101
|
Liu DZ, Stamova B, Hu S, Ander BP, Jickling GC, Zhan X, Sharp FR, Wong B. MicroRNA and mRNA Expression Changes in Steroid Naïve and Steroid Treated DMD Patients. J Neuromuscul Dis 2015; 2:387-396. [PMID: 27858746 PMCID: PMC5240570 DOI: 10.3233/jnd-150076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Duchenne Muscular Dystrophy (DMD) is a recessive X-linked form of muscular dystrophy. Steroid therapy has clinical benefits for DMD patients, but the mechanism remains unclear. Objective: This study was designed to identify mRNAs and microRNAs regulated in Duchenne Muscular Dystrophy patients prior to and after steroid therapy. Methods: Genome wide transcriptome profiling of whole blood was performed to identify mRNAs and microRNAs regulated in DMD patients. Results: The data show many regulated mRNAs and some microRNAs, including some muscle-specific microRNAs (e.g., miR-206), that were significantly altered in blood of young (age 3–10) DMD patients compared to young controls. A total of 95 microRNAs, but no mRNAs, were differentially expressed in older DMD patients compared to matched controls (age 11–20). Steroid treatment reversed expression patterns of several microRNAs (miR-206, miR-181a, miR-4538, miR-4539, miR-606, and miR-454) that were altered in the young DMD patients. As an example, the over-expression of miR-206 in young DMD patients is predicted to down-regulate a set of target genes (e.g., RHGAP31, KHSRP, CORO1B, PTBP1, C7orf58, DLG4, and KLF4) that would worsen motor function. Since steroids decreased miR-206 expression to control levels, this could provide one mechanism by which steroids improve motor function. Conclusions: These identified microRNA-mRNA alterations will help better understand the pathophysiology of DMD and the response to steroid treatment.
Collapse
Affiliation(s)
- Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Shengyong Hu
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bradley P Ander
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Glen C Jickling
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, California, USA
| | - Brenda Wong
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
102
|
Lim K, Li Z, Choi KP, Wong L. A quantum leap in the reproducibility, precision, and sensitivity of gene expression profile analysis even when sample size is extremely small. J Bioinform Comput Biol 2015; 13:1550018. [DOI: 10.1142/s0219720015500183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcript-level quantification is often measured across two groups of patients to aid the discovery of biomarkers and detection of biological mechanisms involving these biomarkers. Statistical tests lack power and false discovery rate is high when sample size is small. Yet, many experiments have very few samples (≤ 5). This creates the impetus for a method to discover biomarkers and mechanisms under very small sample sizes. We present a powerful method, ESSNet, that is able to identify subnetworks consistently across independent datasets of the same disease phenotypes even under very small sample sizes. The key idea of ESSNet is to fragment large pathways into smaller subnetworks and compute a statistic that discriminates the subnetworks in two phenotypes. We do not greedily select genes to be included based on differential expression but rely on gene-expression-level ranking within a phenotype, which is shown to be stable even under extremely small sample sizes. We test our subnetworks on null distributions obtained by array rotation; this preserves the gene–gene correlation structure and is suitable for datasets with small sample size allowing us to consistently predict relevant subnetworks even when sample size is small. For most other methods, this consistency drops to less than 10% when we test them on datasets with only two samples from each phenotype, whereas ESSNet is able to achieve an average consistency of 58% (72% when we consider genes within the subnetworks) and continues to be superior when sample size is large. We further show that the subnetworks identified by ESSNet are highly correlated to many references in the biological literature. ESSNet and supplementary material are available at: http://compbio.ddns.comp.nus.edu.sg:8080/essnet .
Collapse
Affiliation(s)
- Kevin Lim
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Zhenhua Li
- Department of Pediatrics, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Kwok Pui Choi
- Department of Statistics and Applied Probability, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| |
Collapse
|
103
|
Suneja M, Fox DK, Fink BD, Herlein JA, Adams CM, Sivitz WI. Evidence for metabolic aberrations in asymptomatic persons with type 2 diabetes after initiation of simvastatin therapy. Transl Res 2015; 166:176-87. [PMID: 25683525 PMCID: PMC4509977 DOI: 10.1016/j.trsl.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 01/14/2023]
Abstract
Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) prevent vascular events and are widely prescribed, particularly in persons with type 2 diabetes. However, intolerability because of myopathic symptoms often limits their use. We investigated the effects of simvastatin on parameters of mitochondrial function and muscle gene expression in 11 subjects with type 2 diabetes, none of whom had statin intolerance. After withdrawal of statins for 2 months, we obtained blood samples, performed vastus lateralis muscle biopsies, and assessed whole body resting energy expenditure (REE). We then reinitiated therapy using simvastatin, 20 mg/d, for 1 month before repeating these studies. As expected, simvastatin lowered low-density lipoprotein, but did not induce myalgias or significant increases in serum creatine kinase. However, we found subtle but significant reductions in muscle citrate synthase activity and REE. In addition, quantitative polymerase chain reaction and gene set enrichment analysis of muscle samples revealed significantly repressed gene sets involved in mitochondrial function and induced gene sets involved in remodeling of the extracellular matrix. Furthermore, the effects of simvastatin on muscle gene sets showed some similarities to previously described changes that occur in Duchenne muscular dystrophy, polymyositis, and dermatomyositis. Although statins inhibit an early step in coenzyme Q (CoQ) biosynthesis, we observed no differences in CoQ content within skeletal muscle mitochondria, muscle tissue, or circulating platelets. In summary, we report subtle changes in whole body energetics, mitochondrial citrate synthase activity, and microarray data consistent with subclinical myopathy. Although the benefits of statin therapy are clear, further understanding of muscular perturbations should help guide safety and tolerability.
Collapse
Affiliation(s)
- Manish Suneja
- Division of Nephrology, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City VA, Iowa City, Iowa
| | - Daniel K Fox
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Brian D Fink
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City VA, Iowa City, Iowa
| | - Judy A Herlein
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City VA, Iowa City, Iowa
| | - Christopher M Adams
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City VA, Iowa City, Iowa
| | - William I Sivitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Health Care System, Iowa City VA, Iowa City, Iowa.
| |
Collapse
|
104
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
105
|
Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C, Ledevin M, Deschamps JY, Fromes Y, Cherel Y, Guevel L, Rouger K. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation. PLoS One 2015; 10:e0123336. [PMID: 25955839 PMCID: PMC4425432 DOI: 10.1371/journal.pone.0123336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. RESULTS In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. CONCLUSIONS Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.
