101
|
Zappalà A, Li Volti G, Serapide MF, Pellitteri R, Falchi M, La Delia F, Cicirata V, Cicirata F. Expression of pannexin2 protein in healthy and ischemized brain of adult rats. Neuroscience 2007; 148:653-67. [PMID: 17692470 DOI: 10.1016/j.neuroscience.2007.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
The expression pattern of the pannexin2 protein (Px2) in healthy and ischemized brains of adult rats was investigated. A polyclonal antibody for rat Px2 was generated in chicken and purified for affinity. This antibody was used to study by Western blot, Enzyme-Linked Immunosorbent Assay, and immunohistochemistry, the expression pattern of Px2 in healthy brain of adult rats and in the hippocampus of rats submitted to bilateral clamping of carotid arteries for 20 min, followed by different times of reperfusion (I/R) (8 h, 24 h, 48 h, 72 h, 14 days and 30 days). Immunohistochemical studies visualized the wide and complex expression pattern of Px2 in the healthy brain. All Px2(+) positive cells were neurons which also showed no puncta on their cellular membranes. Both pyramidal cells and interneurons, the majority of which were positive to parvalbumin, were stained in healthy hippocampus. The number of Px2 interneurons in the hippocampus showed a progressive reduction at successive time intervals after I/R, with a negative peak of about -40% after 72 h from I/R. Interneurons which were positive for both Px2 and parvalbumin, represented about the 85% of all parvalbumin cells stained in the hippocampus. This percentage rested grossly unmodified at different time intervals after I/R in spite of the progressive neuronal depletion. Concomitantly, an intense astrogliosis occurred in the hippocampus. Most of the astroglial cells expressed de novo and for a transient time (from 24 h to 14 days from I/R), Px2. Primary co-cultures of hippocampal neurons and astrocytes were submitted to transient ischemia-like injury. This set of experiments further confirmed the in vivo results by showing that Px2 is de novo and transiently expressed in astroglial cells following a transient ischemia-like injury. These results suggested the expression of Px2 in the astrocytes may be induced either from injured neurons or by biochemical pathways internal to the astrocyte itself. In conclusion, our results showed the transient expression of Px2 in astrocytes of reactive gliosis occurring in the hippocampus following I/R injury. We hypothesize that Px2 expression in astrocytes following an ischemic insult is principally involved in the formation of hemichannels for the release of signaling molecules devoted to influence the cellular metabolism and the redox status of the surrounding environment.
Collapse
Affiliation(s)
- A Zappalà
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Rodríguez-Sinovas A, Abdallah Y, Piper HM, Garcia-Dorado D. Reperfusion injury as a therapeutic challenge in patients with acute myocardial infarction. Heart Fail Rev 2007; 12:207-16. [PMID: 17530396 DOI: 10.1007/s10741-007-9039-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cardiomyocyte death secondary to transient ischemia occurs mainly during the first minutes of reperfusion, in the form of contraction band necrosis involving sarcolemmal rupture. Cardiomyocyte hypercontracture caused by re-energisation and pH recovery in the presence of impaired cytosolic Ca(2+) control as well as calpain-mediated cytoskeletal fragility play prominent roles in this type of cell death. Hypercontracture can propagate to adjacent cells through gap junctions. More recently, opening of the mitochondrial permeability transition pore has been shown to participate in reperfusion-induced necrosis, although its precise relation with hypercontracture has not been established. Experimental studies have convincingly demonstrated that infarct size can be markedly reduced by therapeutic interventions applied at the time of reperfusion, including contractile blockers, inhibitors of Na(+)/Ca(2+) exchange, gap junction blockers, or particulate guanylyl cyclase agonists. However, in most cases drugs for use in humans have not been developed and tested for these targets, while the effect of existing drugs with potential cardioprotective effect is not well established or understood. Research effort should be addressed to elucidate the unsolved issues of the molecular mechanisms of reperfusion-induced cell death, to identify and validate new targets and to develop appropriate drugs. The potential benefits of limiting infarct size in patients with acute myocardial infarction receiving reperfusion therapy are enormous.
Collapse
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental, Servicio de Cardiología, Hospital Universitario Vall d'Hebron, Passeig Vall d'Hebron 119, Barcelona 08035, Spain
| | | | | | | |
Collapse
|
103
|
Lin D, Shanks D, Prakash O, Takemoto DJ. Protein kinase C gamma mutations in the C1B domain cause caspase-3-linked apoptosis in lens epithelial cells through gap junctions. Exp Eye Res 2007; 85:113-22. [PMID: 17493614 PMCID: PMC2030616 DOI: 10.1016/j.exer.2007.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/13/2007] [Accepted: 03/15/2007] [Indexed: 01/13/2023]
Abstract
Failure to control oxidative stress is closely related to aging and to a diverse range of human diseases. We have reported that protein kinase C gamma (PKCgamma) acts as a primary oxidative stress sensor in the lens. PKCgamma has a Zn-finger C1B stress switch domain, residues 101-150. Mutation, H101Y, in the C1B domain of PKCgamma proteins causes a failure of the PKCgamma oxidative stress response [Lin, D., Takemoto, D.J., 2005. Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J. Biol. Chem. 280, 13682-13693]. Some human neurodegenerative spinocerebellar ataxia type 14 are caused by mutations in the PKCgamma C1B domain. In the current study we have investigated the effects of these mutations on lens epithelial cell responses to oxidative stress. The results demonstrate that PKCgamma C1B mutants had lower basal enzyme activities and were not activated by H(2)O(2). Furthermore, the PKCgamma mutations caused a failure of endogenous wild type PKCgamma to be activated by H(2)O(2). These PKCgamma mutations abolished the effect of H(2)O(2) on phosphorylation of Cx43 and Cx50 by H(2)O(2) activation of PKCgamma. The cells with PKCgamma C1B mutations had more Cx43 and/or Cx50 gap junction plaques which were not decreased by H(2)O(2). Since open gap junctions could have a bystander effect this could cause apoptosis to occur. H(2)O(2) (100 microM, 3 h) activated a caspase-3 apoptotic pathway in the lens epithelial cells but was more severe in cells expressing PKCgamma mutations. The presence of 18alpha-glycyrrhetinic acid (AGA), an inhibitor of gap junctions, decreased Cx43 and Cx50 protein levels and gap junction plaque number. This reduction in gap junctions by AGA resulted in inhibition of H(2)O(2)-induced apoptosis. Our results demonstrate that there is a dominant negative effect of PKCgamma C1B mutations on endogenous PKCgamma which results in loss of control of gap junctions. Modeled structures suggest that the severity of C1B mutation effects may be related to the extent of loss of C1B structure. Mutations in the C1B domain of PKCgamma result in increased apoptosis in lens epithelial cells. This can be prevented by a gap junction inhibitor. Thus, propagation of apoptosis from cell-to-cell in lens epithelial cells may be through open gap junctions. The control of gap junctions requires PKCgamma.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
104
|
Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:219-32. [PMID: 17462722 DOI: 10.1016/j.pbiomolbio.2007.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.
