101
|
Bruijnzeel AW. Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 2012; 36:1418-41. [PMID: 22405889 PMCID: PMC3340450 DOI: 10.1016/j.neubiorev.2012.02.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 S. Newell Dr., Gainesville, FL 32611, USA.
| |
Collapse
|
102
|
Nozu T, Tuchiya Y, Kumei S, Takakusaki K, Ataka K, Fujimiya M, Okumura T. Endogenous orexin-A in the brain mediates 2-deoxy-D-glucose-induced stimulation of gastric motility in freely moving conscious rats. J Gastroenterol 2012; 47:404-11. [PMID: 22170413 DOI: 10.1007/s00535-011-0506-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 10/25/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Increasing evidence has indicated that brain orexin plays a vital role in the regulation of gastrointestinal (GI) physiology such as gastric acid secretion and GI motility. The aim of this study was to elucidate the effects and mechanisms of orexin on gastric motility in non-fasted rats. METHODS In this study, we recorded intraluminal gastric pressure waves in freely moving conscious rats with a manometric catheter located in the antrum. We assessed the area under the manometric trace as the motor index (MI), and compared its values for 1 h before and after drug administration. RESULTS Intracisternal (ic) injection of orexin-A (10 μg) significantly increased the MI, but intraperitoneal (ip) injection did not have any effect. Pretreatment of ip injection of atropine significantly blocked the orexin-A-induced stimulation of gastric motility. Intravenous injection of 2-deoxy-D-glucose (2-DG, 200 mg/kg), a central vagal stimulant, significantly increased the MI. The ic injection of SB-334687 (40 μg), a selective orexin-A antagonist, did not modify the basal MI, but this antagonist significantly suppressed the stimulant action of 2-DG. CONCLUSIONS These results suggest that endogenous orexin-A in the brain is involved in the vagal-dependent stimulation of gastric contractions.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
103
|
Assisi L, Tafuri S, Liguori G, Paino S, Pavone LM, Staiano N, Vittoria A. Expression and role of receptor 1 for orexins in seminiferous tubules of rat testis. Cell Tissue Res 2012; 348:601-7. [DOI: 10.1007/s00441-012-1394-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/27/2012] [Indexed: 11/30/2022]
|
104
|
Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, DiMicco JA. The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav 2012; 107:743-50. [PMID: 22361264 DOI: 10.1016/j.physbeh.2012.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
We recently discovered that inhibiting neurons in the dorsomedial hypothalamus (DMH) attenuated hyperthermia, tachycardia, hypertension, and hyperactivity evoked by the substituted amphetamine 3, 4-methylenedioxymethamphetamine (MDMA). Neurons that synthesize orexin are also found in the region of the DMH. As orexin and its receptors are involved in the regulation of heart rate and temperature, they would seem to be logical candidates as mediators of the effects evoked by amphetamines. The goal of this study was to determine if blockade of orexin-1 receptors in conscious rats would suppress cardiovascular and thermogenic responses evoked by a range of methamphetamine (METH) doses. Male Sprague-Dawley rats (n=6 per group) were implanted with telemetric transmitters measuring body temperature, heart rate, and mean arterial pressure. Animals were randomized to receive pretreatment with either the orexin-1 receptor antagonist SB-334867 (10mg/kg) or an equal volume of vehicle. Thirty minutes later animals were given intraperitoneal (i.p.) injections of either saline, a low (1mg/kg), moderate (5mg/kg) or high (10mg/kg) dose of METH. Pretreatment with SB-334867 significantly attenuated increases in body temperature and mean arterial pressure evoked by the moderate but not the low or high dose of METH. Furthermore, animals treated with SB-334867, compared to vehicle, had lower temperature and heart rate increases after the stress of an i.p. injection. In conclusion, temperature and cardiovascular responses to a moderate dose of METH and to stress appear to involve orexin-1 receptors. The failure to affect a low and a high dose of METH suggests a complex pharmacology dependent on dose. A better understanding of this may lead to the knowledge of how monoamines influence the orexin system and vice versa.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | | | | | | | |
Collapse
|
105
|
Kaminski T, Smolinska N. Expression of orexin receptors in the pituitary. VITAMINS AND HORMONES 2012; 89:61-73. [PMID: 22640608 DOI: 10.1016/b978-0-12-394623-2.00004-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.
Collapse
Affiliation(s)
- Tadeusz Kaminski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | | |
Collapse
|
106
|
Abstract
In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the past 15 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, nonredundant function as an arousal stabilizer. Here, we discuss some of the data that have accumulated over the years on the integrating capacity of these hypothalamic neurons and their role on sleep-to-wake transitions.
Collapse
Affiliation(s)
- Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
107
|
Tsunematsu T, Yamanaka A. The Role of Orexin/Hypocretin in the Central Nervous System and Peripheral Tissues. SLEEP HORMONES 2012; 89:19-33. [DOI: 10.1016/b978-0-12-394623-2.00002-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
108
|
Aguilera G, Liu Y. The molecular physiology of CRH neurons. Front Neuroendocrinol 2012; 33:67-84. [PMID: 21871477 PMCID: PMC4341841 DOI: 10.1016/j.yfrne.2011.08.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/31/2011] [Accepted: 08/02/2011] [Indexed: 01/14/2023]
Abstract
Corticotropin releasing hormone (CRH) is essential for stress adaptation by mediating hypothalamic-pituitary-adrenal (HPA) axis, behavioral and autonomic responses to stress. Activation of CRH neurons depends on neural afferents from the brain stem and limbic system, leading to sequential CRH release and synthesis. CRH transcription is required to restore mRNA and peptide levels, but termination of the response is essential to prevent pathology associated with chronic elevations of CRH and HPA axis activity. Inhibitory feedback mediated by glucocorticoids and intracellular production of the repressor, Inducible Cyclic AMP Early Repressor (ICER), limit the magnitude and duration of CRH neuronal activation. Induction of CRH transcription is mediated by the cyclic AMP/protein kinase A/cyclic AMP responsive element binding protein (CREB)-dependent pathways, and requires cyclic AMP-dependent nuclear translocation of the CREB co-activator, Transducer of Regulated CREB activity (TORC). This article reviews current knowledge on the mechanisms regulating CRH neuron activity.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shiver Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States.
