101
|
Shidore T, Dinse T, Öhrlein J, Becker A, Reinhold-Hurek B. Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyteAzoarcussp. strain BH72. Environ Microbiol 2012; 14:2775-87. [DOI: 10.1111/j.1462-2920.2012.02777.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Brankatschk K, Blom J, Goesmann A, Smits T, Duffy B. Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol 2012; 155:247-56. [DOI: 10.1016/j.ijfoodmicro.2012.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022]
|
103
|
Xie F, Williams A, Edwards A, Downie JA. A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:250-8. [PMID: 21995765 DOI: 10.1094/mpmi-08-11-0211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rhizobium leguminosarum bv. viciae can attach to the roots of legume and non-legume plants. We wanted to determine whether root exudates could affect in vitro surface attachment in a confocal microscopy assay. Root exudate from pea, other legumes, wheat, and Arabidopsis induced R. leguminosarum bv. viciae to attach end-on (in a polar manner) to glass in hexagonal close-packed arrays, rather than attaching along their long axis. This did not involve a reorientation but was probably due to altered growth. The polar attachment involves a novel bacterial component because it occurred in mutants lacking a symbiosis plasmid (and hence nodulation genes) and polar glucomannan. The major surface (acidic) exopolysaccharide was required, and mutations affecting exported proteins and flagella delayed but did not block polar attachment. The polar attachment activity was purified as a high molecular weight fraction from pea root exudate and is an arabinogalactan protein (AGP) based on its carbohydrate content, reactivity with AGP-specific monoclonal antibodies and Yariv reagent, and sensitivity to enzymes that degrade proteins and carbohydrates. We propose that this novel mode of AGP-induced attachment may be important for growth of these bacteria on the roots of both legumes and non-legumes.
Collapse
Affiliation(s)
- Fang Xie
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|
104
|
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:28-36. [PMID: 21970692 DOI: 10.1094/mpmi-08-11-0204] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Collapse
Affiliation(s)
- A Sessitsch
- AIT Austrian Institute of Technology, Tulin, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol 2011; 194:379-90. [DOI: 10.1007/s00203-011-0780-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/03/2011] [Indexed: 11/25/2022]
|
106
|
De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits THM. Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 2011; 12:576. [PMID: 22115407 PMCID: PMC3235180 DOI: 10.1186/1471-2164-12-576] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS) loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2) are well conserved among the various strains, the third (T6SS-3) locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.
Collapse
Affiliation(s)
- Pieter De Maayer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa.
| | | | | | | | | | | |
Collapse
|
107
|
Lossi NS, Dajani R, Freemont P, Filloux A. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 157:3292-3305. [PMID: 21873404 PMCID: PMC3352280 DOI: 10.1099/mic.0.051987-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens use a range of protein secretion systems to colonize their host. One recent addition to this arsenal is the type VI secretion system (T6SS), which is found in many Gram-negative bacteria. The T6SS involves 12-15 components, including a ClpV-like AAA(+) ATPase. Moreover, the VgrG and Hcp components have been proposed to form a puncturing device, based on structural similarity to the tail spike components gp5/gp27 and the tail tube component gp19 of the T4 bacteriophage, respectively. Another T6SS component shows similarity to a T4 phage protein, namely gp25. The gp25 protein has been proposed to have lysozyme activity. Other T6SS components do not exhibit obvious similarity to characterized T4 phage components. The genome of Pseudomonas aeruginosa contains three T6SS gene clusters. In each cluster a gene encoding a putative member of the gp25-like protein family was identified, which we called HsiF. We confirmed this similarity by analysing the structure of the P. aeruginosa HsiF proteins using secondary and tertiary structure prediction tools. We demonstrated that HsiF1 is crucial for the T6SS-dependent secretion of Hcp and VgrG. Importantly, lysozyme activity of HsiF proteins was not detectable, and we related this observation to the demonstration that HsiF1 localizes to the cytoplasm of P. aeruginosa. Finally, our data showed that a conserved glutamate, predicted to be required for proper HsiF folding, is essential for its function. In conclusion, our data confirm the central role of HsiF in the T6SS mechanism, provide information on the predicted HsiF structure, and call for reconsideration of the function of gp25-like proteins.
