101
|
Transcriptional regulation of intestinal nutrient transporters. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b96814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
102
|
Dawson PA, Craddock AL. Expression cloning of receptor ligand transporters. Methods Enzymol 2003; 364:322-39. [PMID: 14631853 DOI: 10.1016/s0076-6879(03)64018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Paul A Dawson
- Departments of Internal Medicine and Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
103
|
Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278:33920-7. [PMID: 12819193 DOI: 10.1074/jbc.m306370200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/-) and homozygous (Slc10a2-/-) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2-/- mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2-/- mice. On a low fat diet, the Slc10a2-/- mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2-/- mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Goto T, Holzinger F, Hagey LR, Cerrè C, Ton-Nu HT, Schteingart CD, Steinbach JH, Shneider BL, Hofmann AF. Physicochemical and physiological properties of 5alpha-cyprinol sulfate, the toxic bile salt of cyprinid fish. J Lipid Res 2003; 44:1643-51. [PMID: 12810826 DOI: 10.1194/jlr.m300155-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
5alpha-Cyprinol sulfate was isolated from bile of the Asiatic carp, Cyprinus carpio. 5alpha-Cyprinol sulfate was surface active and formed micelles; its critical micellization concentration (CMC) in 0.15 M Na+ using the maximum bubble pressure device was 1.5 mM; by dye solubilization, its CMC was approximately 4 mM. At concentrations >1 mM, 5alpha-cyprinol sulfate solubilized monooleylglycerol efficiently (2.1 molecules per mol micellar bile salt). When infused intravenously into the anesthetized rat, 5alpha-cyprinol sulfate was hemolytic, cholestatic, and toxic. In the isolated rat liver, it underwent little biotransformation and was poorly transported (Tmax congruent with 0.5 micromol/min/kg) as compared with taurocholate. 5alpha-Cyprinol, its bile alcohol moiety, was oxidized to its corresponding C27 bile acid and to allocholic acid (the latter was then conjugated with taurine); these metabolites were efficiently transported. 5alpha-Cyprinol sulfate inhibited taurocholate uptake in COS-7 cells transfected with rat asbt, the apical bile salt transporter of the ileal enterocyte. 5alpha-Cyprinol had limited aqueous solubility (0.3 mM) and was poorly absorbed from the perfused rat jejunum or ileum. Sampling of carp intestinal content indicated that 5alpha-cyprinol sulfate was present at micellar concentrations, and that it did not undergo hydrolysis during intestinal transit. These studies indicate that 5alpha-cyprinol sulfate is an excellent digestive detergent and suggest that a micellar phase is present during digestion in cyprinid fish.
Collapse
Affiliation(s)
- T Goto
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA 92093-0813, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bhat BG, Rapp SR, Beaudry JA, Napawan N, Butteiger DN, Hall KA, Null CL, Luo Y, Keller BT. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. J Lipid Res 2003; 44:1614-21. [PMID: 12810816 DOI: 10.1194/jlr.m200469-jlr200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by </=12% and, in combination with atorvastatin treatment, caused an additional reduction of 25%. These results suggest that specific inhibition of ASBT is a novel therapeutic approach for treatment of hypercholesterolemia resulting in a decreased risk for atherosclerosis.
Collapse
Affiliation(s)
- B Ganesh Bhat
- Cardiovascular and Metabolic Diseases Discovery Research, Pfizer Inc., St. Louis, MO 63167, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 2003; 278:19909-16. [PMID: 12456679 DOI: 10.1074/jbc.m207903200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intestinal reclamation of bile salts is mediated in large part by the apical sodium-dependent bile acid transporter (ASBT). The bile acid responsiveness of ASBT is controversial. Bile acid feeding in mice results in decreased expression of ASBT protein and mRNA. Mouse but not rat ASBT promoter activity was repressed in Caco-2, but not IEC-6, cells by chenodeoxycholic acid. A potential liver receptor homologue-1 (LRH-1) cis-acting element was identified in the bile acid-responsive region of the mouse but not rat promoter. The mouse, but not rat, promoter was activated by LRH-1, and this correlated with nuclear protein binding to the mouse but not rat LRH-1 element. The short heterodimer partner diminished the activity of the mouse promoter and could partially offset its activation by LRH-1. Interconversion of the potential LRH-1 cis-elements between the mouse and rat ASBT promoters was associated with an interconversion of LRH-1 and bile acid responsiveness. LRH-1 protein was found in Caco-2 cells and mouse ileum, but not IEC-6 cells or rat ileum. Bile acid response was mediated by the farnesoid X receptor, as shown by the fact that overexpression of a dominant-negative farnesoid X-receptor eliminated the bile acid mediated down-regulation of ASBT. In addition, ASBT expression in farnesoid X receptor null mice was unresponsive to bile acid feeding. In summary cell line- and species-specific negative feedback regulation of ASBT by bile acids is mediated by farnesoid X receptor via small heterodimer partner-dependent repression of LRH-1 activation of the ASBT promoter.