| | | |
Collapse
|
109
|
Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. PROGRESS IN BRAIN RESEARCH 2012; 198:133-61. [PMID: 22813973 DOI: 10.1016/b978-0-444-59489-1.00009-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A panic response is an adaptive response to deal with an imminent threat and consists of an integrated pattern of behavioral (aggression, fleeing, or freezing) and increased cardiorespiratory and endocrine responses that are highly conserved across vertebrate species. In the 1920s and 1940s, Philip Bard and Walter Hess, respectively, determined that the posterior regions of the hypothalamus are critical for a "fight-or-flight" reaction to deal with an imminent threat. Since the 1940s it was determined that the posterior hypothalamic panic area was located dorsal (perifornical hypothalamus: PeF) and dorsomedial (dorsomedial hypothalamus: DMH) to the fornix. This area is also critical for regulating circadian rhythms and in 1998, a novel wake-promoting neuropeptide called orexin (ORX)/hypocretin was discovered and determined to be almost exclusively synthesized in the DMH/PeF perifornical hypothalamus and adjacent lateral hypothalamus. The most proximally emergent role of ORX is in regulation of wakefulness through interactions with efferent systems that mediate arousal and energy homeostasis. A hypoactive ORX system is also linked to narcolepsy. However, ORX role in more complex emotional responses is emerging in more recent studies where ORX is linked to depression and anxiety states. Here, we review data that demonstrates ORX ability to mobilize a coordinated adaptive panic/defense response (anxiety, cardiorespiratory, and endocrine components), and summarize the evidence that supports a hyperactive ORX system being linked to pathological panic and anxiety states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
110
|
Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauss M, Baum P, Hegerl U, Schönknecht P. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Res 2011; 190:240-3. [PMID: 21757240 DOI: 10.1016/j.psychres.2011.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/13/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
Depressive patients exhibit symptoms of impaired regulation of wakefulness with hyperarousal and agitation as well as difficulties to falling asleep and preserving sleep continuity. Changes in hypocretin (hcrt) levels as polypeptides with impact on arousal and sleep-wake-regulation have been discussed in affective disorders but have not been investigated in patients with solely unipolar depression in comparison to healthy controls. In the present study, cerebrospinal fluid (CSF) levels of hcrt-1 for the first time were analyzed in patients with major depressive disorder (MDD) without psychiatric comorbidities and compared with levels in healthy controls. In 17 inpatients with MDD (mean Hamilton Depression Rating Scale 13.9 ± 7.4) and 10 healthy controls, CSF-hcrt-1 levels were measured using a fluorescence immunoassay (FIA). The mean hcrt-1 CSF levels in patients with MDD (74.3 ± 17.8pg/ml) did not differ compared to that of healthy controls (82.8 ± 22.1pg/ml). Hcrt-1 levels did not correlate with the severity of depressive episode, the symptoms of depression or the number of episodes. Although autonomic and neurohumoral signs of hyperarousal are common in MDD, hcrt-1 levels in CSF were not found to be altered in MDD compared to healthy controls. Whether hcrt-1 levels are altered in depressive patients exhibiting impaired vigilance regulation has to be investigated in further studies combining measures of CSF-hcrt-1 with electroencephalography.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Heydendael W, Sharma K, Iyer V, Luz S, Piel D, Beck S, Bhatnagar S. Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress. Endocrinology 2011; 152:4738-52. [PMID: 21971160 PMCID: PMC3230061 DOI: 10.1210/en.2011-1652] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orexins/hypocretins heavily innervate the posterior division of the paraventricular nucleus of the thalamus (pPVT), which expresses both orexin receptor types. The pPVT is important for adaptations to repeated stress, particularly the ability to facilitate to novel stress after repeated stress exposure. Here, we examined how orexins acting in the pPVT regulate facilitation of hypothalamic-pituitary-adrenal (HPA) responses to novel restraint after 4 d of repeated swim stress. Blockade of orexin receptors in the pPVT with SB334867 before novel restraint did not change the facilitated HPA response. However, blockade of orexin receptors before each of four daily swim exposures prevented the facilitated ACTH and facilitated hypothalamic c-Fos response to restraint as well as the repeated swim stress-induced increase in CRH mRNA in the paraventricular hypothalamus. These results suggest that orexin actions in the pPVT during the 4 d of swim, but not during restraint, are necessary for the facilitated HPA response to heterotypic restraint. Exposure to the fourth swim produced a shift in orexin1 receptors from membrane to cytosolic fractions. OrexinA also changed the firing patterns of pPVT cells to be more responsive in repeatedly swim stressed rats compared with nonstressed rats. Together, the results suggest that orexin actions in the pPVT, mediated by orexin1 receptors, are important for the ability to adapt to repeated stress.
Collapse
Affiliation(s)
- Willem Heydendael
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4399, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction. Pharmaceuticals (Basel) 2011; 4:804-821. [PMID: 23997653 PMCID: PMC3755900 DOI: 10.3390/ph4060804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.
Collapse
|
113
|
The role of orexin-1 receptors in physiologic responses evoked by microinjection of PgE2 or muscimol into the medial preoptic area. Neurosci Lett 2011; 498:162-6. [PMID: 21596094 DOI: 10.1016/j.neulet.2011.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022]
Abstract
The medial preoptic area (mPOA) of the hypothalamus has long been thought to play an important role in both fever production and thermoregulation. Microinjections of prostaglandin E2 (PgE2) or the GABA(A) agonist muscimol into the mPOA cause similar increases in body temperature, heart rate, and blood pressure. Microinjections of these compounds however evoke different behavioral responses with muscimol increasing and PgE2 having no effect on locomotion. The purpose of this study was to determine the role of orexin-1 receptors in mediating these dissimilar responses. Systemic injections of the orexin-1 receptor antagonist SB-334867 reduced temperature and cardiovascular responses produced by microinjections of muscimol, but had no effect on either response produced by PgE2. SB-334867 did not significantly decrease locomotion evoked by microinjections of muscimol into the mPOA. These data suggest that there are two central nervous system circuits involved in increasing body temperature, heart rate and blood pressure: one circuit activated by muscimol, involving orexin neurons, and a separate orexin-independent circuit activated by PgE2.
Collapse
|
114
|
Nozu T, Kumei S, Takakusaki K, Ataka K, Fujimiya M, Okumura T. Central orexin-A increases colonic motility in conscious rats. Neurosci Lett 2011; 498:143-6. [PMID: 21575675 DOI: 10.1016/j.neulet.2011.04.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/18/2011] [Accepted: 04/29/2011] [Indexed: 01/16/2023]
Abstract
Increasing evidence has indicated that brain orexin plays a vital role in the regulation of gastrointestinal physiology such as gastric secretion, gastric motility and pancreatic secretion. However, little is known whether orexin in the brain is involved in the physiology of the lower gastrointestinal tract. The aim of this study was therefore to elucidate whether orexin-A in the brain is involved in the regulation of colonic motility. In this study, we measured fecal pellet output and recorded intraluminal colonic pressure waves in freely moving conscious rats to evaluate the effects of central orexin-A on colonic motor functions. Intracisternal but not intraperitoneal injection of orexin-A dose-dependently (1-10 μg) increased fecal pellet output. Findings obtained from manometric recordings revealed that intracisternal administration of orexin-A at a dose of 10 μg significantly enhanced colonic motor contractions. These results suggest for the first time that orexin-A acts centrally in the brain to enhance fecal pellet output and stimulate colonic motility in conscious rats. The present study would furthermore support our hypothesis that orexin-A in the brain may be an important candidate as a mediator of the cephalic phase gut stimulation including stimulated colonic motility in addition to well known physiological response such as stimulation of gastric acid and pancreatic acid secretion, and gastric motility.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, Japan.