Collapse
Affiliation(s)
- Nadine S Lossi
- Centre for Molecular Microbiology and Infection (CMMI), Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Rana Dajani
- Centre for Molecular Microbiology and Infection (CMMI), Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Paul Freemont
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Alain Filloux
- Centre for Molecular Microbiology and Infection (CMMI), Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
108
|
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:435-43. [PMID: 21536480 DOI: 10.1016/j.pbi.2011.04.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/03/2023]
Abstract
As current research activities have focused on symbiotic or parasitic plant-microbe interactions, other types of associations between plants and microorganisms are often overlooked. Endophytic bacteria colonize inner host tissues, sometimes in high numbers, without damaging the host or eliciting strong defense responses. Unlike endosymbionts they are not residing in living plant cells or surrounded by a membrane compartment. The molecular basis of endophytic interactions is still not well understood. Several traits involved in the establishment of endophytes have been elucidated. Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- University Bremen, Department of Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|
109
|
Records AR. The type VI secretion system: a multipurpose delivery system with a phage-like machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:751-757. [PMID: 21361789 DOI: 10.1094/mpmi-11-10-0262] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Whether they live in the soil, drift in the ocean, survive in the lungs of human hosts or reside on the surfaces of leaves, all bacteria must cope with an array of environmental stressors. Bacteria have evolved an impressive suite of protein secretion systems that enable their survival in hostile environments and facilitate colonization of eukaryotic hosts. Collectively, gram-negative bacteria produce six distinct secretion systems that deliver proteins to the extracellular milieu or directly into the cytosol of host cells. The type VI secretion system (T6SS) was discovered recently and is encoded in at least one fourth of all sequenced gram-negative bacterial genomes. T6SS proteins are evolutionarily and structurally related to phage proteins, and it is likely that the T6SS apparatus is reminiscent of phage injection machinery. Most studies of T6SS function have been conducted in the context of host-pathogen interactions. However, the totality of data suggests that the T6SS is a versatile tool with roles in virulence, symbiosis, interbacterial interactions, and antipathogenesis. This review gives a brief history of T6SS discovery and an overview of the pathway's predicted structure and function. Special attention is paid to research addressing the T6SS of plant-associated bacteria, including pathogens, symbionts and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- Angela R Records
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
110
|
Sarris PF, Scoulica EV. Pseudomonas entomophila and Pseudomonas mendocina: potential models for studying the bacterial type VI secretion system. INFECTION GENETICS AND EVOLUTION 2011; 11:1352-60. [PMID: 21600307 DOI: 10.1016/j.meegid.2011.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/15/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022]
Abstract
A diversity of molecular translocation mechanisms, including various secretion systems, has been elaborated in host-bacterial interactions. The newly described type VI secretion system (T6SS) appears to be involved in bacterial pathogenesis by acting as a nano-syringe, contributing in translocation of several effector-proteins into the eukaryotic host cell cytoplasm. Recent evidences revealed the involvement of T6SS machinery in inter-bacterial interactions. Several Pseudomonas species are found to harbour multiple and well organised T6SS loci, however, their genomic structural similarities as well as phylogenetic divergence suggest an independent evolution. Until now elementary evidence was provided for the presence of T6SS in the genomes of Pseudomonas entomophila (Pen), an aggressive insect pathogen as well as the human opportunistic pathogen Pseudomonas mendocina (Pme). In this report we evidenced by in silico genome mining along with bioinformatic analysis the presence of genes encoding for putative T6SS core components and secreted proteins in the sequenced Pen L48 and Pme ymp, strains and designated their putative promoters, sigma factors binding sites and various regulatory proteins. Moreover, we investigated the phylogenetic relatedness of four T6SS core proteins from these strains with their orthologues from various Pseudomonas species. Our analysis revealed two phylogenetically distinguishable T6SS loci in the genome of Pme that appeared to be highly homologous to Pseudomonas aeruginosa Hcp-Secretion Island-I (HSI-I) and -II. Our findings suggest that Pme could be excellent additional to P. aeruginosa model, for the elucidation of HSI-I and -II biological role(s), avoiding the overlapping activity HSI-III (Lesic et al., 2009), which is missing from Pme's genome. Likewise, our analysis revealed the presence of a unique entire T6SS in Pen genome, which appears to be phylogenetically close to Pme T6SS-II and P. aeruginosa HSI-II. Since Pen lacks the common secretion systems T3SS and T4SS, the single T6SS locus could have an enforced role in the insect-bacterial interactions, providing thus a promising model for studying its biological function.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklion, Greece.
| | | |
Collapse
|
111
|
Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. MICROBIAL ECOLOGY 2011; 61:723-728. [PMID: 21340736 DOI: 10.1007/s00248-011-9819-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.
Collapse
Affiliation(s)
- Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, K.U.Leuven, Kasteelpark Arenberg 20-Bus 2460, 3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
112
|
Hachani A, Lossi NS, Hamilton A, Jones C, Bleves S, Albesa-Jové D, Filloux A. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 2011; 286:12317-27. [PMID: 21325275 PMCID: PMC3069435 DOI: 10.1074/jbc.m110.193045] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/15/2011] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions.
Collapse
Affiliation(s)
- Abderrahman Hachani
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nadine S. Lossi
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alexander Hamilton
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Cerith Jones
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - David Albesa-Jové
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alain Filloux
- From the Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
113
|
Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol 2011; 193:2158-67. [PMID: 21378190 DOI: 10.1128/jb.00029-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type VI secretion systems (T6SS) are bacteriophage-derived macromolecular machines responsible for the release of at least two proteins in the milieu, which are thought to form an extracellular appendage. Although several T6SS have been shown to be involved in the virulence of animal and plant pathogens, clusters encoding these machines are found in the genomes of most species of gram-negative bacteria, including soil, marine, and environmental isolates. T6SS have been associated with several phenotypes, ranging from virulence to biofilm formation or stress sensing. Their various environmental niches and large diversity of functions are correlated with their broad variety of regulatory mechanisms. Using a bioinformatic approach, we identified several clusters, including those of Vibrio cholerae, Aeromonas hydrophila, Pectobacterium atrosepticum, Pseudomonas aeruginosa, Pseudomonas syringae pv. tomato, and a Marinomonas sp., which possess typical -24/-12 sequences, recognized by the alternate sigma factor sigma 54 (σ(54) or σ(N)). σ(54), which directs the RNA polymerase to these promoters, requires the action of a bacterial enhancer binding protein (bEBP), which binds to cis-acting upstream activating sequences. Putative bEBPs are encoded within the T6SS gene clusters possessing σ(54) boxes. Using in vitro binding experiments and in vivo reporter fusion assays, we showed that the expression of these clusters is dependent on both σ(54) and bEBPs.
Collapse
|
114
|
Studholme DJ, Glover RH, Boonham N. Application of high-throughput DNA sequencing in phytopathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:87-105. [PMID: 21548771 DOI: 10.1146/annurev-phyto-072910-095408] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses.
