101
|
Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 2000; 863:169-81. [PMID: 10773205 DOI: 10.1016/s0006-8993(00)02133-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have established a focal preconditioning (PC) paradigm that produces significant and prolonged ischemic tolerance (IT) of the brain to subsequent permanent middle cerebral artery occlusion (MCAO). PC using 10 min of MCAO induces brain tolerance at 1-7 days of reperfusion that requires active protein synthesis. The protective protein(s) involved are unknown. In these studies the increased transcription and translation of the inducible 70-kDa heat shock protein (Hsp70) and the 27-kDa heat shock protein (Hsp27), and astrogliosis/glial fibrillary acidic protein (GFAP) were determined by Northern analysis and immunohistochemistry following PC. Cellular localization of proteins was determined by double labeling. PC produced no brain injury but did increase Hsp70 mRNA transiently at 6 h and increased Hsp27 mRNA later at 24 h for at least 5 days. Protein expression induced by PC exhibited a similar profile. Hsp70 protein was primarily expressed in neurons from 1 to 5 days post-PC throughout the PC cortex. Hsp27 protein expression was initiated later for a much longer period of time. A remarkable astroglyosis was verified with increased astrocytic Hsp27 from 1 to 7 days after PC. Gliosis with increased Hsp27 in the PC cortex was still present but reduced 4 weeks after PC. Therefore, PC that results in brain tolerance/neuroprotection increases neuronal Hsp70 in the PC cortex and activated astrocytic Hsp27 in the PC cortex in a temporal fashion associated with developing IT. The short duration of benign ischemia (PC) that produces IT produces a robust, long-lived cellular and protein synthetic response that extends throughout the entire cortex (i.e. well beyond the MCA perfusion territory). The resulting IT is associated with changes in astrocyte-activation that might provide increased support and protection from injury. Although both Hsp70 and Hsp27 may participate in the neuroprotection/brain tolerance induced by PC, the temporal expression patterns of these proteins indicate that they are not solely responsible for the tolerance to brain injury.
Collapse
Affiliation(s)
- R W Currie
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | | | | | | | |
Collapse
|
102
|
Kitagawa K, Matsumoto M, Ohtsuki T, Kuwabara K, Mabuchi T, Yagita Y, Hori M, Yanagihara T. Extended neuronal protection induced after sublethal ischemia adjacent to the area with delayed neuronal death. Neuroscience 2000; 96:141-6. [PMID: 10683419 DOI: 10.1016/s0306-4522(99)00555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we investigated whether neurons adjacent to an ischemic lesion acquire tolerance against subsequent ischemia or not. We initially used unilateral hemispheric ischemia for 3 min in gerbils to produce an ischemic lesion confined to the unilateral CA1 sector, and the presence of tolerance was examined in the adjacent CA3 sector through transient global ischemia by occlusion of both common carotid arteries. Attenuation of neuronal damage was clearly observed in neurons in the CA3 sector adjacent to the ischemic lesion in the CA1 sector. The phenomenon lasted for up to two weeks after the initial hemispheric ischemia, but was no longer present two months later. Reactive astrocytes as identified by the presence of glial fibrillary acidic protein were visible in the CA3 hippocampus four days and two weeks after hemispheric ischemia, but they were scarce two months later. Expression of heat shock protein 72 in the CA3 neurons was observed four days after hemispheric ischemia, but the reaction returned to the control level two weeks later. In conclusion, the present study showed that tolerance in the neurons adjacent to an ischemic lesion could be sustained at least for two weeks, and raised the possibility that reactive astrocytes might contribute to the extended tolerance in neurons.
Collapse
Affiliation(s)
- K Kitagawa
- Division of Strokology, Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Toyoda T, Kassell NF, Lee KS. Induction of tolerance against ischemia/reperfusion injury in the rat brain by preconditioning with the endotoxin analog diphosphoryl lipid A. J Neurosurg 2000; 92:435-41. [PMID: 10701530 DOI: 10.3171/jns.2000.92.3.0435] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Inflammatory responses and oxygen free radicals have increasingly been implicated in the development of ischemic brain injury. In some cases, an attenuation of inflammation or free-radical injury can provide tissue protection. Diphosphoryl lipid A (DPL) is a detoxified derivative of a lipopolysaccharide (endotoxin) of Salmonella minnesota strain R595, which is capable of stimulating the immune system without eliciting direct toxic effects. In this study the authors examined the influence of preconditioning with DPL on ischemia/reperfusion injury in rats. METHODS Sprague-Dawley rats were injected intravenously with either DPL or vehicle. Twenty-four hours later, some animals were tested for superoxide dismutase (SOD) activity. Others were subjected to a 3-hour period of focal cerebral ischemia and, after a reperfusion period of 24 hours, were killed. Infarction volume, SOD activity, and myeloperoxidase (MPO) activity were assayed in the postischemic animals. Pretreatment with DPL produced significant reductions in cerebral infarction and MPO activity in the ischemic penumbra. A significant enhancement of basal SOD activity was observed 24 hours after DPL treatment (that is, before ischemia), and a further enhancement of SOD activity was seen in the ischemic penumbra 24 hours after reperfusion. CONCLUSIONS These data provide the first evidence of a neuroprotective effect of preconditioning with DPL in an in vivo model of cerebral ischemia. Although the precise mechanisms through which DPL exerts its neuroprotective influence remain to be established, an inhibition of the complex inflammatory response to ischemia and an enhancement of endogenous antioxidant activity are leading candidates.
Collapse
Affiliation(s)
- T Toyoda
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
104
|
Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol 2000; 162:201-14. [PMID: 10716901 DOI: 10.1006/exnr.1999.7326] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cortical venous infarction model has been evaluated as to the degree of regional flow reduction and by studying effects of cortical spreading depression (CSD). Two adjacent cortical veins were occluded photochemically with rose bengal and fiberoptic illumination. Seven rats served to demonstrate effects on regional cortical blood flow using laser Doppler scanning. In 36 rats local CBF, DC potential, and brain tissue impedance were measured continuously for 75 min after vein occlusion. No, 3, or 10 CSD waves were induced by potassium chloride injection during the initial 75 min. Rats were compared for spontaneous CSDs; baseline local CBF, CBF, and impedance response to CSD; and infarct volume. Seventy-five minutes after vein occlusion regional cortical flow in a 3.5x7-mm window was reduced to 34.3+/-13.2%. At 45% of the 840 measured locations in 7 rats flow was <40% baseline and at 27.3% <30%, indicating a widespread penumbra territory. During the initial 75 min 2.1+/-1.1 spontaneous CSDs were observed. There was a positive correlation between the number of spontaneous CSDs seen acutely and infarction volume after 5 days. Moreover, brain injury was significantly increased in the group with 10 KCl-induced CSDs. A reduced 1CBF response and an overshooting tissue impedance change during CSD were predictors of ischemic damage. This study demonstrates a CSD-related growth of the venous infarct. Second, the data indicate that flow after two-vein occlusion resembles that seen under penumbra conditions, allowing for studies of damage mechanisms responsible for infarct growth.
