101
|
Adenosine Receptor Adora2b Plays a Mechanistic Role in the Protective Effect of the Volatile Anesthetic Sevoflurane during Liver Ischemia/Reperfusion. Anesthesiology 2016; 125:547-60. [DOI: 10.1097/aln.0000000000001234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Liver ischemia/reperfusion (IR) injury is characterized by hepatic tissue damage and an inflammatory response. This is accompanied by the formation and vascular sequestration of platelet–neutrophil conjugates (PNCs). Signaling through Adora2b adenosine receptors can provide liver protection. Volatile anesthetics may interact with adenosine receptors. This study investigates potential antiinflammatory effects of the volatile anesthetic sevoflurane during liver IR.
Methods
Experiments were performed ex vivo with human blood and in a liver IR model with wild-type, Adora2a−/−, and Adora2b−/− mice. The effect of sevoflurane on platelet activation, PNC formation and sequestration, cytokine release, and liver damage (alanine aminotransferase release) was analyzed using flow cytometry, luminometry, and immunofluorescence. Adenosine receptor expression in liver tissue was analyzed using immunohistochemistry and real-time polymerase chain reaction.
Results
Ex vivo experiments indicate that sevoflurane inhibits platelet and leukocyte activation (n = 5). During liver IR, sevoflurane (2 Vol%) decreased PNC formation 2.4-fold in wild-type (P < 0.05) but not in Adora2b−/− mice (n ≥ 5). Sevoflurane reduced PNC sequestration 1.9-fold (P < 0.05) and alanine aminotransferase release 3.5-fold (P < 0.05) in wild-type but not in Adora2b−/− mice (n = 5). In Adora2a−/− mice, sevoflurane also inhibited PNC formation and cytokine release. Sevoflurane diminished cytokine release (n ≥ 3) and increased Adora2b transcription and expression in liver tissue of wild-types (n = 4).
Conclusions
Our experiments highlight antiinflammatory and tissue-protective properties of sevoflurane during liver IR and reveal a mechanistic role of Adora2b in sevoflurane-associated effects. The targeted use of sevoflurane not only as an anesthetic but also to prevent IR damage is a promising approach in the treatment of critically ill patients.
Collapse
|
102
|
Garcia-Morales LJ, Chen NY, Weng T, Luo F, Davies J, Philip K, Volcik KA, Melicoff E, Amione-Guerra J, Bunge RR, Bruckner BA, Loebe M, Eltzschig HK, Pandit LM, Blackburn MR, Karmouty-Quintana H. Altered Hypoxic-Adenosine Axis and Metabolism in Group III Pulmonary Hypertension. Am J Respir Cell Mol Biol 2016; 54:574-83. [PMID: 26414702 DOI: 10.1165/rcmb.2015-0145oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Group III pulmonary hypertension (PH) is a highly prevalent and deadly lung disorder with limited treatment options other than transplantation. Group III PH affects patients with ongoing chronic lung injury, such as idiopathic pulmonary fibrosis (IPF). Between 30 and 40% of patients with IPF are diagnosed with PH. The diagnosis of PH has devastating consequences to these patients, leading to increased morbidity and mortality, yet the molecular mechanisms involved in the development of PH in patients with chronic lung disease remain elusive. Our hypothesis was that the hypoxic-adenosinergic system is enhanced in patients with group III PH compared with patients with IPF with no PH. Explanted lung tissue was analyzed for markers of the hypoxic-adenosine axis, including expression levels of hypoxia-inducible factor (HIF)-1A, adenosine A2B receptor, CD73, and equilibrative nucleotide transporter-1. In addition, we assessed whether altered mitochondrial metabolism was present in these samples. Increased expression of HIF-1A was observed in tissues from patients with group III PH. These changes were consistent with increased evidence of adenosine accumulation in group III PH. A novel observation of our study was of evidence suggesting altered mitochondrial metabolism in lung tissue from group III PH leading to increased succinate levels that are able to further stabilize HIF-1A. Our data demonstrate that the hypoxic-adenosine axis is up-regulated in group III PH and that subsequent succinate accumulation may play a part in the development of group III PH.
Collapse
Affiliation(s)
- Luis J Garcia-Morales
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas.,2 Methodist DeBakey Heart and Vascular Center, and Methodist J. C. Walter Jr. Transplant Center, the Methodist Hospital, Houston, Texas
| | - Ning-Yuan Chen
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Fayong Luo
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Jonathan Davies
- 3 Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kemly Philip
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Kelly A Volcik
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Ernestina Melicoff
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Javier Amione-Guerra
- 2 Methodist DeBakey Heart and Vascular Center, and Methodist J. C. Walter Jr. Transplant Center, the Methodist Hospital, Houston, Texas
| | - Raquel R Bunge
- 2 Methodist DeBakey Heart and Vascular Center, and Methodist J. C. Walter Jr. Transplant Center, the Methodist Hospital, Houston, Texas
| | - Brian A Bruckner
- 2 Methodist DeBakey Heart and Vascular Center, and Methodist J. C. Walter Jr. Transplant Center, the Methodist Hospital, Houston, Texas
| | - Matthias Loebe
- 2 Methodist DeBakey Heart and Vascular Center, and Methodist J. C. Walter Jr. Transplant Center, the Methodist Hospital, Houston, Texas
| | - Holger K Eltzschig
- 4 Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado; and
| | - Lavannya M Pandit
- 5 Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Michael R Blackburn
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Harry Karmouty-Quintana
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
103
|
Sun Y, Huang P. Adenosine A2B Receptor: From Cell Biology to Human Diseases. Front Chem 2016; 4:37. [PMID: 27606311 PMCID: PMC4995213 DOI: 10.3389/fchem.2016.00037] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/26/2022] Open
Abstract
Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR's functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases, and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.
Collapse
Affiliation(s)
- Ying Sun
- Department of Biology, South University of Science and Technology of ChinaShenzhen, China; Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of ChinaShenzhen, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and TechnologyHong Kong, China; Division of Biomedical Engineering, Hong Kong University of Science and TechnologyHong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and TechnologyHong Kong, China
| |
Collapse
|
104
|
Abstract
The role of tumor-associated macrophages (TAMs) in cancer is often correlated with poor prognosis, even though this statement should be interpreted with care, as the effects of macrophages primarily depend on their localization within the tumor. This versatile cell type orchestrates a broad spectrum of biological functions and exerts very complex and even opposing functions on cell death, immune stimulation or suppression, and angiogenesis, resulting in an overall pro- or antitumoral effect. We are only beginning to understand the environmental cues that contribute to transient retention of macrophages in a specific phenotype. It has become clear that hypoxia shapes and induces specific macrophage phenotypes that serve tumor malignancy, as hypoxia promotes immune evasion, angiogenesis, tumor cell survival, and metastatic dissemination. Additionally, TAMs in the hypoxic niches within the tumor are known to mediate resistance to several anticancer treatments and to promote cancer relapse. Thus, a careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.