Collapse
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental, Servicio de Cardiologia, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
ESEN NILUFER, SHUFFIELD DEBBIE, MOHSIN MDSYED, KIELIAN TAMMY. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus. Glia 2007; 55:104-17. [PMID: 17029244 PMCID: PMC2440499 DOI: 10.1002/glia.20438] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits.
Collapse
Affiliation(s)
| | | | | | - TAMMY KIELIAN
- *Correspondence to: Tammy Kielian, University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham St., Slot 846, Little Rock, AR 72205, USA. E-mail:
| |
Collapse
|
106
|
Floyd CL, Lyeth BG. Astroglia: important mediators of traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:61-79. [PMID: 17618970 DOI: 10.1016/s0079-6123(06)61005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) research to date has focused almost exclusively on the pathophysiology of injured neurons with very little attention paid to non-neuronal cells. However in the past decade, exciting discoveries have challenged this century-old view of passive glial cells and have led to a reinterpretation of the role of glial cells in central nervous system (CNS) biology and pathology. In this chapter we review several lines of evidence, indicating that glial cells, particularly astrocytes, are active partners to neurons in the brain, and summarize recent findings that detail the significance of astrocyte pathology in traumatic brain injury.
Collapse
Affiliation(s)
- Candace L Floyd
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, 547 Spain Rehabilitation Center, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | |
Collapse
|
107
|
Lan L, Yuan H, Duan L, Cao R, Gao B, Shen J, Xiong Y, Chen LW, Rao ZR. Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat. Neurosci Res 2007; 57:112-9. [PMID: 17184865 DOI: 10.1016/j.neures.2006.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 09/17/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
This study examined whether glial cells in the trigeminal nucleus caudalis (Sp5C) were necessary for orofacial nociception and nociceptive processing induced by subcutaneously (s.c.) injection of 5% formalin into left mystacial vibrissae. The immunohistochemical, immunoelectron microscopical methods and behavior assessment were used in this study. Two hours after administration of carbenoxolone (CBX, a gap junction blocker) or fluorocistrate (FCA, a glail metabolic inhibitor) into the cerebellomedullary cistern, the nociceptive behavior and scratching-cumulative time reduced significantly (P<0.01). FCA attenuated obviously the expression of Fos/NeuN-immunoreactive (-IR) neurons (mean+/-S.E.M.=29+/-2.5) and Fos/glial fibrillary acidic protein (GFAP)-IR astrocytes (7.2+/-2.2) in Sp5C. CBX decreased the number of Fos/NeuN-IR neurons (25+/-1.7), but did not affect Fos/GFAP-IR astrocytes (16.2+/-5.4), compared with vehicle-preadministered rats (Fos/NeuN-IR neurons 135+/-4.2, and Fos/GFAP-IR astrocytes 25.8+/-4). Immunoelectron microscopy established that Cx32/Cx43 heterotypic gap junctions (HGJs) were present on junction areas between astrocytes and neurons within Sp5C. The number of HGJs increased significantly following formalin s.c. injection. It suggests that the Sp5C astrocytes may play an active regulating role in orofacial nociception via Cx32/Cx43 HGJs between astrocytes and neurons of Sp5C.
Collapse
Affiliation(s)
- Li Lan
- Institute of Neurosciences, The Fourth Military Medical University, Changle West Road, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Haupt C, Witte OW, Frahm C. Temporal profile of connexin 43 expression after photothrombotic lesion in rat brain. Neuroscience 2007; 144:562-70. [PMID: 17112677 DOI: 10.1016/j.neuroscience.2006.09.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 11/20/2022]
Abstract
Following focal ischemic injury, several mechanisms lead to secondary expansion of the affected area and therefore increase the initial damage. We thoroughly investigated the expression of astrocytic connexin 43 (Cx43) after photothrombosis in rat brain. The temporal profile of Cx43 mRNA as well as protein expression was studied in remote, structurally uninjured cortical and hippocampal areas. The hippocampal formation revealed an increased number of Cx43 mRNA positive astrocytes and an up-regulated protein expression exclusively in the ipsilateral stratum oriens. We assume a participation of this region in glia scar formation. While Cx43 mRNA positive cells were transiently increased, immunoreactivity was reduced in the somatosensory cortex of injured hemispheres. The observed decrease of Cx43 protein in the post-ischemic cerebral cortex implies an impairment of gap junctional intercellular communication which might be detrimental to the brain.
Collapse
Affiliation(s)
- C Haupt
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07747 Jena, Germany
| | | | | |
Collapse
|
109
|
Konsman JP, Drukarch B, Van Dam AM. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond) 2006; 112:1-25. [PMID: 17132137 DOI: 10.1042/cs20060043] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In response to tissue injury or infection, the peripheral tissue macrophage induces an inflammatory response through the release of IL-1β (interleukin-1β) and TNFα (tumour necrosis factor α). These cytokines stimulate macrophages and endothelial cells to express chemokines and adhesion molecules that attract leucocytes into the peripheral site of injury or infection. The aims of the present review are to (i) discuss the relevance of brain (peri)vascular cells and compartments to bacterial meningitis, HIV-1-associated dementia, multiple sclerosis, ischaemic and traumatic brain injury, and Alzheimer's disease, and (ii) to provide an overview of the production and action of pro-inflammatory cytokines by (peri)vascular cells in these pathologies of the CNS (central nervous system). The brain (peri)vascular compartments are highly relevant to pathologies affecting the CNS, as infections are almost exclusively blood-borne. Insults disrupt blood and energy flow to neurons, and active brain-to-blood transport mechanisms, which are the bottleneck in the clearance of unwanted molecules from the brain. Perivascular macrophages are the most reactive cell type and produce IL-1β and TNFα after infection or injury to the CNS. The main cellular target for IL-1β and TNFα produced in the brain (peri)vascular compartment is the endothelium, where these cytokines induce the expression of adhesion molecules and promote leucocyte infiltration. Whether this and other effects of IL-1 and TNF in the brain (peri)vascular compartments are detrimental or beneficial in neuropathology remains to be shown and requires a clear understanding of the role of these cytokines in both damaging and repair processes in the CNS.