Collapse
Affiliation(s)
- David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom.
| | | | | |
Collapse
|
115
|
Schwarz S, Hood RD, Mougous JD. What is type VI secretion doing in all those bugs? Trends Microbiol 2010; 18:531-7. [PMID: 20961764 PMCID: PMC2991376 DOI: 10.1016/j.tim.2010.09.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/23/2022]
Abstract
The identification of bacterial secretion systems capable of translocating substrates into eukaryotic cells via needle-like appendages has opened fruitful and exciting areas of microbial pathogenesis research. The recent discovery of the type VI secretion system (T6SS) was met with early speculation that it too acts as a 'needle' that pathogens aim at host cells. New reports demonstrate that certain T6SSs are potent mediators of interbacterial interactions. In light of these findings, we examined earlier data indicating its role in pathogenesis. We conclude that although T6S can, in rare instances, directly influence interactions with higher organisms, the broader physiological significance of the system is likely to provide defense against simple eukaryotic cells and other bacteria in the environment. The crucial role of T6S in bacterial interactions, along with its presence in many organisms relevant to disease, suggests that it might be a key determinant in the progression and outcome of certain human polymicrobial infections.
Collapse
Affiliation(s)
- Sandra Schwarz
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
116
|
Miyata ST, Kitaoka M, Wieteska L, Frech C, Chen N, Pukatzki S. The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol 2010; 1:117. [PMID: 21607085 PMCID: PMC3095397 DOI: 10.3389/fmicb.2010.00117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/06/2010] [Indexed: 01/11/2023] Open
Abstract
Vibrio cholerae, the marine bacterium responsible for the diarrheal disease cholera, utilizes a multitude of virulence factors to cause disease. The importance of two of these factors, the toxin co-regulated pilus (TCP) and cholera toxin (CT), has been well documented for pandemic O1 and epidemic O139 serogroups. In contrast, endemic non-O1 and non-O139 serogroups can cause localized outbreaks of cholera-like illness, often in the absence of TCP and CT. One virulence mechanism used by these strains is the type VI secretion system (T6SS) to export toxins across the cell envelope and confer toxicity toward eukaryotic and prokaryotic organisms. The V. cholerae strain V52 (an O37 serogroup strain) possesses a constitutively active T6SS and was responsible for an outbreak of gastroenteritis in Sudan in 1968. To evaluate a potential role of the T6SS in the disease cholera, we compared the T6SS clusters of V. cholerae strains with sequenced genomes. We found that the majority of V. cholerae strains, including one pandemic strain, contain intact T6SS gene clusters; thus, we propose that the T6SS is a conserved mechanism that allows pandemic and endemic V. cholerae to persist both in the host and in the environment.
Collapse
Affiliation(s)
- Sarah T Miyata
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
117
|
Sarris PF, Skandalis N, Kokkinidis M, Panopoulos NJ. In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. MOLECULAR PLANT PATHOLOGY 2010; 11:795-804. [PMID: 21091602 PMCID: PMC6640432 DOI: 10.1111/j.1364-3703.2010.00644.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Type VI secretion systems (T6SS) of Gram-negative bacteria form injectisomes that have the potential to translocate effector proteins into eukaryotic host cells. In silico analysis of the genomes in six Pseudomonas syringae pathovars revealed that P. syringae pv. tomato DC3000, pv. tabaci ATCC 11528, pv. tomato T1 and pv. oryzae 1-6 each carry two putative T6SS gene clusters (HSI-I and HSI-II; HSI: Hcp secretion island), whereas pv. phaseolicola 1448A and pv. syringae B728 each carry one. The pv. tomato DC3000 HSI-I and pv. tomato T1 HSI-II possess a highly similar organization and nucleotide sequence, whereas the pv. tomato DC3000, pv. oryzae 1-6 and pv. tabaci 11528 HSI-II are more divergent. Putative effector orthologues vary in number among the strains examined. The Clp-ATPases and IcmF orthologues form distinct phylogenetic groups: the proteins from pv. tomato DC3000, pv. tomato T1, pv. oryzae and pv. tabaci 11528 from HSI-II group together with most orthologues from other fluorescent pseudomonads, whereas those from pv. phaseolicola, pv. syringae, pv. tabaci, pv. tomato T1 and pv. oryzae from HSI-I group closer to the Ralstonia solanacearum and Xanthomonas orthologues. Our analysis suggests multiple independent acquisitions and possible gene attrition/loss of putative T6SS genes by members of P. syringae.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
118
|
Aubert D, MacDonald DK, Valvano MA. BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem 2010; 285:35988-98. [PMID: 20729192 DOI: 10.1074/jbc.m110.120402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel Aubert
- Department of Microbiology and Immunology, Siebens Drake Medical Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
119
|
Abstract
Type VI secretion systems (T6SS) have been studied primarily in the context of pathogenic bacteria-host interactions. Recent data suggest, however, that these versatile secretion systems may also function to promote commensal or mutualistic relationships between bacteria and eukaryotes or to mediate cooperative or competitive interactions between bacteria.
Collapse
Affiliation(s)
- Andrea J. Jani
- Biomolecular Science and Engineering Program University of California, Santa Barbara Santa Barbara, CA 93106
| | - Peggy A. Cotter
- Department of Microbiology and Immunology University of North Carolina – Chapel Hill School of Medicine 116 Manning Dr., CB 7290 Chapel Hill, NC 27599-7290
| |
Collapse
|
120
|
Abstract
Type VI secretion systems (T6SS) are macromolecular, transenvelope machines encoded within the genomes of most Gram-negative bacteria, including plant, animal, and human pathogens, as well as soil and environmental isolates. T6SS are involved in a broad variety of functions: from pathogenesis to biofilm formation and stress sensing. This large array of functions is reflected by a vast diversity of regulatory mechanisms: repression by histone-like proteins and regulation by quorum sensing, transcriptional factors, two-component systems, alternative sigma factors, or small regulatory RNAs. Finally, T6SS may be produced in an inactive state and are turned on through the action of a posttranslational cascade involving phosphorylation and subunit recruitment. The current data reviewed here highlight how T6SS have been integrated into existing regulatory networks and how the expression of the T6SS loci is precisely modulated to adapt T6SS production to the specific needs of individual bacteria.
