101
|
García-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 2012; 24:22-33. [PMID: 21951227 DOI: 10.1111/j.1365-2826.2011.02230.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kisspeptins, encoded by the Kiss1 gene, and their canonical receptor, GPR54 (also termed Kiss1R), are unanimously recognised as essential regulators of puberty onset and gonadotrophin secretion. These key reproductive functions stem from the capacity of kisspeptins to stimulate gonadotrophin-releasing hormone (GnRH) secretion in the hypothalamus, where discrete populations of Kiss1 neurones have been identified. In rodents, two major groups of hypothalamic Kiss1 neurones exist: one present in the arcuate nucleus (ARC) and the other located in the anteroventral periventricular area (AVPV/RP3V). In recent years, numerous signals have been identified as putative modulators of the hypothalamic Kiss1 system. Among them, the prominent role of sex steroids as being important regulators of Kiss1 neurones has been documented in different species and developmental stages, such as early brain sex differentiation, puberty, adulthood and senescence. These regulatory actions are (mainly) conducted via oestrogen receptor (ER)α, which is expressed in almost all Kiss1 neurones, and likely involve both classical and nonclassical pathways. The regulatory effects of sex steroids are nucleus-specific. Thus, sex steroids inhibit the expression of Kiss1/kisspeptin at the ARC, as a mechanism to conduct their negative-feedback actions on gonadotrophin secretion. By contrast, oestrogens enhance Kiss1 expression at the AVPV/RP3V in rodents, suggesting the involvement of this population in the positive-feedback actions of oestradiol to generate the preovulatory surge of gonadotrophins. In addition, sex steroids have been shown to act post-transcriptionally, modulating GnRH/gonadotrophin responsiveness to kisspeptin. Finally, sex steroids also regulate the expression of co-transmitters of Kiss1 neurones, such as neurokinin B, whose mRNA content in the ARC fluctuates in parallel to that of Kiss1 in response to changes in the circulating levels of sex steroids, therefore suggesting the contribution of this neuropeptide in the feedback control of gonadotrophin secretion. In sum, compelling experimental evidence obtained in different mammalian (and non-mammalian) species, including primates, demonstrates that sex steroids are essential regulators of hypothalamic Kiss1 neurones, which in turn operate as conduits for their effects on GnRH neurones. The physiological relevance of such regulatory phenomena is thoroughly discussed.
Collapse
Affiliation(s)
- D García-Galiano
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | |
Collapse
|
102
|
Khan AR, Kauffman AS. The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge. J Neuroendocrinol 2012; 24:131-43. [PMID: 21592236 PMCID: PMC3384704 DOI: 10.1111/j.1365-2826.2011.02162.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many aspects of female reproduction often require intricate timing, ranging from the temporal regulation of reproductive hormone secretion to the precise timing of sexual behaviour. In particular, in rodents and other species, ovulation is triggered by a surge in pituitary luteinising hormone (LH) secretion that is governed by a complex interaction between circadian signals arising in the hypothalamus and ovarian-derived oestradiol signals acting on multiple brain circuitries. These circadian and hormonal pathways converge to stimulate a precisely-timed surge in gonadotropin-releasing hormone (GnRH) release (i.e. positive-feedback), thereby triggering the preovulatory LH surge. Reflecting its control by afferent circadian signals, the preovulatory LH surge occurs at a specific time of day, typically late afternoon in nocturnal rodents. Although the specific mechanisms mediating the hormonal and circadian regulation of GnRH/LH release have remained poorly understood, recent findings now suggest that oestradiol and circadian signals govern specific reproductive neuropeptide circuits in the hypothalamus, including the newly-identified kisspeptin and RFamide-related peptide (RFRP)-3 neuronal populations. Neurones producing kisspeptin, the protein product of the Kiss1 gene, and RFRP-3 have been shown to provide excitatory and inhibitory input to GnRH neurones, respectively, and are also influenced by sex steroid and circadian signals. In the present review, we integrate classic and recent findings to form a new working model for the neuroendocrine regulation of the circadian-timed preovulatory LH surge in rodents. This model proposes kisspeptin and RFRP-3 neuronal populations as key nodal points for integrating and transducing circadian and hormonal signals to the reproductive axis, thereby governing the precisely-timed LH surge.