Collapse
Affiliation(s)
- Florence Robriquet
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
| | - Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Candice Babarit
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Isabelle Leroux
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Céline Zuber
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Jack-Yves Deschamps
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Yves Fromes
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Laboratoire RMN AIM-CEA, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Yan Cherel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laetitia Guevel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail:
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
106
|
Mukund K, Subramaniam S. Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis. BMC Res Notes 2015; 8:182. [PMID: 25935398 PMCID: PMC4424514 DOI: 10.1186/s13104-015-1141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/22/2015] [Indexed: 01/21/2023] Open
Abstract
Background Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder with its primary insult on the skeletal muscle. Severe muscle wasting, chronic inflammation and fibrosis characterize dystrophic muscle. Here we identify dysregulated pathways in DMD utilizing a co-expression network approach as described in Weighted Gene Co-expression Network Analysis (WGCNA). Specifically, we utilize WGCNA’s “preservation” statistics to identify gene modules that exhibit a weak conservation of network topology within healthy and dystrophic networks. Preservation statistics rank modules based on their topological metrics such as node density, connectivity and separability between networks. Methods Raw data for DMD was downloaded from Gene Expression Omnibus (GSE6011) and suitably preprocessed. Co-expression networks for each condition (healthy and dystrophic) were generated using the WGCNA library in R. Preservation of healthy network edges was evaluated with respect to dystrophic muscle and vice versa using WGCNA. Highly exclusive gene pairs for each of the low preserved modules within both networks were also determined using a specificity measure. Results A total of 11 and 10 co-expressed modules were identified in the networks generated from 13 healthy and 23 dystrophic samples respectively. 5 out of the 11, and 4 out of the 10 modules were identified as exhibiting none-to-weak preservation. Functional enrichment analysis identified that these weakly preserved modules were highly relevant to the condition under study. For instance, weakly preserved dystrophic module D2 exhibited the highest fraction of genes exclusive to DMD. The highly specific gene pairs identified within these modules were enriched for genes activated in response to wounding and affect the extracellular matrix including several markers such as SPP1, MMP9 and ITGB2. Conclusion The proposed approach allowed us to identify clusters of genes that are non-randomly associated with the disease. Furthermore, highly specific gene pairs pointed to interactions between known markers of disease and identification of putative markers likely associated with disease. The analysis also helped identify putative novel interactions associated with the progression of DMD. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kavitha Mukund
- Bioinformatics and System Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, MC0412, La Jolla, CA, 92093, USA.
| | - Shankar Subramaniam
- Bioinformatics and System Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, MC0412, La Jolla, CA, 92093, USA. .,Departments of Bioengineering, Computer Science & Engineering, Cellular & Molecular Medicine and Chemistry & Biochemistry University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, CA, 92093, USA.
| |
Collapse
|
107
|
Pelosi L, Berardinelli MG, De Pasquale L, Nicoletti C, D'Amico A, Carvello F, Moneta GM, Catizone A, Bertini E, De Benedetti F, Musarò A. Functional and Morphological Improvement of Dystrophic Muscle by Interleukin 6 Receptor Blockade. EBioMedicine 2015; 2:285-93. [PMID: 26137572 PMCID: PMC4485902 DOI: 10.1016/j.ebiom.2015.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023] Open
Abstract
The anti-inflammatory agents glucocorticoids (GC) are the only available treatment for Duchenne muscular dystrophy (DMD). However, long-term GC treatment causes muscle atrophy and wasting. Thus, targeting specific mediator of inflammatory response may be more specific, more efficacious, and with fewer side effects. The pro-inflammatory cytokine interleukin (IL) 6 is overproduced in patients with DMD and in the muscle of mdx, the animal model for human DMD. We tested the ability of inhibition of IL6 activity, using an interleukin-6 receptor (Il6r) neutralizing antibody, to ameliorate the dystrophic phenotype. Blockade of endogenous Il6r conferred on dystrophic muscle resistance to degeneration and alleviated both morphological and functional consequences of the primary genetic defect. Pharmacological inhibition of IL6 activity leaded to changes in the dystrophic muscle environment, favoring anti-inflammatory responses and improvement in muscle repair. This resulted in a functional homeostatic maintenance of dystrophic muscle. These data provide an alternative pharmacological strategy for treatment of DMD and circumvent the major problems associated with conventional therapy. Inhibition of IL6 activity leads to changes in the dystrophic muscle environment. IL6R neutralizing antibody ameliorates the dystrophic phenotype. IL6 blockade counters muscle decline in mdx mice.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Homeostasis
- Inflammation/complications
- Inflammation/pathology
- Interleukin-6/blood
- Male
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscles/pathology
- Muscles/physiopathology
- Muscular Dystrophy, Animal/blood
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Necrosis
- Phenotype
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Maria Grazia Berardinelli
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | | | - Carmine Nicoletti
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Adele D'Amico
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Francesco Carvello
- Division of Rheumatology, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Gian Marco Moneta
- Division of Rheumatology, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Angela Catizone
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | | | - Antonio Musarò
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
- Corresponding author at: Unit of Histology and Medical Embryology, Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
108
|
Mu X, Tang Y, Lu A, Takayama K, Usas A, Wang B, Weiss K, Huard J. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum Mol Genet 2015; 24:2923-37. [PMID: 25678553 DOI: 10.1093/hmg/ddv055] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Although it has been speculated that stem cell depletion plays a role in the rapid progression of the muscle histopathology associated with Duchenne Muscular Dystrophy (DMD), the molecular and cellular mechanisms responsible for stem cell depletion remain poorly understood. The rapid depletion of muscle stem cells has not been observed in the dystrophin-deficient model of DMD (mdx mouse), which may explain the relatively mild dystrophic phenotype observed in this animal model. In contrast, we have observed a rapid occurrence of stem cell depletion in the dystrophin/utrophin double knockout (dKO) mouse model, which exhibits histopathological features that more closely recapitulate the phenotype observed in DMD patients compared with the mdx mouse. Notch signaling has been found to be a key regulator of stem cell self-renewal and myogenesis in normal skeletal muscle; however, little is known about the role that Notch plays in the development of the dystrophic histopathology associated with DMD. Our results revealed an over-activation of Notch in the skeletal muscles of dKO mice, which correlated with sustained inflammation, impaired muscle regeneration and the rapid depletion and senescence of the muscle progenitor cells (MPCs, i.e. Pax7+ cells). Consequently, the repression of Notch in the skeletal muscle of dKO mice delayed/reduced the depletion and senescence of MPCs, and restored the myogenesis capacity while reducing inflammation and fibrosis. We suggest that the down-regulation of Notch could represent a viable approach to reduce the dystrophic histopathologies associated with DMD.