Collapse
Affiliation(s)
- H Otsuka
- Institute for Neurosurgical Pathophysiology, Johannes Gutenberg University, Mainz, 55101, Germany
| | | | | | | |
Collapse
|
105
|
Dietrich WD, Truettner J, Prado R, Stagliano NE, Zhao W, Busto R, Ginsberg MD, Watson BD. Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood Flow Metab 2000; 20:103-11. [PMID: 10616798 DOI: 10.1097/00004647-200001000-00014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypotheses that cerebral embolic events lead to repetitive episodes of cortical spreading depression (CSD) and that these propagating waves trigger the expression of c-fos, brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and heat shock protein 70 (HSP70) mRNA were tested. Wistar rats underwent photochemically induced right common carotid artery thrombosis (CCAT) (n = 18) or sham (n = 8) procedures. In a subgroup of rats (n = 5), laser-Doppler flowmetry probes were placed overlying the right parietal cortex to record CSD-like changes in cortical blood flow during the initial 2-hour postinjury period. Rats were killed by decapitation at 2 or 24 hours after CCAT, and brains were processed for in situ localization of the gene expression. Two to five intermittent transient hyperemic episodes lasting 1 to 2 minutes were recorded ipsilaterally after CCAT. At 2 hours after CCAT, the widespread expression of c-fos and BDNF mRNAs was observed throughout the ipsilateral cerebral cortex. Pretreatment with the N-methyl-D-aspartate receptor blocker MK-801 (2 mg/kg) 1 hour before CCAT reduced the expression of BDNF mRNA expression at 2 hours. At 24 hours after CCAT, increased expression of GFAP mRNA was present in cortical and subcortical regions. In contrast, multifocal regions of HSP70 expression scattered throughout the thrombosed hemisphere were apparent at both 2 and 24 hours after injury. These data indicate that thromboembolic events lead to episodes of CSD and time-dependent alterations in gene expression. The ability of embolic processes to induce widespread molecular responses in neurons and glia may be important in the pathogenesis of transient ischemic attacks and may influence the susceptibility of the postembolic brain to subsequent insults including stroke.
Collapse
Affiliation(s)
- W D Dietrich
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Shen PJ, Gundlach AL. Prolonged induction of neuronal NOS expression and activity following cortical spreading depression (SD): implications for SD- and NO-mediated neuroprotection. Exp Neurol 1999; 160:317-32. [PMID: 10619550 DOI: 10.1006/exnr.1999.7218] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortical spreading depression (CSD) is associated with various short- and long-term physiological and neurochemical changes and has been shown to confer an increased susceptibility to accompanying ischemic injury or provide protection against a subsequent experimental ischemia. Nitric oxide is involved in the processes of ischemic injury and under certain conditions mediates cellular protection. To investigate the possibility that CSD-induced alterations in nitric oxide synthase (NOS) expression and activity occur and might be associated with the time-dependent enhancement or prevention by CSD of ischemic damage, this study examined the spatiotemporal changes in nNOS expression and activity in cerebral cortex following CSD. Anesthetized rats had unilateral CSD induced by a 10-min topical application of KCl and were killed at various times thereafter. CSD increased both nNOS mRNA and protein levels throughout layers II-III of cortex. nNOS mRNA in the affected neocortex was significantly increased by 30-90% at 2, 7, and 14 days (P < or = 0.05) compared with contralateral levels, but was not significantly above control values at 1-6 h, 1 day, and 28 days after CSD induction. Levels of [3H]-L-N(G)-nitroarginine binding to NOS were increased by 40-170% 7, 14, and 28 days (P < or = 0.01) after CSD in a similar, but delayed, profile to nNOS mRNA. Levels of nNOS-immunoreactivity were also increased in both neurons and astrocytes of ipsilateral cortex 7 and 14 days after CSD--confirmed by double-immunofluorescence localization. Ex vivo NOS activity in layers I-III of ipsilateral cortex was also increased by 30-50% (P < or = 0.01) at 7 and 14 days after CSD, times coincident with reported maximal ischemic protection. These results demonstrate that nNOS is up-regulated by cellular depolarization/depression occurring during CSD, or by resultant stimuli and suggest that "CSD-conditioned" cortex may be capable of producing appropriate levels of NO to mediate or contribute to protective/adaptive responses to subsequent physical ischemic injury.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin, Victoria, Australia
| | | |
Collapse
|
107
|
Plamondon H, Blondeau N, Heurteaux C, Lazdunski M. Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 1999; 19:1296-308. [PMID: 10598933 DOI: 10.1097/00004647-199912000-00002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preconditioning with sublethal ischemia attenuates the detrimental effects of subsequent prolonged ischemic insults. This research elucidates potential in vivo cross-tolerance between different neuronal death-generating treatments such as kainate administration, which induces seizures and global ischemia. This study also investigates the effects of a mild epileptic insult on neuronal death in rat hippocampus after a subsequent, lethal epileptic stress using kainic acid (KA) as a model of epilepsy. Three preconditioning groups were as follows: group 1 was injected with 5 mg/kg KA before a 6-minute global ischemia; group 2 received a 3-minute global ischemia before 7.5 mg/kg KA; and group 3 was injected with a 5-mg/kg dose of KA before a 7.5-mg/kg KA injection. The interval between treatments was 3 days. Neuronal degeneration, revealed by the silver impregnation method and analysis of cresyl violet staining, was markedly reduced in rats preconditioned with a sublethal ischemia or a 5-mg/kg KA treatment. Labeling with terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'triphosphate-biotin nick-end labeling and DNA laddering confirmed the component of DNA fragmentation in the death of ischemic and epileptic neurons and its reduction in all preconditioned animals. The current study supports the existence of bidirectional cross-tolerance between KA excitotoxicity and global ischemia and suggests the involvement of adenosine A1 receptors and sulfonylurea- and ATP-sensitive K+ channels in this protective phenomenon.