Collapse
|
105
|
Kiers HD, Scheffer GJ, van der Hoeven JG, Eltzschig HK, Pickkers P, Kox M. Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology 2016; 125:237-49. [PMID: 27183167 PMCID: PMC5119461 DOI: 10.1097/aln.0000000000001163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia and immunity are highly intertwined at clinical, cellular, and molecular levels. The prevention of tissue hypoxia and modulation of systemic inflammation are cornerstones of daily practice in the intensive care unit. Potentially, immunologic effects of hypoxia may contribute to outcome and represent possible therapeutic targets. Hypoxia and activation of downstream signaling pathways result in enhanced innate immune responses, aimed to augment pathogen clearance. On the other hand, hypoxia also exerts antiinflammatory and tissue-protective effects in lymphocytes and other tissues. Although human data on the net immunologic effects of hypoxia and pharmacologic modulation of downstream pathways are limited, preclinical data support the concept of tailoring the immune response through modulation of the oxygen status or pharmacologic modulation of hypoxia-signaling pathways in critically ill patients.
Collapse
Affiliation(s)
- Harmke D. Kiers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Holger K. Eltzschig
- Organ Protection Program; Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud university medical center, Nijmegen, The Netherlands
- Radboud Centre for Infectious Diseases (RCI), Nijmegen, The Netherlands
| |
Collapse
|
106
|
Ju C, Colgan SP, Eltzschig HK. Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 2016; 94:613-27. [PMID: 27094811 PMCID: PMC4879168 DOI: 10.1007/s00109-016-1408-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bevacizumab/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/therapy
- Gene Expression Regulation
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/therapy
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Molecular Targeted Therapy
- Oligonucleotides/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Auroa, Colorado, 800045, USA.
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| | - Holger K Eltzschig
- Department of Anesthesiology and Organ Protection Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| |
Collapse
|
107
|
Mittal D, Sinha D, Barkauskas D, Young A, Kalimutho M, Stannard K, Caramia F, Haibe-Kains B, Stagg J, Khanna KK, Loi S, Smyth MJ. Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Res 2016; 76:4372-82. [PMID: 27221704 DOI: 10.1158/0008-5472.can-16-0544] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
Abstract
Adenosine plays an important role in inflammation and tumor development, progression, and responses to therapy. We show that an adenosine 2B receptor inhibitor (A2BRi) decreases both experimental and spontaneous metastasis and combines with chemotherapy or immune checkpoint inhibitors in mouse models of melanoma and triple-negative breast cancer (TNBC) metastasis. Decreased metastasis upon A2BR inhibition is independent of host A2BR and lymphocytes and myeloid cells. Knockdown of A2BR on mouse and human cancer cells reduces their metastasis in vivo and decreases their viability and colony-forming ability, while transiently delaying cell-cycle arrest in vitro The prometastatic activity of adenosine is partly tumor A2BR dependent and independent of host A2BR expression. In humans, TNBC cell lines express higher A2BR than luminal and Her2(+) breast cancer cell lines, and high expression of A2BR is associated with worse prognosis in TNBC. Collectively, high A2BR on mouse and human tumors promotes cancer metastasis and is an ideal candidate for therapeutic intervention. Cancer Res; 76(15); 4372-82. ©2016 AACR.
Collapse
Affiliation(s)
- Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Debottam Sinha
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Natural Sciences, Griffith University, Nathan, Queensland, Australia
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Arabella Young
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier del 'Université de Montréal, Canada
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
108
|
Vecchio EA, Tan CYR, Gregory KJ, Christopoulos A, White PJ, May LT. Ligand-Independent Adenosine A2B Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. J Pharmacol Exp Ther 2016; 357:36-44. [PMID: 26791603 DOI: 10.1124/jpet.115.230003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
Aberrant ligand-independent G protein-coupled receptor constitutive activity has been implicated in the pathophysiology of a number of cancers. The adenosine A2B receptor (A2BAR) is dynamically upregulated under pathologic conditions associated with a hypoxic microenvironment, including solid tumors. This, in turn, may amplify ligand-independent A2BAR signal transduction. The contribution of A2BAR constitutive activity to disease progression is currently unknown yet of fundamental importance, as the preferred therapeutic modality for drugs designed to reduce A2BAR constitutive activity would be inverse agonism as opposed to neutral antagonism. The current study investigated A2BAR constitutive activity in a heterologous expression system and a native 22Rv1 human prostate cancer cell line exposed to hypoxic conditions (2% O2). The A2BAR inverse agonists, ZM241385 [4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol] or PSB-603 (8-(4-(4-(4-chlorophenyl)piperazide-1-sulfonyl)phenyl)-1-propylxanthine), mediated a concentration-dependent decrease in baseline cAMP levels in both cellular systems. Proliferation of multiple prostate cancer cell lines was also attenuated in the presence of PSB-603. Importantly, both the decrease in baseline cAMP accumulation and the reduction of proliferation were not influenced by the addition of adenosine deaminase, demonstrating that these effects are not dependent on stimulation of A2BARs by the endogenous agonist adenosine. Our study is the first to reveal that wild-type human A2BARs have high constitutive activity in both model and native cells. Furthermore, our findings demonstrate that this ligand-independent A2BAR constitutive activity is sufficient to promote prostate cancer cell proliferation in vitro. More broadly, A2BAR constitutive activity may have wider, currently unappreciated implications in pathologic conditions associated with a hypoxic microenvironment.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christina Y R Tan
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
109
|
Shaikh G, Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 2016; 12:191-7. [PMID: 26847815 DOI: 10.1007/s11302-016-9498-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Collagen and matrix deposition by fibroblasts is an essential part of wound healing but also contributes to pathologic remodeling of organs leading to substantial morbidity and mortality. Adenosine, a small molecule generated extracellularly from adenine nucleotides as a result of direct stimulation, hypoxia, or injury, acts via a family of classical seven-pass G protein-coupled protein receptors, A2A and A2B, leading to generation of cAMP and activation of downstream targets such as PKA and Epac. These effectors, in turn, lead to fibroblast activation and collagen synthesis. The regulatory actions of these receptors likely involve multiple interconnected pathways, and one of the more interesting aspects of this regulation is opposing effects at different levels of cAMP generated. Additionally, adenosine signaling contributes to fibrosis in organ-specific ways and may have opposite effects in different organs. The development of drugs that selectively target these receptors and their signaling pathways will disrupt the pathogenesis of fibrosis and slow or arrest the progression of the important diseases they underlie.
Collapse
Affiliation(s)
- Gibran Shaikh
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA
| | - Bruce Cronstein
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
110
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
111
|
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. Stimulation of gastric acid secretion by rabbit parietal cell A2B adenosine receptor activation. Am J Physiol Cell Physiol 2015; 309:C823-34. [DOI: 10.1152/ajpcell.00224.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated.