Collapse
|
121
|
|
122
|
Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 2010; 7:265-276. [PMID: 20413095 PMCID: PMC2859213 DOI: 10.1016/j.chom.2010.03.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Janet Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
123
|
Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RRS, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25-37. [PMID: 20114026 DOI: 10.1016/j.chom.2009.12.007] [Citation(s) in RCA: 693] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/06/2009] [Accepted: 12/18/2009] [Indexed: 12/20/2022]
Abstract
The functional spectrum of a secretion system is defined by its substrates. Here we analyzed the secretomes of Pseudomonas aeruginosa mutants altered in regulation of the Hcp Secretion Island-I-encoded type VI secretion system (H1-T6SS). We identified three substrates of this system, proteins Tse1-3 (type six exported 1-3), which are coregulated with the secretory apparatus and secreted under tight posttranslational control. The Tse2 protein was found to be the toxin component of a toxin-immunity system and to arrest the growth of prokaryotic and eukaryotic cells when expressed intracellularly. In contrast, secreted Tse2 had no effect on eukaryotic cells; however, it provided a major growth advantage for P. aeruginosa strains, relative to those lacking immunity, in a manner dependent on cell contact and the H1-T6SS. This demonstration that the T6SS targets a toxin to bacteria helps reconcile the structural and evolutionary relationship between the T6SS and the bacteriophage tail and spike.
Collapse
Affiliation(s)
- Rachel D Hood
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
125
|
Lesic B, Starkey M, He J, Hazan R, Rahme LG. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:2845-2855. [PMID: 19497948 PMCID: PMC2888175 DOI: 10.1099/mic.0.029082-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/22/2009] [Accepted: 06/02/2009] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa harbours three type VI secretion (T6S) loci. Although HSI-I has been partially studied, limited knowledge is available on the homologous loci HSI-II and HSI-III. We show that quorum sensing (QS) differentially regulates the expression of genes at all three loci. HSI-I-associated gene expression is suppressed by both the homoserine lactone transcription factor LasR and the 4-hydroxy-2-alkylquinoline (HAQ) transcriptional regulator MvfR. Conversely, both HSI-II and HSI-III loci are positively controlled by LasR and MvfR. PqsE, a key component of the MvfR regulon, is required for the expression of part of HSI-III but not HSI-II, and previously identified inhibitors of HAQ biosynthesis significantly downregulate HSI-II and -III gene expression. Animal and plant infection studies reveal that both HSI-II and -III play important roles in pathogenesis. Furthermore, analysis of a double DeltaHSI-II : : III mutant suggests that these loci functionally compensate for one another in virulence. This study illustrates the contribution of the QS systems to T6S gene regulation and reveals the importance of HSI-II and -III in mediating P. aeruginosa pathogenesis. Moreover, this work provides new insights into the design and development of selective compounds that may restrict human P. aeruginosa and possibly other clinical infections.
Collapse
Affiliation(s)
- B. Lesic
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
- Shriners Burns Institute, Boston, MA, USA
| | - M. Starkey
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
- Shriners Burns Institute, Boston, MA, USA
| | - J. He
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
- Shriners Burns Institute, Boston, MA, USA
| | - R. Hazan
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
- Shriners Burns Institute, Boston, MA, USA
| | - L. G. Rahme
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
- Shriners Burns Institute, Boston, MA, USA
| |
Collapse
|
126
|
Robinson JB, Telepnev MV, Zudina IV, Bouyer D, Montenieri JA, Bearden SW, Gage KL, Agar SL, Foltz SM, Chauhan S, Chopra AK, Motin VL. Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog 2009; 47:243-51. [PMID: 19716410 DOI: 10.1016/j.micpath.2009.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 11/28/2022]
Abstract
Type VI secretion systems (T6SSs) have been identified recently in several Gram-negative organisms and have been shown to be associated with virulence in some bacterial pathogens. A T6SS of Yersinia pestis CO92 (locus YPO0499-YPO0516) was deleted followed by investigation of the phenotype of this mutation. We observed that this T6SS locus of Y. pestis was preferentially expressed at 26 degrees C in comparison to 37 degrees C suggesting a possible role in the flea cycle. However, we found that the deletion of T6SS locus YPO0499-YPO0516 in Y. pestis CO92 had no effect on the ability of this strain to infect the oriental rat flea, Xenopsylla cheopis. Nevertheless, this mutant displayed increased intracellular numbers in macrophage-like J774.A1 cells after 20 h post-infection for bacterial cells pre-grown at 26 degrees C indicating that expression of this T6SS locus limited intracellular replication in macrophages. In addition, deletion of the YPO0499-YPO0516 locus reduced the uptake by macrophages of the Y. pestis mutant pre-grown at 37 degrees C, suggesting that this T6SS locus has phagocytosis-promoting activity. Further study of the virulence of the T6SS mutant in murine bubonic and inhalation plague models revealed no attenuation in comparison with the parental CO92 strain.
Collapse
Affiliation(s)
- Jennilee B Robinson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One 2009; 4:e6734. [PMID: 19701456 PMCID: PMC2726435 DOI: 10.1371/journal.pone.0006734] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 07/25/2009] [Indexed: 11/19/2022] Open
Abstract
Background The type VI secretion system (T6SS) has emerged as a protein secretion system important to several Gram-negative bacterial species. One of the common components of the system is Hcp, initially described as a hemolysin co-regulated protein in a serotype O17 strain of Vibrio cholerae. Homologs to V. cholerae hcp genes have been found in all characterized type VI secretion systems and they are present also in the serotype O1 strains of V. cholerae that are the cause of cholera diseases but seemed to have non-functional T6SS. Methodology/Principal Findings The serotype O1 V. cholerae strain A1552 was shown to express detectable levels of Hcp as determined by immunoblot analyses using polyclonal anti-Hcp antiserum. We found that the expression of Hcp was growth phase dependent. The levels of Hcp in quorum sensing deficient mutants of V. cholerae were compared with the levels in wild type V. cholerae O1 strain A1552. The expression of Hcp was positively and negatively regulated by the quorum sensing regulators HapR and LuxO, respectively. In addition, we observed that expression of Hcp was dependent on the cAMP-CRP global transcriptional regulatory complex and required the RpoN sigma factor. Conclusion/Significance Our results show that serotype O1 strains of V. cholerae do express Hcp which is regarded as one of the important T6SS components and is one of the secreted substrates in non-O1 non-O139 V. cholerae isolates. We found that expression of Hcp was strictly regulated by the quorum sensing system in the V. cholerae O1 strain. In addition, the expression of Hcp required the alternative sigma factor RpoN and the cAMP-CRP global regulatory complex. Interestingly, the environmental isolates of V. cholerae O1 strains that showed higher levels of the HapR quorum sensing regulator in comparison with our laboratory standard serotype O1 strain A1552 where also expressing higher levels of Hcp.
