxicol Sci 2009; 111:288-301. [PMID: 19638433 DOI: 10.1093/toxsci/kfp163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Therapy employing the fluoroquinolone antibiotic, trovafloxacin (TVX) was curtailed due to idiosyncratic hepatotoxicity. Previous studies in mice showed that a nonhepatotoxic inflammatory stress induced by tumor necrosis factor alpha (TNF) synergized with a nonhepatotoxic dose of TVX to cause liver injury. The purpose of this study was to explore mechanisms by which TVX interacts with TNF to cause liver injury. TVX pretreatment prolonged the peak of plasma TNF after its administration. This prolongation of TNF by TVX was critical to the development of hepatotoxicity. The prolongation of TNF concentration in plasma was primarily due to reduced clearance when compared with secondary biosynthesis. TNF is cleared from plasma by binding to soluble TNF receptors (TNFRs) which are eliminated by the kidney; however, the plasma concentrations of soluble TNFRs were not reduced, and biomarkers of renal dysfunction were not elevated in TVX/TNF-treated mice. Two injections of TNF mimicked the prolongation of the TNF peak by TVX and caused liver injury, but injury was less severe than after TVX/TNF coexposure. TVX enhanced the induction of proinflammatory cytokines by TNF. Additionally, TVX sensitized Hepa1c1c7 cells to TNF-induced killing in a concentration-dependent manner and increased both potency and efficacy of TNF to activate effector caspases that were critically involved in cell death from TVX/TNF coexposure. In summary, TVX reduced the clearance of TNF independent of either receptor shedding or kidney dysfunction. Additionally, TVX interacted with TNF to enhance inflammation and sensitize hepatocytes to TNF-induced cell death.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
106
|
Edling Y, Sivertsson LK, Butura A, Ingelman-Sundberg M, Ek M. Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro 2009; 23:1387-95. [PMID: 19631733 DOI: 10.1016/j.tiv.2009.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 01/26/2023]
Abstract
Drug-induced hepatotoxicity is a major reason for withdrawal of drugs from development as well as from the market. A major problem predicting hepatotoxicity is the lack of suitable predictive in vitro system. Drug-induced hepatotoxicity is usually associated with the recruitment of immune cells to the liver accelerating an inflammatory response often initiated by activation of the Kupffer cells. In order to evaluate whether the introduction of inflammatory cells could increase the sensitivity for drug-induced cytotoxicity we developed an in vitro co-culture system based on two human cell lines; a hepatoma (Huh-7) and monocytic (THP-1) cell line. As model drugs we chose two peroxisome proliferator activated receptor gamma (PPAR gamma) agonists, the hepatotoxic troglitazone and the non-hepatotoxic rosiglitazone. In the co-cultures, troglitazone caused an enhanced cytotoxicity as compared to single cultures of either cell line, whereas little cytotoxicity was seen after treatment with rosiglitazone. Troglitazone treatment increased gene expression of pro-inflammatory mediators and stress-related genes in both cell types, which in general was more pronounced in co-cultures than in single cell cultures. Based on these results we suggest that co-cultures of human hepatoma cells and monocytes might provide an important in vitro system for better prediction of cytotoxicity mediated by potential hepatotoxins.
Collapse
Affiliation(s)
- Ylva Edling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Nanna Svartz väg 2, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
107
|
Shaw PJ, Ganey PE, Roth RA. Trovafloxacin enhances the inflammatory response to a Gram-negative or a Gram-positive bacterial stimulus, resulting in neutrophil-dependent liver injury in mice. J Pharmacol Exp Ther 2009; 330:72-8. [PMID: 19351866 PMCID: PMC2700160 DOI: 10.1124/jpet.109.151068] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/06/2009] [Indexed: 01/22/2023] Open
Abstract
Trovafloxacin (TVX), a fluoroquinolone antibiotic, has been strongly linked with several cases of idiosyncratic hepatotoxicity in humans. Previous studies showed that a modest inflammatory stress induced by a Gram-negative bacterial stimulus [i.e., lipopolysaccharide (LPS)] rendered nontoxic doses of TVX hepatotoxic in mice. This study compared the interaction of TVX with Gram-negative and Gram-positive stimuli. Mice were given TVX 3 h before LPS (Gram-negative stimulus) or a peptidoglycan-lipoteichoic acid (PGN-LTA) mixture isolated from Staphylococcus aureus (Gram-positive stimulus). Administration of TVX, LPS, or PGN-LTA alone was nonhepatotoxic. However, TVX administration before PGN-LTA or LPS resulted in significant liver injury that occurred with similar time courses. TVX/PGN-LTA-induced hepatocellular necrosis was primarily localized to centrilobular regions, whereas that caused by TVX/LPS was predominantly midzonal. Administration of either LPS or PGN-LTA alone led to increased plasma concentrations of several cytokines and chemokines at a time near the onset of liver injury. TVX administration before LPS enhanced the concentrations of all of these cytokines, whereas TVX treatment before PGN-LTA increased all of the cytokines except tumor necrosis factor (TNF)-alpha and interferon-gamma. Liver injury was reduced in TVX/LPS- and TVX/PGN-LTA-treated mice given an antibody to CD18 and also in mice deficient in neutrophil [polymorphonuclear neutrophil (PMN)] elastase. Hepatic PMN accumulation and TNF-alpha production after TVX/PGN-LTA-, but not after TVX/LPS-coexposure, was CD18-dependent. In summary, TVX significantly enhanced the murine inflammatory response to either a Gram-negative or a Gram-positive stimulus and caused hepatotoxicity that developed similarly and was dependent on PMN activation in mice but that differed in lesion location and cytokine profile.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