Collapse
Affiliation(s)
- Rosa María Arin
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ana Isabel Vallejo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
112
|
Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K, Broaddus RR. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 2015; 126:220-38. [PMID: 26642367 DOI: 10.1172/jci79380] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, β-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Collapse
|
113
|
Boudreaux MK, Koehler J, Habecker PL, Piero FD. Evaluation of the genes encoding CD39/NTPDase-1 and CD39L1/NTPDase-2 in horses with and without abnormal hemorrhage and in horses with pathologic evidence of exercise-induced pulmonary hemorrhage. Vet Clin Pathol 2015; 44:617-25. [DOI: 10.1111/vcp.12303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary K. Boudreaux
- Department of Pathobiology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - Jennifer Koehler
- Department of Pathobiology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - Perry L. Habecker
- Department of Pathobiology; New Bolton Center; School of Veterinary Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences; School of Veterinary Medicine; Louisiana State University; Baton Rouge LA USA
| |
Collapse
|
114
|
Federico S, Redenti S, Sturlese M, Ciancetta A, Kachler S, Klotz KN, Cacciari B, Moro S, Spalluto G. The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives. PLoS One 2015; 10:e0143504. [PMID: 26625265 PMCID: PMC4666649 DOI: 10.1371/journal.pone.0143504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/05/2015] [Indexed: 12/03/2022] Open
Abstract
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Sara Redenti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Antonella Ciancetta
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Sonja Kachler
- Institut für Pharmakologie und Toxicologie, Universität Würzburg, Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxicologie, Universität Würzburg, Würzburg, Germany
| | - Barbara Cacciari
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Ferrara, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
115
|
Nayak S, Khan MAH, Wan TC, Pei H, Linden J, Dwinell MR, Geurts AM, Imig JD, Auchampach JA. Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. Purinergic Signal 2015; 11:519-31. [PMID: 26385692 PMCID: PMC4648794 DOI: 10.1007/s11302-015-9470-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/11/2015] [Indexed: 01/13/2023] Open
Abstract
The A(2B) adenosine receptor (AR) has emerged as a unique member of the AR family with contrasting roles during acute and chronic disease states. We utilized zinc-finger nuclease technology to create A(2B)AR gene (Adora2b)-disrupted rats on the Dahl salt-sensitive (SS) genetic background. This strategy yielded a rat strain (SS-Adora2b mutant rats) with a 162-base pair in-frame deletion of Adora2b that included the start codon. Disruption of A(2B)AR function in SS-Adora2b mutant rats was confirmed by loss of agonist (BAY 60-6583 or NECA)-induced cAMP accumulation and loss of interleukin-6 release from isolated fibroblasts. In addition, BAY 60-6583 produced a dose-dependent increase in glucose mobilization that was absent in SS-Adora2b mutants. Upon initial characterization, SS-Adora2b mutant rats were found to exhibit increased body weight, a transient delay in glucose clearance, and reduced proinflammatory cytokine production following challenge with lipopolysaccharide (LPS). In addition, blood pressure was elevated to a greater extent (∼15-20 mmHg) in SS-Adora2b mutants as they aged from 7 to 21 weeks. In contrast, hypertension augmented by Ang II infusion was attenuated in SS-Adora2b mutant rats. Despite differences in blood pressure, indices of renal and cardiac injury were similar in SS-Adora2b mutants during Ang II-augmented hypertension. We have successfully created and validated a new animal model that will be valuable for investigating the biology of the A(2B)AR. Our data indicate varying roles for A(2B)AR signaling in regulating blood pressure in SS rats, playing both anti- and prohypertensive roles depending on the pathogenic mechanisms that contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Shraddha Nayak
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Md Abdul H Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hong Pei
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Melinda R Dwinell
- Department of Physiology and Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology and Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
116
|
Vohwinkel CU, Hoegl S, Eltzschig HK. Hypoxia signaling during acute lung injury. J Appl Physiol (1985) 2015; 119:1157-63. [PMID: 25977449 PMCID: PMC4816417 DOI: 10.1152/japplphysiol.00226.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory lung disease that manifests itself in patients as acute respiratory distress syndrome and thereby contributes significantly to the morbidity and mortality of patients experiencing critical illness. Even though it may seem counterintuitive, as the lungs are typically well-oxygenated organs, hypoxia signaling pathways have recently been implicated in the resolution of ALI. For example, functional studies suggest that transcriptional responses under the control of the hypoxia-inducible factor (HIF) are critical in optimizing alveolar epithelial carbohydrate metabolism, and thereby dampen lung inflammation during ALI. In the present review we discuss functional roles of oxygenation, hypoxia and HIFs during ALI, mechanisms of how HIFs are stabilized during lung inflammation, and how HIFs can mediate lung protection during ALI.
Collapse
Affiliation(s)
- Christine U Vohwinkel
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sandra Hoegl
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado; Department of Anesthesiology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
117
|
Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309:F821-34. [DOI: 10.1152/ajprenal.00224.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
Collapse
Affiliation(s)
- Pinelopi P. Kapitsinou
- Departments of Medicine, Anatomy and Cell Biology, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Volker H. Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
118
|
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. The A2B adenosine receptor colocalizes with adenosine deaminase in resting parietal cells from gastric mucosa. BIOCHEMISTRY (MOSCOW) 2015; 80:120-5. [PMID: 25754047 DOI: 10.1134/s0006297915010149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The A2B adenosine receptor (A2BR) mediates biological responses to extracellular adenosine in a wide variety of cell types. Adenosine deaminase (ADA) can degrade adenosine and bind extracellularly to adenosine receptors. Adenosine modulates chloride secretion in gastric glands and gastric mucosa parietal cells. A close functional link between surface A2BR and ADA has been found on cells of the immune system, but whether this occurs in the gastrointestinal tract is unknown. The goal of this study was to determine whether A2BR and ADA are coexpressed at the plasma membrane of the acid-secreting gastric mucosa parietal cells. We used isolated gastric parietal cells after purification by centrifugal elutriation. The membrane fraction was obtained by sucrose gradient centrifugation. A2BR mRNA expression was analyzed by RT-PCR. The surface expression of A2BR and ADA proteins was evaluated by Western blotting, flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are expressed in cell membranes isolated from gastric parietal cells. They show a high degree of colocalization that is particularly evident in the surface of contact between parietal cells. The confocal microscopy data together with flow cytometry analysis suggest a tight association between A2BR and ADA that might be specifically linked to glandular secretory function.