Collapse
Affiliation(s)
| | | | - Barbro Lindmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Debra L. Milton
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
128
|
Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, Schwarz S, Field L, Trindade-Silva AE, Soares CAG, Elshahawi S, Hanora A, Schmidt EW, Haygood MG, Posfai J, Benner J, Madinger C, Nove J, Anton B, Chaudhary K, Foster J, Holman A, Kumar S, Lessard PA, Luyten YA, Slatko B, Wood N, Wu B, Teplitski M, Mougous JD, Ward N, Eisen JA, Badger JH, Distel DL. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 2009; 4:e6085. [PMID: 19568419 PMCID: PMC2699552 DOI: 10.1371/journal.pone.0006085] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/06/2009] [Indexed: 12/02/2022] Open
Abstract
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
Collapse
Affiliation(s)
- Joyce C. Yang
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Ramana Madupu
- J. Craig Venter Institute, San Diego, California, United States of America
| | - A. Scott Durkin
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Nathan A. Ekborg
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | | | | | - Diana Radune
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Bradley S. Toms
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Case 932, Marseille, France
| | - Pedro M. Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Case 932, Marseille, France
| | - Sandra Schwarz
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lauren Field
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Amaro E. Trindade-Silva
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundao, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. G. Soares
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundao, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sherif Elshahawi
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eric W. Schmidt
- College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
| | - Margo G. Haygood
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Janos Posfai
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jack Benner
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | | | - John Nove
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Brian Anton
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Kshitiz Chaudhary
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jeremy Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Alex Holman
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sanjay Kumar
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Philip A. Lessard
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yvette A. Luyten
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Barton Slatko
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Nicole Wood
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Bo Wu
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Max Teplitski
- University of Florida, Gainesville, Florida, United States of America
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Naomi Ward
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jonathan A. Eisen
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Daniel L. Distel
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
129
|
An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 2009; 191:4316-29. [PMID: 19395482 DOI: 10.1128/jb.00029-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.
Collapse
|
130
|
Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 2009; 191:3504-16. [PMID: 19329638 DOI: 10.1128/jb.01240-08] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it was determined using microarrays that indole influences the expression of many other genes, including those involved in motility, protozoan grazing resistance, iron utilization, and ion transport. A transposon mutagenesis screen revealed additional components of the indole-VPS regulatory circuitry. The indole signaling cascade includes the DksA protein along with known regulators of VPS production, VpsR and CdgA. A working model is presented in which global control of gene expression by indole is coordinated through sigma(54) and associated transcriptional regulators.
Collapse
|
131
|
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009. [PMID: 19284603 DOI: 10.1186/1471-2164.10-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The availability of hundreds of bacterial genomes allowed a comparative genomic study of the Type VI Secretion System (T6SS), recently discovered as being involved in pathogenesis. By combining comparative and phylogenetic approaches using more than 500 prokaryotic genomes, we characterized the global T6SS genetic structure in terms of conservation, evolution and genomic organization. RESULTS This genome wide analysis allowed the identification of a set of 13 proteins constituting the T6SS protein core and a set of conserved accessory proteins. 176 T6SS loci (encompassing 92 different bacteria) were identified and their comparison revealed that T6SS-encoded genes have a specific conserved genetic organization. Phylogenetic reconstruction based on the core genes showed that lateral transfer of the T6SS is probably its major way of dissemination among pathogenic and non-pathogenic bacteria. Furthermore, the sequence analysis of the VgrG proteins, proposed to be exported in a T6SS-dependent way, confirmed that some C-terminal regions possess domains showing similarities with adhesins or proteins with enzymatic functions. CONCLUSION The core of T6SS is composed of 13 proteins, conserved in both pathogenic and non-pathogenic bacteria. Subclasses of T6SS differ in regulatory and accessory protein content suggesting that T6SS has evolved to adapt to various microenvironments and specialized functions. Based on these results, new functional hypotheses concerning the assembly and function of T6SS proteins are proposed.
Collapse
Affiliation(s)
- Frédéric Boyer
- CEA, iRTSV, Laboratoire Biologie, Informatique et Mathématiques, Grenoble, France.
| | | | | | | | | |
Collapse
|
132
|
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009; 10:104. [PMID: 19284603 PMCID: PMC2660368 DOI: 10.1186/1471-2164-10-104] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of hundreds of bacterial genomes allowed a comparative genomic study of the Type VI Secretion System (T6SS), recently discovered as being involved in pathogenesis. By combining comparative and phylogenetic approaches using more than 500 prokaryotic genomes, we characterized the global T6SS genetic structure in terms of conservation, evolution and genomic organization. RESULTS This genome wide analysis allowed the identification of a set of 13 proteins constituting the T6SS protein core and a set of conserved accessory proteins. 176 T6SS loci (encompassing 92 different bacteria) were identified and their comparison revealed that T6SS-encoded genes have a specific conserved genetic organization. Phylogenetic reconstruction based on the core genes showed that lateral transfer of the T6SS is probably its major way of dissemination among pathogenic and non-pathogenic bacteria. Furthermore, the sequence analysis of the VgrG proteins, proposed to be exported in a T6SS-dependent way, confirmed that some C-terminal regions possess domains showing similarities with adhesins or proteins with enzymatic functions. CONCLUSION The core of T6SS is composed of 13 proteins, conserved in both pathogenic and non-pathogenic bacteria. Subclasses of T6SS differ in regulatory and accessory protein content suggesting that T6SS has evolved to adapt to various microenvironments and specialized functions. Based on these results, new functional hypotheses concerning the assembly and function of T6SS proteins are proposed.