Collapse
Affiliation(s)
- Jan P Konsman
- Laboratory of Integrative Neurobiology, CNRS FRE 2723/INRA UR 1244/University Bordeaux2, Institut François Magendie, Bordeaux, France
| | | | | |
Collapse
|
110
|
Proulx E, Leshchenko Y, Kokarovtseva L, Khokhotva V, El-Beheiry M, Snead OC, Perez Velazquez JL. Functional contribution of specific brain areas to absence seizures: role of thalamic gap-junctional coupling. Eur J Neurosci 2006; 23:489-96. [PMID: 16420455 DOI: 10.1111/j.1460-9568.2005.04558.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synchronized discharges typical of seizures have a multifactorial origin at molecular, cellular and network levels. During recent years, the functional role of gap-junctional coupling has received increased attention as a mechanism that may participate in seizure generation. We have investigated the possible functional roles of thalamic and hippocampal gap-junctional communication (GJC) in the generation of spike-and-wave discharges in a rodent model of atypical absence seizures. Seizures in this model spread throughout limbic, thalamic and neocortical areas. Rats were chronically implanted with cannulae to deliver drugs or saline, and local field potentials recordings were performed using intracerebral electrodes positioned in distinct brain areas. Initially, the effects on synaptic transmission of the gap-junctional blockers used in this study were determined. Neither carbenoxolone (CBX) nor 18-alpha-glycyrrhetinic acid altered chemical synaptic transmission at the concentrations tested. These two compounds, when injected via cannulae into the reticular nucleus of the thalamus (NRT), decreased significantly the duration of seizures as compared with saline injections or injections of the CBX inactive derivative glycyrrhizic acid. CBX injections into the hippocampus resulted in diminished seizure activity as well. NRT injections of trimethylamine, which presumably causes intracellular alkalinization (thereby promoting gap-junctional opening), enhanced seizures and spindle activity. These observations suggest that, in this rodent model, thalamic and limbic areas are involved in the synchronous paroxysmal activity and that GJC contributes to the spike-and-wave discharges.
Collapse
Affiliation(s)
- Eliane Proulx
- Brain and Behaviour Programme and Division of Neurology, The Hospital for Sick Children, Department of Neurology, Room 6535 Hill Wing, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
111
|
Affiliation(s)
- Rahul J Anand
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
112
|
Perez Velazquez JL, Kokarovtseva L, Sarbaziha R, Jeyapalan Z, Leshchenko Y. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 2006; 23:1-10. [PMID: 16420410 DOI: 10.1111/j.1460-9568.2005.04523.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- Brain and Behaviour Programme and Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
113
|
Hinkerohe D, Smikalla D, Haghikia A, Heupel K, Haase CG, Dermietzel R, Faustmann PM. Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory coculture model. Glia 2005; 52:85-97. [PMID: 15920725 DOI: 10.1002/glia.20223] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokines play an important role in the onset, regulation, and propagation of immune and inflammatory responses within the central nervous system (CNS). The main source of cytokines in the CNS are microglial cells. Under inflammatory conditions, microglial cells are capable of producing pro- and antiinflammatory cytokines, which convey essential impact on the glial and neuronal environment. One paramount functional feature of astrocytes is their ability to form a functionally coupled syncytium. The structural link, which is responsible for the syncytial behavior of astrocytes, is provided by gap junctions. The present study was performed to evaluate the influence of inflammation related cytokines on an astroglial/microglial inflammatory model. Primary astrocytic cultures of newborn rats were cocultured with either 5% (M5) or 30% (M30) microglial cells and were incubated with the following proinflammatory cytokines: tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interferon-gamma (IFN-gamma), and the antiinflammatory cytokines transforming growth factor-beta1 (TGF-beta1) and IFN-beta. Under these conditions, i.e., incubation with the inflammatory cytokines and the high fraction of microglia (M30), microglial cells revealed a significant increase of activated round phagocytotic cells accompanied by a reduction of astroglial connexin 43 (Cx43) expression, a reduced functional coupling together with depolarization of the membrane resting potential (MRP). When the antiinflammatory mediator TGF-beta1 was added to proinflammatory altered M30 cocultures, a reversion of microglial activation and reconstitution of functional coupling together with recovery of the astroglial MRP was achieved. Finally IFN-beta, added to M5 cocultures was able to prevent the effects of the proinflammatory cytokines TNF-alpha, IL-1beta, and IFN-gamma.
Collapse
Affiliation(s)
- Daniel Hinkerohe
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
114
|
Krysko DV, Leybaert L, Vandenabeele P, D'Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 2005; 10:459-69. [PMID: 15909108 DOI: 10.1007/s10495-005-1875-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gap junctions are a unique type of intercellular channels that connect the cytoplasm of adjoining cells. Each gap junction channel is comprised of two hemichannels or connexons and each connexon is formed by the aggregation of six protein subunits known as connexins. Gap junction channels allow the intercellular passage of small (< 1.5 kDa) molecules and regulate essential processes during development and differentiation. However, their role in cell survival and cell death is poorly understood. We review experimental data that support the hypothesis that gap junction channels may propagate cell death and survival modulating signals. In addition, we explore the hypothesis that hemichannels (or unapposed connexons) might be used as a paracrine conduit to spread factors that modulate the fate of the surrounding cells. Finally, direct signal transduction activity of connexins in cell death and survival pathways is addressed.
Collapse
Affiliation(s)
- D V Krysko
- Department of Human Anatomy, Embryology, Histology and Medical Physics, Ghent University, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
115
|
de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M, Benabou S, Spray DC, Federoff HJ, Stanton PK, Rozental R. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 2005; 36:2232-7. [PMID: 16179575 DOI: 10.1161/01.str.0000182239.75969.d8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We investigated the contribution of gap junctions to brain damage and delayed neuronal death produced by oxygen-glucose deprivation (OGD). METHODS Histopathology, molecular biology, and electrophysiological and fluorescence cell death assays in slice cultures after OGD and in developing rats after intrauterine hypoxia-ischemia (HI). RESULTS OGD persistently increased gap junction coupling and strongly activated the apoptosis marker caspase-3 in slice cultures. The gap junction blocker carbenoxolone applied to hippocampal slice cultures before, during, or 60 minutes after OGD markedly reduced delayed neuronal death. Administration of carbenoxolone to ischemic pups immediately after intrauterine HI prevented caspase-3 activation and dramatically reduced long-term neuronal damage. CONCLUSIONS Gap junction blockade may be a useful therapeutic tool to minimize brain damage produced by perinatal and early postnatal HI.