| | | | | | | | | | | |
Collapse
|
115
|
Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 2011; 61:336-46. [PMID: 21530551 DOI: 10.1016/j.neuropharm.2011.04.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 01/01/2023]
Abstract
Chronic stressful life events are risk factors for depression often accompanied by homeostatic disturbances. Hypothalamic neuropeptides, such as orexins (OXs) and melanin-concentrating hormone (MCH), are involved in regulation of several autonomic functions that are altered in depression. However, little is known about the link between orexinergic or MCH-ergic systems and depression. Using double immunohistochemical labeling for OX- or MCH-containing neurons and Fos protein, we studied the effects of a chronic selective serotonin reuptake inhibitor antidepressant treatment (fluoxetine) on the OX and MCH neuronal activation in mice exposed to unpredictable chronic mild stress (UCMS), a rodent model of depression. Western blot was also performed to assess OX and MCH receptor expression in various brain areas. Finally, almorexant, a dual OX receptor antagonist, was assessed in the tail suspension test. UCMS induced physical and behavioral disturbances in mice reversed by 6-week fluoxetine treatment. Orexinergic neurons were more activated in the dorsomedial and perifornical hypothalamic area (DMH-PFA) of UCMS-subjected mice compared to the lateral hypothalamus (LH), and this increase was reversed by 6-week fluoxetine treatment. UCMS also reduced expression of OX-receptor 2 in the thalamus and hypothalamus, but not in animals chronically treated with fluoxetine. MCH neurons were neither affected by UCMS nor by antidepressant treatment, while UCMS modulated MCH receptor 1 expression in thalamus and hippocampus. Finally, chronic but not acute administration of almorexant, induced antidepressant-like effect in the tail suspension test. These data suggest that OX neurons in the DMH-PFA and MCH-ergic system may contribute to the pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Mathieu Nollet
- INSERM U930, ERL 3106, Université François Rabelais de Tours, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
116
|
Fenzl T, Romanowski CPN, Flachskamm C, Deussing JM, Kimura M. Wake-promoting effects of orexin: Its independent actions against the background of an impaired corticotropine-releasing hormone receptor system. Behav Brain Res 2011; 222:43-50. [PMID: 21420442 DOI: 10.1016/j.bbr.2011.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/04/2011] [Accepted: 03/11/2011] [Indexed: 01/08/2023]
Abstract
It is widely accepted that orexin (hypocretin) bears wake-promoting effects. While under normal conditions the circadian rhythm of orexin release has a clear circadian distribution, the amplitude of orexin fluctuation is dampened in depression. Interestingly, clinical symptoms of depression include several sleep disturbances. In this disease, corticotropin-releasing hormone (CRH) seems to be another factor influencing sleep. As neurophysiological interactions and anatomical connections between the orexinergic and the CRH system point to mutual influences of these two neuropeptides, we examined whether a dysfunctional CRH-receptor system in two different CRH receptor knock out models alters general wake-promoting effects of orexin applied exogenously. Orexin was injected intracerebroventricularlly into CNS-restricted CRH-receptor type 1 knockout mice (CRH-R1 KO) and CRH-receptor type 2 knockout mice (CRH-R2 KO) and baseline sleep was recorded from the freely behaving mice. A third experiment included antisauvagine-30 injections (CRH-R2 antagonist) into CRH-R1 KO animals. Orexin had similar wake-promoting effects in CRH-R1KO mice, in CRH-R2 KO animals and in CRH-R1KO mice treated with antisauvagine-30. Consistent results were obtained from all corresponding control littermate experiments. According to our results we conclude that the wake-promoting effects of orexin are not influenced by a possible contribution of CRH.
Collapse
Affiliation(s)
- Thomas Fenzl
- Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany.
| | | | | | | | | |
Collapse
|
117
|
Castillo-Ruiz A, Nunez AA. Fos expression in arousal and reward areas of the brain in grass rats following induced wakefulness. Physiol Behav 2011; 103:384-92. [PMID: 21402088 DOI: 10.1016/j.physbeh.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
In the diurnal grass rat nocturnal voluntary wakefulness induces Fos expression in specific cellular populations of arousal and reward areas of the brain. Here, we evaluated whether involuntary wakefulness would result in similar patterns of Fos expression. We assessed this question using male grass rats that were sleep deprived for 6h by gentle stimulation (SD group), starting 2h before lights off (12:12 LD cycle). Then, we examined expression of Fos in cholinergic cells of the basal forebrain (BF), as well as in dopaminergic cells of the reward system, and compared these results to those obtained from an undisturbed control group. Different from previous results with grass rats that were voluntary awake, the BF of SD animals only showed a significant increase in Fos expression in non-cholinergic neurons of the medial septum (MS). These observations differ from reports for nocturnal rodents that are sleep deprived. Thus, our results show that voluntary and induced wakefulness have different effects on neural systems involved in wakefulness and reward, and that the effects of sleep deprivation are different across species. We also investigated whether other arousal promoting regions and circadian and stress related areas responded to sleep deprivation by changing the level of Fos expression. Among these areas, only the lateral hypothalamus (LH) and the ventro lateral preoptic area showed significant effects of sleep deprivation that dissipated after a 2h period of sleep recovery, as it was also the case for the non-cholinergic MS. In addition, we found that Fos expression in the LH was robustly associated with Fos expression in other arousal and reward areas of the brain. This is consistent with the view that the arousal system of the LH modulates neural activity of other arousal regions of the brain, as described for nocturnal rodents.
Collapse
Affiliation(s)
- Alexandra Castillo-Ruiz
- Department of Psychology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
118
|
Krolewski DM, Medina A, Kerman IA, Bernard R, Burke S, Thompson RC, Bunney WE, Schatzberg AF, Myers RM, Akil H, Jones EG, Watson SJ. Expression patterns of corticotropin-releasing factor, arginine vasopressin, histidine decarboxylase, melanin-concentrating hormone, and orexin genes in the human hypothalamus. J Comp Neurol 2011; 518:4591-611. [PMID: 20886624 DOI: 10.1002/cne.22480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hypothalamus regulates numerous autonomic responses and behaviors. The neuroactive substances corticotropin-releasing factor (CRF), arginine-vasopressin (AVP), histidine decarboxylase (HDC), melanin-concentrating hormone (MCH), and orexin/hypocretins (ORX) produced in the hypothalamus mediate a subset of these processes. Although the expression patterns of these genes have been well studied in rodents, less is known about them in humans. We combined classical histological techniques with in situ hybridization histochemistry to produce both 2D and 3D images and to visually align and quantify expression of the genes for these substances in nuclei of the human hypothalamus. The hypothalamus was arbitrarily divided into rostral, intermediate, and caudal regions. The rostral region, containing the paraventricular nucleus (PVN), was defined by discrete localization of CRF- and AVP-expressing neurons, whereas distinct relationships between HDC, MCH, and ORX mRNA-expressing neurons delineated specific levels within the intermediate and caudal regions. Quantitative mRNA signal intensity measurements revealed no significant differences in overall CRF or AVP expression at any rostrocaudal level of the PVN. HDC mRNA expression was highest at the level of the premammillary area, which included the dorsomedial and tuberomammillary nuclei as well as the dorsolateral hypothalamic area. In addition, the overall intensity of hybridization signal exhibited by both MCH and ORX mRNA-expressing neurons peaked in distinct intermediate and caudal hypothalamic regions. These results suggest that human hypothalamic neurons involved in the regulation of the HPA axis display distinct neurochemical patterns that may encompass multiple local nuclei.
Collapse
Affiliation(s)
- David M Krolewski
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Mendoza J, Lopez-Lopez C, Revel FG, Jeanneau K, Delerue F, Prinssen E, Challet E, Moreau JL, Grundschober C. Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice. J Neuroendocrinol 2011; 23:28-38. [PMID: 20874776 DOI: 10.1111/j.1365-2826.2010.02072.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hormone leptin controls food intake and body weight through its receptor in the hypothalamus, and may modulate physiological functions such as reproduction, sleep or circadian timing. In the present study, the effects of leptin on the resetting of the circadian clock, the hypothalamic suprachiasmatic nucleus (SCN) and on the activity of the hypocretinergic system were examined in vivo, with comparative analysis between male and female mice. A single leptin injection (5 mg/kg) at both the onset and offset of the activity period did not alter locomotion of mice housed under a 12 : 12 h light/dark cycle and did not shift the circadian behavioral rhythm of mice housed in constant darkness. By contrast, leptin potentiated the phase-shifting effect of a 30-min light-pulse on behavioural rhythms during the late subjective night, although only in females. This was accompanied by a higher induction of the clock genes Per1 and Per2 in the SCN. A 2-week chronic exposure to a physiological dose of leptin (100 μg/kg per day) decreased locomotor activity, expression of hypocretin receptor 1 and 2, as well as the number of hypocretin-immunoreactive neurones only in female mice, whereas the number of c-fos-positive hypocretinergic neurones was reduced in both genders. These results highlight a dimorphic effect of leptin on the hypocretinergic system and on the response of the circadian clock to light. Leptin may thus modulate the sleep/wake cycle and circadian system beside its well-established action on food intake and regulation of body weight.