Collapse
Affiliation(s)
- R M Arin
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa, 48940, Spain.
| | | | | | | | | |
Collapse
|
119
|
Roberts V, Lu B, Dwyer KM, Cowan PJ. Adenosine receptor expression in the development of renal fibrosis following ischemic injury. Transplant Proc 2015; 46:3257-61. [PMID: 25498034 DOI: 10.1016/j.transproceed.2014.09.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Long-term renal allograft survival has not improved despite improvements in short term outcomes. Graft loss is characterized histologically by the development of interstitial fibrosis and tubular atrophy (IFTA). Mechanisms underlying the development of IFTA are multifactorial and include ischemia-reperfusion injury (IRI). Therapeutic options to reduce IFTA include management of immunologic causes, such as rejection, but despite these efforts IFTA can still occur and leads to the inexorable destruction of the transplanted kidney. The adenosine A2B receptor (A2BR) has recently been implicated in the development of renal fibrosis. We performed an observational study to examine the mRNA expression of the adenosine receptors after renal ischemia up to the development of renal fibrosis in a mouse model of unilateral IRI. A2BR was the only adenosine receptor that showed elevated expression following ischemia until the development of renal fibrosis 4 weeks after injury. At 2 weeks after ischemia, increased expression of the fibrotic markers transforming growth factor β and Collagen-1α was observed. Expression of hypoxia inducible factor 1α and endothelin-1, which lie downstream of A2BR activation and have been recognized to promote renal fibrosis, were also significantly up-regulated at 2 weeks after ischemia. Expression of fibrotic markers returned to baseline by 4 weeks after ischemia, indicating resolution of injury with the concurrent development of renal fibrosis and reduced renal function. Our data suggest that A2BR may be a therapeutic target in reducing the development of renal fibrosis after ischemia.
Collapse
Affiliation(s)
- V Roberts
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia.
| | - B Lu
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - K M Dwyer
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia
| | - P J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
120
|
Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:3828-37. [PMID: 26355158 DOI: 10.4049/jimmunol.1501139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated.
Collapse
Affiliation(s)
- Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Amanda Ward
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Katya Ravid
- School of Medicine, Boston University, Boston, MA 02118
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| |
Collapse
|
121
|
Merighi S, Borea PA, Gessi S. Adenosine receptors and diabetes: Focus on the A2B adenosine receptor subtype. Pharmacol Res 2015; 99:229-36. [DOI: 10.1016/j.phrs.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
|
122
|
Patel L, Thaker A. The effects of A2B receptor modulators on vascular endothelial growth factor and nitric oxide axis in chronic cyclosporine nephropathy. J Pharmacol Pharmacother 2015; 6:147-53. [PMID: 26311998 PMCID: PMC4544136 DOI: 10.4103/0976-500x.162014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022] Open
Abstract
Introduction: To investigate the actions of adenosine A2B receptor modulators on VEGF and NO levels in CsA nephropathy. Materials and Methods: Nephropathy was induced by administrating 25 mg/kg (s.c) of CsA for 5 weeks. The VEGF and NO levels were measured in kidney tissue. Serum creatinine, creatinine clearance, urinary albumin excretion, blood urea nitrogen, kidney pathology score were measured to assess renal function. The analysis of mRNA expression of A2B receptor and VEGF was performed. Results: Administration of CsA for 5 weeks induced adverse renal function. The mRNA expression of VEGF was reduced in renal tissue after 5 weeks of CsA treatment. The renal VEGF and NO levels were also reduced in these animals. In vivo administration of A2B adenosine receptor agonist increased renal VEGF which was inhibited by a selective A2B AR antagonist (MRS1754) in CsA-treated animals. The increase in VEGF was associated with reversal of adverse renal functions. The effects of A2B AR modulators were prominent in CsA-treated animals compared with control animals suggesting CsA treatment may upregulate A2B ARs. The mRNA expression of A2B AR was increased after 5 weeks of CsA. Conclusions: A2B AR modulators may provide new therapeutic options to retard CsA nephropathy by mediating renal VEGF and NO.
Collapse
Affiliation(s)
- Leena Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Aswin Thaker
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
123
|
Abstract
Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.
Collapse
Affiliation(s)
- Katharina Flück
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
124
|
Zhang J, Han C, Dai H, Hou J, Dong Y, Cui X, Xu L, Zhang M, Xia Q. Hypoxia-Inducible Factor-2α Limits Natural Killer T Cell Cytotoxicity in Renal Ischemia/Reperfusion Injury. J Am Soc Nephrol 2015; 27:92-106. [PMID: 25956511 DOI: 10.1681/asn.2014121248] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/15/2015] [Indexed: 11/03/2022] Open
Abstract
Natural killer T (NKT) cells are the major early-acting immune cell type and fundamental immune modulators in ischemia-reperfusion injury (IRI). Because lymphocytes are exposed to various oxygen tensions under pathophysiologic conditions, we hypothesize that hypoxia-inducible factors (HIFs) have roles in NKT cell activation, and thus determine the final outcome of renal IRI. In this study, we used Lck-Cre transgenic mice to specifically disrupt HIF-2α in T/NKT cells and found that HIF-2α knockout led to upregulated Fas ligand expression on peripheral NKT cells, but not on conventional T cells. HIF-2α knockout promoted infiltration of NKT cells into ischemic kidneys and exacerbated IRI, which could be mitigated by in vivo NK1.1(+) cell depletion or Fas ligand blockade. Compared with wild-type NKT cells, HIF-2α(-/-) NKT cells adoptively transferred to Rag1-knockout mice elicited more severe renal injury, and these mice were not protected by CGS21680, an adenosine A2A receptor agonist. Mechanistically, hypoxia-induced expression of adenosine A2A receptor in NKT cells and CGS21680-induced cAMP production in thymocytes were HIF-2α-dependent. Hydrogen peroxide-induced Fas ligand expression on thymic wild-type NKT cells was significantly attenuated by CGS21680 treatment, but this effect was lost in HIF-2α(-/-) NKT cells. Finally, CGS21680 and LPS, an inducer of HIF-2α in endothelium, synergistically reduced renal IRI substantially, but this effect was absent in Mx1-Cre-induced global HIF-2α-knockout mice. Taken together, our results reveal a hypoxia/HIF-2α/adenosine A2A receptor axis that restricts NKT cell activation when confronted with oxidative stress and thus protects against renal IRI.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Conghui Han
- Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Huijuan Dai
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Yang Dong
- Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaolan Cui
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Longmei Xu
- The Central Laboratory of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhang
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| |
Collapse
|
125
|
Mousavi S, Panjehpour M, Izadpanahi MH, Aghaei M. Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 2015; 75:735-47. [PMID: 25704103 DOI: 10.1002/pros.22955] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Adenosine, a purine nucleoside plays important roles in the pathogenesis of cancer initiation and promotion via interaction with four adenosine receptors. In the present study we examined the differential expression pattern of adenosine receptors in the malignant and adjacent normal human prostate tissues. METHODS Prostate cancer tissue samples and adjacent normal tissues were obtained from 20 patients undergoing radical prostatectomy and histopathological diagnosis was confirmed for each sample. Total RNA was extracted and reverse transcribed into cDNA and the mRNA expression levels of adenosine receptors were investigated by Taq-man real-time RT-PCR experiment. Quantitative protein analysis was done by Western blotting experiment. Moreover, the mRNA and protein expression levels of adenosine receptors were measured after androgen treatment. RESULT Taq-man real-time RT-PCR measurements show different expression levels of adenosine receptor transcripts. A2B adenosine receptor was predominantly expressed in tumor tissues (2.4-fold) followed by significantly expression of A3 (1.6-fold) and A2A adenosine receptors (1.5-fold) compared to adjacent normal tissues. The presence of adenosine receptors at protein levels in prostate cancer tissues compared with normal tissues was shown the following rank order: A2B > A3 > A2A > A1 . Androgen receptor regulates adenosine receptors mRNA and protein expression in AR-positive LNCaP cells, which was not seen in AR-negative PC-3 cells. CONCLUSION These results indicated for the first time, the differential mRNA expression profile and protein levels of adenosine receptors in the human prostate cancer. Interestingly, the A2B adenosine receptor followed by A3 is highly expressed in prostate tumor samples in comparison with the adjacent normal tissues. The findings support the possible key role of A2B adenosine receptor in promoting cancer cell growth and suggest that A2B may be a novel target for prostate cancer treatment.