Collapse
Affiliation(s)
- Azim R. Khan
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093
- Center for Chronobiology, University of California, San Diego, La Jolla, CA, 92093
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, 92093
- Center for Chronobiology, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
103
|
Roa J, Navarro VM, Tena-Sempere M. Kisspeptins in Reproductive Biology: Consensus Knowledge and Recent Developments1. Biol Reprod 2011; 85:650-60. [DOI: 10.1095/biolreprod.111.091538] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
104
|
Chronic exposure to anabolic androgenic steroids alters activity and synaptic function in neuroendocrine control regions of the female mouse. Neuropharmacology 2011; 61:653-64. [PMID: 21645530 DOI: 10.1016/j.neuropharm.2011.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/21/2022]
Abstract
Disruption of reproductive function is a hallmark of abuse of anabolic androgenic steroids (AAS) in female subjects. To understand the central actions of AAS, patch clamp recordings were made in estrous, diestrous and AAS-treated mice from gonadotropin releasing hormone (GnRH) neurons, neurons in the medial preoptic area (mPOA) and neurons in the anteroventroperiventricular nucleus (AVPV); regions known to provide GABAergic and kisspeptin inputs to the GnRH cells. Action potential (AP) frequency was significantly higher in GnRH neurons of estrous mice than in AAS-treated or diestrous animals. No significant differences in AAS-treated, estrous or diestrous mice were evident in the amplitude or kinetics of spontaneous postsynaptic currents (sPSCs), miniature PSCs or tonic currents mediated by GABA(A) receptors or in GABA(A) receptor subunit expression in GnRH neurons. In contrast, the frequency of GABA(A) receptor-mediated sPSCs in GnRH neurons showed an inverse correlation with AP frequency across the three hormonal states. Surprisingly, AP activity in the medial preoptic area (mPOA), a likely source of GABAergic afferents to GnRH cells, did not vary in concert with the sPSCs in the GnRH neurons. Furthermore, pharmacological blockade of GABA(A) receptors did not alter the pattern in which there was lower AP frequency in GnRH neurons of AAS-treated and diestrous versus estrous mice. These data suggest that AAS do not impose their effects either directly on GnRH neurons or on putative GABAergic afferents in the mPOA. AP activity recorded from neurons in kisspeptin-rich regions of the AVPV and the expression of kisspeptin mRNA and peptide did vary coordinately with AP activity in GnRH neurons. Our data demonstrate that AAS treatment imposes a "diestrous-like" pattern of activity in GnRH neurons and suggest that this effect may arise from suppression of presynaptic kisspeptin-mediated excitatory drive arising from the AVPV. The actions of AAS on neuroendocrine regulatory circuits may contribute the disruption of reproductive function observed in steroid abuse.
Collapse
|
105
|
Kim J, Semaan SJ, Clifton DK, Steiner RA, Dhamija S, Kauffman AS. Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 2011; 152:2020-30. [PMID: 21363930 PMCID: PMC3075940 DOI: 10.1210/en.2010-1498] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kisspeptin (encoded by the Kiss1 gene) is an important regulator of reproduction. In rodents, Kiss1 is expressed in two hypothalamic regions, the arcuate nucleus and anteroventral periventricular/ periventricular continuum, where it is regulated by sex steroids. However, the distribution, regulation, and functional significance of neural kisspeptin outside of the hypothalamus have not been studied and are poorly understood. Here, we report the expression of Kiss1 in the amygdala, predominantly in the medial nucleus of the amygdala (MeA), a region implicated in social and emotional behaviors as well as various aspects of reproduction. In gonadally intact rats and mice, Kiss1-expressing neurons were identified in the MeA of both sexes, with higher Kiss1 expression levels in adult males than females in diestrus. In rats, Kiss1 expression in the MeA changed as a function of the estrous cycle, with highest levels at proestrus. Next, we tested whether Kiss1 in the MeA is regulated by the circulating sex steroid milieu. Kiss1 levels in the MeA were low in gonadectomized mice and rats of both sexes, and treatment with either testosterone or estradiol amplified Kiss1 expression in this region. Testosterone's inductive effect on Kiss1 expression in the MeA likely occurs via estrogen receptor-dependent pathways, not through the androgen receptor, because dihydrotestosterone (a nonaromatizable androgen) did not affect MeA Kiss1 levels. Thus, in rodents, Kiss1 is expressed and regulated by sex steroids in the MeA of both sexes and may play a role in modulating reproduction or brain functions that extend beyond reproduction.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