Collapse
Affiliation(s)
- H Plamondon
- University of Ottawa, School of Psychology, Ontario, Canada
| | | | | | | |
Collapse
|
108
|
Abstract
With the approval of alteplase (tPA) therapy for stroke, it is likely that combination therapy with tPA to restore blood flow, and agents like glutamate receptor antagonists to halt or reverse the cascade of neuronal damage, will dominate the future of stroke care. The authors describe events and potential targets of therapeutic intervention that contribute to the excitotoxic cascade underlying cerebral ischemic cell death. The focal and global animal models of stroke are the basis for the identification of these events and therapeutic targets. The signalling pathways contributing to ischemic neuronal death are discussed based on their cellular localization. Cell surface signalling events include the activities of both voltage-gated K+, Na+, and Ca2+ channels and ligand-gated glutamate, gamma-aminobutyric acid and adenosine receptors and channels. Intracellular signalling events include alterations in cytosolic and subcellular Ca2+ dynamics, Ca2+ -dependent kinases and immediate early genes whereas intercellular mechanisms include free radical formation and the activation of the immune system. An understanding of the relative importance and temporal sequence of these processes may result in an effective stroke therapy targeting several points in the cascade. The overall goal is to reduce disability and enhance quality of life for stroke survivors.
Collapse
Affiliation(s)
- D L Small
- Receptor and Ion Channels Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
109
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
110
|
Stagliano NE, Pérez-Pinzón MA, Moskowitz MA, Huang PL. Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 1999; 19:757-61. [PMID: 10413030 DOI: 10.1097/00004647-199907000-00005] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a process called ischemic preconditioning, a brief, sublethal ischemic insult protects tissue from subsequent, more severe injury. There have been no reports of rapidly induced ischemic preconditioning. The authors sought to develop a model of cerebral ischemic preconditioning in the mouse that can be applied to transgenic and knockout animals. They found that brief middle cerebral artery (MCA) occlusion only minutes before a severe ischemic insult can induce protection from that insult. Here the investigators describe a mouse model of preconditioning using intraluminal MCA occlusion as both the conditioning and the test stimulus. One or three 5-minute episodes of ischemia given 30 minutes before MCA occlusion for 1 or 24 hours (permanent occlusion) confer significant protection as assessed by infarct volume measurements 24 hours later.
Collapse
Affiliation(s)
- N E Stagliano
- Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | |
Collapse
|
111
|
Kawahara N, Ruetzler CA, Mies G, Klatzo I. Cortical spreading depression increases protein synthesis and upregulates basic fibroblast growth factor. Exp Neurol 1999; 158:27-36. [PMID: 10448415 DOI: 10.1006/exnr.1999.7091] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protective effects of cortical spreading depression (CSD) against ischemic damage have been demonstrated in cortex when elicited at either 24 h or 3 days prior to ischemia. The present study was carried out to investigate possible mechanisms of neuroprotection following CSD. In Sprague-Dawley rats, 5 M KCl, 5 M NaCl, or physiological saline was applied to the cortex for 1 h. Repetitive CSD waves were elicited only in the KCl group. Measurements of cerebral glucose utilization demonstrated a marked reduction in affected cortex and subcortical regions in both the NaCl and the KCl groups, whereas cortical and hippocampal protein synthesis was discretely increased only in the KCl group. Immunohistochemistry of GFAP demonstrated a rapid activation in reactive astrocytes at 3 days in the KCl group whereas only a discrete activation was observed in the NaCl group. Similar changes were observed for basic fibroblast growth factor. Our results suggest that CSD-induced ischemic tolerance is not due to a reduction in energy metabolism but rather is associated with an upregulation of trophic factors and glial cell activation which might provide a mechanism for a long-lasting neuroprotection.
Collapse
Affiliation(s)
- N Kawahara
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
112
|
Pérez-Pinzón MA, Born JG, Centeno JM. Calcium and increase excitability promote tolerance against anoxia in hippocampal slices. Brain Res 1999; 833:20-6. [PMID: 10375673 DOI: 10.1016/s0006-8993(99)01462-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously demonstrated that anoxic preconditioning (APC) protects against a subsequent otherwise 'lethal' anoxic insult in hippocampal slices. Tested here are two hypotheses: (a) APC requires calcium to improve electrical recovery in hippocampal slices; and (b) mild excitation promotes preconditioning neuroprotection. Control hippocampal slices were given a single 'test' anoxic insult followed by reoxygenation. Experimental slices were preconditioned by three short anoxic insults of 1 min separated by 10 min of reoxygenation. At 30 min after the third 'conditioning' insult, slices underwent a 'test' anoxic insult [1 min of anoxic depolarization (AD)], and then slices were reoxygenated. Evoked potentials (EPs) were recorded throughout the experiment. In other slices, APC was emulated by inducing spreading depression (as determined by a negative DC shift) with KCL or by inducing increased neuronal excitability with the excitatory agent 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) (an adenosine A1 receptor blocker). 'Test' anoxic insults lasted 2 min of AD in these groups. To determine the role of calcium during APC, extracellular CaCl2 was decreased to 0.5 mM but only during the APC episodes ('test' anoxia, 1 min of AD). EP amplitudes recovered significantly better after anoxia in preconditioned slices, and in KCl- and DPCPX-treated slices (147.2+/-33.3, n=8, **p<0.01, 71.7+/-13.5, n=7, **p<0.01, and 117.8+/-37.3, n=5, ***p<0.001, respectively) compared to controls. Decreases in extracellular CaCl2 during APC blocked the recovery of EPs after 'test' anoxia (80.6+/-23.0, n=8). These data confirm that increases in excitability can emulate APC. These data also demonstrate that calcium influx during preconditioning is required for the induction of tolerance during APC.
Collapse
Affiliation(s)
- M A Pérez-Pinzón
- Department of Neurology D4-5, University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
113
|
Tauskela JS, chakravarthy BR, Murray CL, Wang Y, Comas T, Hogan M, Hakim A, Morley P. Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res 1999; 827:143-51. [PMID: 10320703 DOI: 10.1016/s0006-8993(99)01322-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ca2+ influx and activation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) during nonlethal ischemic preconditioning have been implicated in the protection of the heart against subsequent lethal ischemic injury. Thus, we determined if Ca2+ influx, PKC and MAPK also mediate ischemic preconditioning-induced protection in neurons. Preconditioning by exposure of E18 rat cortical cultures to 90 min of nonlethal oxygen-glucose deprivation (OGD) 24 h prior to 180-240 min of lethal OGD was neuroprotective. Exposure to nominally free Ca2+, or blockade of the alpha-amino-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptor with CNQX did not eliminate protection. MAPK activity did not change and PKC activity decreased by 50% relative to normal baseline levels at 0 and 24 h following preconditioning. The sustained decrease in PKC activity was not due to a loss of enzyme as determined from immunoblots using pan and epsilon-, beta- and zeta-specific PKC antibodies. Neuroprotection was maintained with pharmacological inhibition of PKC activity by staurosporine, chelerythrine and calphostin C and MAPK activity by PD 98059 during preconditioning, indicating that activation of these enzymes during preconditioning was not necessary for protection. Therefore, in contrast to cardiac tissue, ischemic preconditioning of neurons does not require activation of PKC and MAP kinase, and protection is maintained with substantial removal of extracellular Ca2+ or blockade of the AMPA receptor.