Collapse
Affiliation(s)
- J Mendoza
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique, UPR3212 University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology (Berl) 2010; 212:251-65. [PMID: 20645079 DOI: 10.1007/s00213-010-1948-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 07/02/2010] [Indexed: 12/28/2022]
Abstract
RATIONALE Anatomical studies have shown that the paraventricular nucleus of the thalamus (PVT) innervates areas of the forebrain involved in the expression and regulation of emotional behaviors including fear and anxiety. In addition, the PVT is densely innervated by fibers containing orexin-A (OXA) and orexin-B (OXB), peptides that are well-known for their arousal effects on behavior. OBJECTIVES In this study, we investigate whether microinjections of orexin receptor agonists and antagonists in the PVT region alter expression of anxiety-like behaviors in the rat as measured in the elevated plus maze. RESULTS We report that microinjections of OXA and OXB in the PVT region elicited anxiety-like response as indicated by a reduction in open arm time and entries. In addition, OXA and OXB produced changes in ethological measures indicative of an anxiety state. Central administrations of antagonists for corticotropin releasing factor (CRF) or the opioid kappa receptors attenuated the anxiogenic effects produced by microinjections of OXA in the PVT region. We also provide evidence that endogenously released orexins act at the PVT to produce anxiety by showing that microinjections of TCSOX229, an orexin-2 receptor antagonist, in the PVT region attenuated the anxiogenic effects produced by a previous exposure to footshock stress. CONCLUSIONS This study indicates that endogenously released orexins act on the PVT to regulate anxiety levels through mechanisms involving the brain kappa and CRF receptors.
Collapse
|
121
|
Rolls A, Schaich Borg J, de Lecea L. Sleep and metabolism: role of hypothalamic neuronal circuitry. Best Pract Res Clin Endocrinol Metab 2010; 24:817-28. [PMID: 21112028 DOI: 10.1016/j.beem.2010.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sleep and metabolism are intertwined physiologically and behaviorally, but the neural systems underlying their coordination are still poorly understood. The hypothalamus is likely to play a major role in the regulation sleep, metabolism, and their interaction. And increasing evidence suggests that hypocretin cells in the lateral hypothalamus may provide particularly important contributions. Here we review: 1) direct interactions between biological arousal and metabolic systems in the hypothalamus, and 2) indirect interactions between these two systems mediated by stress or reward, emphasizing the role of hypocretins. An increased understanding of the mechanisms underlying these interactions may provide novel approaches for the treatment of patients with sleep disorders and obesity, as well as suggest new therapeutic strategies for symptoms of aging, stress, or addiction.
Collapse
Affiliation(s)
- Asya Rolls
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | | | |
Collapse
|
122
|
Novel localization of orexin A in the tubular cytotypes of the rat testis. ACTA ACUST UNITED AC 2010; 164:53-7. [DOI: 10.1016/j.regpep.2010.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/28/2010] [Accepted: 06/28/2010] [Indexed: 11/19/2022]
|
123
|
Di Sebastiano AR, Yong-Yow S, Wagner L, Lehman MN, Coolen LM. Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance. Horm Behav 2010; 58:397-404. [PMID: 20541554 PMCID: PMC2917508 DOI: 10.1016/j.yhbeh.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
The hypothalamic neuropeptide orexin mediates arousal, sleep, and naturally rewarding behaviors, including food intake. Male sexual behavior is altered by orexin receptor-1 agonists or antagonists, suggesting a role for orexin-A in this naturally rewarding behavior. However, the specific role of endogenous orexin-A or B in different elements of male sexual behavior is currently unclear. Therefore, the current studies utilized markers for neural activation and orexin cell-specific lesions to test the hypothesis that orexin is critical for sexual motivation and performance in male rats. First, cFos expression in orexin neurons was demonstrated following presentation of a receptive or non-receptive female without further activation by different elements of mating. Next, the functional role of orexin was tested utilizing orexin-B conjugated saporin, resulting in orexin cell body lesions in the hypothalamus. Lesions were conducted in sexually naive males and subsequent sexual behavior was recorded during four mating trials. Lesion males showed shortened latencies to mount and intromit during the first, but not subsequent mating trials, suggesting lesions facilitated initiation of sexual behavior in sexually naive, but not experienced males. Likewise, lesions did not affect sexual motivation in experienced males, determined by runway tests. Finally, elevated plus maze tests demonstrated reduced anxiety-like behaviors in lesioned males, supporting a role for orexin in anxiety associated with initial exposure to the female in naive animals. Overall, these findings show that orexin is not critical for male sexual performance or motivation, but may play a role in arousal and anxiety related to sexual behavior in naive animals.
Collapse
Affiliation(s)
- Andrea R. Di Sebastiano
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Sabrina Yong-Yow
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Lauren Wagner
- Department of Cell Biology, Neurobiology, and Anatomy; University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael N. Lehman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Lique M. Coolen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
124
|
Kushikata T, Yoshida H, Kudo M, Kudo T, Hirota K. Plasma orexin A increases at emergence from sevoflurane-fentanyl anesthesia in patients undergoing ophthalmologic surgery. Neurosci Lett 2010; 482:212-5. [PMID: 20655366 DOI: 10.1016/j.neulet.2010.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/13/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
Central orexinergic and noradrenergic neurons are involved in the control of sleep and wakefulness. In addition, previous reports suggest that both neurons may have an important role to play in general anesthesia. In the present study, we have determined whether general anesthesia would affect plasma orexin A (OXA) and norepinephrine concentrations. Twelve patients scheduled for elective ophthalmic surgery under general anesthesia with sevoflurane, fentanyl and vecuronium were studied. Arterial blood was collected before and 1 and 2h after induction of anesthesia and at emergence to measure plasma OXA, cortisol, norepinephrine and epinephrine concentrations. During anesthesia the inhalational concentration of sevoflurane was changed to maintain the bispectral index between 40 and 50. Plasma OXA, cortisol, norepinephrine and epinephrine did not change during anesthesia but significantly increased after emergence compared to pre-anesthesia (from 14.8+/-1.7 to 21.4+/-1.7 pM, p<0.01, from 26.5+/-5.2 to 52.8+/-6.0 pM, p<0.01, from 263+/-46 to 513+/-89 pM, p<0.01, and from 1239+/-120 to 1631+/-203 pM, p<0.01, respectively). There were significant correlations of plasma OXA with cortisol (r=0.334, p<0.05) and epinephrine (r=0.292, p<0.05) but not with norepinephrine. In conclusion we found that plasma OXA significantly increased at emergence from sevoflurane-fentanyl anesthesia and this was probably via activation of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | | | | | | | | |
Collapse
|
125
|
Abstract
Narcolepsy with cataplexy is a rare but life-long and challenging disorder. Current insight into the pathophysiology of this condition seems to be autoimmune-mediated postnatal cell death of hypocretin neurons occurring by organ-specific autoimmune targeting with HLA-T-cell receptor interactions. The hypocretin system seems to have an influence on multiple organ systems beyond its wake-promoting mechanisms. The recent availability of cerebrospinal fluid hypocretin-1 analysis has led to definitive diagnostic criteria for narcolepsy with cataplexy. Pharmacologic first-line treatments for excessive daytime sleepiness and cataplexy is sodium oxybate, with modafinil for daytime sleepiness, in adults and children. Other investigative agents and treatment modalities hold promise in future directions for narcolepsy.