Collapse
Affiliation(s)
- Xiaodong Mu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kurt Weiss
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
109
|
Yang X. Stem cell transplantation for treating Duchenne muscular dystrophy: A Web of Science-based literature analysis. Neural Regen Res 2015; 7:1744-51. [PMID: 25624797 PMCID: PMC4302457 DOI: 10.3969/j.issn.1673-5374.2012.22.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation for treating Duchenne muscular dystrophy. CONCLUSION: The publications on stem cell transplantation for treating Duchenne muscular dystrophy were relatively few. It also needs more research to confirm that stem cell therapy is a reliable treatment for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Cell Therapy Center, Chinese PLA 463 Hospital, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
110
|
Neueder A, Bates GP. A common gene expression signature in Huntington's disease patient brain regions. BMC Med Genomics 2014; 7:60. [PMID: 25358814 PMCID: PMC4219025 DOI: 10.1186/s12920-014-0060-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background Gene expression data provide invaluable insights into disease mechanisms. In Huntington’s disease (HD), a neurodegenerative disease caused by a tri-nucleotide repeat expansion in the huntingtin gene, extensive transcriptional dysregulation has been reported. Conventional dysregulation analysis has shown that e.g. in the caudate nucleus of the post mortem HD brain the gene expression level of about a third of all genes was altered. Owing to this large number of dysregulated genes, the underlying relevance of expression changes is often lost in huge gene lists that are difficult to comprehend. Methods To alleviate this problem, we employed weighted correlation network analysis to archival gene expression datasets of HD post mortem brain regions. Results We were able to uncover previously unidentified transcription dysregulation in the HD cerebellum that contained a gene expression signature in common with the caudate nucleus and the BA4 region of the frontal cortex. Furthermore, we found that yet unassociated pathways, e.g. global mRNA processing, were dysregulated in HD. We provide evidence to show that, contrary to previous findings, mutant huntingtin is sufficient to induce a subset of stress response genes in the cerebellum and frontal cortex BA4 region. The comparison of HD with other neurodegenerative disorders showed that the immune system, in particular the complement system, is generally activated. We also demonstrate that HD mouse models mimic some aspects of the disease very well, while others, e.g. the activation of the immune system are inadequately reflected. Conclusion Our analysis provides novel insights into the molecular pathogenesis in HD and identifies genes and pathways as potential therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0060-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Neueder
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| | - Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
111
|
Unveiling transcription factor regulation and differential co-expression genes in Duchenne muscular dystrophy. Diagn Pathol 2014; 9:210. [PMID: 25338682 PMCID: PMC4312468 DOI: 10.1186/s13000-014-0210-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/12/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gene expression analysis is powerful for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies mainly neglected co-expression or transcription factor (TF) information. Here we integrated TF information into differential co-expression analysis (DCEA) to explore new understandings of DMD pathogenesis. METHODS Using two microarray datasets from Gene Expression Omnibus (GEO) database, we firstly detected differentially expressed genes (DEGs) and pathways enriched with DEGs. Secondly, we constructed differentially regulated networks to integrate the TF-to-target information and the differential co-expression genes. RESULTS A total of 454 DEGs were detected and both KEGG pathway and ingenuity pathway analysis revealed that pathways enriched with aberrantly regulated genes are mostly involved in the immune response processes. DCEA results generated 610 pairs of DEGs regulated by at least one common TF, including 78 pairs of co-expressed DEGs. A network was constructed to illustrate their relationships and a subnetwork for DMD related molecules was constructed to show genes and TFs that may play important roles in the secondary changes of DMD. Among the DEGs which shared TFs with DMD, six genes were co-expressed with DMD, including ATP1A2, C1QB, MYOF, SAT1, TRIP10, and IFI6. CONCLUSION Our results may provide a new understanding of DMD and contribute potential targets for future therapeutic tests. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_210.
Collapse
|
112
|
miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR. Nat Commun 2014; 5:4906. [PMID: 25232965 PMCID: PMC4199286 DOI: 10.1038/ncomms5906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 08/02/2014] [Indexed: 11/08/2022] Open
Abstract
Many proteins are expressed dynamically during different stages of cellular life and the accuracy of protein amounts is critical for cell endurance. Therefore, cells should have a perceptive system that notifies about fluctuations in the amounts of certain components and an executive system that efficiently restores their precise levels. At least one mechanism that evolution has employed for this task is regulation of 3'-UTR length for microRNA targeting. Here we show that in Drosophila the microRNA complex miR-310s acts as an executive mechanism to buffer levels of the muscular dystrophy-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR. miR-310s gene expression fluctuates depending on dystroglycan amounts and nitric oxide signalling, which perceives dystroglycan levels and regulates microRNA gene expression. Aberrant levels of dystroglycan or deficiencies in miR-310s and nitric oxide signalling result in cobblestone brain appearance, resembling human lissencephaly type II phenotype.
Collapse
|
113
|
An HB, Zheng HC, Zhang L, Ma L, Liu ZY. Partial least squares based identification of Duchenne muscular dystrophy specific genes. J Zhejiang Univ Sci B 2014; 14:973-82. [PMID: 24190443 DOI: 10.1631/jzus.b1300060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.
Collapse
Affiliation(s)
- Hui-bo An
- Department of Pathology, Children's Hospital, Shijiazhuang 050031, China; Department of Neurology, Children's Hospital, Shijiazhuang 050031, China
| | | | | | | | | |
Collapse
|
114
|
Li Q, Liu X, Wei J. Ageing related periostin expression increase from cardiac fibroblasts promotes cardiomyocytes senescent. Biochem Biophys Res Commun 2014; 452:497-502. [PMID: 25173938 DOI: 10.1016/j.bbrc.2014.08.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023]
Abstract
Periostin, as an extracellular matrix (ECM) protein, plays a critical role in myocardial fibrosis and also might be involved in the heart inflammatory process since it is a downstream molecule of IL4 and IL13. Considering the possible important role of periostin in heart aging, this study explored periostin expression pattern in both rat and human, the effect of periostin expression on cardiomyocyte senescent and expression of three cytokines (IL13, IL4 and IL6) in different age groups of human. This study found heart aging is associated with increased expression of periostin from cardiac fibroblasts and serum inflammatory cytokines (IL13 and IL6). Excessive periostin expression contributed to cardiomyocyte senescent, which could be alleviated through blocking the Ang-II-TGF β1-MAPK/ERK pathway. Thus, periostin might play an important role in a vicious circle (aging-fibrosis-inflammation-aging) of heart through promoting myocardial fibrosis and cardiomyocyte senescent simultaneously. It is a potential aging marker that could be directly measured in serum.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, The Second Affiliated Hospital of the Xi'an Jiao Tong University, 157 Five West Road, Xi'an 710004, PR China.