Collapse
Affiliation(s)
- J S Tauskela
- National Research Council of Canada, Institute for Biological Sciences, Building M-54, Montreal Road Campus, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Murine cortical cultures containing both neurons and glia (days in vitro 13-15) were exposed to periods of oxygen-glucose deprivation (5-30 min) too brief to induce neuronal death. Cultures "preconditioned" by sublethal oxygen-glucose deprivation exhibited 30-50% less neuronal death than controls when exposed to a 45-55 min period of oxygen-glucose deprivation 24 hr later. This preconditioning-induced neuroprotection was specific in that neuronal death induced by exposure to excitotoxins or to staurosporine was not attenuated. Neuroprotection was lost if the time between the preconditioning and severe insult were decreased to 7 hr or increased to 72 hr and was blocked if the NMDA antagonist 100 microM 3-((D)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid was applied during the preconditioning insult. This was true even if the duration of preconditioning was increased as far as possible (while still remaining sublethal). A similar preconditioning effect was also produced by sublethal exposure to high K+, glutamate, or NMDA but not to kainate or trans-1-aminocyclopentane-1, 3-dicarboxylic acid.
Collapse
|
115
|
Dietrich WD, Danton G, Hopkins AC, Prado R. Thromboembolic events predispose the brain to widespread cerebral infarction after delayed transient global ischemia in rats. Stroke 1999; 30:855-61; discussion 862. [PMID: 10187891 DOI: 10.1161/01.str.30.4.855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Transient distal platelet accumulation after common carotid artery thrombosis (CCAT) leads to hemodynamic, metabolic, and molecular events that may influence the response of the postthrombotic brain to secondary insults. We investigated how a thromboembolic insult would affect histopathological outcome when combined with an ischemic insult induced 24 hours later. METHODS Three groups of rats underwent either (1) CCAT+10 minutes of normothermic 2-vessel occlusion (n=6), (2) CCAT+sham ischemia procedures (n=6), or (3) sham CCAT procedures+10 minutes of 2-vessel occlusion (n=6). At 7 days, rats were perfused for quantitative histopathological and immunocytochemical analysis. RESULTS Rats undergoing combined insults (group 1) had significantly larger areas of ischemic injury (P<0.05) within the cerebral cortex, striatum, and thalamus compared with the other, single-injury groups. Increased ischemic damage included selective neuronal necrosis, infarction, and focal hemorrhage. By means of glial fibrillary acidic protein immunocytochemistry and lectin histochemistry, reactive astrocytes and microglia were found to be associated with widespread tissue necrosis. In contrast, infrequent infarction or CA1 hippocampal neuronal necrosis was observed in groups 2 and 3, respectively. CONCLUSIONS A prior thromboembolic event is a risk factor for widespread cerebral infarction and hemorrhage when combined with a delayed ischemic insult. The understanding of what factors enhance the susceptibility of the postthrombotic brain to secondary insults may aid in the development of neuroprotective strategies to be applied after transient ischemic attacks to prevent the initiation of stroke.
Collapse
Affiliation(s)
- W D Dietrich
- Department of Neurological Surgery, University of Miami School of Medicine, Fla.33101, USA.
| | | | | | | |
Collapse
|
116
|
Iijima T, Iwao Y, Sankawa H. Amino acid release during spreading depression in a flow-compromised cortical area. Brain Res 1999; 818:553-5. [PMID: 10082846 DOI: 10.1016/s0006-8993(98)01301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutamate concentrations in dialysate samples obtained from microdialysis probe implanted in the cortex were assayed during artificially induced spreading depression (SD) and SD with hypoperfusion. The glutamate concentrations did not differ even after SD induction with hypoperfusion (all p>0.05 cf. control), whereas anoxic depolarization caused significantly high glutamate release. Prolonged SD in hypoperfused area did not expose cerebral neurons to high glutamate concentrations.
Collapse
Affiliation(s)
- T Iijima
- Department of Anesthesiology, Kyorin University 6-20-2 Shinkawa, Mitaka-City, Tokyo 181, Japan
| | | | | |
Collapse
|
117
|
Golanov EV, Reis DJ. Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression. Brain Res 1999; 818:304-15. [PMID: 10082816 DOI: 10.1016/s0006-8993(98)01169-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rat, electrical stimulation of the cerebellar fastigial nucleus (FN) for 1 h reduces the volume of focal ischemic infarctions produced by occluding the middle cerebral artery (MCAO), even 10 days later. The mechanism by which this 'central neurogenic neuroprotection' salvages ischemic brain is not known but does not result from changes in cerebral perfusion. MCAO also triggers periodic periinfarction depolarizing waves (PIDs) in the ischemic penumbra, the territory of salvage. These may contribute to neuronal death and promote infarct expansion. Conceivably, FN stimulation, which can otherwise modify cortical excitability, may alter the development of PIDs. We investigated in anesthetized rats whether FN stimulation modifies PIDs expression and, if so, the threshold for evoking cortical spreading depression (CSD), a process sharing characteristics with PIDs and an index of cortical excitability. Stimulation of FN immediately or 72 h before MCAO decreased infarction volumes by approximately 45% (p<0.01), increased PID latency >10-fold, and decreased the number of PIDs by >50% (p<0.001). In normal rats, stimulation of FN increased the threshold current for eliciting CSD by 175% and slowed its propagation velocity by 35% (p<0.01 for each) immediately, but not 72 h, after FN stimulation. We conclude: FN stimulation elicits long-lasting suppression of PIDs in parallel with neuroprotection. However, PIDs suppression over time is unlikely to result from a major increase in cortical tolerance to depolarization and probably is not the principal mechanism of salvage.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Cornell University Medical College, 411 East 69th Street, New York, NY 10021, USA.