Collapse
|
126
|
Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Res 2010; 1343:83-92. [PMID: 20438720 DOI: 10.1016/j.brainres.2010.04.068] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 12/25/2022]
Abstract
In adolescence, gender differences in rates of affective disorders emerge. For both adolescent boys and girls, peer relationships are the primary source of life stressors though adolescent girls are more sensitive to such stressors. Social stressors are also powerful stressors for non-human social species like rodents. In a rat model, we examined how social isolation during adolescence impacts stress reactivity and specific neural substrates in adult male and female rats. Rats were isolated during adolescence by single housing from day 30 to 50 of age and control rats were group housed. On day 50, isolated rats and control rats were re-housed in same-treatment same-sex groups. Adult female rats isolated as adolescents exhibited increased adrenal responses to acute and to repeated stress and exhibited increased hypothalamic vasopressin mRNA and BDNF mRNA in the CA3 hippocampal subfield. In contrast, adult male rats isolated as adolescents exhibited a lower corticosterone response to acute stress, exhibited a reduced state of anxiety as assessed in the elevated plus maze and reduced Orexin mRNA compared to adult males group-housed as adolescents. These data point to a markedly different impact of isolation experienced in adolescence on endocrine and behavioral endpoints in males compared to females and identify specific neural substrates that may mediate the long-lasting effects of stress in adolescence.
Collapse
|
127
|
López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010; 31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023]
Abstract
Lesioning and electrical stimulation experiments carried out during the first half of the twentieth century showed that the lateral hypothalamic area (LHA) is involved in the neuroendocrine control of hormone secretion. However, the molecular basis of this phenomenon remained unclear until fifty years later when in 1998, two different laboratories discovered a new family of hypothalamic neuropeptides, the orexins or hypocretins (OX-A/Hcrt1 and OX-B/Hcrt2). Since then, remarkable evidence has revealed that orexins/hypocretins play a prominent role in regulating virtually all the neuroendocrine axes, acting as pivotal signals in the coordination of endocrine responses with regards to sleep, arousal and energy homeostasis. The clinical relevance of these actions is supported by human data showing impairment of virtually all the neuroendocrine axes in orexin/hypocretin-deficient narcoleptic patients. Here, we summarize more than ten years of knowledge about the orexins/hypocretins with particular focus on their role as neuroendocrine regulators. Understanding this aspect of orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and endocrine pathologies.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
128
|
Abstract
In 1998, two groups independently identified the hypocretins, also known as orexins, as two hypothalamic peptides derived from the same precursor expressed in a few thousand neurones restricted to the perifornical area. A decade later, an amazing set of discoveries has demonstrated a key role for this neurotransmitter system in arousal and beyond. Here I review some of the experiments that led to these discoveries and the implications in the neurobiology of the hypothalamus and our understanding of brain arousal.
Collapse
Affiliation(s)
- L de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
129
|
Martins PJF, Marques MS, Tufik S, D'Almeida V. Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 2010; 298:E726-34. [PMID: 20051529 DOI: 10.1152/ajpendo.00660.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several pieces of evidence support that sleep duration plays a role in body weight control. Nevertheless, it has been assumed that, after the identification of orexins (hypocretins), the molecular basis of the interaction between sleep and energy homeostasis has been provided. However, no study has verified the relationship between neuropeptide Y (NPY) and orexin changes during hyperphagia induced by sleep deprivation. In the current study we aimed to establish the time course of changes in metabolite, endocrine, and hypothalamic neuropeptide expression of Wistar rats sleep deprived by the platform method for a distinct period (from 24 to 96 h) or sleep restricted for 21 days (SR-21d). Despite changes in the stress hormones, we found no changes in food intake and body weight in the SR-21d group. However, sleep-deprived rats had a 25-35% increase in their food intake from 72 h accompanied by slight weight loss. Such changes were associated with increased hypothalamus mRNA levels of prepro-orexin (PPO) at 24 h followed by NPY at 48 h of sleep deprivation. Conversely, sleep recovery reduced the expression of both PPO and NPY, which rapidly brought the animals to a hypophagic condition. Our data also support that sleep deprivation rapidly increases energy expenditure and therefore leads to a negative energy balance and a reduction in liver glycogen and serum triacylglycerol levels despite the hyperphagia. Interestingly, such changes were associated with increased serum levels of glucagon, corticosterone, and norepinephrine, but no effects on leptin, insulin, or ghrelin were observed. In conclusion, orexin activation accounts for the myriad changes induced by sleep deprivation, especially the hyperphagia induced under stress and a negative energy balance.
Collapse
|
130
|
Abstract
The neuropeptides orexin A and B (hypocretin-1 and -2) are involved in numerous central regulation processes such as energy homeostasis, sleeping behaviour and addiction. The expression of orexins and orexin receptors in a variety of tissues outside the brain and the presence of orexin A in the circulation indicate the existence of an additional peripheral orexin system. Furthermore, it is well established that orexins exert an influence on the regulation of the hypothalamus-pituitary-adrenal axis, acting both on its central and peripheral branch. In rat and human adrenal cortices the expression of both orexin receptors has been verified with a predominance of OX(2)R. The local expression of orexin receptors was observed to be gender specific and to be modified by plasma glucose and insulin concentrations, nutritional status as well as gonadal steroids. Various studies consistently demonstrated orexin A to enhance glucocorticoid secretion of rat and human adrenal cortices, while orexin B was found to be either less potent or ineffective. On the contrary, the influence of orexins on adrenocortical aldosterone production and cell proliferation is still more controversial. Recent findings indicate that orexins stimulate adrenocortical steroidogenesis by augmenting transcription of selective steroidogenic enzymes and proteins such as steroidogenic acute regulatory protein. Both, G(q) and G(s), signalling pathways with a downstream activation of MAP kinases appear to be involved in this regulation.
Collapse
Affiliation(s)
- S M Kagerer
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
131
|
Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2010; 29:15575-85. [PMID: 20007481 DOI: 10.1523/jneurosci.3138-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Restraint stress produces changes in the sleep pattern that are mainly characterized by a delayed increase in rapid eye movement sleep (REMS) amounts. Because the serotonin (5-HT) and the hypocretin (hcrt) systems that regulate REMS are interconnected, we used mutant mice deficient in the 5-HT transporter (5-HTT(-/-)) to examine the role of 5-HT and hcrt neurotransmissions in the sleep response to stress. In contrast to wild-type mice, restraint stress did not induce a delayed increase in REMS amounts in 5-HTT(-/-) mice, indicating impaired sleep homeostasis in mutants. However, pharmacological blockade of the hcrt type 1 receptor (hcrt-R1) before restraint stress restored the REMS increase in 5-HTT(-/-) mice. In line with this finding, 5-HTT(-/-) mutants displayed after restraint stress higher long-lasting activation of hypothalamic preprohcrt neurons than wild-type mice and elevated levels of the hcrt-1 peptide and the hcrt-R1 mRNA in the anterior raphe area. Thus, hypocretinergic neurotransmission was enhanced by stress in 5-HTT(-/-) mice. Furthermore, in 5-HTT(-/-) but not wild-type mice, hypothalamic levels of the 5-HT metabolite 5-hydroxyindole acetic acid significantly increased after restraint stress, indicating a marked enhancement of serotonergic neurotransmission in mutants. Altogether, our data show that increased serotonergic -and in turn hypocretinergic- neurotransmissions exert an inhibitory influence on stress-induced delayed REMS. We propose that the direct interactions between hcrt neurons in the hypothalamus and 5-HT neurons in the anterior raphe nuclei account, at least in part, for the adaptive sleep-wakefulness regulations triggered by acute stress.