Collapse
Affiliation(s)
- Samira Mousavi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
126
|
Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med 2015; 35:859-69. [PMID: 25625467 PMCID: PMC4356629 DOI: 10.3892/ijmm.2015.2079] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Mammals have developed evolutionarily conserved programs of transcriptional response to hypoxia and inflammation. These stimuli commonly occur together in vivo and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or inflammation. This crosstalk can be used to modulate the overall response to environmental stress. Several common disease processes are characterised by aberrant transcriptional programs in response to environmental stress. In this review, we discuss the current understanding of the role of the hypoxia-responsive (hypoxia-inducible factor) and inflammatory (nuclear factor-κB) transcription factor families and their crosstalk in rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, with relevance for future therapies for the management of these conditions.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
127
|
Chan ESL, Liu H, Fernandez P, Luna A, Perez-Aso M, Bujor AM, Trojanowska M, Cronstein BN. Adenosine A(2A) receptors promote collagen production by a Fli1- and CTGF-mediated mechanism. Arthritis Res Ther 2014; 15:R58. [PMID: 23663495 PMCID: PMC4060252 DOI: 10.1186/ar4229] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/25/2013] [Accepted: 05/11/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Adenosine, acting through the A2A receptor, promotes tissue matrix production in the skin and the liver and induces the development of dermal fibrosis and cirrhosis in murine models. Since expression of A2A receptors is increased in scleroderma fibroblasts, we examined the mechanisms by which the A2A receptor produces its fibrogenic effects. Methods The effects of A2A receptor ligation on the expression of the transcription factor, Fli1, a constitutive repressor for the synthesis of matrix proteins, such as collagen, is studied in dermal fibroblasts. Fli1 is also known to repress the transcription of CTGF/CCN2, and the effects of A2A receptor stimulation on CTGF and TGF-β1 expression are also examined. Results A2A receptor occupancy suppresses the expression of Fli1 by dermal fibroblasts. A2A receptor activation induces the secretion of CTGF by dermal fibroblasts, and neutralization of CTGF abrogates the A2A receptor-mediated enhancement of collagen type I production. A2AR activation, however, resulted in a decrease in TGF-β1 protein release. Conclusions Our results suggest that Fli1 and CTGF are important mediators of the fibrogenic actions of adenosine and the use of small molecules such as adenosine A2A receptor antagonists may be useful in the therapy of dermal fibrosis in diseases such as scleroderma.
Collapse
|
128
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
129
|
Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, Lina Y. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med 2014; 34:1629-39. [PMID: 25318952 DOI: 10.3892/ijmm.2014.1965] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022] Open
Abstract
Intestinal barrier dysfunction occurs in critical illnesses and involves the inflammatory and hypoxic injury of intestinal epithelial cells. Researchers are still defining the underlying mechanisms and evaluating therapeutic strategies for restoring intestinal barrier function. The anti-inflammatory drug, emodin, has been shown to exert a protective effect on intestinal barrier function; however, its mechanisms of action remain unknown. In this study, we investigated the protective effects of emodin on intestinal barrier function and the underlying mechanisms in intestinal epithelial cells challenged with lipopolysaccharide (LPS) and hypoxia/reoxygenation (HR). To induce barrier dysfunction, Caco-2 monolayers were subjected to HR with or without LPS treatment. Transepithelial electrical resistance and paracellular permeability were measured to evaluate barrier function. The expression of the tight junction (TJ) proteins, zonula occludens (ZO)-1, occludin, and claudin-1, as well as that of hypoxia-inducible factor (HIF)-1α, phosphor-IκB-α, phosphor-nuclear factor (NF)-κB p65 and cyclooxygenase (COX)-2 was determined by western blot analysis. The results revealed that emodin markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS and subjected to HR. Emodin also markedly alleviated the damage caused by LPS and HR (manifested by a decrease in the expression of the TJ protein, ZO-1), and inhibited the expression of HIF-1α, IκB-α, NF-κB and COX-2 in a dose-dependent manner. In conclusion, our data suggest that emodin attenuates LPS- and HR-induced intestinal epithelial barrier dysfunction by inhibiting the HIF-1α and NF-κB signaling pathways and preventing the damage caused to the TJ barrier (shown by the decrease in the expression of ZO-1).
Collapse
Affiliation(s)
- Qi Lei
- Department of ICU, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Fu Qiang
- Department of ICU, Tianjin 4th Central Hospital, Tianjin, P.R. China
| | - Du Chao
- Department of ICU, Tianjin Medical University, Nankai Hospital, Tianjin, P.R. China
| | - Wu Di
- Department of ICU, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Zhang Guoqian
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yuan Bo
- Graduate College, Tianjin Medical University, Tianjin, P.R. China
| | - Yan Lina
- Graduate College, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
130
|
Roberts VS, Cowan PJ, Alexander SI, Robson SC, Dwyer KM. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int 2014; 86:685-92. [DOI: 10.1038/ki.2014.244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
|
131
|
Davies J, Karmouty-Quintana H, Le TT, Chen NY, Weng T, Luo F, Molina J, Moorthy B, Blackburn MR. Adenosine promotes vascular barrier function in hyperoxic lung injury. Physiol Rep 2014; 2:2/9/e12155. [PMID: 25263205 PMCID: PMC4270235 DOI: 10.14814/phy2.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73(-/-), and Adora2B(-/-) mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73-mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73(-/-) and Adora2B(-/-) mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B-dependent regulation of occludin.
Collapse
Affiliation(s)
- Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Thuy T Le
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas - Houston Medical School, Houston, Texas
| |
Collapse
|
132
|
Giust D, Da Ros T, Martín M, Albasanz JL. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia. J Nanobiotechnology 2014; 12:27. [PMID: 25123848 PMCID: PMC4143579 DOI: 10.1186/s12951-014-0027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 01/26/2023] Open
Abstract
Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested.