Collapse
Affiliation(s)
- Frank Chen
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Buddington RK, Elnif J, Malo C, Donahoo JB. Activities of gastric, pancreatic, and intestinal brush-border membrane enzymes during postnatal development of dogs. Am J Vet Res 2003; 64:627-34. [PMID: 12755304 DOI: 10.2460/ajvr.2003.64.627] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure activities of digestive enzymes during postnatal development in dogs. SAMPLE POPULATION Gastrointestinal tract tissues obtained from 110 Beagles ranging from neonatal to adult dogs. PROCEDURE Pepsin and lipase activities were measured in gastric contents, and amylase, lipase, trypsin, and chymotrypsin activities were measured in small intestinal contents and pancreatic tissue. Activities of lactase, sucrase, 4 peptidases, and enteropeptidase were assayed in samples of mucosa obtained from 3 regions of the small intestine. RESULTS Gastric pH was low at all ages. Pepsin was not detected until day 21, and activity increased between day 63 and adulthood. Activities of amylase and lipase in contents of the small intestine and pancreatic tissue were lower during suckling than after weaning. Activities of trypsin and chymotrypsin did not vary among ages for luminal contents, whereas activities associated with pancreatic tissue decreased between birth and adulthood for trypsin but increased for chymotrypsin. Lactase and gamma-glutamyltranspeptidase activities were highest at birth, whereas the activities of sucrase and the 4 peptidases increased after birth. Enteropeptidase was detected only in the proximal region of the small intestine at all ages. CONCLUSIONS AND CLINICAL RELEVANCE Secretions in the gastrointestinal tract proximal to the duodenum, enzymes in milk, and other digestive mechanisms compensate for low luminal activities of pancreatic enzymes during the perinatal period. Postnatal changes in digestive secretions influence nutrient availability, concentrations of signaling molecules, and activity of antimicrobial compounds that inhibit pathogens. Matching sources of nutrients to digestive abilities will improve the health of dogs during development.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Biological Sciences, College of Arts and Science, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
108
|
Telford DE, Edwards JY, Lipson SM, Sutherland B, Barrett PHR, Burnett JR, Krul ES, Keller BT, Huff MW. Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J Lipid Res 2003; 44:943-52. [PMID: 12562847 DOI: 10.1194/jlr.m200482-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholesterol (LDL-C) and LDL apolipoprotein B (apoB). ApoB kinetic studies were performed in miniature pigs fed a typical human diet and treated with the combination of SC-435 (5 mg/kg/day) plus atorvastatin (3 mg/kg/day) (SC-435+A) or a placebo. SC-435+A decreased plasma total cholesterol by 23% and LDL-C by 40%. Multicompartmental analysis (SAAM II) demonstrated that LDL apoB significantly decreased by 35% due primarily to a 45% increase in the LDL apoB fractional catabolic rate (FCR). SC-435+A significantly decreased hepatic concentrations of free cholesterol and cholesteryl ester, and increased hepatic LDL receptor mRNA consequent to increased cholesterol 7alpha-hydroxylase expression and activity. In comparison, SC-435 (10 mg/kg/day) monotherapy decreased LDL apoB by 10% due entirely to an 18% increase in LDL apoB FCR, whereas atorvastatin monotherapy (3 mg/kg/day) decreased LDL apoB by 30% due primarily to a 22% reduction in LDL apoB production. We conclude that SC-435+A potentiates the reduction of LDL-C and LDL apoB due to complementary mechanisms of action.