106
|
Bai Y, Chang F, Zhou R, Jin PP, Matsumoto H, Sokabe M, Chen L. Increase of anteroventral periventricular kisspeptin neurons and generation of E2-induced LH-surge system in male rats exposed perinatally to environmental dose of bisphenol-A. Endocrinology 2011; 152:1562-71. [PMID: 21303948 DOI: 10.1210/en.2010-1042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perinatal exposure to environmental levels of bisphenol-A (BPA) impairs sexually dimorphic behaviors in rodents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV), which plays an important role in the activation of GnRH neurons and the initiation of LH-surge, have been suggested to be sexual dimorphism in rats. This study focused on exploring the influence of a perinatal exposure to an environmental dose of BPA on the development and maturation of male AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis. Female rats were injected sc with 2 μg BPA/kg·d from gestation d 10 through lactation d 7. Anatomical and functional changes in AVPV kisspeptin neurons and hypothalamus-pituitary-gonadal axis were examined in prepubertal, pubertal, and adult male rats exposed perinatally to BPA (BPA-rats). Here, we show that in postnatal d (PND)30/50/90 BPA-rats, the number of AVPV kisspeptin-immunoreactive cells was persistently increased in comparison with age-matched control male rats. The number of GnRH-immunoreactive cells in PND30 BPA-rats declined approximately 40% compared with control male rats, whereas that in PND50/90 BPA-rats was increased in a G protein-coupled receptor 54-dependent manner. Estradiol could induce a stable LH-surge in PND90 BPA-rats and control female rats, which was sensitive to the G protein-coupled receptor 54 inhibitor. In PND30/50 BPA-rats, plasma level of LH was higher, but the level of testosterone was lower than control male rats. These findings provide evidence that perinatal exposure to an environmental dose of BPA causes a sustained increase in AVPV kisspeptin neurons in male rats, leading to the generation of estradiol-induced LH-surge system.
Collapse
Affiliation(s)
- Yinyang Bai
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Clarkson J, Herbison AE. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2011; 23:293-301. [PMID: 21219482 DOI: 10.1111/j.1365-2826.2011.02107.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The neuropeptide kisspeptin and its G-protein-coupled receptor, Gpr54, are critical regulators of fertility. Two major populations of kisspeptin neurones exist in the rodent: one in the rostral periventricular area of the third ventricle (RP3V) and another in the arcuate nucleus. The RP3V population of kisspeptin neurones is crucial for the generation of the luteinising hormone surge that drives ovulation in females. The RP3V kisspeptin neurones are sexually dimorphic, with many more neurones in females than males, and they project to gonadotrophin-releasing hormone (GnRH) neurones. Tyrosine hydroxylase (TH) expressing neurones in the RP3V are also sexually dimorphic and are assumed to project to GnRH neurones. In the present study, we examined the coexpression of kisspeptin and TH peptides in the RP3V of dioestrous and pro-oestrous female mice. We also investigated whether kisspeptin and TH peptides colocalised in terminal appositions with GnRH neurones in the rostral preoptic area (rPOA). Approximately half of the kisspeptin neurones in the RP3V were found to also express TH and vice versa, although there was no difference between mice in dioestrus or pro-oestrus. The majority (95%) of GnRH neurones in the rPOA exhibited a close apposition from a kisspeptin fibre, whereas only one quarter exhibited a close apposition from a TH fibre. Many of the TH close appositions with GnRH neurones coexpressed kisspeptin (62-86%), although these dual-labelled appositions comprised <20% of all kisspeptin appositions on GnRH neurones. The percentage of GnRH neurones with kisspeptin, TH and double-labelled appositions did not differ between dioestrous and pro-oestrous mice. These findings indicate that a subpopulation of kisspeptin neurones expressing dopamine innervate GnRH neurones in the rPOA.