Collapse
|
133
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
134
|
Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 2014; 4:879-88. [PMID: 25035124 DOI: 10.1158/2159-8290.cd-14-0341] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED CD73 generation of immunosuppressive adenosine within the hypoxic tumor microenvironment causes dysregulation of immune cell infiltrates, resulting in tumor progression, metastases, and poor disease outcomes. Therapies targeted toward the adenosinergic pathway, such as antibodies targeting CD73 and CD39, have proven efficacy in mouse tumor models; however, humanized versions are only in preliminary development. In contrast, A(2A) adenosine receptor antagonists have progressed to late-stage clinical trials in Parkinson disease, yet evidence of their role in oncology is limited. This review will compare the merits and challenges of these therapeutic approaches, identifying tumor indications and combinations that may be fruitful as they progress to the clinic. SIGNIFICANCE High concentrations of immunosuppressive adenosine have been reported in cancers, and adenosine is implicated in the growth of tumors. This brief review delineates the current treatment strategies and tumor subtypes that will benefit from targeting adenosinergic pathways, alone or in combination with contemporary approaches to cancer treatment.
Collapse
Affiliation(s)
- Arabella Young
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| | - Deepak Mittal
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| |
Collapse
|
135
|
Escudero C, Roberts JM, Myatt L, Feoktistov I. Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming. Front Pharmacol 2014; 5:134. [PMID: 24926270 PMCID: PMC4046493 DOI: 10.3389/fphar.2014.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/24/2023] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome, defined by such clinical hallmarks as the onset of maternal hypertension and proteinuria after 20 weeks of gestation. The syndrome is also characterized by impaired blood flow through the utero-placental circulation and relative placental ischemia, which in turn, may generate feto-placental endothelial dysfunction. Endothelial dysfunction in offspring born from preeclamptic pregnancies has been associated with an increased risk of cardiovascular disease, including hypertension, later in life. Interestingly, diminished endothelial function, manifested by low angiogenic capacity, leads to hypertension in animal studies. Recently, we have shown that the adenosine receptor A2A/nitric oxide/vascular endothelial growth factor axis is reduced in human umbilical vein endothelial cells derived from preeclamptic pregnancies, an effect correlated with gestational age at onset of preeclampsia. We and others suggested that impaired vascular function might be associated with high cardiovascular risk in offspring exposed to pregnancy diseases. However, we are not aware of any studies that examine impaired adenosine-mediated angiogenesis as a possible link to hypertension in offspring born from preeclamptic pregnancies. In this review, we present evidence supporting the hypothesis that reduced adenosine-mediated angiogenesis during preeclamptic pregnancies might be associated with development of hypertension in the offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Epidemiology and Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, TX, USA
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA ; Department of Pharmacology, School of Medicine, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
136
|
Hinz S, Lacher SK, Seibt BF, Müller CE. BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 2014; 349:427-36. [PMID: 24633424 DOI: 10.1124/jpet.113.210849] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BAY60-6583 [2-({6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-yl}sulfanyl)acetamide] is the most potent and selective adenosine A2B receptor (A2B AR) agonist known to date. Therefore, it has been widely used for in vitro and in vivo experiments. In the present study, we investigated the binding and functional properties of BAY60-6583 in various native and recombinant cell lines with different A2B AR expression levels. In cAMP accumulation and calcium mobilization assays, BAY60-6583 was found to be significantly less efficacious than adenosine or the adenosine derivative NECA. When it was tested in human embryonic kidney (HEK)293 cells, its efficacy correlated with the A2B expression level of the cells. In Jurkat T cells, BAY60-6583 antagonized the agonistic effect of NECA and adenosine as determined in cAMP accumulation assays. On the basis of these results, we conclude that BAY60-6583 acts as a partial agonist at adenosine A2B receptors. At high levels of the physiologic agonist adenosine, BAY60-6583 may act as an antagonist and block the effects of adenosine at A2B receptors. This has to be considered when applying the A2B-selective "agonist" BAY60-6583 in pharmacological studies, and previous research results may have to be reinterpreted.
Collapse
Affiliation(s)
- Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
137
|
Fu S, Tar MT, Melman A, Davies KP. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. FASEB J 2014; 28:3633-44. [PMID: 24803544 DOI: 10.1096/fj.13-248708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.
Collapse
Affiliation(s)
| | | | | | - Kelvin Paul Davies
- Department of Urology and Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
138
|
Acurio J, Troncoso F, Bertoglia P, Salomon C, Aguayo C, Sobrevia L, Escudero C. Potential role of A2B adenosine receptors on proliferation/migration of fetal endothelium derived from preeclamptic pregnancies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:274507. [PMID: 24877077 PMCID: PMC4024414 DOI: 10.1155/2014/274507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/01/2014] [Indexed: 01/10/2023]
Abstract
To investigate the functionality of A2B adenosine receptor (A2BAR) and the nitric oxide (NO) and vascular endothelial growth factor (VEGF) signaling pathway in the endothelial cell proliferation/migration during preeclampsia, we used human umbilical vein endothelial cells (HUVECs) isolated from normal pregnancies (n = 15) or pregnancies with preeclampsia (n = 15). Experiments were performed in presence or absence of the nonselective adenosine receptor agonist NECA, the A2BAR selective antagonist MRS-1754, and the nitric oxide synthase (NOS) inhibitor L-NAME. Results indicated that cells from preeclampsia exhibited a significant higher protein level of A2BAR and logEC50 for NECA-mediated proliferation than normotensive pregnancies. The stimulatory effect of NECA (10 μM, 24 h) on cell proliferation was prevented by MRS-1754 (5 nM) coincubation only in cells from normotensive pregnancies. Nevertheless, L-NAME (100 μM, 24 h) reduced the NECA-induced cell proliferation/migration in HUVEC from normal pregnancy; however in preeclampsia only NECA-induced cell proliferation was reduced by L-NAME. Moreover, NECA increased protein nitration and abundance of VEGF in cells from normal pregnancy and effect prevented by MRS-1754 coincubation. Nevertheless, in preeclampsia NECA did not affect the protein level of VEGF. In conclusion HUVECs from preeclampsia exhibit elevated protein level of A2BAR and impairment of A2BAR-mediated NO/VEGF signaling pathway.
Collapse
Affiliation(s)
- Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Patricio Bertoglia
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
- Obstetrics and Gynecology Department, Herminda Martin Clinical Hospital, Chillan, Chile
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4006, Australia
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Chile
| | - Luis Sobrevia
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4006, Australia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
139
|
Silva-Pinto AC, Dias-Carlos C, Saldanha-Araujo F, Ferreira FIS, Palma PVB, Araujo AG, Queiroz RHC, Elion J, Covas DT, Zago MA, Panepucci RA. Hydroxycarbamide modulates components involved in the regulation of adenosine levels in blood cells from sickle-cell anemia patients. Ann Hematol 2014; 93:1457-65. [DOI: 10.1007/s00277-014-2066-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/16/2014] [Indexed: 11/30/2022]
|
140
|
Patel L, Thaker A. The effects of adenosine A2Breceptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail 2014; 36:916-24. [DOI: 10.3109/0886022x.2014.900404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
141
|
Ning C, Wen J, Zhang Y, Dai Y, Wang W, Zhang W, Qi L, Grenz A, Eltzschig HK, Blackburn MR, Kellems RE, Xia Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. FASEB J 2014; 28:2725-35. [PMID: 24614760 DOI: 10.1096/fj.13-247833] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A(2B) adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA(-/-) and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.