Collapse
Affiliation(s)
- Mara H de Pina-Benabou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Coutinho P, Qiu C, Frank S, Wang CM, Brown T, Green CR, Becker DL. Limiting burn extension by transient inhibition of Connexin43 expression at the site of injury. ACTA ACUST UNITED AC 2005; 58:658-67. [PMID: 15927148 DOI: 10.1016/j.bjps.2004.12.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 12/10/2004] [Accepted: 12/17/2004] [Indexed: 11/21/2022]
Abstract
Extension of a burn wound over the first 24h following injury is recognised clinically, and leads to diagnostic and therapeutic dilemmas. In the central nervous system, a similar spread of damage, beyond the initial injury, can occur via the spread of death signals from injured cells to their healthy neighbours via Connexin43 (Cx43) gap junction channels. In the skin, Cx43 is expressed in the basal epidermis and in fibroblasts and dermal appendages. We have used Cx43 specific antisense oligodeoxynucleotide approach to transiently down-regulate Cx43 protein in the early stages of partial thickness cutaneous burn wound healing. Antisense ODNs reduce the spread of tissue damage and neutrophil infiltration around the wound following injury. Epithelial cell proliferation is increased and the rate of wound closure is accelerated, compared to controls. Resultant scarring is smaller with less granulation tissue and more dermal appendages than controls. These findings suggest that Cx43 antisense treatment speeds partial thickness burn wound healing and reduces scarring. We suggest that this approach may provide an effective adjunct to managing partial thickness burn wounds.
Collapse
Affiliation(s)
- P Coutinho
- Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | | | | | | | | | | | | |
Collapse
|
117
|
Hosseinzadeh H, Nassiri Asl M, Parvardeh S. The effects of carbenoxolone, a semisynthetic derivative of glycyrrhizinic acid, on peripheral and central ischemia-reperfusion injuries in the skeletal muscle and hippocampus of rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2005; 12:632-7. [PMID: 16194049 DOI: 10.1016/j.phymed.2004.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As carbenoxolone, a semisynthetic derivative of glycyrrhizinic acid, has a free radical scavenging property, thus the effects of carbenoxolone during ischemia-reperfusion was evaluated on an animal model of ischemia-reperfusion injury in the rat hind limb and hippocampus. Peripheral and central ischemia were induced by free-flap surgery in skeletal muscle and four-vessel-occulation (4VO) of rat, respectively. Carbenoxolone (50-200 mg/kg) and normal saline (10 ml/ kg) were administered intraperitoneally. In peripherlal ischemia, during preischemia, ischemia and reperfusion conditions the electromyographic (EMG) potentials in the muscles were recorded. The malondialdehyde (MDA) was measured by the thiobarbituric acid (TBA) test after reperfusion in peripheral and central ischemia. In peripheral ischemia, the average peak-to-peak amplitude during ischemic-reperfusion was found to be significantly larger in carbenoxolone group (100-200mg/kg) in comparison to control group. The MDA levels were recovered significantly upon carbenoxolone (100-200 mg/kg) therapy in the skeletal muscle and hippocampus of ischemic rats. These results suggest that carbenoxolone can salvage the skeletal muscle and hippocampus from acute ischemia-reperfusion injury.
Collapse
Affiliation(s)
- H Hosseinzadeh
- Pharmaceutical Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR Iran.
| | | | | |
Collapse
|
118
|
Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, Spray DC, Scemes E. Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res 2005; 80:798-808. [PMID: 15898103 PMCID: PMC1226319 DOI: 10.1002/jnr.20474] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), its animal model, involve inflammatory attack on central nervous system (CNS) white matter, leading to demyelination and axonal damage. Changes in astrocytic morphology and function are also prominent features of MS and EAE. Resting astrocytes form a network that is interconnected through gap junctions, composed mainly of connexin43 (Cx43) protein. Although astrocytic gap junctional connectivity is known to be altered in many CNS pathologies, little is known about Cx43 expression in inflammatory demyelinating disease. Therefore, we evaluated the expression of Cx43 in spinal cords of EAE mice compared with healthy controls. Lumbar ventral white matter areas were heavily infiltrated with CD11beta-immunoreactive monocytes, and within these infiltrated regions loss of Cx43 immunoreactivity was evident. These regions also showed axonal dystrophy, demonstrated by the abnormally dephosphorylated heavy-chain neurofilament proteins. Astrocytes in these Cx43-depleted lesions were strongly glial fibrillary acidic protein reactive. Significant loss (38%) of Cx43 protein in EAE mouse at the lumbar portion of spinal cords was confirmed by Western blot analysis. Decreased Cx43 transcript level was also observed on cDNA microarray analysis. In addition to changes in Cx43 expression, numerous other genes were altered, including those encoding adhesion and extracellular matrix proteins. Our data support the notion that, in addition to damage of myelinating glia, altered astrocyte connectivity is a prominent feature of inflammatory demyelination.
Collapse
|
119
|
Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C, Eysel UT, Dermietzel R. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur J Neurosci 2005; 22:605-16. [PMID: 16101742 DOI: 10.1111/j.1460-9568.2005.04228.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accruing evidence indicates that gap junctions are involved in neuronal survival after brain injury. The present study was aimed at clarifying the contribution of the neuronal gap-junction protein connexin36 (Cx36) to secondary cell loss after injury in the mouse retina. A focal retinal lesion was induced by infrared laser photocoagulation. Remarkably, this model allowed spatial and temporal definition of the lesion with high reproducibility. Moreover, Cx36 is abundantly expressed in the retina and plays an essential role in the visual transmission process. Taking advantage of these features, cell death was assessed using TUNEL assay and light and electron microscopy, and the extent of Cx36 expression was studied by immunohistochemistry, Western blot, in situ hybridization and real-time RT-PCR. Secondary cell loss was most prominent between 24 and 48 h after lesioning. This peak was accompanied by an increase in Cx36 expression. When cultured explanted retinas were subjected to gap-junction blockers a significant increase in the extent of secondary cell loss after laser photocoagulation became evident. Using the same experimental paradigm we compared the incidence of cell death in wild-type and Cx36(-/-) mice. A significant increase in total number of TUNEL-positive cells occurred in the Cx36(-/-) mice compared to controls. From these data we conclude that Cx36 contributes to the survival and resistance against damage of retinal cells and thus constitutes a protective factor after traumatic injury of the retina.
Collapse
Affiliation(s)
- Katharine Striedinger
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University, Universitätstrasse 150, D-44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease. The process of astrocyte activation remains rather enigmatic and results in so-called "reactive gliosis," a reaction with specific structural and functional characteristics. In stroke or in CNS trauma, the lesion itself, the ischemic environment, disrupted blood-brain barrier, the inflammatory response, as well as in metabolic, excitotoxic, and in some cases oxidative crises--all affect the extent and quality of reactive gliosis. The fact that astrocytes function as a syncytium of interconnected cells both in health and in disease, rather than as individual cells, adds yet another dimension to this picture. This review focuses on several aspects of astrocyte activation and reactive gliosis and discusses its possible roles in the CNS trauma and ischemia. Particular emphasis is placed on the lessons learnt from mouse genetic models in which the absence of intermediate filament proteins in astrocytes leads to attenuation of reactive gliosis with distinct pathophysiological and clinical consequences.