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of the Xi'an Jiao Tong University, 157 Five West Road, Xi'an 710004, PR China.
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of the Xi'an Jiao Tong University, 157 Five West Road, Xi'an 710004, PR China.
| |
Collapse
|
115
|
McLoon LK, Harandi VM, Brännström T, Andersen PM, Liu JX. Wnt and extraocular muscle sparing in amyotrophic lateral sclerosis. Invest Ophthalmol Vis Sci 2014; 55:5482-96. [PMID: 25125606 DOI: 10.1167/iovs.14-14886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The extraocular muscles (EOM) and their motor neurons are spared in amyotrophic lateral sclerosis (ALS). In limb muscle, axon retraction from the neuromuscular junctions occurs early in the disease. Wnts, a conserved family of secreted signaling molecules, play a critical role in neuromuscular junction formation. This is the first study to examine Wnt signaling for its potential involvement in maintenance of normal morphology in EOM in ALS. METHODS Extraocular muscle and limb muscle axons, neuromuscular junctions, and myofibers from control, aging, and ALS subjects and the SOD1(G93A) mouse model of ALS were quantified for their expression of Wnt1, Wnt3a, Wnt5a, Wnt7a, and β-catenin. RESULTS All four Wnt isoforms were expressed in most axon profiles in all human EOM. Significantly fewer were positive for Wnt1, Wnt3a, and Wnt7a in the human limb muscles. Similar differential patterns in Wnt myofiber expression were also seen except in the case of Wnt7a, where expression was elevated. In the SOD1(G93A) mouse, all four Wnt isoforms were significantly decreased in the neuromuscular junctions at the terminal stage compared to values in age-matched controls. β-Catenin was activated in a subset of myofibers in EOM and limb muscle in all subjects. CONCLUSIONS The differences in expression of Wnts in EOM and limb muscle, particularly at the neuromuscular junction level, suggest that they play a role in the pathophysiology of ALS. Collectively, the data support a role for signaling of Wnts in the preservation of the EOM in ALS and their dysregulation and the subsequent development of pathology in the ALS limb muscles.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Vahid M Harandi
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
116
|
Stem cell transplantation for muscular dystrophy: the challenge of immune response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964010. [PMID: 25054157 PMCID: PMC4098613 DOI: 10.1155/2014/964010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.
Collapse
|
117
|
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J 2014; 281:3261-79. [PMID: 24860983 DOI: 10.1111/febs.12859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 2014; 23:5720-32. [PMID: 24916377 DOI: 10.1093/hmg/ddu287] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Roberta Francesca Capogrosso
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| |
Collapse
|
119
|
Thomas M, Brabanter KD, Moor BD. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems. BMC Bioinformatics 2014; 15:137. [PMID: 24886083 PMCID: PMC4025604 DOI: 10.1186/1471-2105-15-137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/24/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. RESULTS Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. CONCLUSION We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.
Collapse
Affiliation(s)
- Minta Thomas
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics/iMinds Medical IT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| | - Kris De Brabanter
- Iowa State University, Department of Statistics & Computer Science, Ames, IA, USA
| | - Bart De Moor
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics/iMinds Medical IT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| |
Collapse
|
120
|
Inflammation converts human mesoangioblasts into targets of alloreactive immune responses: implications for allogeneic cell therapy of DMD. Mol Ther 2014; 22:1342-1352. [PMID: 24736278 DOI: 10.1038/mt.2014.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/01/2014] [Indexed: 01/07/2023] Open
Abstract
Stem cell therapy is a promising approach to regenerate healthy tissues starting from a limited amount of self-renewing cells. Immunological rejection of cell therapy products might represent a major limitation. In this study, we investigated the immunological functional profile of mesoangioblasts, vessel-associated myogenic stem cells, currently tested in a phase 1-2a trial, active in our Institute, for the treatment of Duchenne muscular dystrophy. We report that in resting conditions, human mesoangioblasts are poorly immunogenic, inefficient in promoting the expansion of alloreactive T cells and intrinsically resistant to T-cell killing. However, upon exposure to interferon-γ or differentiation into myotubes, mesoangioblasts acquire the ability to promote the expansion of alloreactive T cells and acquire sensitivity to T-cell killing. Resistance of mesoangioblasts to T-cell killing is largely due to the expression of the intracellular serine protease inhibitor-9 and represents a relevant mechanism of stem cell immune evasion.
Collapse
|
121
|
Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T, Nishiyama A, Okada H, Takeda S, Okada T. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet 2014; 23:3990-4000. [PMID: 24659498 DOI: 10.1093/hmg/ddu113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease that causes respiratory and cardiac failure. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, but its role and regulation in the disease time course has not been sufficiently examined. In the present study, we used IL-10(-/-)/mdx mice lacking both dystrophin and the anti-inflammatory cytokine, interleukin-10 (IL-10), to investigate whether a predisposition to inflammation affects the severity of DMD with advancing age. The IL-10 deficiency caused a profound DMD phenotype in the dystrophic heart such as muscle degeneration and extensive myofiber loss, but the limb muscle and diaphragm morphology of IL-10(-/) (-)/mdx mice was similar to that of mdx mice. Extensive infiltrates of pro-inflammatory M1 macrophages in regeneration of cardiotoxin-injured muscle, altered M1/M2 macrophage phenotype and increased pro-inflammatory cytokines/chemokines production were observed in the diaphragm and heart of IL-10(-/-)/mdx mice. We characterized the IL-10(-/-)/mdx mice as a dystrophic model with chronic inflammation and severe cardiorespiratory dysfunction, as evidenced by decreased percent fractional shortening (%FS) and ejection fraction percent (EF%) on echocardiography, reduced lower tidal volume on whole-body plethysmography. This study suggests that a predisposition to inflammation is an important indicator of DMD disease progression. Therefore, the development of anti-inflammatory strategies may help in slowing down the cardiorespiratory dysfunction on DMD.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Chiyo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akiyo Nishiyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hironori Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