Collapse
MESH Headings
- Animals
- Apolipoproteins B/drug effects
- Apolipoproteins B/metabolism
- Atorvastatin
- Carrier Proteins/drug effects
- Carrier Proteins/metabolism
- Cholesterol, LDL/blood
- Cholesterol, LDL/drug effects
- Cyclic N-Oxides/pharmacology
- Dose-Response Relationship, Drug
- Female
- Heptanoic Acids/pharmacology
- Hydroxymethylglutaryl CoA Reductases/drug effects
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Kinetics
- Lipoproteins/blood
- Lipoproteins/drug effects
- Lipoproteins, LDL/drug effects
- Lipoproteins, LDL/metabolism
- Male
- Organic Anion Transporters, Sodium-Dependent
- Pyrroles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LDL/genetics
- Swine, Miniature
- Symporters
- Time Factors
- Tropanes/pharmacology
Collapse
Affiliation(s)
- Dawn E Telford
- Robarts Research Institute and Departments of Medicine and Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
OBJECTIVE To measure nutrient absorption by the intestine during postnatal development of dogs. ANIMAL 110 Beagles ranging from neonatal to adult dogs. PROCEDURE Rates of absorption for sugars (glucose, galactose, and fructose), amino acids (aspartate, leucine, lysine, methionine, and proline), a dipeptide (glycyl-sarcosine), and linoleic acid by the proximal, mid, and distal regions of the small intestine were measured as functions of age and concentration (kinetics) by use of intact tissues and brush-border membrane vesicles. Absorption of octanoic acid by the proximal portion of the colon was measured in intact tissues. RESULTS Rates of carrier-mediated transport by intact tissues decreased from birth to adulthood for aldohexoses and most amino acids but not for fructose and aspartate. Kinetics and characteristics of absorption suggest that there were changes in the densities, types, and proportions of various carriers for sugars and amino acids. Saturable absorption of linoleic acid in the small intestine and octanoic acid in the proximal portion of the colon increased after weaning. CONCLUSIONS AND CLINICAL RELEVANCE Rates of absorption decreased between birth and adulthood for most nutrients. However, because of intestinal growth, absorption capacities of the entire small intestine remained constant for leucine and proline and increased for glucose, galactose, fructose, aspartate, and proline but were less than predicted from the increase in body weight. Although postnatal ontogeny of nutrient absorption was consistent with changes in the composition of the natural and commercial diets of growing dogs, rates of amino acid and peptide absorption were lower than expected.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Biological Sciences, College of Arts and Science, Mississippi State University, Mississippi State, MS 39762, USA
| | | |
Collapse
|
110
|
Abstract
OBJECTIVE To describe postnatal changes in the populations of bacteria in the gastrointestinal tract (GIT) of dogs. ANIMALS 110 Beagles ranging from neonatal to adult dogs. PROCEDURE Contents of the stomach and proximal and distal portions of the colon and contents and mucosa of the mid region of the small intestine were collected from puppies at 1 day after birth and subsequent suckling; puppies at 21, 42, and 63 days after birth; and adult female dogs (ie, dams of the puppies) for enumeration of bacterial populations. RESULTS The entire GIT was colonized at day 1 by all groups of bacteria studied; aerotolerant forms were dominant. During subsequent postnatal development, there were changes in the relative proportions of the various groups of bacteria with anaerobic groups increasing in absolute and relative numbers. CONCLUSIONS AND CLINICAL RELEVANCE Establishment of bacterial populations in the GIT of dogs is a gradual process that begins immediately after birth. Age-related changes in the relative proportions of bacterial groups coincided with changes in diet and physiologic processes of the host and can influence nutritional state and disease resistance of developing dogs. Differences among regions of the GIT suggest that fecal samples may have limited use for understanding the populations of bacteria and the age and diet-related changes in various regions of the GIT.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
111
|
Zelcer N, Saeki T, Bot I, Kuil A, Borst P. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem J 2003; 369:23-30. [PMID: 12220224 PMCID: PMC1223054 DOI: 10.1042/bj20021081] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 09/04/2002] [Accepted: 09/10/2002] [Indexed: 01/20/2023]
Abstract
Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis.