Collapse
Affiliation(s)
- J Clarkson
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
108
|
Lenz KM, McCarthy MM. Organized for sex - steroid hormones and the developing hypothalamus. Eur J Neurosci 2011; 32:2096-104. [PMID: 21143664 DOI: 10.1111/j.1460-9568.2010.07511.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steroid hormones of gonadal origin act on the neonatal brain, particularly the hypothalamus, to produce sex differences that underlie copulatory behavior. Neuroanatomical sex differences include regional volume, cell number, connectivity, morphology, physiology, neurotransmitter phenotype and molecular signaling, all of which are determined by the action of steroid hormones, particularly by estradiol in males, and are established by diverse downstream effects. Sex differences in distinct hypothalamic regions can be organized by the same steroid hormone, but the direction of a sex difference is often specific to one region or cell type, illustrating the wide range of effects that steroid hormones have on the developing brain. Substantial progress has been made in elucidating the downstream mechanisms through which gonadal hormones sexually differentiate the brain, but gaps remain in establishing the precise relationship between changes in neuronal morphology and behavior. A complete understanding of sexual differentiation will require integrating the diverse mechanisms across multiple brain regions into a functional network that regulates behavioral output.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Physiology and Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
109
|
Matsuyama S, Ohkura S, Mogi K, Wakabayashi Y, Mori Y, Tsukamura H, Maeda KI, Ichikawa M, Okamura H. Morphological evidence for direct interaction between kisspeptin and gonadotropin-releasing hormone neurons at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinology 2011; 94:323-32. [PMID: 22116451 DOI: 10.1159/000331576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022]
Abstract
Kisspeptin has been thought to play pivotal roles in the control of both pulse and surge modes of gonadotropin-releasing hormone (GnRH) secretion. To clarify loci of kisspeptin action on GnRH neurons, the present study examined the morphology of the kisspeptin system and the associations between kisspeptin and GnRH systems in gonadally intact and castrated male goats. Kisspeptin-immunoreactive (ir) and Kiss1-positive neurons were found in the medial preoptic area of intact but not castrated goats. Kisspeptin-ir cell bodies and fibers in the arcuate nucleus (ARC) and median eminence (ME) were fewer in intact male goats compared with castrated animals. Apposition of kisspeptin-ir fibers on GnRH-ir cell bodies was very rare in both intact and castrated goats, whereas the intimate association of kisspeptin-ir fibers with GnRH-ir nerve terminals was observed in the ME of castrated animals. Neurokinin B immunoreactivity colocalized not only in kisspeptin-ir cell bodies in the ARC but also in kisspeptin-ir fibers in the ME, suggesting that a majority of kisspeptin-ir fibers projecting to the ME originates from the ARC. A dual immunoelectron microscopic examination revealed that nerve terminals containing kisspeptin-ir vesicles made direct contact with GnRH-ir nerve terminals at the ME of castrated goats. There was no evidence for the existence of the typical synaptic structure between kisspeptin- and GnRH-ir fibers. The present results suggest that the ARC kisspeptin neurons act on GnRH neurons at the ME to control (possibly the pulse mode of) GnRH secretion in males.
Collapse
Affiliation(s)
- Shuichi Matsuyama
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
d'Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology (Bethesda) 2010; 25:207-17. [PMID: 20699467 DOI: 10.1152/physiol.00009.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kisspeptins are a group of peptides that stimulate GnRH release and are required for puberty and maintenance of normal reproductive function. This review focuses on our understanding of the way in which kisspeptin signaling regulates mammalian fertility and how they act as central integrators of different hormonal and physiological signals.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Department of Physiology, Development and Neuroscience, Reproductive Physiology Group, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
111
|
Semaan SJ, Murray EK, Poling MC, Dhamija S, Forger NG, Kauffman AS. BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 2010; 151:5807-17. [PMID: 20926580 PMCID: PMC2999490 DOI: 10.1210/en.2010-0783] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Kiss1 gene and its product kisspeptin are important regulators of reproduction. In rodents, Kiss1 is expressed in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV)/rostral periventricular (PeN) nuclei. In the AVPV/PeN, females have more Kiss1 and tyrosine hydroxylase (TH) neurons than males. We explored the ontogeny of the Kiss1 sex difference, and the role of cell death in establishing Kiss1 and TH cell number. We also determined whether Kiss1 cells in AVPV/PeN coexpress TH. AVPV/PeN Kiss1 neurons were first detected in both sexes on postnatal d 10, but the Kiss1 sex difference did not emerge