122
|
Cynthia Martin F, Hiller M, Spitali P, Oonk S, Dalebout H, Palmblad M, Chaouch A, Guglieri M, Straub V, Lochmüller H, Niks EH, Verschuuren JJGM, Aartsma‐Rus A, Deelder AM, Burgt YEM, 't Hoen PAC. Fibronectin is a serum biomarker for
D
uchenne muscular dystrophy. Proteomics Clin Appl 2014; 8:269-78. [DOI: 10.1002/prca.201300072] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/05/2013] [Accepted: 11/17/2013] [Indexed: 01/23/2023]
Affiliation(s)
- F. Cynthia Martin
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Monika Hiller
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Pietro Spitali
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Stijn Oonk
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Hans Dalebout
- Center for Proteomics and Metabolomics >Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics >Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Amina Chaouch
- Institute of Genetic Medicine Newcastle University, International Centre for Life Newcastle upon Tyne UK
| | - Michela Guglieri
- Institute of Genetic Medicine Newcastle University, International Centre for Life Newcastle upon Tyne UK
| | - Volker Straub
- Institute of Genetic Medicine Newcastle University, International Centre for Life Newcastle upon Tyne UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine Newcastle University, International Centre for Life Newcastle upon Tyne UK
| | - Erik H. Niks
- Department of Neurology Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | | | - Annemieke Aartsma‐Rus
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
- Institute of Genetic Medicine Newcastle University, International Centre for Life Newcastle upon Tyne UK
| | - André M. Deelder
- Center for Proteomics and Metabolomics >Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Yuri E. M. Burgt
- Center for Proteomics and Metabolomics >Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| | - Peter A. C. 't Hoen
- Department of Human Genetics Leiden University Medical Center (LUMC) RC Leiden The Netherlands
| |
Collapse
|
123
|
Woo JS, Lee KJ, Huang M, Cho CH, Lee EH. Heteromeric TRPC3 with TRPC1 formed via its ankyrin repeats regulates the resting cytosolic Ca2+ levels in skeletal muscle. Biochem Biophys Res Commun 2014; 446:454-9. [PMID: 24613381 DOI: 10.1016/j.bbrc.2014.02.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
Abstract
The main tasks of skeletal muscle are muscle contraction and relaxation, which are mediated by changes in cytosolic Ca(2+) levels. Canonical-type transient receptor potential 3 (TRPC3) contains an ankyrin repeat (AR) region at the N-terminus (38-188 amino acids) and forms extracellular Ca(2+)-entry channels by homo or heteromerization with other TRP subtypes in various cells including skeletal myotubes. However, previous research has not determined which region(s) of TRPC3 is responsible for the heteromerization, whether the AR region participates in the heteromerizations, or what is the role of heteromeric TRPC3s in skeletal muscle. In the present study, the heteromerization of TRPC3 with TRPC1 was first examined by GST pull-down assays of TRPC3 portions with TRPC1. The portion containing the AR region of TRPC3 was bound to the TRPC1, but the binding was inhibited by the very end sub-region of the TRPC3 (1-37 amino acids). In-silico studies have suggested that the very end sub-region possibly induces a structural change in the AR region. Second, the very end sub-region of TRPC3 was expressed in mouse primary skeletal myotubes, resulting in a dominant-negative inhibition of heteromeric TRPC3/1 formation. In addition, the skeletal myotubes expressing the very end sub-region showed a decrease in resting cytosolic Ca(2+) levels. These results suggest that the AR region of TRPC3 could mediate the heteromeric TRPC3/1 formation, and the heteromeric TRPC3/1 could participate in regulating the resting cytosolic Ca(2+) levels in skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
124
|
Gupta S, Kim SM, Wang Y, Dinasarapu AR, Subramaniam S. Statistical insights into major human muscular diseases. Hum Mol Genet 2014; 23:3772-8. [PMID: 24569163 DOI: 10.1093/hmg/ddu090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Muscular diseases lead to muscle fiber degeneration, impairment of mobility, and in some cases premature death. Many of these muscular diseases are largely idiopathic. The goal of this study was to identify biomarkers based on their functional role and possible mechanisms of pathogenesis, specific to individual muscular disease. We analyzed the muscle transcriptome from five major muscular diseases: acute quadriplegic myopathy (AQM), amyotrophic lateral sclerosis (ALS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), dermatomyositis (DM) and polymyositis (PM) using pairwise statistical comparison to identify uniquely regulated genes in each muscular disease. The genome-wide information encoded in the transcriptome provided biomarkers and functional insights into dysregulation in each muscular disease. The analysis showed that the dysregulation of genes in forward membrane pathway, responsible for transmitting action potential from neural excitation, is unique to AQM, while the dysregulation of myofibril genes, determinant of the mechanical properties of muscle, is unique to ALS, dysregulation of ER protein processing, responsible for correct protein folding, is unique to DM, and upregulation of immune response genes is unique to PM. We have identified biomarkers specific to each muscular disease which can be used for diagnostic purposes.
Collapse
Affiliation(s)
| | | | - Yu Wang
- Department of Bioengineering
| | | | - Shankar Subramaniam
- Department of Bioengineering, Department of Cellular and Molecular Medicine and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
125
|
Houston C, Mathews K, Shibli-Rahhal A. Bone density and alendronate effects in Duchenne muscular dystrophy patients. Muscle Nerve 2014; 49:506-11. [PMID: 23835890 DOI: 10.1002/mus.23948] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 06/24/2013] [Accepted: 06/30/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Patients with DMD have low bone mineral density (BMD) and are at high risk for fractures. We examined changes in BMD and the effects of alendronate in DMD patients treated at our institution in the last decade. METHODS Retrospective cohort study of 39 DMD patients. RESULTS Patients had screening dual energy x-ray absorptiometry (DXA) at an average age of 12 years. The vast majority had low Z-scores at the total hip and lumbar spine. Patients treated with glucocorticoids had a significantly lower Z-score at the spine than those not treated with glucocorticoids. Z-scores at the hip trended down without alendronate (P = 0.07) and trended up with alendronate (P = 0.4). CONCLUSIONS By age 12 years, most patients with DMD had low Z-scores. They may have benefitted from earlier screening. Z-score at the hip trended downward without alendronate and trended upward (stabilized) with alendronate, but these trends were not statistically significant.