Collapse
Affiliation(s)
- Frédéric Boyer
- CEA, iRTSV, Laboratoire Biologie, Informatique et Mathématiques, Grenoble, France.
| | | | | | | | | |
Collapse
|
133
|
Pukatzki S, McAuley SB, Miyata ST. The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 2009; 12:11-7. [PMID: 19162533 DOI: 10.1016/j.mib.2008.11.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/18/2022]
Abstract
A number of prominent Gram-negative bacteria use the type VI secretion system (T6SS) to transport proteins across the bacterial envelope. Rapid progress is being made in elucidating the structural components of the T6SS apparatus, and a few effectors have been reported to pass through it. However, this is not the complete story: a family of T6SS proteins, the VgrGs, share structural features with the cell-puncturing device of the T4 bacteriophage, and may be used in a similar fashion by bacteria to puncture host cell membranes and insert the T6SS apparatus into the host cytosol. Interestingly, a number of VgrGs contain C-terminal extensions with effector-domains. Thus, the T6SS may translocate soluble effectors, as well as VgrG effector-domains.
Collapse
Affiliation(s)
- Stefan Pukatzki
- Department of Medical Microbiology & Immunology, University of Alberta, 1-63 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
134
|
Sakai T, Matsuyama T, Sano M, Iida T. Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol 2009; 53:131-9. [DOI: 10.1111/j.1348-0421.2009.00108.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
135
|
Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 2009; 28:315-25. [PMID: 19131969 DOI: 10.1038/emboj.2008.269] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/26/2008] [Indexed: 12/13/2022] Open
Abstract
The recently identified type VI secretion systems (T6SS) have a crucial function in the virulence of various proteobacteria, including the human pathogen Vibrio cholerae. T6SS are encoded by a conserved gene cluster comprising approximately 15 open reading frames, mediating the appearance of Hcp and VgrG proteins in cell culture supernatants. Here, we analysed the function of the V. cholerae T6SS member ClpV, a specialized AAA+ protein. ClpV is crucial for a functional T6SS and interacts through its N-terminal domain with the VipA/VipB complex that is composed of two conserved and essential members of T6SS. Transferring ClpV substrate specificity to a distinct AAA+ protein involved in proteolysis caused degradation of VipA but not Hcp or VgrG2, suggesting that VipA rather than Hcp/VgrG2 functions as a primary ClpV substrate. Strikingly, VipA/VipB form tubular, cogwheel-like structures that are converted by a threading activity of ClpV into small complexes. ClpV-mediated remodelling of VipA/VipB tubules represents a crucial step in T6S, illuminating an unexpected role of an ATPase component in protein secretion.
Collapse
Affiliation(s)
- Gabriele Bönemann
- Zentrum für Molekulare Biologie Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
136
|
Hempel J, Zehner S, Göttfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 2008; 140:51-8. [PMID: 19095018 DOI: 10.1016/j.jbiotec.2008.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/20/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Proteins from the supernatant of Bradyrhizobium japonicum were separated by two-dimensional gel electrophoresis and stained with Coomassie. This revealed more than 100 protein spots. Sixty-eight proteins were identified by mass spectrometry. Thirty-five are predicted to contain an N-terminal signal peptide characteristic for proteins transported by the general secretory pathway. Most of these appear to be substrate-binding proteins of the ABC transporter family. Ten proteins were categorized as unclassified conserved or hypothetical. None of the proteins has similarity to proteins transported by a type I secretion system or to autotransporters. Three of the proteins might be located in the outer membrane. The addition of genistein led to changes in the spot pattern of three flagellar proteins and resulted in the identification of the nodulation outer protein Pgl. Moreover, the application of shot-gun mass spectrometry resulted in the first-time identification of NopB, NopH and NopT, which were present only after genistein induction. Replacing genistein with daidzein or coumestrol reduced the amount of the type III-secreted protein GunA2.
Collapse
Affiliation(s)
- Jana Hempel
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
137
|
Read A, Vogl SJ, Hueffer K, Gallagher LA, Happ GM. Francisella genes required for replication in mosquito cells. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1108-1116. [PMID: 19058636 DOI: 10.1603/0022-2585(2008)45[1108:fgrfri]2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Francisella tularensis, a potential bioterrorism agent, is transmitted by arthropod vectors and causes tularemia in many mammals, including humans. Francisella novicida causes disease with similar pathology in mice. We show that F. novicida invades hemocyte-like cells of the SualB cell line derived from Anopheles gambiae and replicates vigorously within these cells. We used transposon knockouts of single genes of F. novicida to show that bacterial growth within these insect cells is dependent on virulence factors encoded in a bacterial pathogenicity island that has been linked to replication in mammalian macrophages. The virulence factors MglA, IglA, IglB, IglC, and IglD as well as PdpA and PdpB were necessary for efficient growth in insect cells, but PdpC and PdpD were not required. The SualB cell line presents a valuable model to study the interactions between this important pathogen and insect vectors.