Collapse
Affiliation(s)
- Noam Zelcer
- Division of Molecular Biology and Centre of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
112
|
Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun AQ, Shneider B. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 2002; 123:2005-16. [PMID: 12454857 DOI: 10.1053/gast.2002.37055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ileal malabsorption of bile salts is observed in Crohn's ileitis. We define the transcriptional mechanisms involved in cytokine-mediated repression of the rat apical sodium-dependent bile acid transporter (ASBT). METHODS ASBT regulation was studied in IL-1beta-treated IEC-6 and Caco-2 cells and in indomethacin-treated rats. RESULTS Indomethacin-induced ileitis in Lewis rats leads to specific reductions in ileal ASBT messenger RNA and protein levels, whereas c-jun and c-fos are induced. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor repress the activity of the ASBT promoter in Caco-2 and intestinal epithelial cell-6 cells. This effect is blocked by the proteasome inhibitor, MG-132, or by the phosphatidyl inositol 3-kinase inhibitor, wortmannin. Indomethacin (in vivo) or proinflammatory cytokine (in vitro) treatment leads to serine phosphorylation and nuclear translocation of c-fos. Mutation of a 5' activated protein (AP)-1 site inactivates the ASBT promoter, whereas mutation of the 3' site abrogates the proinflammatory cytokine-mediated repression. The 5' site binds a c-jun homodimer, whereas the 3' site binds a c-jun/c-fos heterodimer. c-Jun overexpression enhances ASBT promoter activity, whereas a dominant negative c-jun construct inactivates the promoter. c-Fos overexpression represses promoter activity. A 27 base pair cis-element from the 3' site in the ASBT promoter imparts cytokine-mediated down-regulation to a heterologous SV40 promoter construct. CONCLUSIONS The ASBT promoter contains 2 distinct cis AP-1 elements; the 5' element binds homodimeric c-jun and mediates basal transcription. Inflammation is associated with up-regulation, phosphorylation, and nuclear translocation of c-fos, which then represses ASBT promoter activity via binding of the 3' AP-1 element by a c-fos/c-jun heterodimer.
Collapse
Affiliation(s)
- Frank Chen
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Department of Pediatrics and the Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Congenital chloride diarrhea (CLD) is an autosomal recessive disorder of intestinal electrolyte absorption. It is characterized by persistent secretory diarrhea resulting in polyhydramnios and prematurity prenatally, and dehydration, hypoelectrolytemia, hyperbilirubinemia, abdominal distention, and failure to thrive immediately after birth. CLD is caused by mutations in the solute carrier family 26, member 3 gene (SLC26A3, alias CLD or DRA), which encodes a Na+-independent Cl-/HCO3- (or OH-) exchanger. SLC26A3 is a member of the SLC26 sulfate permease/anion transporter family and it is expressed mainly in the apical brush border of intestinal epithelium. The only extraintestinal tissues showing SLC26A3 expression are eccrine sweat glands and seminal vesicles. A wide variety of different mutations in the SLC26A3 gene have been associated with CLD with no apparent evidence of phenotype-genotype correlation. The clinical course of CLD, however, is variable and may rather depend on environmental factors and compensatory mechanisms than mutations. In this report, we present a summary of all published and two novel SLC26A3 mutations and polymorphisms, and review them in the context of their functional consequences and clinical implications.
Collapse
Affiliation(s)
- Siru Mäkelä
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
114
|
Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett PHR, Rapp SR, Napawan N, Keller BT. Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 2002; 22:1884-91. [PMID: 12426220 DOI: 10.1161/01.atv.0000035390.87288.26] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cloning of the ileal apical sodium-dependent bile acid transporter (ASBT) has identified a new pharmacological target for the modulation of plasma lipoproteins. The objective of this study was to determine whether a novel, specific, minimally absorbed ASBT inhibitor (SC-435) decreases LDL cholesterol through the alteration of plasma apoB kinetics. METHODS AND RESULTS Miniature pigs were treated for 21 days with 10 mg/kg/day of SC-435 or placebo. SC-435 decreased plasma cholesterol by 9% and LDL cholesterol by 20% with no effect on other lipids. Autologous (131)I-VLDL, (125)I-LDL, and [(3)H]-leucine were injected simultaneously to determine apoB kinetics. LDL apoB concentrations decreased significantly by 10% resulting entirely from an increase in LDL-apoB fractional catabolic rate. SC-435 had no effect on either total LDL apoB production or VLDL apoB converted to LDL. SC-435 increased VLDL apoB production by 22%; however, the concentration was unchanged as a result of increased VLDL apoB direct removal. SC-435 increased hepatic mRNA and enzymatic activity for both cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Hepatic LDL receptor mRNA increased significantly, whereas apoB expression was unaffected. CONCLUSIONS A low dose of the ASBT inhibitor, SC-435, significantly reduces plasma LDL cholesterol through enhanced LDL receptor-mediated LDL apoB clearance, secondary to increased expression of cholesterol 7alpha-hydroxylase.