| | | |
Collapse
|
118
|
Shen PJ, Gundlach AL. Differential spatiotemporal alterations in adrenoceptor mRNAs and binding sites in cerebral cortex following spreading depression: selective and prolonged up-regulation of alpha1B-adrenoceptors. Exp Neurol 1998; 154:612-27. [PMID: 9878196 DOI: 10.1006/exnr.1998.6915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Noradrenaline, an important transmitter in the CNS, is involved in cerebral plasticity and functional recovery after injury. Experimental brain injury, including KCl application onto the brain surface, induces a slow-moving cortical depolarization/depression wave called cortical spreading depression (CSD). Interestingly, CSD does not produce neuronal damage but can protect cortical neurons against subsequent neurotoxic insults, although the mechanisms involved are unknown. This study examined the status of alpha- and beta-adrenoceptors (ARs) in cerebral cortex following CSD. Anesthetized rats had unilateral CSD induced by a 10-min topical application of KCl to the frontoparietal cortex and were killed at various times thereafter. Levels of alpha1-, alpha2-, beta1-, and beta2-AR mRNA and binding were examined using in situ hybridization histochemistry and radioligand autoradiography. Levels of alpha1b-AR mRNA in the affected neocortex were significantly increased by 20-40% at 1, 2, and 7 days (P </= 0.01) compared with contralateral levels, but were not significantly above control values at 2 and 4 weeks after CSD induction. Cortical alpha1B-AR binding sites were also increased by 45-65% 1 and 2 weeks (P </= 0.01) after CSD in a similar, but delayed, profile to alpha1b-AR mRNA. CSD rapidly increased beta1-AR mRNA by 45% at 1 h (P </= 0.01) and produced a delayed decrease of 25% in alpha2a-AR mRNA at 2 days and 1 week (P </= 0.05), but had no effect on corresponding levels of binding sites. In contrast, CSD had no effect on the remaining AR-subtype mRNAs or binding levels in neocortex under identical conditions. These results reveal a long-term up-regulation of alpha1B-ARs induced by an acute cortical stimulation/depression. Subtype-selective responses of ARs to CSD reflect an important differential regulation of expression of each receptor in vivo and suggest that alpha1B-ARs are particularly likely to be involved in cortical adaptive responses to physical injury at both local and distant locations.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, 3084, Australia
| | | |
Collapse
|
119
|
Karikó K, Harris VA, Rangel Y, Duvall ME, Welsh FA. Effect of cortical spreading depression on the levels of mRNA coding for putative neuroprotective proteins in rat brain. J Cereb Blood Flow Metab 1998; 18:1308-15. [PMID: 9850143 DOI: 10.1097/00004647-199812000-00005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that cortical spreading depression (CSD) induces neuronal tolerance to a subsequent episode of ischemia. The objective of the present investigation was to determine whether CSD alters levels of mRNA coding for putative neuroprotective proteins. Unilateral CSD was evoked in male Wistar rats by applying 2 mol/L KCl over the frontal cortex for 2 hours. After recovery for 0, 2, or 24 hours, levels of several mRNA coding for neuroprotective proteins were measured bilaterally in parietal cortex using Northern blot analysis. Levels of c-fos mRNA and brain-derived neurotrophic factor (BDNF) mRNA were markedly elevated at 0 and 2 hours, but not 24 hours after CSD. Tissue plasminogen activator (tPA) mRNA levels were also significantly increased at 0 and 2 hours, but not 24 hours after CSD. Levels of the 72-kDa heat-shock protein (hsp72) mRNA were not significantly increased by CSD, except for a small elevation (20%) at 2 hours recovery. Levels of the 73-kDa heat-shock cognate (hsc73) mRNA were slightly, but significantly, increased at 2 and 24 hours of recovery. Finally, levels of mRNA for protease nexin-1 and glutamine synthetase were not significantly altered by CSD at any time studied. The current results support the hypothesis that neuronal tolerance to ischemia after CSD may be mediated by increased expression of FOS, BDNF, or tPA, but not by increased expression of hsp72, hsc73, nexin-1, or glutamine synthetase.
Collapse
Affiliation(s)
- K Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | |
Collapse
|
120
|
Matsushima K, Schmidt-Kastner R, Hogan MJ, Hakim AM. Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 1998; 807:47-60. [PMID: 9756993 DOI: 10.1016/s0006-8993(98)00716-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that cortical spreading depression (CSD), used to precondition rat brain, reduced cortical infarction volume resulting from focal cerebral ischemia by middle cerebral artery occlusion (MCAO) 3 days later. The mechanisms underlying this protective effect by CSD remains to be explored. In this study, we confirm that CSD is neuroprotective when KCl is applied epidurally rather than intracortically. Neocortical infarct volume was 101.3+/-48.5 mm3 and 45.3+/-44.1 mm3 in the sham and CSD group, respectively (p<0.05). Using image analysis, we identified the cortical region spared from infarction by the prior CSD. We then determined the distribution of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) mRNA and the time course of their expression in groups of animals treated with CSD and their controls. We also examined the response of astrocytes to CSD using glial fibrillary acidic protein (GFAP) as a marker. In situ hybridization (done at 0, 3, 12, 24, 72 or 168 h after CSD) showed significant elevation of BDNF mRNA in the cortex immediately after CSD in a distribution surrounding the spared cortex, while bFGF mRNA rose 12 h after CSD and appeared more within the core of the ischemic region. Immunohistochemistry (done at 1, 3 or 7 days after CSD) demonstrated GFAP in the neocortex, with a peak at 3 days after CSD. Heat shock protein 72 (HSP72) expression was not affected by CSD. We concluded that upregulation of trophic factors and activation of glial cells may contribute to the neuroprotection induced by CSD.