Collapse
Affiliation(s)
- Caroline Houston
- Division of Endocrinology, E 426 GH, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | | | | |
Collapse
|
126
|
Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS. Alterations in Notch signalling in skeletal muscles frommdxanddkodystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol 2014; 99:675-87. [DOI: 10.1113/expphysiol.2013.077255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jarrod E. Church
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Corrado Angelini
- Neurosciences Department; IRCCS San Camillo Hospital; Lido Venice Italy
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| |
Collapse
|
127
|
Brinkmeyer-Langford C, Kornegay JN. Comparative Genomics of X-linked Muscular Dystrophies: The Golden Retriever Model. Curr Genomics 2014; 14:330-42. [PMID: 24403852 PMCID: PMC3763684 DOI: 10.2174/13892029113149990004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease that dramatically decreases the lifespan and abilities of affected young people. The primary molecular cause of the disease is the absence of functional dystrophin protein, which is critical to proper muscle function. Those with DMD vary in disease presentation and dystrophin mutation; the same causal mutation may be associated with drastically different levels of disease severity. Also contributing to this variation are the influences of additional modifying genes and/or changes in functional elements governing such modifiers. This genetic heterogeneity complicates the efficacy of treatment methods and to date medical interventions are limited to treating symptoms. Animal models of DMD have been instrumental in teasing out the intricacies of DMD disease and hold great promise for advancing knowledge of its variable presentation and treatment. This review addresses the utility of comparative genomics in elucidating the complex background behind phenotypic variation in a canine model of DMD, Golden Retriever muscular dystrophy (GRMD). This knowledge can be exploited in the development of improved, more personalized treatments for DMD patients, such as therapies that can be tailor-matched to the disease course and genomic background of individual patients.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Texas A&M University College of Veterinary Medicine, Dept. of Veterinary Integrative Biosciences - Mailstop 4458, College Station, Texas, U.S.A. 77843-4458
| | - Joe N Kornegay
- Texas A&M University College of Veterinary Medicine, Dept. of Veterinary Integrative Biosciences - Mailstop 4458, College Station, Texas, U.S.A. 77843-4458
| |
Collapse
|
128
|
Yang D, Parrish RS, Brock GN. Empirical evaluation of consistency and accuracy of methods to detect differentially expressed genes based on microarray data. Comput Biol Med 2013; 46:1-10. [PMID: 24529200 DOI: 10.1016/j.compbiomed.2013.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND In this study, we empirically evaluated the consistency and accuracy of five different methods to detect differentially expressed genes (DEGs) based on microarray data. METHODS Five different methods were compared, including the t-test, significance analysis of microarrays (SAM), the empirical Bayes t-test (eBayes), t-tests relative to a threshold (TREAT), and assumption adequacy averaging (AAA). The percentage of overlapping genes (POG) and the percentage of overlapping genes related (POGR) scores were used to rank the different methods on their ability to maintain a consistent list of DEGs both within the same data set and across two different data sets concerning the same disease. The power of each method was evaluated based on a simulation approach which mimics the multivariate distribution of the original microarray data. RESULTS For smaller sample sizes (6 or less per group), moderated versions of the t-test (SAM, eBayes, and TREAT) were superior in terms of both power and consistency relative to the t-test and AAA, with TREAT having the highest consistency in each scenario. Differences in consistency were most pronounced for comparisons between two different data sets for the same disease. For larger sample sizes AAA had the highest power for detecting small effect sizes, while TREAT had the lowest. DISCUSSION For smaller sample sizes moderated versions of the t-test can generally be recommended, while for larger sample sizes selection of a method to detect DEGs may involve a compromise between consistency and power.
Collapse
Affiliation(s)
- Dake Yang
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, United States.
| | - Rudolph S Parrish
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, United States.
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
129
|
Abstract
MOTIVATION Microarray data analysis is often applied to characterize disease populations by identifying individual genes linked to the disease. In recent years, efforts have shifted to focus on sets of genes known to perform related biological functions (i.e. in the same pathways). Evaluating gene sets reduces the need to correct for false positives in multiple hypothesis testing. However, pathways are often large, and genes in the same pathway that do not contribute to the disease can cause a method to miss the pathway. In addition, large pathways may not give much insight to the cause of the disease. Moreover, when such a method is applied independently to two datasets of the same disease phenotypes, the two resulting lists of significant pathways often have low agreement. RESULTS We present a powerful method, PFSNet, that identifies smaller parts of pathways (which we call subnetworks), and show that significant subnetworks (and the genes therein) discovered by PFSNet are up to 51% (64%) more consistent across independent datasets of the same disease phenotypes, even for datasets based on different platforms, than previously published methods. We further show that those methods which initially declared some large pathways to be insignificant would declare subnetworks detected by PFSNet in those large pathways to be significant, if they were given those subnetworks as input instead of the entire large pathways. AVAILABILITY http://compbio.ddns.comp.nus.edu.sg:8080/pfsnet/
Collapse
Affiliation(s)
- Kevin Lim
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417
| | | |
Collapse
|
130
|
De Paepe B, De Bleecker JL. Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediators Inflamm 2013; 2013:540370. [PMID: 24302815 PMCID: PMC3835490 DOI: 10.1155/2013/540370] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jan L. De Bleecker
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
131
|
Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. ACTA ACUST UNITED AC 2013; 203:345-57. [PMID: 24145169 PMCID: PMC3812980 DOI: 10.1083/jcb.201211134] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The BMP signaling pathway promotes muscle growth and inhibits muscle wasting via SMAD1/5-dependent signaling. Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.
Collapse
Affiliation(s)
- Catherine E Winbanks
- Division of Cell Signaling and Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets. PLoS One 2013; 8:e77430. [PMID: 24223098 PMCID: PMC3819505 DOI: 10.1371/journal.pone.0077430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
Collapse
|
133
|
Spitali P, van den Bergen JC, Verhaart IEC, Wokke B, Janson AAM, van den Eijnde R, den Dunnen JT, Laros JFJ, Verschuuren JJGM, 't Hoen PAC, Aartsma-Rus A. DMD transcript imbalance determines dystrophin levels. FASEB J 2013; 27:4909-16. [PMID: 23975932 DOI: 10.1096/fj.13-232025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Duchenne and Becker muscular dystrophies are caused by out-of-frame and in-frame mutations, respectively, in the dystrophin encoding DMD gene. Molecular therapies targeting the precursor-mRNA are in clinical trials and show promising results. These approaches will depend on the stability and expression levels of dystrophin mRNA in skeletal muscles and heart. We report that the DMD gene is more highly expressed in heart than in skeletal muscles, in mice and humans. The transcript mutated in the mdx mouse model shows a 5' to 3' imbalance compared with that of its wild-type counterpart and reading frame restoration via antisense-mediated exon skipping does not correct this event. We also report significant transcript instability in 22 patients with Becker dystrophy, clarifying the fact that transcript imbalance is not caused by premature nonsense mutations. Finally, we demonstrate that transcript stability, rather than transcriptional rate, is an important determinant of dystrophin protein levels in patients with Becker dystrophy. We suggest that the availability of the complete transcript is a key factor to determine protein abundance and thus will influence the outcome of mRNA-targeting therapies.
Collapse
Affiliation(s)
- Pietro Spitali
- 1Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics 2013; 14:547. [PMID: 23941278 PMCID: PMC3765282 DOI: 10.1186/1471-2164-14-547] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022] Open
Abstract
Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases of growth including the return to active long bone growth in puberty, a distinctly human event. These observations also have direct medical relevance to pathological changes that induce disease in children. Taking into account development-dependent gene expression profiles for normal children will be key to the appropriate selection of genes and pathways as potential biomarkers of disease or as drug targets.