Collapse
|
132
|
D'Souza MS, Markou A. Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 2010; 3:119-178. [PMID: 21161752 DOI: 10.1007/7854_2009_20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Psychostimulant drugs have powerful reinforcing and hedonic properties and are frequently abused. Cessation of psychostimulant administration results in a withdrawal syndrome characterized by anhedonia (i.e., an inability to experience pleasure). In humans, psychostimulant withdrawal-induced anhedonia can be debilitating and has been hypothesized to play an important role in relapse to drug use. Hence, understanding the neural substrates involved in psychostimulant withdrawal-induced anhedonia is essential. In this review, we first summarize the theoretical perspectives of psychostimulant withdrawal-induced anhedonia. Experimental procedures and measures used to assess anhedonia in experimental animals are also discussed. The review then focuses on neural substrates hypothesized to play an important role in anhedonia experienced after termination of psychostimulant administration, such as with cocaine, amphetamine-like drugs, and nicotine. Both neural substrates that have been extensively investigated and some that need further evaluation with respect to psychostimulant withdrawal-induced anhedonia are reviewed. In the context of reviewing the various neurosubstrates of psychostimulant withdrawal, we also discuss pharmacological medications that have been used to treat psychostimulant withdrawal in humans. This literature review indicates that great progress has been made in understanding the neural substrates of anhedonia associated with psychostimulant withdrawal. These advances in our understanding of the neurobiology of anhedonia may also shed light on the neurobiology of nondrug-induced anhedonia, such as that seen as a core symptom of depression and a negative symptom of schizophrenia.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
133
|
Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat 2010; 39:20-34. [DOI: 10.1016/j.jchemneu.2009.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022]
|
134
|
Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2009; 221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the lateral hypothalamus (LH) that synthesize hypocretins (Hcrt-1 and Hcrt-2) are active during wakefulness and excite lumbar motoneurons. Because hypocretinergic cells also discharge during phasic periods of rapid eye movement (REM) sleep, we sought to examine their action on the activity of motoneurons during this state. Accordingly, cat lumbar motoneurons were intracellularly recorded, under alpha-chloralose anesthesia, prior to (control) and during the carbachol-induced REM sleep-like atonia (REMc). During control conditions, LH stimulation induced excitatory postsynaptic potentials (composite EPSP) in motoneurons. In contrast, during REMc, identical LH stimulation induced inhibitory PSPs in motoneurons. We then tested the effects of LH stimulation on motoneuron responses following the stimulation of the nucleus reticularis gigantocellularis (NRGc) which is part of a brainstem-spinal cord system that controls motoneuron excitability in a state-dependent manner. LH stimulation facilitated NRGc stimulation-induced composite EPSP during control conditions whereas it enhanced NRGc stimulation-induced IPSPs during REMc. These intriguing data indicate that the LH exerts a state-dependent control of motor activity. As a first step to understand these results, we examined whether hypocretinergic synaptic mechanisms in the spinal cord were state dependent. We found that the juxtacellular application of Hcrt-1 induced motoneuron excitation during control conditions whereas motoneuron inhibition was enhanced during REMc. These data indicate that the hypocretinergic system acts on motoneurons in a state-dependent manner via spinal synaptic mechanisms. Thus, deficits in Hcrt-1 may cause the coexistence of incongruous motor signs in cataplectic patients, such as motor suppression during wakefulness and movement disorders during REM sleep.
Collapse
Affiliation(s)
- Jack Yamuy
- WebSciences International, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
135
|
Sawai N, Ueta Y, Nakazato M, Ozawa H. Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neurosci Lett 2009; 468:51-5. [PMID: 19857552 DOI: 10.1016/j.neulet.2009.10.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Orexin/hypocretin is indicated to affect various physiological functions and behaviors, such as energy balance, feeding, wake-sleep cycle, stress response, and reproduction. This study investigated postnatal development and aging changes of the orexin neuron in the male rat hypothalamus. The brain tissue of rats from 1 week to 24 months old was analyzed by immunohistochemistry for two forms of orexin peptides, orexin-A and -B. The number of immunoreactive cells for each age group was counted and the immunoreactive intensity was also analyzed in order to reveal the changes in the number of expressing cells and the relative amount of the peptides. The number of orexin immunoreactive cells increased from postnatal 2 weeks to maturation, then slightly decreased and stabilized until the age of 8 months old, but it was significantly decreased by 24 months old. The intensity of the immunoreaction followed almost the same pattern. Our findings demonstrate that orexin neurons are increased during maturation and then are significantly decreased during the period from 8 to 24 months old, indicating an involvement of orexin in the physiological changes in rat aging such as energy balance, sleep, stress response, and reproduction.
Collapse
Affiliation(s)
- Nobuhiko Sawai
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
136
|
Berridge CW, España RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2009; 1314:91-102. [PMID: 19748490 DOI: 10.1016/j.brainres.2009.09.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/26/2009] [Accepted: 09/03/2009] [Indexed: 11/30/2022]
Abstract
Multiple lines of evidence indicate that hypocretin/orexin (HCRT) participates in the regulation of arousal and arousal-related process. For example, HCRT axons and receptors are found within a variety of arousal-related systems. Moreover, when administered centrally, HCRT exerts robust wake-promoting actions. Finally, a dysregulation of HCRT neurotransmission is associated with the sleep/arousal disorder, narcolepsy. Combined, these observations suggested that HCRT might be a key transmitter system in the regulation of waking. Nonetheless, subsequent evidence indicates that HCRT may not play a prominent role in the initiation of normal waking. Instead HCRT may participate in a variety of processes such as consolidation of waking and/or coupling metabolic state with behavioral state. Additionally, substantial evidence suggests a potential involvement of HCRT in high-arousal conditions, including stress. Thus, HCRT neurotransmission is closely linked to high-arousal conditions, including stress, and HCRT administration exerts a variety of stress-like physiological and behavioral effects that are superimposed on HCRT-induced increases in arousal. Combined, this evidence suggests the hypothesis that HCRT may participate in behavioral responding under high-arousal aversive conditions. Importantly, these actions of HCRT may not be limited to stress. Like stress, appetitive conditions are associated with elevated arousal levels and a stress-like activation of various physiological systems. These and other observations suggest that HCRT may, at least in part, exert affectively neutral actions that are important under high-arousal conditions associated with elevated motivation and/or need for action.
Collapse
Affiliation(s)
- Craig W Berridge
- Department of Psychology, University of Wisconsin, 1202 West Johnson Street, Madison, WI 53706, USA.
| | | | | |
Collapse
|
137
|
Galvão MDOL, Sinigaglia-Coimbra R, Kawakami SE, Tufik S, Suchecki D. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology 2009; 34:1176-83. [PMID: 19346078 DOI: 10.1016/j.psyneuen.2009.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/26/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
A large body of evidence has shown that prolonged paradoxical sleep deprivation (PSD) results in hypothalamic-pituitary-adrenal (HPA) axis activation, and in loss of body weight despite an apparent increase of food intake, reflecting increased energy expenditure. The flowerpot technique for PSD is an efficient paradigm for investigating the relationships among metabolic regulation and stress response. The purpose of the present study was to examine the mechanisms involved in the effects of 96 h of PSD on metabolism regulation, feeding behaviour and stress response by studying corticotrophin-releasing hormone (CRH) and orexin (ORX) immunoreactivity in specific hypothalamic nuclei. Once-daily assessments of body weight, twice-daily measurements of (spillage-corrected) food intake, and once-daily determinations of plasma adrenocorticotropic hormone (ACTH) and corticosterone were made throughout PSD or at corresponding times in control rats (CTL). Immunoreactivity for CRH in the paraventricular nucleus of the hypothalamus and for ORX in the hypothalamic lateral area was evaluated at the end of the experimental period. PSD resulted in increased diurnal, but not nocturnal, food intake, producing no significant changes in global food intake. PSD augmented the immunoreactivity for CRH and plasma ACTH and corticosterone levels, characterizing activation of the HPA axis. PSD also markedly increased the ORX immunoreactivity. The average plasma level of corticosterone correlated negatively with body weight gain throughout PSD. These results indicate that augmented ORX and CRH immunoreactivity in specific hypothalamic nuclei may underlie some of the metabolic changes consistently described in PSD.