Collapse
Affiliation(s)
- K Matsushima
- Neuroscience Research Institute, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
121
|
Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998; 29:1937-50; discussion 1950-1. [PMID: 9731622 DOI: 10.1161/01.str.29.9.1937] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A short duration of ischemia (ie, ischemic preconditioning [PC]) can provide significant brain protection to subsequent ischemic events (ie, ischemic tolerance [IT]). The present series of studies was conducted to characterize the temporal pattern of a PC paradigm, to systematically evaluate the importance of protein synthesis in PC-induced IT, and to explore candidate gene expression changes associated with IT. METHODS Temporary middle cerebral artery occlusion (MCAO) (10 minutes) was used for PC. Various periods of reperfusion (ie, 2, 6, and 12 hours and 1, 2, 7, 14, and 21 days) were allowed after PC and before permanent MCAO (PMCAO) (n=7 to 9 per group) to establish IT compared with non-PC (sham-operated) rats (n=22). Infarct size, forelimb and hindlimb motor function, and cortical perfusion (laser-Doppler flowmetry; n=9 per group) were measured after PMCAO. The effects of the protein synthesis inhibitor cycloheximide administered just before PC (n= 13 to 17) or administered long after PC but just before PMCAO (n=7 to 8) on IT were also determined. Interleukin- receptor antagonist mRNA (reverse transcriptase and polymerase chain reactions [n=20] and Northern analysis [n=50]) and protein expression (immunohistochemistry [n=16]) after PC and early response gene expression (Northern analysis [n=16]) after PMCAO in PC animals were determined. RESULTS Hemispheric infarct was significantly (P<0.01) reduced only if PC was performed 1 day (decreased 58.4%), 2 days (decreased 58.1%), or 7 days (decreased 59.4%) before PMCAO. PC significantly (P<0.01) reduced neurological deficits (similar to reductions in infarct size). Cycloheximide eliminated ischemic PC-induced IT effects on both brain injury and neurological deficits if administered before PC (P<0.05) but not if administered long after PC but before PMCAO. PC did not produce any significant brain injury, alter cortical blood flow after PMCAO, or produce contralateral cortical neuroprotection. Interleukin-1 receptor antagonist mRNA and protein expression were increased significantly (P<0.01) only during the IT period. PC rats also exhibited a significant (P<0.01) reduction in c-fos and zif268 mRNA expression after PMCAO. CONCLUSIONS PC is a powerful inducer of ischemic brain tolerance as reflected by preservation of brain tissue and motor function. PC induces IT that is dependent on de novo protein synthesis. New protein(s) that occurs at the PC brain site 1 to 7 days after PC contributes to the neuroprotection. Those proteins that are produced after the more severe PMCAO in PC animals apparently do not contribute to IT. The PC-induced IT is also associated with increased expression of the neuroprotective protein interleukin-1 receptor antagonist and a reduced postischemic expression of the early response genes c-fos and zif268. (Stroke. 1998;29:1937-1951.)
Collapse
Affiliation(s)
- F C Barone
- Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA. Frank
| | | | | | | | | | | | | |
Collapse
|
122
|
Shen PJ, Gundlach AL. Differential increases in chromogranins, but not synapsin I, in cortical neurons following spreading depression: implications for functional roles and transmitter peptide release. Eur J Neurosci 1998; 10:2217-30. [PMID: 9749750 DOI: 10.1046/j.1460-9568.1998.00231.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental damage of cerebral cortex induces a slow-moving depolarization and subsequent depression of activity called cortical spreading depression (CSD) which is associated with various ionic, metabolic and genomic changes. Chromogranins are a family of water-soluble acidic proteins with a widespread distribution in secretory, large dense-core vesicles of neurons. We have earlier reported that secretogranin II (SgII) mRNA is increased in cerebral cortex hours after a unilateral craniotomy which would have induced CSD. To investigate further the regulation of chromogranin systems and the nature of genomic and biochemical changes produced by CSD, this study examined the temporal changes in chromogranin A (CgA), chromogranin B (CgB) and SgII mRNAs and CgB and SgII immunoreactivity (IR) in cerebral cortex and hippocampus following unilateral KCl-induced CSD. For comparison, the levels of mRNA for synapsin I, a protein present in small synaptic vesicles was also examined. Rats were killed at various times after 10 min or 2 h of CSD and levels of chromogranins mRNAs were determined by semiquantitative in situ hybridization histochemistry, while changes in corresponding peptide products were detected by immunohistochemistry. CSD increased both SgII and CgB mRNA levels in ipsilateral cortex--levels of SgII mRNA were significantly (P < 0.01) increased at 1-6 h after CSD (165-225% of levels in contralateral cortex), but were not significantly above control values at later time points. Increased expression of CgB mRNA was delayed and prolonged compared with SgII and was significantly (P < 0.05) increased between 3 and 24 h (120-145%) after CSD, peaked at 2 days (180%), and was still elevated at 1 week (130%) compared with contralateral cortex. No alteration in CgA mRNA was observed in the ipsilateral cortex of the same animals across the entire time-course except for an increase in piriform cortex at 1-2 days. In contrast, levels of synapsin I mRNA in affected cortex were identical to those in contralateral cortex and cortex in sham-operated rats, at all times after CSD. Levels of chromogranin (SN-IR and PE-11-IR) were also increased in ipsilateral cortex following CSD. A strong increase in SN-IR in neuronal cell bodies and fibres was observed at 12 h and a moderate increase in PE-11-IR was observed 24-72 h after CSD. These results demonstrate that chromogranin transcripts and gene products are differentially regulated by neuronal depolarization/depression occurring during CSD and suggest that these chromogranin proteins may have differing functional roles in peptide transmitter release and distinct effects on neuronal function in rat brain.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | |
Collapse
|
123
|
Abstract
Although spreading depression has been known for over 50 years, recent research into this interesting experimental phenomenon provides evidence for an integrative role of spreading depression in brain pathophysiology. Spreading depression activates neurophysiological pathways that may have widespread consequences on brain function, but depends on the basal energy state of the brain.
Collapse
Affiliation(s)
- A A Parsons
- SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK
| |
Collapse
|
124
|
Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci 1998. [PMID: 9547248 DOI: 10.1523/jneurosci.18-09-03416.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although intercellular Ca2+ waves resemble spreading depression (SD) and occur in hippocampal organ cultures (HOTCs), SD has not been reported in these cultures. Accordingly, electrophysiological and Ca2+ imaging techniques were used to examine potential interrelations between Ca2+ waves and electrophysiological changes of SD. Our results show, for the first time, that HOTCs can support SD. Furthermore, two distinct Ca2+ waves were found to precede SD. The first traveled >100 micron/sec along the pyramidal cell dendritic layer. The second subsequently traveled mostly perpendicular to the pyramidal cell layer from CA3 (or CA1) but also in all directions from its area of initiation. This second, slower wave spread with the interstitial DC change of SD at millimeters per minute but always ahead of it by 6-16 sec. Heptanol, which uncouples gap junctions, blocked both of these Ca2+ waves and SD. Thus, two types of Ca2+ waves occur with the initiation and propagation of SD. The first might reflect interneuronal changes linked by gap junctions, whereas the second might stem from interastrocyte changes linked via similar connections. Because individual cells can be followed in space and time for protracted periods in HOTCs, this preparation may be ideal for studies designed to explore not only the mechanisms of SD but also the long-term consequences of SD, such as ischemic tolerance.