Collapse
Affiliation(s)
- Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Michael Nilsson
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| |
Collapse
|
121
|
Theis M, Söhl G, Eiberger J, Willecke K. Emerging complexities in identity and function of glial connexins. Trends Neurosci 2005; 28:188-95. [PMID: 15808353 DOI: 10.1016/j.tins.2005.02.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent research results indicate that glial gap-junction communication is much more complex and widespread than originally thought, and has diverse roles in brain homeostasis and the response of the brain to injury. The situation is far from clear, however. Pharmacological agents that block gap junctions can abolish neuron-glia long-range signaling and can alleviate neuronal damage whereas, intriguingly, opposite effects are observed in mice lacking connexin43, a major gap-junction subunit protein in astrocytes. How can the apparently contradictory results be explained, and how is specificity achieved within the glial gap-junction system? Another key issue in understanding glial connexin function is that oligodendrocytes and astrocytes, each of which express distinct connexin isotypes, are thought to participate in brain homeostasis by forming a panglial syncytium. Molecular analysis has revealed a surprising diversity of connexin expression and function, and this has led to new hypotheses regarding their roles in the brain, which could be tested using new approaches.
Collapse
Affiliation(s)
- Martin Theis
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, D-53117 Bonn, Germany
| | | | | | | |
Collapse
|
122
|
Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. ACTA ACUST UNITED AC 2005; 47:290-303. [PMID: 15572178 PMCID: PMC3651737 DOI: 10.1016/j.brainresrev.2004.08.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2004] [Indexed: 01/24/2023]
Abstract
Gap junction channels and hemichannels formed of connexin subunits are found in most cell types in vertebrates. Gap junctions connect cells via channels not open to the extracellular space and permit the passage of ions and molecules of approximately 1 kDa. Single connexin hemichannels, which are connexin hexamers, are present in the surface membrane before docking with a hemichannel in an apposed membrane. Because of their high conductance and permeability in cell-cell channels, it had been thought that connexin hemichannels remained closed until docking to form a cell-cell channel. Now it is clear that at least some hemichannels can open to allow passage of molecules between the cytoplasm and extracellular space. Here we review evidence that gap junction channels may allow intercellular diffusion of necrotic or apoptotic signals, but may also allow diffusion of ions and substances from healthy to injured cells, thereby contributing to cell survival. Moreover, opening of gap junction hemichannels may exacerbate cell injury or mediate paracrine or autocrine signaling. In addition to the cell specific features of an ischemic insult, propagation of cell damage and death within affected tissues may be affected by expression and regulation of gap junction channels and hemichannels formed by connexins.
Collapse
Affiliation(s)
- Jorge E. Contreras
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | - Helmuth A. Sánchez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Corresponding author. Tel.: +56 2 6862860; fax: +56 2 2225515. (H.A. Sánchez)
| | - Loreto P. Véliz
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | | | - Michael V.L. Bennett
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan C. Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
123
|
Farahani R, Pina-Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JCK, Stanton PK, Rozental R. Alterations in metabolism and gap junction expression may determine the role of astrocytes as ?good samaritans? or executioners. Glia 2005; 50:351-361. [PMID: 15846800 DOI: 10.1002/glia.20213] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our knowledge of astroglia and their physiological and pathophysiological role(s) in the central nervous system (CNS) has grown during the past decade, revealing a complex picture. It is becoming increasingly clear that glia play a significant role in the homeostasis and function of the CNS and that neurons should no longer be considered the only cell type that responds, both rapidly and slowly, to electrochemical activity. We discuss recent advances in the field with an emphasis on the impact of hypoxia and ischemia on astrocytic metabolism and the functional relationship between glucose metabolism and gap junctions in astrocytes. We also address the controversy over whether astrocytic gap junctions mediate protection or killing of neurons during or after hypoxic or ischemic insults.
Collapse
Affiliation(s)
- Reza Farahani
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Mara H Pina-Benabou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Andreas Kyrozis
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Ayesha Siddiq
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Penha C Barradas
- Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fung-Chow Chiu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia
| | - Leny A Cavalcante
- Instituto de Biofisica C. Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - James C K Lai
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, Idaho
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
- Department of Neurology, New York Medical College, Valhalla, New York
| | - Renato Rozental
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
- Department of Obstetrics and Anesthesiology, New York Medical College, Valhalla, New York
| |
Collapse
|
124
|
Nakase T, Fushiki S, Söhl G, Theis M, Willecke K, Naus CCG. Neuroprotective role of astrocytic gap junctions in ischemic stroke. ACTA ACUST UNITED AC 2004; 10:413-7. [PMID: 14681050 DOI: 10.1080/cac.10.4-6.413.417] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The role of astrocytic gap junctions in ischemia remains controversial. Several studies support that astrocytic gap junctions play a role in the spread of hypoxic injury, while other reports have demonstrated that blocking astrocytic gap junctions increases neuronal death. Using a stroke model on animals in which the astrocytic gap junction protein connexin43 (Cx43) was compromised, we explored the neuroprotective role of astrocytic gap junctions. A focal brain stroke was performed on heterozygous Cx43 null [Cx43(+/-)] mice, wild type [Cx43(+/+)] mice, astrocyte-directed Cx43 deficient [Cx43(fl/ fl)/hGFAP-cre] mice (here designated as Cre(+) mice), and their corresponding controls [Cx43(fl/fl)] (here designated as Cre(-) mice). Four days following stroke, ischemic lesions were measured for size and analyzed immunohistochemically. Stroke volume was significantly larger in Cx43(+/-) and Cre(+) mice compared to Cx43(+/+) and Cre(-) mice, respectively. Apoptosis as detected by TUNEL labeling and caspase-3 immunostaining was amplified in Cx43(+/-) and Cre(+) mice compared to their control groups. Furthermore, increased inflammation as characterized by the immunohistochemical staining of the microglial marker CD11b was observed in the Cre(+) mice penumbra. Astrocytic gap junctions may reduce apoptosis and inflammation in the penumbra following ischemic insult, suggesting that coupled astrocytes fulfill a neuroprotective role under ischemic stroke conditions.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Ozog MA, Bernier SM, Bates DC, Chatterjee B, Lo CW, Naus CCG. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2004; 15:4761-74. [PMID: 15342787 PMCID: PMC524725 DOI: 10.1091/mbc.e04-03-0271] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor alpha (CNTFRalpha) (200 ng/ml), or CNTF-CNTFRalpha. Although CNTF and CNTFRalpha alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRalpha significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRalpha treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRalpha to induce heightened expression. CNTF-CNTFRalpha did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRalpha for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling.