Collapse
Affiliation(s)
- Adam Stevens
- Manchester Academic Health Sciences Centre, Faculty of Medical and Human Sciences, Royal Manchester Children's Hospital and the Institute of Human Development, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
135
|
Nakagawa T, Takeuchi A, Kakiuchi R, Lee T, Yagi M, Awano H, Iijima K, Takeshima Y, Urade Y, Matsuo M. A prostaglandin D2 metabolite is elevated in the urine of Duchenne muscular dystrophy patients and increases further from 8years old. Clin Chim Acta 2013; 423:10-4. [DOI: 10.1016/j.cca.2013.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
136
|
Narayanan T, Subramaniam S. Community Structure Analysis of Gene Interaction Networks in Duchenne Muscular Dystrophy. PLoS One 2013; 8:e67237. [PMID: 23840633 PMCID: PMC3686745 DOI: 10.1371/journal.pone.0067237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an important pathology associated with the human skeletal muscle and has been studied extensively. Gene expression measurements on skeletal muscle of patients afflicted with DMD provides the opportunity to understand the underlying mechanisms that lead to the pathology. Community structure analysis is a useful computational technique for understanding and modeling genetic interaction networks. In this paper, we leverage this technique in combination with gene expression measurements from normal and DMD patient skeletal muscle tissue to study the structure of genetic interactions in the context of DMD. We define a novel framework for transforming a raw dataset of gene expression measurements into an interaction network, and subsequently apply algorithms for community structure analysis for the extraction of topological communities. The emergent communities are analyzed from a biological standpoint in terms of their constituent biological pathways, and an interpretation that draws correlations between functional and structural organization of the genetic interactions is presented. We also compare these communities and associated functions in pathology against those in normal human skeletal muscle. In particular, differential enhancements are observed in the following pathways between pathological and normal cases: Metabolic, Focal adhesion, Regulation of actin cytoskeleton and Cell adhesion, and implication of these mechanisms are supported by prior work. Furthermore, our study also includes a gene-level analysis to identify genes that are involved in the coupling between the pathways of interest. We believe that our results serve to highlight important distinguishing features in the structural/functional organization of constituent biological pathways, as it relates to normal and DMD cases, and provide the mechanistic basis for further biological investigations into specific pathways differently regulated between normal and DMD patients. These findings have the potential to serve as fertile ground for therapeutic applications involving targeted drug development for DMD.
Collapse
Affiliation(s)
- Tejaswini Narayanan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
137
|
Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 2013; 22:4368-82. [PMID: 23784375 DOI: 10.1093/hmg/ddt287] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.
Collapse
|
138
|
MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ 2013; 20:1194-208. [PMID: 23764775 DOI: 10.1038/cdd.2013.62] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023] Open
Abstract
In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx(5cv) mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.
Collapse
|
139
|
Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 2013; 34:4395-403. [DOI: 10.1016/j.biomaterials.2013.02.052] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
|
140
|
Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013; 45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
141
|
Devakanmalai GS, Zumrut HE, Ozbudak EM. Cited3 activates Mef2c to control muscle cell differentiation and survival. Biol Open 2013; 2:505-14. [PMID: 23789100 PMCID: PMC3654270 DOI: 10.1242/bio.20132550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 03/25/2013] [Indexed: 01/13/2023] Open
Abstract
Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm – a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.
Collapse
|
142
|
Bernardini C, Censi F, Lattanzi W, Calcagnini G, Giuliani A. Gene regulation networks in early phase of Duchenne muscular dystrophy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:393-400. [PMID: 23929863 DOI: 10.1109/tcbb.2013.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to analyze previously published gene expression data of skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients and controls (gene expression omnibus database, accession #GSE6011) using systems biology approaches. We applied an unsupervised method to discriminate patient and control populations, based on principal component analysis, using the gene expressions as units and patients as variables. The genes having the highest absolute scores in the discrimination between the groups, were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.
Collapse
|
143
|
Bernardini C, Censi F, Lattanzi W, Barba M, Calcagnini G, Giuliani A, Tasca G, Sabatelli M, Ricci E, Michetti F. Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS One 2013; 8:e57739. [PMID: 23469062 PMCID: PMC3585165 DOI: 10.1371/journal.pone.0057739] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggested that muscle degeneration might lead and/or contribute to neurodegeneration, thus it possibly play a key role in the etiopathogenesis and progression of amyotrophic lateral sclerosis (ALS). To test this hypothesis, this study attempted to categorize functionally relevant genes within the genome-wide expression profile of human ALS skeletal muscle, using microarray technology and gene regulatory network analysis. The correlation network structures significantly change between patients and controls, indicating an increased inter-gene connection in patients compared to controls. The gene network observed in the ALS group seems to reflect the perturbation of muscle homeostasis and metabolic balance occurring in affected individuals. In particular, the network observed in the ALS muscles includes genes (PRKR1A, FOXO1, TRIM32, ACTN3, among others), whose functions connect the sarcomere integrity to mitochondrial oxidative metabolism. Overall, the analytical approach used in this study offer the possibility to observe higher levels of correlation (i.e. common expression trends) among genes, whose function seems to be aberrantly activated during the progression of muscle atrophy.