Collapse
|
125
|
Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1998; 18:196-205. [PMID: 9469163 DOI: 10.1097/00004647-199802000-00011] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In barbiturate-anesthetized rats, we induced 3 hours of permanent middle cerebral artery occlusion (MCAO) by an intraluminal thread (n = 6), or 1 hour MCAO followed by 2 hours of reperfusion (n = 6). Through a closed cranial window over the parietal cortex, the production of reactive oxygen species (ROS) was measured in the infarct border using online in vivo chemiluminescence (CL) while monitoring the appearance of peri-infarct depolarizations (PID). The borderzone localization of the ROS and direct current (DC) potential measurements was confirmed in additional experiments using laser-Doppler scanning, mapping regional CBF changes through the cranial window after permanent (n = 5) or reversible (n = 5) MCAO. CL measurements revealed a short period (10 to 30 minutes) of reduced ROS formation after vessel occlusion, followed by a significant increase (to 162 +/- 51%; baseline = 100%; P < .05) from 100 minutes of permanent MCAO onward. Reperfusion after a 1-hour period of MCAO led to a burst-like pattern of ROS production (peak: 489 +/- 330%; P < .05). When the experiments were terminated 3 hours after induction of MCAO, CL was still significantly increased above baseline after permanent and reversible MCAO (to 190 +/- 67% and 211 +/- 64%, respectively; P < .05). Simultaneous DC potential recordings detected 6.4 +/- 2.7 PID in the first, 4.7 +/- 2.3 in the second, and 2.8 +/- 2.0 in the third hour after permanent MCAO. In animals with reversible MCAO, PID were abolished from 15-minutes recirculation onward. There was no temporal relationship between ROS production and peri-infarct DC potential shifts. In conclusion, using a high temporal resolution ROS detection technique (CL), we found that permanent MCAO (after an initial decrease) was accompanied by a steady increase of ROS production during the 3-hour observation period, while reperfusion after 1 hour of MCAO produced a burst in ROS formation. Both patterns of ROS production were not related to the occurrence of PID.
Collapse
Affiliation(s)
- O Peters
- Department of Neurology, Charité Hospital, Humboldt-University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
The Heat Shock Response and Tissue Protection. DELAYED PRECONDITIONING AND ADAPTIVE CARDIOPROTECTION 1998. [DOI: 10.1007/978-94-011-5312-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
127
|
Caggiano AO, Kraig RP. Neuronal nitric oxide synthase expression is induced in neocortical astrocytes after spreading depression. J Cereb Blood Flow Metab 1998; 18:75-87. [PMID: 9428308 PMCID: PMC2698993 DOI: 10.1097/00004647-199801000-00008] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spreading depression (SD) confers either increased susceptibility to ischemic injury or a delayed protection. Because nitric oxide modulates ischemic injury, we investigated if altered expression of nitric oxide synthase (NOS) by SD could account for the effect of SD on ischemia. Furthermore, the identity of cells expressing NOS after SD is important, since SD results in heterogeneous, cell type-specific changes in intracellular environment, which can control NOS activity. Immunohistochemical, computer-based image analyses and Western blotting show that the number of neuronal NOS (nNOS)-positive cells in the somatosensory cortex was significantly increased at 6 hours and 3 days after SD (P < 0.05 and 0.01, respectively), whereas inducible NOS expression remained unchanged. Double-labeling of nNOS and glial fibrillary acidic protein identified these nNOS-positive cells as astrocytes. The effect of altered NO production on induced nNOS expression was examined by treating rats with sodium nitroprusside or NA-nitro-L-arginine methyl ester (LNAM) during SD. Increased nNOS expression was prevented by sodium nitroprusside and phenylephrine or phenylephrine alone, but not LNAM. Because SD increased astrocytic nNOS expression at time points correlating with both ischemic hypersensitivity and ischemic tolerance, the ability of SD to modulate ischemic injury must be complex, perhaps involving NOS but other factors as well.
Collapse
Affiliation(s)
- A O Caggiano
- Department of Neurology, University of Chicago, IL 60637, USA
| | | |
Collapse
|
128
|
Kawahara N, Croll SD, Wiegand SJ, Klatzo I. Cortical spreading depression induces long-term alterations of BDNF levels in cortex and hippocampus distinct from lesion effects: implications for ischemic tolerance. Neurosci Res 1997; 29:37-47. [PMID: 9293491 DOI: 10.1016/s0168-0102(97)00069-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cortical spreading depression (CSD) protects hippocampal and cortical neurons from an otherwise lethal ischemic insult delivered days later. The present study was undertaken to evaluate changes in the expression of BDNF following CSD, distinct from lesion effects and its possible involvement in delayed ischemic tolerance. CSD was elicited by KCl application and a cortical lesion was made by hyperosmolar NaCl application. BDNF mRNA was examined by in situ hybridization and Northern blot up to 7 days post-CSD. BDNF protein content was measured by ELISA. In the cortex, BDNF protein was mildly elevated despite minimal increases of mRNA in the NaCl lesion group. CSD specifically up-regulated BDNF mRNA at 4 h, followed by a delayed secondary increase at 2-3 days. BDNF protein exhibited smaller biphasic increases at 24 h and 3-7 days post-CSD which were significantly higher than the NaCl lesion group. In the hippocampus, BDNF protein levels showed a delayed decrease in both groups independent of mRNA changes, but CSD specifically delayed this decrease. Thus, CSD can alter BDNF levels independent of lesion effects. The increased BDNF following CSD in the cortex is consistent with the involvement of BDNF in cortical ischemic tolerance. BDNF could not, however, be directly related to ischemic tolerance in the hippocampus.
Collapse
Affiliation(s)
- N Kawahara
- Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-4128, USA.
| | | | | | | |
Collapse
|
129
|
Bruer U, Weih MK, Isaev NK, Meisel A, Ruscher K, Bergk A, Trendelenburg G, Wiegand F, Victorov IV, Dirnagl U. Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 1997; 414:117-21. [PMID: 9305743 DOI: 10.1016/s0014-5793(97)00954-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sublethal ischemia leads to increased tolerance against subsequent prolonged cerebral ischemia in vivo. In the present study we modeled preconditioning mechanisms in a neuronal-enriched culture. Damage was significantly reduced (up to 72%) with 1.5 h of oxygen-glucose deprivation 48-72 h before 3 h oxygen-glucose deprivation. Tolerance was also elicited by Na+-K+-ATPase inhibition. No damage was observed when astroglial or endothelial cells were exposed to hypoxia for 3 and 6 h, respectively. We conclude that hypoxic preconditioning is a robust neuronal phenomenon in vitro with a similar temporal pattern and selective cellular vulnerability as the ischemic tolerance phenomenon shown in vivo.