until postnatal d 12. The role of BAX-mediated apoptosis in generating this sex difference was tested in adult Bax knockout (KO) and wild-type mice. Deletion of Bax did not diminish the sex difference in Kiss1 expression in the AVPV/PeN. TH expression was sexually dimorphic in the AVPV of both wild-type and Bax KO mice but, unlike Kiss1, was not sexually dimorphic in the PeN of either genotype. Double-label analysis determined that most Kiss1 neurons coexpress TH mRNA, but many TH neurons do not coexpress Kiss1, especially in the PeN. These findings suggest that several subpopulations of TH cells reside within the AVPV/PeN, only one of which coexpresses Kiss1. In the ARC, Kiss1 cell number was markedly increased in Bax KO mice of both sexes, indicating that although BAX-dependent apoptosis does not generate the sex difference in either Kiss1 or TH expression in AVPV/PeN, BAX does importantly regulate Kiss1 cell number in the ARC.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
112
|
Desroziers E, Mikkelsen J, Simonneaux V, Keller M, Tillet Y, Caraty A, Franceschini I. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol 2010; 22:1101-12. [PMID: 20673302 DOI: 10.1111/j.1365-2826.2010.02053.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptins are a family of small peptides that play a key role in the neuroendocrine regulation of the reproductive function through neural pathways that have not yet been completely identified. The present study aimed to investigate the distribution of kisspeptin neurone fibres in the female rat brain by comparing precisely the immunoreactive pattern obtained with two antibodies: one specifically directed against kisspeptin-52 (Kp-52), the longest isoform, and the other directed against kisspeptin-10 (Kp-10), whose sequence is common to all putative mature isoforms. With both antibodies, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular, suprachiasmatic, supraoptic, paraventricular and periventricular nuclei, the dorsal border of the ventromedian nucleus, the dorsomedial and arcuate nuclei, and the median eminence. In the latter structure, varicose fibres were mainly distributed in the internal layer and were detected to a lesser extent throughout the external layer, including around the deeper part of the infundibular recess. Most regions of immunoreactive cells and fibres matched perfectly for the two antibodies. However, fibres in the dorsolateral septum, anterior fornix, accumbens nucleus and the lateral bed nucleus of the stria terminalis were only recognised by antibody anti-Kp-10, suggesting that anti-Kp-10 may recognise a wider range of kisspeptin isoforms than anti-Kp-52 or cross-react with molecules other than kisspeptin in rat tissue. Overall, these results illustrate the variety of projection sites of kisspeptin neurones in the rat and suggest that these peptides play a role in different functions.
Collapse
Affiliation(s)
- E Desroziers
- UMR 6175 INRA/CNRS/Université de Tours/Haras Nationaux, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
113
|
Kauffman AS. Coming of age in the kisspeptin era: sex differences, development, and puberty. Mol Cell Endocrinol 2010; 324:51-63. [PMID: 20083160 PMCID: PMC2902563 DOI: 10.1016/j.mce.2010.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 01/01/2023]
Abstract
The status of the neuroendocrine reproductive axis differs dramatically during various stages of development, and also differs in several critical ways between the sexes, including its earlier pubertal activation in females than males and the presence of neural circuitry that generates preovulatory hormone surges in females but not males. The reproductive axis is controlled by various hormonal and neural pathways that converge upon forebrain gonadotropin-releasing hormone (GnRH) neurons, and many of the critical age and sex differences in the reproductive axis likely reflect differences in the "upstream" circuits and factors that regulate the GnRH system. Recently, the neural kisspeptin system has been implicated as an important regulator of GnRH neurons. Here I discuss the evidence supporting a critical role of kisspeptin signaling at different stages of life, including early postnatal and pubertal development, as well as in adulthood, focusing primarily on information gleaned from mammalian studies. I also evaluate key aspects of sexual differentiation and development of the brain as it relates to the Kiss1 system, with special emphasis on rodents. In addition to discussing recent advances in the field of kisspeptin biology, this paper will highlight a number of unanswered questions and future challenges for kisspeptin investigators, and will stress the importance of studying the kisspeptin system in both males and females, as well as in multiple species.
Collapse
Affiliation(s)
- Alexander S Kauffman
- University of California, San Diego, Department of Reproductive Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
114
|
Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB. Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One 2010; 5:e11911. [PMID: 20689830 PMCID: PMC2912854 DOI: 10.1371/journal.pone.0011911] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 07/07/2010] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty.