Collapse
Affiliation(s)
- Mark A Ozog
- Department of Anatomy and Cell Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Kahlert S, Reiser G. Glial perspectives of metabolic states during cerebral hypoxia—calcium regulation and metabolic energy. Cell Calcium 2004; 36:295-302. [PMID: 15261485 DOI: 10.1016/j.ceca.2004.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 11/23/2022]
Abstract
Cooperation between astrocytes and neurons is a unique interaction between two highly specialized cell types of the brain. Therefore, lack of nutrient supply during ischemia requires tight coordination of metabolism between astrocytes and neurons to keep the brain functions intact. To understand the impact of energy limitation on astrocytes, the functions of astrocytes have to be considered: (i) supplementation of neuronal cells, (ii) modulation of the extracellular milieu, mainly of the glutamate level, and (iii) elimination of reactive oxygen species (ROS). In cultured astrocytes and neurons inhibition of oxidative phosphorylation, using rotenone, was tested. Interestingly, this had only a negligible effect on Ca2+ homeostasis in astrocytes, even in combination with a severe glutamate stress. In contrast, in neurons glutamate in the presence of rotenone induced Ca2+ deregulation. Ca2+ homeostasis is very critical for cell survival. A massive and prolonged Ca2+ rise will lead to deregulation of many processes in such a way that the cells affected can hardly survive. Ca2+ homeostasis depends on the energy-consuming processes, which maintain the steep gradient between intracellular and extracellular Ca2+ concentration. Deprivation of oxygen and glucose during ischemia leads to a depletion of ATP in the brain, due to inhibited glycolytic and mitochondrial activity, whereas energy-consuming processes like ion pumps drain the ATP pools. On the other hand, specific mechanisms can protect brain structures against the massive insult of ischemia. Glycogen, stored in astrocytes, can maintain both neurons and astrocytes alive during short limitation of oxygen and glucose. Moreover, astrocytes can fuel ATP generation by providing lactate for neurons.
Collapse
Affiliation(s)
- Stefan Kahlert
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Strabetae 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
127
|
Kielian T, Esen N. Effects of neuroinflammation on glia-glia gap junctional intercellular communication: a perspective. Neurochem Int 2004; 45:429-36. [PMID: 15145557 DOI: 10.1016/j.neuint.2003.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 11/23/2022]
Abstract
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 510, Little Rock, AR 72205, USA.
| | | |
Collapse
|
128
|
Nakase T, Söhl G, Theis M, Willecke K, Naus CCG. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2067-75. [PMID: 15161641 PMCID: PMC1615756 DOI: 10.1016/s0002-9440(10)63765-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Astrocytes secrete cytokines and neurotrophic factors to neurons, consistent with a neurosupportive role for astrocytes. However, in ischemic or metabolic insults, the function of astrocytic gap junctions composed mainly from connexin43 (Cx43) remains controversial. We have previously shown that heterozygous Cx43 null mice subjected to middle cerebral artery occlusion exhibited significantly enhanced stroke volume and apoptosis compared to wild-type mice. In this study, we used mice in which the human GFAP promoter-driven cre transgene deletes the floxed Cx43 gene in astrocytes, excluding the effects from reduced Cx43 expression in many other cell types as well as astrocytes. We induced focal brain ischemia in mice lacking Cx43 in astrocytes [Cre(+)] and control littermates [Cre(-)]. Cre(+) mice showed a significantly increased stroke volume and enhanced apoptosis, detected by terminal dUTP nick-end labeling and caspase-3 immunostaining, compared to Cre(-) mice. Inflammatory response assessed by the microglial marker CD11b was amplified in the penumbra of Cre(+) mice compared to that of Cre(-) mice. Our results suggest that astrocytic gap junctions could be important for the regulation of neuronal apoptosis and the inflammatory response after stroke. These findings support the view that astrocytes play a critical role in neuroprotection during ischemic insults.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Anatomy and Cell Biology, the University of British Columbia, Vancouver, British Columbia
| | | | | | | | | |
Collapse
|
129
|
Nakase T, Naus CCG. Gap junctions and neurological disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:149-58. [PMID: 15033585 DOI: 10.1016/j.bbamem.2004.01.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 01/14/2004] [Accepted: 01/22/2004] [Indexed: 11/26/2022]
Abstract
Gap junctions are intercellular channels which directly connect the cytoplasm between neighboring cells. In the central nervous system (CNS) various kinds of cells are coupled by gap junctions, which play an important role in maintaining normal function. Neuronal gap junctions are involved in electrical coupling and may also contribute to the recovery of function after cell injury. Astrocytes are involved in the pathology of most neuronal disorders, including brain ischemia, Alzheimer's disease and epilepsy. In the pathology of brain tumors, gap junctions may be related to the degree of malignancy and metastasis. However, the role of connexins, gap junctions and hemichannels in the pathology of the diseases in the CNS is still ambiguous. Of increasing importance is the unraveling of the function of gap junctions in the neural cell network, involving neurons, astrocytes, microglia and oligodendrocytes. A better understanding of the role of gap junctions may contribute to the development of new therapeutic approaches to treating diseases of the CNS.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Anatomy and Cell Biology, University of British Columbia, 313-2177 Wesbrook Mall, Vancouver BC, Canada V6T 1Z3
| | | |
Collapse
|
130
|
Cavaliere F, Amadio S, Sancesario G, Bernardi G, Volonté C. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow Metab 2004; 24:392-8. [PMID: 15087708 DOI: 10.1097/00004647-200404000-00004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The P2X7 receptor for extracellular ATP is the main candidate, among P2 receptors, inducing cell death in the immune system. Here, we demonstrate the direct participation of this receptor to cell damage induced by oxygen/glucose deprivation, in the ex vivo model of organotypic hippocampal cultures. By pharmacological and immunological approaches, we show that P2X7 is rapidly and transiently up regulated in hippocampal areas eliciting metabolism impairment. Moreover, the P2 antagonists 2',3',-dialdehyde ATP and reactive blue 2 prevent both up regulation of this receptor and hypoxic/hypoglycemic damage. By confocal laser microscopy, we show that P2X7 is present at the synaptic level of fibers extending from the CA1-2 pyramidal cell layer throughout the strata oriens and radiatum, but absent on oligodendrocytes, astrocytes or neuronal cell bodies. Colocalization of P2X7 is obtained with neurofilament-L protein and with synaptophysin, not with myelin basic protein, glial fibrillary acidic protein or a marker for neuronal nuclei. P2X7 up regulation and diffuse cellular damage are also induced by 3'-O-(4-benzoyl) benzoyl-ATP, an agonist selective but not exclusive for P2X7. In summary, our study demonstrates that P2X7 not only directly participates to the hypoxic/hypoglycemic process, but also owns specific phenotypic localization. We do not exclude that it might serve as a sensor of dysregulated neuronal activity and ATP release, both occurring during oxygen/glucose deprivation.