Collapse
Affiliation(s)
- Amanda Read
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | | | | | | | | |
Collapse
|
138
|
Mattinen L, Somervuo P, Nykyri J, Nissinen R, Kouvonen P, Corthals G, Auvinen P, Aittamaa M, Valkonen JPT, Pirhonen M. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. MICROBIOLOGY-SGM 2008; 154:2387-2396. [PMID: 18667571 DOI: 10.1099/mic.0.2008/017582-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pectobacterium atrosepticum is a Gram-negative plant-pathogenic bacterium that rots potato stems and tubers. Microarray analysis was used to identify genes that were differentially expressed when host extracts were added to the growth medium. Potato extracts downregulated the expression of ribosomal genes and genes related to uptake and metabolism of nutrients, and upregulated genes needed for nitrate or phosphonate use. Some of the observed changes in gene expression in host-extract-induced cultures are similar to those during attachment of the bacterium to host tissues. Other responses indicated defence against toxic metabolites in the extract. Tuber extract induced a large gene cluster having homology to type VI secretion genes shown to be virulence determinants in many, but not all, animal and human pathogens. Two of the genes in the type VI cluster were found to be expressed during infection in potato tubers and stems, and mutants with knockouts of the corresponding genes had increased virulence on potato. One of the type VI secretion mutants was further characterized and found to grow to higher cell density in culture in the presence of host extract and to produce slightly more extracellular tissue-macerating enzymes than the wild-type strain. Analysis of secreted proteins showed that this type VI mutant was affected in the production of haemolysin-coregulated proteins (Hcps), which have been suggested to be secreted by the type VI pathway in other bacteria. The results suggest that the type VI secretion system of P. atrosepticum is needed for secretion of Hcps but not for virulence on its host plant, potato.
Collapse
Affiliation(s)
- Laura Mattinen
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Panu Somervuo
- Institute of Biotechnology, PO Box 56, FIN-00014 University of Helsinki, Finland.,Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Johanna Nykyri
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Riitta Nissinen
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Petri Kouvonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Petri Auvinen
- Institute of Biotechnology, PO Box 56, FIN-00014 University of Helsinki, Finland
| | - Marja Aittamaa
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Jari P T Valkonen
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | - Minna Pirhonen
- Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
139
|
Abstract
Bacterial secretion systems are macromolecular complexes that release virulence factors into the medium or translocate them into the target host cell. These systems are widespread in bacteria allowing them to infect eukaryotic cells and survive or replicate within them. A new secretion system, the type VI secretion system (T6SS), was recently described and characterized in several pathogens. Genomic data suggest that T6SS exist in most bacteria that come into close contact with eukaryotic cells, including plant and animal pathogens. Many research groups are now investigating the underlying mechanisms and the way in which the effector proteins translocated through this machine subvert host defences. This review provides an overview of our current knowledge about type VI secretion, focusing on gene regulation, components of the secretion machine, substrate secretion and the cellular consequences for the host cell.
Collapse
|
140
|
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. MICROBIOLOGY (READING, ENGLAND) 2008; 154:1570-1583. [PMID: 18524912 DOI: 10.1099/mic.0.2008/016840-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for IcmF-associated homologous proteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced in vivo. Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.
Collapse
Affiliation(s)
- Alain Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Abderrahman Hachani
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| |
Collapse
|
141
|
Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 2008; 18:1472-83. [PMID: 18490699 DOI: 10.1101/gr.076448.108] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first complete genome sequence of a beta-proteobacterial nitrogen-fixing symbiont of legumes, Cupriavidus taiwanensis LMG19424. The genome consists of two chromosomes of size 3.42 Mb and 2.50 Mb, and a large symbiotic plasmid of 0.56 Mb. The C. taiwanensis genome displays an unexpected high similarity with the genome of the saprophytic bacterium C. eutrophus H16, despite being 0.94 Mb smaller. Both organisms harbor two chromosomes with large regions of synteny interspersed by specific regions. In contrast, the two species host highly divergent plasmids, with the consequence that C. taiwanensis is symbiotically proficient and less metabolically versatile. Altogether, specific regions in C. taiwanensis compared with C. eutrophus cover 1.02 Mb and are enriched in genes associated with symbiosis or virulence in other bacteria. C. taiwanensis reveals characteristics of a minimal rhizobium, including the most compact (35-kb) symbiotic island (nod and nif) identified so far in any rhizobium. The atypical phylogenetic position of C. taiwanensis allowed insightful comparative genomics of all available rhizobium genomes. We did not find any gene that was both common and specific to all rhizobia, thus suggesting that a unique shared genetic strategy does not support symbiosis of rhizobia with legumes. Instead, phylodistribution analysis of more than 200 Sinorhizobium meliloti known symbiotic genes indicated large and complex variations of their occurrence in rhizobia and non-rhizobia. This led us to devise an in silico method to extract genes preferentially associated with rhizobia. We discuss how the novel genes we have identified may contribute to symbiotic adaptation.
Collapse
Affiliation(s)
- Claire Amadou
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 2008; 190:4584-95. [PMID: 18469101 DOI: 10.1128/jb.00198-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD.