Collapse
Affiliation(s)
- Chen Ning
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Department of Urology and Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaming Wen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Yingbo Dai
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Department of Urology and
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiru Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Urology and
| | - Almut Grenz
- Department of Anesthesiology, The University of Colorado School of Medicine, Denver, Colorado, USA; and
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Colorado School of Medicine, Denver, Colorado, USA; and
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Graduate School of Biomedical Science, The University of Texas, Houston, Texas, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Graduate School of Biomedical Science, The University of Texas, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA; Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Graduate School of Biomedical Science, The University of Texas, Houston, Texas, USA
| |
Collapse
|
142
|
Fujita N, Hirose Y, Tran CM, Chiba K, Miyamoto T, Toyama Y, Shapiro IM, Risbud MV. HIF-1-PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells. FASEB J 2014; 28:2455-65. [PMID: 24558194 DOI: 10.1096/fj.13-243741] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intervertebral disc degeneration is the leading cause of chronic back pain. Recent studies show that raised level of SDC4, a cell-surface heparan sulfate (HS) proteoglycan, plays a role in pathogenesis of disc degeneration. However, in nucleus pulposus (NP) cells of the healthy intervertebral disc, the mechanisms that control expression of SDC4 and its physiological function are unknown. Hypoxia induced SDC4 mRNA and protein expression by ~2.4- and 4.4-fold (P<0.05), respectively, in NP cells. While the activity of the SDC4 promoter containing hypoxia response element (HRE) was induced 2-fold (P<0.05), the HRE mutation decreased the activity by 40% in hypoxia. Transfections with plasmids coding prolyl-4-hydroxylase domain protein 2 (PHD2) and ShPHD2 show that hypoxic expression of SDC4 mRNA and protein is regulated by PHD2 through controlling hypoxia-inducible factor 1α (HIF-1α) levels. Although overexpression of HIF-1α significantly increased SDC4 protein levels, stable suppression of HIF-1α and HIF-1β decreased SDC4 expression by 50% in human NP cells. Finally, suppression of SDC4 expression, as well as HS function, resulted in an ~2-fold increase in sex-determining region Y (SRY)-box 9 (Sox9) mRNA, and protein (P<0.05) and simultaneous increase in Sox9 transcriptional activity and target gene expression. Taken together, our findings suggest that in healthy discs, SDC4, through its HS side chains, contributes to maintenance of the hypoxic tissue niche by controlling baseline expression of Sox9.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan; and
| | - Yuichiro Hirose
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan; and
| | - Cassie M Tran
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan; and
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan; and
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
143
|
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15:2024-52. [PMID: 24477263 PMCID: PMC3958836 DOI: 10.3390/ijms15022024] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Adenosine receptors (ARs) comprise a group of G protein-coupled receptors (GPCR) which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF)-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
144
|
Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, Anderson D, Glover LE, Riegel AK, Colgan SP, Eltzschig HK. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:1249-56. [PMID: 24391213 DOI: 10.4049/jimmunol.1100593] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although acute lung injury (ALI) contributes significantly to critical illness, resolution often occurs spontaneously through endogenous pathways. We recently found that mechanical ventilation increases levels of pulmonary adenosine, a signaling molecule known to attenuate lung inflammation. In this study, we hypothesized a contribution of transcriptionally controlled pathways to pulmonary adenosine receptor (ADOR) signaling during ALI. We gained initial insight from microarray analysis of pulmonary epithelia exposed to conditions of cyclic mechanical stretch, a mimic for ventilation-induced lung disease. Surprisingly, these studies revealed a selective induction of the ADORA2B. Using real-time RT-PCR and Western blotting, we confirmed an up to 9-fold induction of the ADORA2B following cyclic mechanical stretch (A549, Calu-3, or human primary alveolar epithelial cells). Studies using ADORA2B promoter constructs identified a prominent region within the ADORA2B promoter conveying stretch responsiveness. This region of the promoter contained a binding site for the transcription factor hypoxia-inducible factor (HIF)-1. Additional studies using site-directed mutagenesis or transcription factor binding assays demonstrated a functional role for HIF-1 in stretch-induced increases of ADORA2B expression. Moreover, studies of ventilator-induced lung injury revealed induction of the ADORA2B during ALI in vivo that was abolished following HIF inhibition or genetic deletion of Hif1a. Together, these studies implicate HIF in the transcriptional control of pulmonary adenosine signaling during ALI.
Collapse
Affiliation(s)
- Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Aurora, CO 80045
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Tak E, Ridyard D, Kim JH, Zimmerman M, Werner T, Wang XX, Shabeka U, Seo SW, Christians U, Klawitter J, Moldovan R, Garcia G, Levi M, Haase V, Ravid K, Eltzschig HK, Grenz A. CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. J Am Soc Nephrol 2013; 25:547-63. [PMID: 24262796 DOI: 10.1681/asn.2012101014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nucleotide phosphohydrolysis by the ecto-5'-nucleotidase (CD73) is the main source for extracellular generation of adenosine. Extracellular adenosine subsequently signals through four distinct adenosine A receptors (Adora1, Adora2a, Adora2b, or Adora3). Here, we hypothesized a functional role for CD73-dependent generation and concomitant signaling of extracellular adenosine during diabetic nephropathy. CD73 transcript and protein levels were elevated in the kidneys of diabetic mice. Genetic deletion of CD73 was associated with more severe diabetic nephropathy, whereas treatment with soluble nucleotidase was therapeutic. Transcript levels of renal adenosine receptors showed a selective induction of Adora2b during diabetic nephropathy. In a transgenic reporter mouse, Adora2b expression localized to the vasculature and increased after treatment with streptozotocin. Adora2b(-/-) mice experienced more severe diabetic nephropathy, and studies in mice with tissue-specific deletion of Adora2b in tubular epithelia or vascular endothelia implicated endothelial Adora2b signaling in protection from diabetic nephropathy. Finally, treatment with a selective Adora2b agonist (BAY 60-6583) conveyed potent protection from diabetes-associated kidney disease. Taken together, these findings implicate CD73-dependent production of extracellular adenosine and endothelial Adora2b signaling in kidney protection during diabetic nephropathy.