Collapse
|
131
|
Duan L, Yuan H, Su CJ, Liu YY, Rao ZR. Ultrastructure of junction areas between neurons and astrocytes in rat supraoptic nuclei. World J Gastroenterol 2004; 10:117-21. [PMID: 14695781 PMCID: PMC4717061 DOI: 10.3748/wjg.v10.i1.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM: To determine the ultrastructure of junction areas between neurons and astrocytes of supraoptic nuclei in rats orally administered 30 g/L NaCl solution for 5 days.
METHODS: The anti-connexin (CX) 43 and anti-CX32 double immunoelectromicroscopic labeled method, and anti-Fos or anti-glial fibrillary acidic protein (GFAP) immunohistochemistry were used to detect changes in the junctional area between neurons and astrocytes in supraoptic nuclei of 5 rats after 30 g/L NaCL solution was given for 5days.
RESULTS: A heterotypic connexin32/connexin43 gap junction (HGJ) between neurons and astrocytes (AS) in rat supraoptic nuclei was observed, which was characterized by the thickening and dark staining of cytomembranes with a narrow cleft between them. The number of HGJs and Fos like immunoreactive (-LI) cells was significantly increased following hyperosmotic stimuli, that is, the rats were administered 30 g/L NaCl solution orally or 90 g/L NaCl solution intravenously. HGJs could be blocked with carbenoxolone (CBX), a gap junction blocker, and the number of Fos-LI neurons was significantly decreased compared with that in rats without CBX injection, while Fos-LI ASs were not affected.
CONCLUSION: HGJ may be a rapid adaptive signal structure between neurons and ASs in response to stimulation.
Collapse
Affiliation(s)
- Li Duan
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
132
|
Condorelli DF, Trovato-Salinaro A, Mudò G, Mirone MB, Belluardo N. Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 2003; 18:1807-27. [PMID: 14622215 DOI: 10.1046/j.1460-9568.2003.02910.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The identification of connexins (Cxs) expressed in neuronal cells represents a crucial step for understanding the direct communication between neurons and between neuron and glia. In the present work, using a double-labelling method combining in situ hybridization for Cx mRNAs with immunohistochemical detection for neuronal markers, we provide evidence that, among cerebral connexins (Cx26, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45 and Cx47), only Cx45 and Cx36 mRNAs are localized in neuronal cells in both developing and adult rat brain. In order to establish whether connexin expression is influenced in vivo by abnormal neuronal activity, we examined the short-term effects of kainate-induced seizures. The results revealed an unexpected expression of Cx26 and Cx45 mRNA in neuronal cells undergoing apoptotic cell death in the CA3-CA4, in the hilus of the hippocampus and in other brain regions involved in seizure-induced lesion. However, the expression of Cx26 and Cx45 mRNAs was not associated with detectable expression of corresponding proteins as evaluated by immunohistochemistry with specific antibodies. Moreover, in the same brain regions Cx32 and Cx43 were up-regulated in non-neruronal cells whereas the neuronal Cx36 was down-regulated. Taken together the present results provide novel information regarding the specific subpopulation of neurons expressing Cx45 and raise the question of the meaning of connexin mRNA expression in the neuronal apoptotic process.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
133
|
Sáez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MVL. Gap junction hemichannels in astrocytes of the CNS. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 179:9-22. [PMID: 12940934 PMCID: PMC3697026 DOI: 10.1046/j.1365-201x.2003.01196.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Connexins are protein subunits that oligomerize into hexamers called connexons, gap junction hemichannels or just hemichannels. Because some gap junction channels are permeable to negatively and/or positively charged molecules up to approximately 1kDa in size, it was thought that hemichannels should not open to the extracellular space. A growing amount of evidence indicates that opening of hemichannels does occur under both physiological and pathological conditions in astrocytes and other cell types. Electrophysiological studies indicate that hemichannels have a low open probability under physiological conditions but may have a much higher open probability under certain pathological conditions. Some of the physiological behaviours of astrocytes that have been attributed to gap junctions may, in fact, be mediated by hemichannels. Hemichannels constituted of Cx43, the main connexin expressed by astrocytes, are permeable to small physiologically significant molecules, such as ATP, NAD+ and glutamate, and may mediate paracrine as well as autocrine signalling. Hemichannels tend to be closed by negative membrane potentials, high concentrations of extracellular Ca2+ and intracellular H+ ions, gap junction blockers and protein phosphorylation. Hemichannels tend to be opened by positive membrane potentials and low extracellular Ca2+, and possibly by as yet unidentified cytoplasmic signalling molecules. Exacerbated hemichannel opening occurs in metabolically inhibited cells, including cortical astrocytes, which contributes to the loss of chemical gradients across the plasma membrane and speeds cell death.