Collapse
|
143
|
Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 2008; 44:344-61. [PMID: 18037263 PMCID: PMC2430056 DOI: 10.1016/j.micpath.2007.10.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 01/01/2023]
Abstract
Our laboratory recently molecularly characterized the type II secretion system (T2SS)-associated cytotoxic enterotoxin (Act) and the T3SS-secreted AexU effector from a diarrheal isolate SSU of Aeromonas hydrophila. The role of these toxin proteins in the pathogenesis of A. hydrophila infections was subsequently delineated in in vitro and in vivo models. In this study, we characterized the new type VI secretion system (T6SS) from isolate SSU of A. hydrophila and demonstrated its role in bacterial virulence. Study of the role of T6SS in bacterial virulence is in its infancy, and there are, accordingly, only limited, recent reports directed toward a better understanding its role in bacterial pathogenesis. We have provided evidence that the virulence-associated secretion (vas) genes vasH (Sigma 54-dependent transcriptional regulator) and vasK (encoding protein of unknown function) are essential for expression of the genes encoding the T6SS and/or they constituted important components of the T6SS. Deletion of the vasH gene prevented expression of the potential translocon hemolysin coregulated protein (Hcp) encoding gene from bacteria, while the vasK gene deletion prevented secretion but not translocation of Hcp into host cells. The secretion of Hcp was independent of the T3SS and the flagellar system. We demonstrated that secreted Hcp could bind to the murine RAW 264.7 macrophages from outside, in addition to its ability to be translocated into host cells. Further, the vasH and vasK mutants were less toxic to murine macrophages and human epithelial HeLa cells, and these mutants were more efficiently phagocytosed by macrophages. We also provided evidence that the expression of the hcp gene in the HeLa cell resulted in apoptosis of the host cells. Finally, the vasH and vasK mutants of A. hydrophila were less virulent in a septicemic mouse model of infection, and animals immunized with recombinant Hcp were protected from subsequent challenge with the wild-type (WT) bacterium. In addition, mice infected with the WT A. hydrophila had circulating antibodies to Hcp, indicating an important role of T6SS in the pathogenesis of A. hydrophila infections. Taken together, we have characterized the T6SS from Aeromonas for the first time and provided new features of this secretion system not yet known for other pathogens.
Collapse
Affiliation(s)
- Giovanni Suarez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Johanna C. Sierra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Shaofei Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Amin A. Fadl
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Sheri M. Foltz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Amy J. Horneman
- Departments of Medical and Research Technology and Epidemiology and Preventive Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070
| |
Collapse
|
144
|
Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 2008; 190:2841-50. [PMID: 18263727 DOI: 10.1128/jb.01775-07] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens is a plant-pathogenic bacterium capable of secreting several virulence factors into extracellular space or the host cell. In this study, we used shotgun proteomics analysis to investigate the secretome of A. tumefaciens, which resulted in identification of 12 proteins, including 1 known secretory protein (VirB1*) and 11 potential secretory proteins. Interestingly, one unknown protein, which we designated hemolysin-coregulated protein (Hcp), is a predicted soluble protein without a recognizable N-terminal signal peptide. Western blot analysis revealed that A. tumefaciens Hcp is expressed and secreted when cells are grown in both minimal and rich media. Further biochemical and immunoelectron microscopy analysis demonstrated that intracellular Hcp is localized mainly in the cytosol, with a small portion in the membrane system. To investigate the mechanism of secretion of Hcp in A. tumefaciens, we generated mutants with deletions of a conserved gene, icmF, or the entire putative operon encoding a recently identified type VI secretion system (T6SS). Western blot analysis indicated that Hcp was expressed but not secreted into the culture medium in mutants with deletions of icmF or the t6ss operon. The secretion deficiency of Hcp in the icmF mutant was complemented by heterologous trans expression of icmF, suggesting that icmF is required for Hcp secretion. In tumor assays with potato tuber disks, deletion of hcp resulted in approximately 20 to 30% reductions in tumorigenesis efficiency, while no consistent difference was observed when icmF or the t6ss operon was deleted. These results increase our understanding of the conserved T6SS used by both plant- and animal-pathogenic bacteria.
Collapse
|
145
|
Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner's guide. Curr Opin Microbiol 2008; 11:3-8. [PMID: 18289922 DOI: 10.1016/j.mib.2008.01.006] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Type VI secretion is a newly described mechanism for protein transport across the cell envelope of Gram-negative bacteria. Components that have been partially characterised include an IcmF homologue, the ATPase ClpV, a regulatory FHA domain protein and the secreted VgrG and Hcp proteins. Type VI secretion is clearly a key virulence factor for some important pathogenic bacteria and has been implicated in the translocation of a potential effector protein into eukaryotic cells by at least one organism (Vibrio cholerae). However, type VI secretion systems (T6SSs) are widespread in nature and not confined to known pathogens. In accordance with the general rule that the expression of protein secretion systems is tightly regulated, expression of type VI secretion is controlled at both transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Lewis Eh Bingle
- Centre for Systems Biology, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|
146
|
Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics 2008; 9:55. [PMID: 18230162 PMCID: PMC2275737 DOI: 10.1186/1471-2164-9-55] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/29/2008] [Indexed: 12/24/2022] Open
Abstract
Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.
Collapse
|
147
|
Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 2007; 190:1699-709. [PMID: 18156275 DOI: 10.1128/jb.01176-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms adapted to piezopsychrophilic growth dominate the majority of the biosphere that is at relatively constant low temperatures and high pressures, but the genetic bases for the adaptations are largely unknown. Here we report the use of transposon mutagenesis with the deep-sea bacterium Photobacterium profundum strain SS9 to isolate dozens of mutant strains whose growth is impaired at low temperature and/or whose growth is altered as a function of hydrostatic pressure. In many cases the gene mutation-growth phenotype relationship was verified by complementation analysis. The largest fraction of loci associated with temperature sensitivity were involved in the biosynthesis of the cell envelope, in particular the biosynthesis of extracellular polysaccharide. The largest fraction of loci associated with pressure sensitivity were involved in chromosomal structure and function. Genes for ribosome assembly and function were found to be important for both low-temperature and high-pressure growth. Likewise, both adaptation to temperature and adaptation to pressure were affected by mutations in a number of sensory and regulatory loci, suggesting the importance of signal transduction mechanisms in adaptation to either physical parameter. These analyses were the first global analyses of genes conditionally required for low-temperature or high-pressure growth in a deep-sea microorganism.
Collapse
|
148
|
Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2007; 190:494-507. [PMID: 17993523 DOI: 10.1128/jb.01387-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.
Collapse
|
149
|
Shakhnovich EA, Sturtevant D, Mekalanos JJ. Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae. Mol Microbiol 2007; 66:1331-41. [DOI: 10.1111/j.1365-2958.2007.05984.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
150
|
Abstract
Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram-negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except DeltaevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non-secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS-dependent secretion.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | | |
Collapse
|