108
|
Cosgrove BD, King BM, Hasan MA, Alexopoulos LG, Farazi PA, Hendriks BS, Griffith LG, Sorger PK, Tidor B, Xu JJ, Lauffenburger DA. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol 2009; 237:317-30. [PMID: 19362101 PMCID: PMC3108859 DOI: 10.1016/j.taap.2009.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 03/29/2009] [Accepted: 04/02/2009] [Indexed: 01/22/2023]
Abstract
Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFN gamma, IL-1 alpha, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1 alpha, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA
| | - Bracken M. King
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Maya A. Hasan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Leonidas G. Alexopoulos
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Paraskevi A. Farazi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA
| | - Peter K. Sorger
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Bruce Tidor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
109
|
Kuhla A, Eipel C, Abshagen K, Siebert N, Menger MD, Vollmar B. Role of the perforin/granzyme cell death pathway in D-Gal/LPS-induced inflammatory liver injury. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1069-76. [PMID: 19264954 DOI: 10.1152/ajpgi.90689.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytotoxic T lymphocytes and their granule components, such as perforin and granzyme, play an important role in the defense of hepatic infections caused by different pathogens. Moreover, it has been shown in vitro that hepatocytes can initiate cell death via a perforin-dependent mechanism. Although it is well known that hepatocellular apoptosis in D-galactosamine/lipopolysaccharide (D-Gal/LPS)-associated liver failure is mediated by TNF-alpha-dependent Fas/FasL cytotoxicity, there is no information on the role of perforin-mediated mechanisms in vivo. Therefore, we studied whether the cytolytic perforin/granzyme pathway contributes to the D-Gal/LPS-associated hepatotoxicity. Perforin knockout (Pko) mice showed significantly higher hepatic TNF-alpha and IL-6 mRNA expression as well as plasma TNF-alpha and IL-6 concentrations within the first hour upon D-Gal/LPS challenge compared with perforin wild-type (Pwt) mice. At 6 h upon D-Gal/LPS challenge, Pko mice further presented with higher transaminase release and onconecrotic tissue damage, whereas hepatocellular apoptosis and caspase-3 cleavage remained unaffected by the perforin deficiency. Pretreatment with a recombinant human TNF-alpha receptor fusion protein attenuated necrotic and apoptotic tissue damage and reduced plasma transaminase activities as well as cytokine release, thereby preventing acute liver failure in Pko mice as effectively as in Pwt mice. These data do not only confirm the significance of TNF-alpha as distal mediator of hepatic injury in this model but simultaneously reveal a contribution of a perforin-dependent immunoregulation, limiting the D-Gal/LPS-induced overwhelming cytokine release and onconecrotic tissue injury.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
110
|
Antoine DJ, Williams DP, Park BK. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opin Drug Metab Toxicol 2009; 4:1415-27. [PMID: 18950283 DOI: 10.1517/17425255.4.11.1415] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug-induced liver injury (DILI) represents a major impediment to the development of new drugs and is a leading cause of drug withdrawal. The occurrence of hepatotoxicity has been closely associated with the formation of chemically reactive metabolites. Huge investment has focused on the screening of chemically reactive metabolites to offer a pragmatic approach to produce safer drugs and also reduce drug attrition and prevent market place withdrawal. However, questions surrounding the importance of chemically reactive metabolites still remain. Increasing evidence now exists for the multi-factorial nature of DILI, in particular the role played by the host immune system or disease state in the pathogenesis of DILI. This review aims to evaluate the current measures for the prediction and diagnosis of DILI and to highlight investigations being made to understand the multidimensional nature. Some of the steps being made to generate improved physiological systems to identify more sensitive, reflective mechanism-based biomarkers to aid the earlier identification of DILI and develop safer medicines are also discussed.