Collapse
Affiliation(s)
- Camilla Bernardini
- Institute of Anatomy and Cell Biology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- * E-mail:
| | - Federica Censi
- Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Calcagnini
- Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Mario Sabatelli
- Institute of Neurology, Università Cattolica del Sacro Cuore, School of Medicine, Rome, Italy
| | - Enzo Ricci
- Institute of Neurology, Università Cattolica del Sacro Cuore, School of Medicine, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
144
|
De Paepe B, Creus KK, Martin JJ, De Bleecker JL. Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis. Muscle Nerve 2013; 46:917-25. [PMID: 23225384 DOI: 10.1002/mus.23481] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2012] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In Duchenne muscular dystrophy (DMD), the infiltration of skeletal muscle by immune cells aggravates disease, yet the precise mechanisms behind these inflammatory responses remain poorly understood. Chemotactic cytokines, or chemokines, are considered essential recruiters of inflammatory cells to the tissues. METHODS We assayed chemokine and chemokine receptor expression in DMD muscle biopsies (n = 9, average age 7 years) using immunohistochemistry, immunofluorescence, and in situ hybridization. RESULTS CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11, absent from normal muscle fibers, were induced in DMD myofibers. CXCL11, CXCL12, and the ligand-receptor couple CCL2-CCR2 were upregulated on the blood vessel endothelium of DMD patients. CD68(+) macrophages expressed high levels of CXCL8, CCL2, and CCL5. CONCLUSIONS Our data suggest a possible beneficial role for CXCR1/2/4 ligands in managing muscle fiber damage control and tissue regeneration. Upregulation of endothelial chemokine receptors and CXCL8, CCL2, and CCL5 expression by cytotoxic macrophages may regulate myofiber necrosis.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
145
|
Abstract
One important application of microarray in clinical settings is for constructing a diagnosis or prognosis model. Batch effects are a well-known obstacle in this type of applications. Recently, a prominent study was published on how batch effects removal techniques could potentially improve microarray prediction performance. However, the results were not very encouraging, as prediction performance did not always improve. In fact, in up to 20% of the cases, prediction accuracy was reduced. Furthermore, it was stated in the paper that the techniques studied require sufficiently large sample sizes in both batches (train and test) to be effective, which is not a realistic situation especially in clinical settings. In this paper, we propose a different approach, which is able to overcome limitations faced by conventional methods. Our approach uses ranking value of microarray data and a bagging ensemble classifier with sequential hypothesis testing to dynamically determine the number of classifiers required in the ensemble. Using similar datasets to those in the original study, we showed that in only one case (<2%) is our performance reduced (by more than -0.05 AUC) and, in >60% of cases, it is improved (by more than 0.05 AUC). In addition, our approach works even on much smaller training data sets and is independent of the sample size of the test data, making it feasible to be applied on clinical studies.
Collapse
Affiliation(s)
- Chuan Hock Koh
- NUS Graduate School for Integrative Sciences and Engineering, Singapore.
| | | |
Collapse
|
146
|
Farztdinov V, McDyer F. Distributional fold change test - a statistical approach for detecting differential expression in microarray experiments. Algorithms Mol Biol 2012; 7:29. [PMID: 23122055 PMCID: PMC3526407 DOI: 10.1186/1748-7188-7-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set.
Collapse
|
147
|
Wang Y, Winters J, Subramaniam S. Functional classification of skeletal muscle networks. II. Applications to pathophysiology. J Appl Physiol (1985) 2012; 113:1902-20. [PMID: 23085957 DOI: 10.1152/japplphysiol.01515.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In our preceding companion paper (Wang Y, Winters J, Subramaniam S. J Appl Physiol. doi: 10.1152/japplphysiol.01514.2011), we used extensive expression profile data on normal human subjects, in combination with legacy knowledge to classify skeletal muscle function into four models, namely excitation-activation, mechanical, metabolic, and signaling-production model families. In this paper, we demonstrate how this classification can be applied to study two well-characterized myopathies: amyotrophic lateral sclerosis (ALS) and Duchenne muscular dystrophy (DMD). Using skeletal muscle profile data from ALS and DMD patients compared with that from normal subjects, normal young in the case of DMD, we delineate molecular mechanisms that are causative and consequential to skeletal muscle dysfunction. In ALS, our analysis establishes the metabolic role and specifically identifies the mechanisms of calcium dysregulation and defects in mitochondrial transport of materials as important for muscle dysfunction. In DMD, we illustrate how impaired mechanical function is strongly coordinated with other three functional networks, resulting in transformation of the skeletal muscle into hybrid forms as a compensatory mechanism. Our functional models also provide, in exquisite detail, the mechanistic role of myriad proteins in these four families in normal and disease function.
Collapse
Affiliation(s)
- Yu Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093-0412, USA
| | | | | |
Collapse
|
148
|
Rahimov F, King OD, Leung DG, Bibat GM, Emerson CP, Kunkel LM, Wagner KR. Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers. Proc Natl Acad Sci U S A 2012; 109:16234-9. [PMID: 22988124 PMCID: PMC3479603 DOI: 10.1073/pnas.1209508109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change ≥1.2; nominal P value <0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of <0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a "molecular signature" in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids.
Collapse
Affiliation(s)
- Fedik Rahimov
- Program in Genomics, Division of Genetics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and
| | - Oliver D. King
- The Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and
- Boston Biomedical Research Institute, Watertown, MA 02472
| | - Doris G. Leung
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205; Departments of
- Neurology and
| | - Genila M. Bibat
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205; Departments of
| | - Charles P. Emerson
- The Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and
- Boston Biomedical Research Institute, Watertown, MA 02472
| | - Louis M. Kunkel
- Program in Genomics, Division of Genetics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
- The Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115
| | - Kathryn R. Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205; Departments of
- Neurology and
- Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205; and
| |
Collapse
|
149
|
Palermo AT, Palmer RE, So KS, Oba-Shinjo SM, Zhang M, Richards B, Madhiwalla ST, Finn PF, Hasegawa A, Ciociola KM, Pescatori M, McVie-Wylie AJ, Mattaliano RJ, Madden SL, Marie SKN, Klinger KW, Pomponio RJ. Transcriptional response to GAA deficiency (Pompe disease) in infantile-onset patients. Mol Genet Metab 2012; 106:287-300. [PMID: 22658377 DOI: 10.1016/j.ymgme.2012.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022]
Abstract
Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease.
Collapse
Affiliation(s)
- A T Palermo
- Genetics & Genomics, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proc Natl Acad Sci U S A 2012; 109:10978-83. [PMID: 22711826 DOI: 10.1073/pnas.1204708109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The muscular dystrophies are broadly classified as muscle wasting diseases with myofiber dropout due to cellular necrosis, inflammation, alterations in extracellular matrix composition, and fatty cell replacement. These events transpire and progress despite ongoing myofiber regeneration from endogenous satellite cells. The degeneration/regeneration response to muscle injury/disease is modulated by the proinflammatory cytokine transforming growth factor-β (TGF-β), which can also profoundly influence extracellular matrix composition through increased secretion of profibrotic proteins, such as the matricellular protein periostin. Here we show that up-regulation and secretion of periostin is pathological and enhances disease in the δ-sarcoglycan null (Sgcd(-/-)) mouse model of muscular dystrophy (MD). Indeed, MD mice lacking the Postn gene showed dramatic improvement in skeletal muscle structure and function. Mechanistically, Postn gene deletion altered TGF-β signaling so that it now enhanced tissue regeneration with reduced levels of fibrosis. Systemic antagonism of TGF-β with a neutralizing monoclonal antibody mitigated the beneficial effects of Postn deletion in vivo. These data suggest that periostin functions as a disease determinant in MD by promoting/allowing the pathological effects of TGF-β, suggesting that inhibition of periostin could represent a unique treatment approach.
Collapse
|