Collapse
Affiliation(s)
- Milene de Oliveira Lara Galvão
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | | | | | | | | |
Collapse
|
138
|
Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, Sauerwein HP, Fliers E, Kalsbeek A. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 2009; 58:1998-2005. [PMID: 19592616 PMCID: PMC2731521 DOI: 10.2337/db09-0385] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous hypothalamic orexin release in glucose homeostasis in rats. RESEARCH DESIGN AND METHODS We investigated the effects of the hypothalamic orexin system on basal endogenous glucose production (EGP) as well as on hepatic and peripheral insulin sensitivity by changing orexinergic activity in the hypothalamus combined with hepatic sympathetic or parasympathetic denervation, two-step hyperinsulinemic-euglycemic clamps, immunohistochemistry, and RT-PCR studies. RESULTS Hypothalamic disinhibition of neuronal activity by the gamma-aminobutyric acid receptor antagonist bicuculline (BIC) increased basal EGP, especially when BIC was administered in the perifornical area where orexin-containing neurons but not melanocortin-concentrating hormone-containing neurons were activated. The increased BIC-induced EGP was largely prevented by intracerebroventricular pretreatment with the orexin-1 receptor antagonist. Intracerebroventricular administration of orexin-A itself caused an increase in plasma glucose and prevented the daytime decrease of EGP. The stimulatory effect of intracerebroventricular orexin-A on EGP was prevented by hepatic sympathetic denervation. Plasma insulin clamped at two or six times the basal levels did not counteract the stimulatory effect of perifornical BIC on EGP, indicating hepatic insulin resistance. RT-PCR showed that stimulation of orexin neurons increased the expression of hepatic glucoregulatory enzymes. CONCLUSIONS Hypothalamic orexin plays an important role in EGP, most likely by changing the hypothalamic output to the autonomic nervous system. Disturbance of this pathway may result in unbalanced glucose homeostasis.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Sharf R, Sarhan M, Dileone RJ. Role of orexin/hypocretin in dependence and addiction. Brain Res 2009; 1314:130-8. [PMID: 19699189 DOI: 10.1016/j.brainres.2009.08.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/30/2009] [Accepted: 08/01/2009] [Indexed: 01/08/2023]
Abstract
The orexins (or hypocretins) are hypothalamic neuropeptides that have been implicated in a variety of behaviors ranging from feeding to sleep and arousal. Evidence from animal models suggests a role for orexins in reward processing and drug addiction. In this review, we discuss orexin's interaction with the mesocorticolimbic reward pathway and the effects of drugs of abuse on the orexin system. We further review models of drug dependence and addiction and describe behavioral alterations that are seen when the orexin system is manipulated both pharmacologically and genetically. Based on the findings reported in the literature thus far, we posit that orexin functioning contributes to both drug reward and drug-related stress/aversive responsiveness; however, diverse anatomical substrates, and perhaps receptor specificity, contribute differentially to reward and stress components.
Collapse
Affiliation(s)
- Ruth Sharf
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | |
Collapse
|
140
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
141
|
Suzuki H, Matsumoto A, Yamamoto T. Orexin-B-like immunoreactivity localized in both luteinizing hormone- and thyroid-stimulating hormone-containing cells in the Nile tilapia (Oreochromis niloticus) pituitary. Tissue Cell 2009; 41:75-8. [DOI: 10.1016/j.tice.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/03/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
142
|
Ito N, Yabe T, Gamo Y, Nagai T, Oikawa T, Yamada H, Hanawa T. I.c.v. administration of orexin-A induces an antidepressive-like effect through hippocampal cell proliferation. Neuroscience 2008; 157:720-32. [PMID: 18952152 DOI: 10.1016/j.neuroscience.2008.09.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 01/22/2023]
Affiliation(s)
- N Ito
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Cano G, Mochizuki T, Saper CB. Neural circuitry of stress-induced insomnia in rats. J Neurosci 2008; 28:10167-84. [PMID: 18829974 PMCID: PMC2693213 DOI: 10.1523/jneurosci.1809-08.2008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/16/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022] Open
Abstract
Sleep architecture is often disturbed after a stressful event; nevertheless, little is known about the brain circuitry responsible for the sleep perturbations induced by stress. We exposed rats to a psychological stressor (cage exchange) that initially causes an acute stress response, but several hours later generates a pattern of sleep disturbances similar to that observed in stress-induced insomnia in humans: increased sleep latency, decreased non-REM (nREM) and REM sleep, increased fragmentation, and high-frequency EEG activity during nREM sleep. We examined the pattern of Fos expression to identify the brain circuitry activated, and found increased Fos in the cerebral cortex, limbic system, and parts of the arousal and autonomic systems. Surprisingly, there was simultaneous activation of the sleep-promoting areas, most likely driven by ongoing circadian and homeostatic pressure. The activity in the cerebral cortex and arousal system while sleeping generates a novel intermediate state characterized by EEG high-frequency activity, distinctive of waking, during nREM sleep. Inactivation of discrete limbic and arousal regions allowed the recovery of specific sleep components and altered the Fos pattern, suggesting a hierarchical organization of limbic areas that in turn activate the arousal system and subsequently the cerebral cortex, generating the high-frequency activity. This high-frequency activity during nREM was eliminated in the stressed rats after inactivating parts of the arousal system. These results suggest that shutting down the residual activity of the limbic-arousal system might be a better approach to treat stress-induced insomnia, rather than potentiation of the sleep system, which remains fully active.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| | - Takatoshi Mochizuki
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| | - Clifford B. Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
144
|
Suzuki H, Kubo Y, Yamamoto T. Orexin-A immunoreactive cells and fibers in the central nervous system of the axolotl brain and their association with tyrosine hydroxylase and serotonin immunoreactive somata. J Chem Neuroanat 2008; 35:295-305. [DOI: 10.1016/j.jchemneu.2008.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 11/25/2022]
|
145
|
Boutrel B. A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 2008; 154:343-57. [PMID: 18414383 PMCID: PMC2442449 DOI: 10.1038/bjp.2008.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/08/2022] Open
Abstract
Drugs of abuse all share common properties classically observed in human beings and laboratory animals. They enhance neural firing and dopamine tone within the nucleus accumbens and produce progressively greater drug-induced motor responses defined as behavioural sensitization. They produce conditioned place preference, a behavioural model of incentive motivation, which highlights the role of environmental cues in drug addiction. They increase brain reward function as seen by a lowering of intracranial self-stimulation thresholds. And last but not least, they are self-administered, and sometimes even abused, and can trigger reinstatement of drug-seeking behaviour in animals extinguished from drug self-administration. It has long been considered that the reinforcing properties of virtually all drugs of abuse, more specifically psychostimulants, are primarily dependent on activation of the mesolimbic dopamine system. However, recent evidence raises the importance of dopamine-independent mechanisms in reward-related behaviours. The overwhelming body of evidence that indicates a critical role for the mesolimbic dopamine system in the reinforcing effect of psychostimulants should not mask the key contribution of other modulatory systems in the brain. This review summarizes the complex and subtle role of several neuropeptidergic systems in various aspects of addictive behaviours observed in laboratory animals exposed to psychostimulants. A special emphasis is given to the cannabinoid, opioid, nociceptin/orphanin FQ, corticotropin-releasing factor and hypocretin/orexin systems. The relevance of these systems viewed as potential therapeutic targets for drug addiction is discussed in the light of their narrow pharmacological profile and their effectiveness in preventing drug addiction at doses usually not accompanied by severe side effects.