Collapse
|
146
|
Luo HM, Du MH, Lin ZL, Zhang L, Ma L, Wang H, Yu W, Lv Y, Lu JY, Pi YL, Hu S, Sheng ZY. Valproic acid treatment inhibits hypoxia-inducible factor 1α accumulation and protects against burn-induced gut barrier dysfunction in a rodent model. PLoS One 2013; 8:e77523. [PMID: 24147016 PMCID: PMC3798300 DOI: 10.1371/journal.pone.0077523] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/09/2013] [Indexed: 01/30/2023] Open
Abstract
Objective Burn-induced gut dysfunction plays an important role in the development of sepsis and multiple organ dysfunction. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) is critical in paracelluar barrier functions via regulating vascular endothelial growth factor (VEGF) and myosin light chain kinase (MLCK) expression. Previous studies have also demonstrated that histone deacetylase inhibitors (HDACIs) can repress HIF-1α. This study aims to examine whether valproic acid (VPA), a HDACI, protects against burn-induced gut barrier dysfunction via repressing HIF-1α-dependent upregulation of VEGF and MLCK expression. Methods Rats were subjected to third degree 55% TBSA burns and treated with/ without VPA (300mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and histologic evaluation. Histone acetylation, tight junction protein zonula occludens 1 (ZO-1), VEGF, MLCK and HIF-1α were measured. In addition, CaCO2 cells were transfected with siRNA directed against HIF-1α and were stimulated with CoCl2 (1mM) for 24 hours with/without VPA (2mM) followed by analysis of HIF-1α, MLCK, VEGF and ZO-1. Results Burn insults resulted in a significant increase in intestinal permeability and mucosal damage, accompanied by a significant reduction in histone acetylation, ZO-1, upregulation of VEGF, MLCK expression, and an increase in HIF-1α accumulation. VPA significantly attenuated the increase in intestinal permeability, mucosa damage, histone deacetylation and changes in ZO-1 expression. VPA also attenuated the increased VEGF, MLCK and HIF-1α protein levels. VPA reduced HIF-1α, MLCK and VEGF production and prevented ZO-1 loss in CoCl2-stimulated Caco-2 cells. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of MLCK and VEGF production, accompanied by upregulation of ZO-1. Conclusions These results indicate that VPA can protect against burn-induced gut barrier dysfunction. These protective effects may be due to its inhibitory action on HIF-1α, leading to a reduction in intestinal VEGF and MLCK expression and minimizing ZO-1 degradation.
Collapse
Affiliation(s)
- Hong-Min Luo
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Ming-Hua Du
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Zhi-Long Lin
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Lin Zhang
- Obstetrics and Gynecology Department, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Li Ma
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Huan Wang
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Wen Yu
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Yi Lv
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Jiang-Yang Lu
- Department of Pathology, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Yu-Li Pi
- Department of Ophtalmology, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
| | - Sen Hu
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
- * E-mail: (SH); (ZYS)
| | - Zhi-Yong Sheng
- Laboratory of Shock and Organ Dysfunction, Burns Institute, the First Hospital Affiliated to the People’s Liberation Army General Hospital, Beijing, China
- * E-mail: (SH); (ZYS)
| |
Collapse
|
147
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
148
|
Livermore S, Nurse CA. Enhanced adenosine A2breceptor signaling facilitates stimulus-induced catecholamine secretion in chronically hypoxic carotid body type I cells. Am J Physiol Cell Physiol 2013; 305:C739-50. [DOI: 10.1152/ajpcell.00137.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic hypoxia (CHox) augments chemoafferent activity in sensory fibers innervating carotid body (CB) chemoreceptor type I cells; however, the underlying mechanisms are poorly understood. We tested the hypothesis that enhanced paracrine signaling via adenosine (Ado) A2breceptors is involved. Dissociated rat CB cultures were exposed for 24 h to normoxia (Nox, 21% O2) or CHox (2% O2) or treated with the hypoxia mimetic deferoxamine mesylate (DFX), and catecholamine secretion from type I cells was monitored by amperometry. Catecholamine secretion was more robust in CHox and DFX type I cells than Nox controls after acute exposure to acid hypercapnia (10% CO2, pH 7.1) and high K+(75 mM). Exogenous Ado increased catecholamine secretion in a dose-dependent manner, and the EC50was shifted to the right from ∼21 μM Ado in Nox cells to ∼78 μM in CHox cells. Ado-evoked secretion in Nox and CHox cells was markedly inhibited by MRS-1754, an A2breceptor blocker, but was unaffected by SCH-58261, an A2areceptor blocker. Similarly, MRS-1754, but not SCH-58261, partially inhibited high-K+-evoked catecholamine secretion, suggesting a contribution from paracrine activation of A2breceptors by endogenous Ado. CB chemostimuli, acid hypercapnia, and hypoxia elicited a MRS-1754-sensitive rise in intracellular Ca2+that was more robust in CHox and DFX than Nox cells. Taken together, these data suggest that paracrine Ado A2breceptor signaling contributes to stimulus-evoked catecholamine secretion in Nox and CHox CB chemoreceptors; however, the effects of Ado are more robust after CHox.
Collapse
Affiliation(s)
- Simon Livermore
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A. Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
149
|
Morote-Garcia JC, Köhler D, Roth JM, Mirakaj V, Eldh T, Eltzschig HK, Rosenberger P. Repression of the equilibrative nucleoside transporters dampens inflammatory lung injury. Am J Respir Cell Mol Biol 2013; 49:296-305. [PMID: 23590299 DOI: 10.1165/rcmb.2012-0457oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a devastating disorder of the lung that is characterized by hypoxemia, overwhelming pulmonary inflammation, and a high mortality in the critically ill. Adenosine has been implicated as an anti-inflammatory signaling molecule, and previous studies showed that extracellular adenosine concentrations are increased in inflamed tissues. Adenosine signaling is terminated by the uptake of adenosine from the extracellular into the intracellular compartment via equilibrative nucleoside transporters (ENTs). However, their role in controlling adenosine signaling during pulmonary inflammation remains unknown. After inflammatory in vitro experiments, we observed a repression of ENT1 and ENT2 that was associated with an attenuation of extracellular adenosine uptake. Experiments using short, interfering RNA silencing confirmed a significant contribution of ENT repression in elevating extracellular adenosine concentrations during inflammation. Furthermore, an examination of the ENT2 promoter implicated NF-κB as a key regulator for the observed ENT repression. Additional in vivo experiments using a murine model of inflammatory lung injury showed that the pharmacological inhibition of ENT1 and ENT2 resulted in improved pulmonary barrier function and reduced signs of acute inflammation of the lung. Whereas experiments on Ent1(-/-) or Ent2(-/-) mice revealed lung protection in LPS-induced lung injury, an examination of bone marrow chimeras for ENTs pointed to the nonhematopoetic expression of ENTs as the underlying cause of dampened pulmonary inflammation during ALI. Taken together, these findings reveal the transcriptional repression of ENTs as an innate protective response during acute pulmonary inflammation. The inhibition of ENTs could be pursued as a therapeutic option to ameliorate inflammatory lung injury.
Collapse
Affiliation(s)
- Julio C Morote-Garcia
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University and Tübingen University Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
150
|
Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer 2013; 134:1466-73. [DOI: 10.1002/ijc.28456] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Martin Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Kathleen Spring
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Sandra Pommey
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Isabelle Royal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
- Department of Medicine; Université de Montréal; Montréal Québec Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| |
Collapse
|