Collapse
Affiliation(s)
- Murray W Huff
- Department of Medicine and Biochemistry and The John P. Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Kasbo J, Saleem M, Perwaiz S, Mignault D, Lamireau T, Tuchweber B, Yousef I. Biliary, fecal and plasma deoxycholic acid in rabbit, hamster, guinea pig, and rat: comparative study and implication in colon cancer. Biol Pharm Bull 2002; 25:1381-4. [PMID: 12392101 DOI: 10.1248/bpb.25.1381] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bile acids are believed to play a role in the etiology of colorectal cancer, and high fecal excretion of secondary bile acids was correlated with increased incidence of colon cancer. Recently, it was also reported that there is an increase in plasma of the secondary bile acid, deoxycholic acid in men with colorectal adenomas. Since deoxycholic acid is formed in the colon and absorbed into the portal systemic circulation, it was suggested that the blood concentration of this bile acid reflects the level of exposure of colonic cells to deoxycholic acid. The objective of this study was to investigate whether plasma deoxycholic acid level represents the fecal content of this bile acid in several animal species with different bile acid composition and deoxycholic acid contribution to the bile acid pool. Eight rabbits, hamsters, guinea pigs, and rats were used in this study. Blood samples and feces were collected on days 1, 3, 5 and 7. Bile samples were obtained only on day 7. The plasma, fecal and biliary bile acids were analyzed by gas chromatography-mass spectrometry. Bile acid composition and deoxycholic acid content varied greatly between the animal species studied. There was a variation in the concentration of total bile acids in the plasma and feces obtained at different times during the experiments, however, the bile acids profile remained constant throughout the study. The data obtained shows that although plasma bile acid profile was not similar to fecal bile acids profile, however, there was a significant correlation between the level of plasma and fecal deoxycholic acid. Plasma deoxycholic acid concentration might be a reliable biomarker for the degree of exposure of colon cells to this bile acid, and may be useful in further studies on the role of secondary bile acids in colon carcinogenesis.
Collapse
Affiliation(s)
- Joelle Kasbo
- Department of Pharmacology, University of Montreal, Succursale Centre-ville, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
116
|
Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC. Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res 2002. [DOI: 10.1194/jlr.m200121-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
117
|
Al-Ansari N, Xu G, Kollman-Bauerly K, Coppola C, Shefer S, Ujhazy P, Ortiz D, Ma L, Yang S, Tsai R, Salen G, Vanderhoof J, Shneider BL. Analysis of the effect of intestinal resection on rat ileal bile Acid transporter expression and on bile Acid and cholesterol homeostasis. Pediatr Res 2002; 52:286-91. [PMID: 12149508 DOI: 10.1203/00006450-200208000-00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ileal reclamation of bile salts is mediated in large part by an apical sodium-dependent bile acid transporter (ASBT) located in the terminal ileum. The following studies were performed to elucidate the adaptive response of ASBT to intestinal resection. Two separate series of intestinal resections were performed: 1) limited (25%) ileal and 2) massive (70%) intestinal resection. The boundaries of the resections were varied to examine differences in compensation when variable amounts of endogenous transporter activity were resected. Previously demonstrated supraphysiologic expression of ASBT, which was seen after proximal ileal resection, led to a contraction in the bile acid pool size and a paradoxical reduction in bile acid (cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase) and cholesterol (hydroxymethylglutaryl coenzyme A reductase) biosynthetic enzyme activities. Massive intestinal resection resulted in ileal hypertrophy and an apparently maladaptive specific down-regulation in ASBT protein expression. In this model bile acid pool size correlated with the amount of residual ASBT-expressing terminal ileum. Cholesterol and bile acid biosynthetic enzyme activities were inversely related to bile acid pool size. Adaptive changes in ASBT expression and alterations in bile acid and cholesterol homeostasis are dependent on the type and location of intestinal resection.
Collapse
Affiliation(s)
- Namir Al-Ansari
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Further insights into the molecular regulation of bile acid transport and metabolism have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Novel insights into the mechanisms of action of ursodeoxycholic acid should advance our understanding of the treatment of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes in both infants and adults as well as cholesterol gallstone disease. Important studies have been published on the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, drug-induced cholestasis, and cholestasis of pregnancy.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|