Collapse
Affiliation(s)
- J C Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
134
|
Perez Velazquez JL, Kokarovtseva L, Weisspapir M, Frantseva MV. Anti-porin antibodies prevent excitotoxic and ischemic damage to brain tissue. J Neurotrauma 2003; 20:633-47. [PMID: 12908925 DOI: 10.1089/089771503322144554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitochondrial permeability transition (MPT) is a converging event for different molecular routes leading to cellular death after excitotoxic/oxidative stress, and is considered to represent the opening of a pore in the mitochondrial membrane. There is evidence that the outer mitochondrial membrane protein porin is involved in the MPT and apoptosis. We present here a proof-of-principle study to address the hypothesis that anti-porin antibodies can prevent excitotoxic/ischemia-induced cell death. We generated anti-porin antibodies and show that the F(ab)(2) fragments penetrate living cells, reduce Ca(2+)-induced mitochondrial swelling as other MPT blockers do, and decrease neuronal death in dissociated and organotypic brain slice cultures exposed to excitotoxic and ischemic episodes. These observations present direct evidence that anti-porin antibody fragments prevent cell damage in brain tissue, that porin is a crucial protein involved in mitochondrial and cell dysfunction, and that it is conceivable that antibodies can be used as therapeutic agents.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- The Hospital for Sick Children, Brain and Behaviour Programme, Department of Paediatrics, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
135
|
Abstract
Little is known about the expression and possible functions of unopposed gap junction hemichannels in the brain. Emerging evidence suggests that gap junction hemichannels can act as stand-alone functional channels in astrocytes. With immunocytochemistry, dye uptake, and HPLC measurements, we show that astrocytes in vitro express functional hemichannels that can mediate robust efflux of glutamate and aspartate. Functional hemichannels were confirmed by passage of extracellular lucifer yellow (LY) into astrocytes in nominal divalent cation-free solution (DCFS) and the ability to block this passage with gap junction blocking agents. Glutamate/aspartate release (or LY loading) in DCFS was blocked by multivalent cations (Ca2+, Ba2+, Sr2+, Mg2+, and La3+) and by gap junction blocking agents (carbenoxolone, octanol, heptanol, flufenamic acid, and 18alpha-glycyrrhetinic acid) with affinities close to those reported for blockade of gap junction intercellular communication. Glutamate efflux via hemichannels was also accompanied by greatly reduced glutamate uptake. Glutamate release in DCFS, however, was not significantly mediated by reversal of the glutamate transporter: release did not saturate and was not blocked by glutamate transporter blockers. Control experiments in DCFS precluded glutamate release by volume-sensitive anion channels, P2X7 purinergic receptor pores, or general purinergic receptor activation. Blocking intracellular Ca2+ mobilization by BAPTA-AM or thapsigargin did not inhibit glutamate release in DCFS. Divalent cation removal also induced glutamate release from intact CNS white matter (acutely isolated optic nerve) that was blocked by carbenoxolone, suggesting the existence of functional hemichannels in situ. Our results indicated that astrocyte hemichannels could influence CNS levels of extracellular glutamate with implications for normal and pathological brain function.
Collapse
|
136
|
Hasselblatt M, Bunte M, Dringen R, Tabernero A, Medina JM, Giaume C, Sirén AL, Ehrenreich H. Effect of endothelin-1 on astrocytic protein content. Glia 2003; 42:390-7. [PMID: 12730959 DOI: 10.1002/glia.10224] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The astrocytic endothelin (ET) receptors, ET(A) and ET(B), modulate calcium signaling and the astrocytic gap junctional network. The nonselective ET receptor ligand ET-1 inhibits gap junction permeability, an effect that can be blocked by tolbutamide. This mechanism may play a role in pathophysiological conditions such as ischemic stroke, characterized by elevated tissue ET-1 levels and hypertrophic-appearing reactive astrocytes. Therefore, the effect of ET-1 on cellular protein content was investigated in confluent once-passaged rat astrocyte cultures under serum-free conditions, by the Lowry method. Gap junction permeability was determined by the dye transfer technique. ET-1 prevented the decrease in astrocytic protein content observed in controls. The effect of ET-1 on cellular protein content was most pronounced in cultures seeded at high density, but it was attenuated in ET(B)-deficient (sl/sl) astrocytes. This effect could be blocked by the nonselective ET antagonist LU 302872 (10 micro M), as well as by the protein synthesis inhibitor cycloheximide (10 micro M). This increase in astrocytic protein content was inhibited by the ATP-sensitive K(+) channel blocker tolbutamide, which also antagonized the ET-1-induced reduction of gap junction permeability and reversed the morphological changes observed in astrocytes upon ET-1 treatment. Cytosine arabinoside (10 micro M), a DNA synthesis blocker, inhibited the ET-1-induced BrdU uptake without affecting the ET-1-induced increase in astrocytic protein content. To conclude, ET-1 induces an increase in astrocytic protein content as well as changes in astrocyte morphology in vitro. This hypertrophic response involves uncoupling of the astrocytic gap junctional network and is not dependent on DNA synthesis.
Collapse
|
137
|
Abstract
Antisense offers a precise and specific means of knocking down expression of a target gene, and is a major focus of research in neuroscience and other areas. It has application as a tool in gene function and target validation studies and is emerging as a therapeutic technology in its own right. It has become increasingly obvious, however, that there are a number of hurdles to overcome before antisense can be used effectively in the CNS, most notably finding suitable nucleic acid chemistries and an effective delivery vehicle to transport antisense oligonucleotides (AS-ODNs) across the blood-brain barrier (BBB) to their site of action. Despite these problems, a number of potential applications of AS-ODNs in CNS therapeutics have been validated in vitro and, in some cases, in vivo. Here the authors outline available nucleic acid chemistries and review progress in the development of non-invasive delivery vehicles that may be applicable to CNS therapeutics. Further to this, they discuss a number of experimental applications of AS-ODNs to CNS research and speculate on the development of antisense techniques to treat CNS disease.
Collapse
Affiliation(s)
- Jenny Godfray
- ExpressOn BioSystems Ltd, The Logan Building, Roslin BioCentre, Roslin, Midlothian EH25 9TT, Scotland.
| | | |
Collapse
|
138
|
Perez Velazquez JL, Frantseva MV, Naus CC. Gap junctions and neuronal injury: protectants or executioners? Neuroscientist 2003; 9:5-9. [PMID: 12580335 DOI: 10.1177/1073858402239586] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors review concepts and recent experimental observations that relate gap junctional communication to the pathophysiology of neuronal injury, specifically ischemic or traumatic damage. The role played by this type of direct intercellular communication during the progression of the injuries can be conceived to be either detrimental or beneficial, depending on the arguments employed. The data indicate that, far from being a simple matter of judgment, the contribution of gap junctions to cell injury is a complicated phenomenon that depends on the specific insult and network in which it operates.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- The Hospital for Sick Children, Brain and Behaviour Program, Division of Neurology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
139
|
|
140
|
Fletcher TM. Telomerase - strategies to exploit an important chemotherapeutic target. Expert Opin Ther Targets 2001; 5:363-378. [PMID: 12540271 DOI: 10.1517/14728222.5.3.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomeres, unique protein-DNA complexes located at the chromosome ends, have important functions involving both DNA protection and cellular signalling. Telomere structure is very dynamic yet tightly controlled. One important factor is the presence of telomerase, a telomere-specific DNA polymerase activated in a majority of cancer cells. Cancer and normal cell telomeres may have dissimilar structures due to variances in telomere length, telomerase activity and levels of telomere binding proteins. In designing compounds to strictly target cancer cells, these distinctions should be investigated. Much of the recent focus has been on the development of highly effective telomerase inhibitors. Another novel group of small molecules target telomere DNA, thereby disrupting both telomerase activity and telomere structure. This class of compounds should have an immediate impact on cell growth and viability. Since many molecular characteristics of telomeres are unknown, small molecules should also be useful in probing differences in telomere dynamics unique to cancer cells.
Collapse
Affiliation(s)
- Terace M Fletcher
- National Institutes of Health, National Cancer Institute, Division of Basic Sciences, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD 20892-5055, USA.
| |
Collapse
|