Collapse
Affiliation(s)
- John C Gill
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
115
|
Tsukamura H, Homma T, Tomikawa J, Uenoyama Y, Maeda KI. Sexual differentiation of kisspeptin neurons responsible for sex difference in gonadotropin release in rats. Ann N Y Acad Sci 2010; 1200:95-103. [DOI: 10.1111/j.1749-6632.2010.05645.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
116
|
Abstract
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
Collapse
Affiliation(s)
- A S Kauffman
- Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
117
|
Semaan SJ, Kauffman AS. Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 2010; 20:424-31. [PMID: 20471241 DOI: 10.1016/j.conb.2010.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022]
Abstract
Males and females exhibit numerous anatomical and physiological differences in the brain that often underlie important sex differences in physiology or behavior, including aspects relating to reproduction. Neural sex differences are both region-specific and trait-specific and may consist of divergences in synapse morphology, neuron size and number, and specific gene expression levels. In most cases, sex differences are induced by the sex steroid hormonal milieu during early perinatal development. In rodents, the hypothalamic anteroventral periventricular nucleus (AVPV) is sexually differentiated as a result of postnatal sex steroids, and also specific neuronal populations in this nucleus are sexually dimorphic, with females possessing more kisspeptin, dopaminergic, and GABA/glutamate neurons than males. The ability of female rodents, but not males, to display an estrogen-induced luteinizing hormone (LH) surge is consistent with the higher levels of these neuropeptides in the AVPV of females. Of these AVPV populations, the recently identified kisspeptin system has been most strongly implicated as a crucial component of the sexually dimorphic LH surge mechanism, though GABA and glutamate have also received some attention. New findings have suggested that the sexual differentiation and development of kisspeptin neurons in the AVPV is mediated by developmental estradiol signaling. Although apoptosis is the most common process implicated in neuronal sexual differentiation, it is currently unknown how developmental estradiol acts to differentiate specific neuronal populations in the AVPV, such as kisspeptin or dopaminergic neurons.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
118
|
Physiological Roles of the Kisspeptin/GPR54 System in the Neuroendocrine Control of Reproduction. PROGRESS IN BRAIN RESEARCH 2010; 181:55-77. [DOI: 10.1016/s0079-6123(08)81005-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
119
|
Gagnidze K, Pfaff DW, Mong JA. Gene expression in neuroendocrine cells during the critical period for sexual differentiation of the brain. SEX DIFFERENCES IN THE HUMAN BRAIN, THEIR UNDERPINNINGS AND IMPLICATIONS 2010; 186:97-111. [DOI: 10.1016/b978-0-444-53630-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
120
|
Tena-Sempere M. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. ACTA ACUST UNITED AC 2009; 33:360-8. [PMID: 19906185 DOI: 10.1111/j.1365-2605.2009.01012.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptins, the products of Kiss1 gene acting via G protein-coupled receptor 54 (also termed Kiss1R), have recently emerged as essential gatekeepers of puberty onset and fertility. Compelling evidence has now documented that expression and function of hypothalamic Kiss1 system is sensitive not only to the activational effects but also to the organizing actions of sex steroids during critical stages of development. Thus, studies in rodents have demonstrated that early exposures to androgens and oestrogens are crucial for proper sexual differentiation of the patterns of Kiss1 mRNA expression, whereas the actions of oestrogen along puberty are essential for the rise of hypothalamic kisspeptins during this period. This physiological substrate provides the basis for potential endocrine disruption of reproductive maturation and function by xeno-steroids acting on the kisspeptin system. Indeed, inappropriate exposures to synthetic oestrogenic compounds during early critical periods in rodents persistently decreased hypothalamic Kiss1 mRNA levels and kisspeptin fibre density in discrete hypothalamic nuclei, along with altered gonadotropin secretion and/or gonadotropin-releasing hormone neuronal activation. The functional relevance of this phenomenon is stressed by the fact that exogenous kisspeptin was able to rescue defective gonadotropin secretion in oestrogenized animals. Furthermore, early exposures to the environmentally-relevant oestrogen, bisphenol-A, altered the hypothalamic expression of Kiss1/kisspeptin in rats and mice. Likewise, maternal exposure to a complex cocktail of endocrine disruptors has been recently shown to disturb foetal hypothalamic Kiss1 mRNA expression in sheep. As a whole, these data document the sensitivity of Kiss1 system to changes in sex steroid milieu during critical periods of sexual maturation, and strongly suggest that alterations of endogenous kisspeptin tone induced by inappropriate (early) exposures to environmental compounds with sex steroid activity might be mechanistically relevant for disruption of puberty onset and gonadotropin secretion later in life. The potential interaction of xeno-hormones with other environmental modulators (e.g., nutritional state) of the Kiss1 system warrants further investigation.
Collapse
Affiliation(s)
- M Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain.
| |
Collapse
|
121
|
Abstract
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function.
Collapse
Affiliation(s)
- Amy E Oakley
- Department of Physiology and Biophysics, University of Washington, Box 356460, 1705 NE Pacific Street, Health Sciences Building Room BB604, Seattle, Washington 98195-6460, USA.
| | | | | |
Collapse
|