Collapse
Affiliation(s)
- U Bruer
- Department of Neurology, Charité Hospital, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Plumier JC, David JC, Robertson HA, Currie RW. Cortical application of potassium chloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. J Cereb Blood Flow Metab 1997; 17:781-90. [PMID: 9270495 DOI: 10.1097/00004647-199707000-00008] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spreading depression induces tolerance to ischemic injury, and ischemic tolerance has been associated with expression of heat shock proteins (Hsp). Here we examine Hsp27 expression after KCl-induced spreading depression. Twenty-minute cortical KCl application induced Hsp27 immunoreactivity in glial fibrillary acidic protein-positive astrocytes of the ipsilateral neocortex. Systemic administration of MK-801 (3 mg/kg) suppressed KCl-induced Hsp27 expression in the parietal cortex. Astrocytes in the posterior cingulate and retrosplenial cortex did not express Hsp27 after KCl application but did express Hsp27 after systemic administration of high dose MK-801 (9 mg/kg). Whereas Hsp27 was usually observed in all layers of the parietal cortex after 5-minute application of KCl, in 2 of 6 rats, Hsp27 was seen in clusters of astrocytes or in astrocytes in the superficial layers I to III of the parietal cortex. We conclude that (1) cortical application of KCl triggered Hsp27 astrocytic expression; (2) astrocytes in the cingulate and retrosplenial cortex responded differently compared with astrocytes of the parietal cortex; (3) Hsp27 expression progressed from small clusters of astrocytes throughout superficial layers of the cortex that joined and recruited astrocytes in deeper layers; (4) several mechanisms induced Hsp27 astrocytic expression. We propose that Hsp27 is involved in spreading depression-induced ischemic tolerance through protection of astrocyte function.
Collapse
Affiliation(s)
- J C Plumier
- Laboratory of Molecular Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
131
|
Osuga S, Hakim AM, Osuga H, Hogan MJ. In vivo uptake of [3H]nimodipine into brain during cortical spreading depression. J Cereb Blood Flow Metab 1997; 17:586-90. [PMID: 9183298 DOI: 10.1097/00004647-199705000-00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report autoradiographic measurements of the in vivo uptake of [3H]nimodipine during the nonischemic depolarization of cortical spreading depression (CSD) in rat brain. [3H]Nimodipine uptake in brain was determined regionally in rats undergoing CSD (n = 8) and was significantly increased in cortex (14 +/- 7%) and hippocampus (10 +/- 6%) on the stimulated side relative to the contralateral hemisphere when compared with the same measurements in a control group (n = 8). A similar measurement using the physiologically inert radiotracer [14C]iodoantipyrine to control for potential effects of CSD on radioligand distribution showed a minimal increase (2.4 +/- 0.7%) of radiotracer uptake in cortex after CSD. This increase was significantly less than that observed in the [3H]nimodipine uptake studies. We hypothesize that increased in vivo [3H]nimodipine uptake in CSD identifies regions of depolarization and thus infers activation of the L-type voltage sensitive calcium channels.
Collapse
Affiliation(s)
- S Osuga
- Neuroscience Research Institute, University of Ottawa, Canada
| | | | | | | |
Collapse
|
132
|
Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 1997; 51:39-87. [PMID: 9044428 DOI: 10.1016/s0301-0082(96)00049-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review is a critical appraisal of the widespread assumption that high extracellular glutamate, resulting from enhanced pre-synaptic release superimposed on deficient uptake and/or cytosolic efflux, is the key to excessive glutamate-mediated excitation in neurological disorders. Indeed, high extracellular glutamate levels do not consistently correlate with, nor necessarily produce, neuronal dysfunction and death in vivo. Furthermore, we exemplify with spreading depression that the sensitivity of an experimental or pathological event to glutamate receptor antagonists does not imply involvement of high extracellular glutamate levels in the genesis of this event. We propose an extension to the current, oversimplified concept of excitotoxicity associated with neurological disorders, to include alternative abnormalities of glutamatergic transmission which may contribute to the pathology, and lead to excitotoxic injury. These may include the following: (i) increased density of glutamate receptors; (ii) altered ionic selectivity of ionotropic glutamate receptors; (iii) abnormalities in their sensitivity and modulation; (iv) enhancement of glutamate-mediated synaptic efficacy (i.e. a pathological form of long-term potentiation); (v) phenomena such as spreading depression which require activation of glutamate receptors and can be detrimental to the survival of neurons. Such an extension would take into account the diversity of glutamate-receptor-mediated processes, match the complexity of neurological disorders pathogenesis and pathophysiology, and ultimately provide a more elaborate scientific basis for the development of innovative treatments.
Collapse
Affiliation(s)
- T P Obrenovitch
- Department of Neurochemistry, Institute of Neurology, London.
| | | |
Collapse
|
133
|
Osuga H, Hakim AM. Relationship between extracellular glutamate concentration and voltage-sensitive calcium channel function in focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1996; 16:629-36. [PMID: 8964802 DOI: 10.1097/00004647-199607000-00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ischemic cell death occurs when extracellular glutamate levels increase, causing tissue depolarization and an excessive rise in intracellular calcium concentrations. The relative occurrence of the depolarization events and the changes in glutamate concentration in ischemia have not been studied. In a model of focal cerebral ischemia in the rat, three measurements were made simultaneously in vivo: cerebral blood flow (CBF) by the H2-clearance method, extracellular glutamate concentration by microdialysis, and activation of the voltage-sensitive calcium channel (VSCC) by its binding to [3H]nimodipine. Effects of probe implantation on these measurements were accounted for. The CBF to control ratio obtained during the experiments spanned the range of 1.08 to 0.07. Binding to [3H]nimodipine became significantly activated when CBF fell to approximately 0.49 of its control value while extracellular glutamate concentrations increased significantly only at a CBF ratio of < 0.33. Activation of the VSCC at this high CBF ratio may be due to ischemic depolarization, which has been shown to activate the binding to [3H]nimodipine. It may be useful to define a CBF threshold of 50% of normal in focal ischemia for opening of the VSCC. The same threshold has been linked to an overall depression of protein synthesis and to activation of a number of molecular responses.
Collapse
Affiliation(s)
- H Osuga
- Neuroscience Research Institute, University of Ottawa, Ontario, Canada
| | | |
Collapse
|