Collapse
Affiliation(s)
- Daniel J Antoine
- University of Liverpool, MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, L69 3GE, UK.
| | | | | |
Collapse
|
111
|
Shaw PJ, Ganey PE, Roth RA. Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure. J Pharmacol Exp Ther 2009; 328:62-8. [PMID: 18820134 PMCID: PMC2685899 DOI: 10.1124/jpet.108.143792] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 01/18/2023] Open
Abstract
The use of trovafloxacin (TVX), a fluoroquinolone antibiotic, was severely restricted because of an association of TVX therapy with idiosyncratic hepatotoxicity in patients. The mechanisms underlying idiosyncratic toxicity are unknown; however, one hypothesis is that an inflammatory stress can render an individual sensitive to the drug. Previously, we reported that treatment of mice with TVX and lipopolysaccharide (LPS) induced tumor necrosis factor (TNF) alpha-dependent liver injury, whereas TVX or LPS treatment alone was nontoxic. The goal of this study was to elucidate the role of TNFalpha in TVX/LPS-induced liver injury. TNF receptor (TNFR) 1 p55(-/-) and TNFR2 (p75(-/-)) mice were protected from hepatotoxicity caused by TVX/LPS coexposure, suggesting that TVX/LPS-induced liver injury requires both TNF receptors. TNFalpha inhibition using etanercept significantly reduced the TVX/LPS-induced increases in the plasma concentrations of several cytokines around the time of onset of liver injury. However, despite the reduction in chemokines, etanercept treatment did not affect the TVX/LPS-induced hepatic accumulation of neutrophils. In addition, etanercept treatment attenuated TVX/LPS induction of plasminogen activator inhibitor-1, and this was associated with a reduction in hepatic fibrin deposition. Mice treated with TVX and a nontoxic dose of TNFalpha also developed liver injury. In summary, TNFalpha acts through p55 and p75 receptors to precipitate an innocuous inflammatory cascade. TVX enhances this cascade, converting it into one that results in hepatocellular injury.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/toxicity
- Cytokines/blood
- Fluoroquinolones/antagonists & inhibitors
- Fluoroquinolones/toxicity
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/toxicity
- Liver/drug effects
- Liver/pathology
- Liver/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Naphthyridines/antagonists & inhibitors
- Naphthyridines/toxicity
- Neutrophils/drug effects
- Neutrophils/physiology
- Receptors, CCR2/blood
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Tumor Necrosis Factor Decoy Receptors/deficiency
- Tumor Necrosis Factor Decoy Receptors/physiology
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Endothelial Growth Factor A/blood
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
112
|
Shaw PJ, Ditewig AC, Waring JF, Liguori MJ, Blomme EA, Ganey PE, Roth RA. Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma-dependent liver injury. Toxicol Sci 2009; 107:270-80. [PMID: 18930950 PMCID: PMC2638649 DOI: 10.1093/toxsci/kfn205] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/23/2008] [Indexed: 11/13/2022] Open
Abstract
The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.
Collapse
Affiliation(s)
- Patrick J. Shaw
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Amy C. Ditewig
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Jeffrey F. Waring
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Michael J. Liguori
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Eric A. Blomme
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Roth
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
113
|
Zou W, Devi SS, Sparkenbaugh E, Younis HS, Roth RA, Ganey PE. Hepatotoxic interaction of sulindac with lipopolysaccharide: role of the hemostatic system. Toxicol Sci 2008; 108:184-93. [PMID: 19074762 DOI: 10.1093/toxsci/kfn259] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sulindac (SLD) is a nonsteroidal anti-inflammatory drug (NSAID) that has been associated with a greater incidence of idiosyncratic hepatotoxicity in human patients than other NSAIDs. One hypothesis regarding idiosyncratic adverse drug reactions is that interaction of a drug with a modest inflammatory episode precipitates liver injury. In this study, we tested the hypothesis that lipopolysaccharide (LPS) interacts with SLD to cause liver injury in rats. SLD (50 mg/kg) or its vehicle was administered to rats by gavage 15.5 h before LPS (8.3 x 10(5) endotoxin unit/kg) or its saline vehicle (i.v.). Thirty minutes after LPS treatment, SLD or vehicle administration was repeated. Rats were killed at various times after treatment, and serum, plasma, and liver samples were taken. Neither SLD nor LPS alone caused liver injury. Cotreatment with SLD/LPS led to increases in serum biomarkers of both hepatocellular injury and cholestasis. Histological evidence of liver damage was found only after SLD/LPS cotreatment. As a result of activation of hemostasis induced by SLD/LPS cotreatment, fibrin and hypoxia were present in liver tissue before the onset of hepatotoxicity. Heparin treatment reduced hepatic fibrin deposition and hypoxia and protected against liver injury induced by SLD/LPS cotreatment. These results indicate that cotreatment with nontoxic doses of LPS and SLD causes liver injury in rats, and this could serve as a model of human idiosyncratic liver injury. The hemostatic system is activated by SLD/LPS cotreatment and plays an important role in the development of SLD/LPS-induced liver injury.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
114
|
Tuschl G, Lauer B, Mueller SO. Primary hepatocytes as a model to analyze species-specific toxicity and drug metabolism. Expert Opin Drug Metab Toxicol 2008; 4:855-70. [DOI: 10.1517/17425255.4.7.855] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
115
|
Tafazoli S, O’Brien PJ. Accelerated Cytotoxic Mechanism Screening of Hydralazine Using an in Vitro Hepatocyte Inflammatory Cell Peroxidase Model. Chem Res Toxicol 2008; 21:904-10. [DOI: 10.1021/tx700371x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shahrzad Tafazoli
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Peter J. O’Brien
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|