Collapse
Affiliation(s)
- B Boutrel
- Center for Psychiatric Neuroscience and Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Site de Cery, Prilly, Switzerland.
| |
Collapse
|
146
|
Russo F, Pavone LM, Tafuri S, Avallone L, Staiano N, Vittoria A. Expression of orexin A and its receptor 1 in the bovine urethroprostatic complex. Anat Rec (Hoboken) 2008; 291:169-74. [PMID: 18213704 DOI: 10.1002/ar.20641] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Orexin A (oxA) and orexin B are recently discovered peptides derived from the proteolytic cleavage of the common precursor prepro-orexin. They bind two G protein-coupled receptors, defined orexin 1 (ox1R) and orexin 2 receptor. Both peptides are highly expressed in the lateral hypothalamic area of the brain and are involved in the regulation of many functions of the body, the best investigated of which is food intake. Recent data described the presence of orexins in peripheral organs such as the adrenal glands, stomach, bowel, pancreas, and testis. Here, we report the detection of oxA and ox1R in the exocrine and endocrine cytotypes of the cattle urethroprostatic complex by using immunohistochemistry. The expression of prepro-orexin and ox1R mRNA transcripts in the prostatic tissue was assessed by reverse-transcriptase polymerase chain reaction, while the presence of both the proteins in the tissue was confirmed by Western blotting analysis. Our findings provide the first evidence for the presence of oxA and ox1R in the urethroprostatic complex of the cattle and demonstrate that both proteins are locally synthesized, thus suggesting a role for oxA on both physiological and pathological functioning of the complex.
Collapse
Affiliation(s)
- Finizia Russo
- Department of Biological Structures, Functions, and Technologies, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
Central injection of hypocretins/orexins in rats induces water intake. As the subfornical organ (SFO) plays an important role in drinking behavior, hypocretins may excite SFO neurons. In this study, effects of hypocretins on SFO neurons were investigated electrophysiologically in slice preparations. In extracellular recordings, hypocretin-1 excited SFO neurons, but hypocretin-2 did not or it was little. After the block of synaptic inputs, the excitatory responses to hypocretin-1 remained, but some disappeared. In whole-cell patch-clamp recordings, hypocretin-1 reduced the frequencies of miniature inhibitory presynaptic currents with inward currents occasionally in SFO neurons, but hypocretin-2 did not. These results suggest that hypocretin-1 excites SFO neurons via the activation of hcrtR1 on premembranes and postmembranes.
Collapse
|
148
|
Abstract
Orexin A (OXA) and orexin B were originally isolated as hypothalamic peptides regulating sleep, wakefulness and feeding. However, growing evidence suggests that orexins have major functions also in the peripheral tissues. Central orexigenic pathways originating from medulla activate the hypothalamus-pituitary axis and can influence the sympathetic tone. Orexins and their receptors are widely dispersed throughout the intestine, where orexin receptors are regulated by the nutritional status, affect insulin secretion and intestinal motility. Although the primary source of the peptide has not been elucidated, OXA is detected in plasma and its level varies in response to the metabolic state. In this review, we focus on the current knowledge on peripheral functions of orexins and discuss possible endocrine, paracrine and neurocrine roles.
Collapse
Affiliation(s)
- M V Heinonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
149
|
Matsuki T, Sakurai T. Orexins and orexin receptors: from molecules to integrative physiology. Results Probl Cell Differ 2008; 46:27-55. [PMID: 18204827 DOI: 10.1007/400_2007_047] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies have implicated the orexin system as a critical regulator of sleep/wake states, feeding behavior, and reward processes. Orexin deficiency results in narcolepsy-cataplexy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. Orexin agonists and antagonists are thought to be promising avenues toward the treatment of sleep disorders, eating disorders, and drug addiction. In this chapter, we discuss the current understanding of the physiological roles of orexins in regulation of arousal, sleep/wake states, energy homeostasis, and reward systems.
Collapse
Affiliation(s)
- Taizo Matsuki
- Department of Pharmacology, Institute of Basic Medical Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
150
|
Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides 2007; 41:329-37. [PMID: 17590434 PMCID: PMC2000483 DOI: 10.1016/j.npep.2007.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 04/17/2007] [Accepted: 04/24/2007] [Indexed: 02/02/2023]
Abstract
Hypocretin (Hcrt, also known as orexin) is a hypothalamic neuropeptide linked to narcolepsy, a disorder diagnosed by the appearance of rapid eye-movement sleep (REMS)-state characteristics during waking. Major targets of Hcrt-containing fibers include the locus coeruleus and the raphe nucleus, areas with important roles in regulation of mood and sleep. A relationship between REMS and mood is suggested by studies demonstrating that REMS-deprivation (REMSD) ameliorates depressive symptoms in humans. Additional support is found in animal studies where antidepressants and REMSD have similar effects on monoamiergic systems thought to be involved in major depression. Recently, we have reported that Wistar-Kyoto (WKY) rats, an animal model of depression, have reduced number and size of hypothalamic cells expressing Hcrt-immunoractivity compared to the parent, Wistar (WIS) strain, suggesting the possibility that the depressive-like attributes of the WKY rat may be determined by this relative reduction in Hcrt cells [Allard, J.S., Tizabi, Y., Shaffery, J.P., Trouth, C.O., Manaye, K., 2004. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides 38, 311-315]. In this study, we sought to test the hypothesis that REMSD would result in a greater increase in the number and/or size of hypothalamic, Hcrt-immunoreactive (Hcrt-ir) neurons in WKY, compared to WIS rats. The effect of REMSD, using the multiple-small-platforms-over-water (SPRD) method, on size and number of Hcrt-ir cells were compared within and across strains of rats that experienced multiple-large-platforms-over-water (LPC) as well as to those in a normal, home-cage-control (CC) setting. In accord with previous findings, the number of Hcrt-ir cells was larger in all three WIS groups compared to the respective WKY groups. REMSD produced a 20% increase (p<0.02) in the number of hypothalamic Hcrt-ir neurons in WKY rats compared to cage control WKY (WKY-CC) animals. However, an unexpected higher increase in number of Hcrt-ir cells was also observed in the WKY-LPC group compared to both WKY-CC (31%, p<0.001) and WKY-SPRD (20%, p<0.002) rats. A similar, smaller, but non-significant, pattern of change was noted in WIS-LPC group. Overall the data indicate a differential response to environmental manipulations where WKY rats appear to be more reactive than WIS rats. Moreover, the findings do not support direct antidepressant-like activity for REMSD on hypothalamic Hcrt neurons in WKY rats.
Collapse
Affiliation(s)
- Joanne S. Allard
- Department of Physiology and Biophysics, Howard University, College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University, College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - James P. Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
- * Corresponding author. Tel.: +1 601 984 5998; fax: +1 601 984 5899. E-mail address: (J.P. Shaffery)
| | - Kebreten Manaye
- Department of Physiology and Biophysics, Howard University, College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|