101
|
Comprehensive Analysis of CPA4 as a Poor Prognostic Biomarker Correlated with Immune Cells Infiltration in Bladder Cancer. BIOLOGY 2021; 10:biology10111143. [PMID: 34827136 PMCID: PMC8615209 DOI: 10.3390/biology10111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary The overexpression of Carboxypeptidase A4 (CPA4) has been observed in plenty of types of cancer and has been elucidated to promote tumor growth and invasion; however, its role in bladder urothelial carcinoma (BLCA) is still unclear. Therefore, we aimed to show the prognostic role of CPA4 and its relationship with immune infiltrates in BLCA. We confirmed that the overexpression of CPA4 is associated with shorter overall survival, disease-specific survival, progress-free intervals, and higher dead events. Moreover, we found that several infiltrating immune cells (Th1cell, Th2 cell, T cell exhaustion, and Tumor-associated macrophage) were correlated with the expression of CPA4 in bladder cancer using TIMER2 and GEPIA2. In conclusion, CPA4 may be a novel and great prognostic biomarker based on bioinformation analysis in BLCA. Abstract Carboxypeptidase A4 (CPA4) has shown the potential to be a biomarker in the early diagnosis of certain cancers. However, no previous research has linked CPA4 to therapeutic or prognostic significance in bladder cancer. Using data from The Cancer Genome Atlas (TCGA) database, we set out to determine the full extent of the link between CPA4 and BLCA. We further analyzed the interacting proteins of CPA4 and infiltrated immune cells via the TIMER2, STRING, and GEPIA2 databases. The expression of CPA4 in tumor and normal tissues was compared using the TCGA + GETx database. The connection between CPA4 expression and clinicopathologic characteristics and overall survival (OS) was investigated using multivariate methods and Kaplan–Meier survival curves. The potential functions and pathways were investigated via gene set enrichment analysis. Furthermore, we analyze the associations between CPA4 expression and infiltrated immune cells with their respective gene marker sets using the ssGSEA, TIMER2, and GEPIA2 databases. Compared with matching normal tissues, human CPA4 was found to be substantially expressed. We confirmed that the overexpression of CPA4 is linked with shorter OS, DSF(Disease-specific survival), PFI(Progression-free interval), and increased diagnostic potential using Kaplan–Meier and ROC analysis. The expression of CPA4 is related to T-bet, IL12RB2, CTLA4, and LAG3, among which T-bet and IL12RB2 are Th1 marker genes while CTLA4 and LAG3 are related to T cell exhaustion, which may be used to guide the application of checkpoint blockade and the adoption of T cell transfer therapy.
Collapse
|
102
|
Xu J, Nie N, Wu B, Li Y, Gong L, Yao X, Zou X, Ouyang H. The personalized application of biomaterials based on age and sexuality specific immune responses. Biomaterials 2021; 278:121177. [PMID: 34653933 DOI: 10.1016/j.biomaterials.2021.121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Although biomaterials are widely utilized in clinics, it still follows the "one-fits-all" strategy. Biological variables such as age and sexuality have an impact on the host immune response and are not fully considered in the practice guidelines of the biomaterial implantation. In this study, we investigated the immuno-material interactions of six commonly used biomaterials (agarose, alginate, chitosan, CMC, GelMA and collagen type I) and constructed a population (with different ages and sexes) based transcriptome atlas. Protein and polysaccharide-based biomaterials elicited distinctive immune responses that protein-based materials preferred the NKT pathway to activate innate and adaptive immune response, whereas polysaccharide-based materials activated the cDCs to present antigen. The atlas further revealed the sex/age-related variabilities on the immune response followed by the polysaccharide treatment. As for sex bias, alginate and agarose stimulation significantly increased the proportion of naive CD4+ T cells in the female group, accompanied by the Th1 differentiation tendency, compared to the male group. Age-biased transcript showed alginate and chitosan would impair the extracellular matrix remodeling and up-regulate the apoptosis process in the elderly groups, compared to the young group. More attentions on the ingredient, age and sexuality effect of biomaterial implants should be paid during the clinical practice, especially for the polysaccharide-based materials. This experimental result is of great significance for the selection of biomaterials, particularly the blood contact materials, such as vessel or cardiac device, drug vehicles and hemostatic materials.
Collapse
Affiliation(s)
- Jiaqi Xu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanfang Nie
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Wu
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gong
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaohui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
103
|
Pan N, Liu B, Bao X, Zhang H, Sheng S, Liang Y, Pan H, Wang X. Oral Delivery of Novel Recombinant Lactobacillus Elicit High Protection against Staphylococcus aureus Pulmonary and Skin Infections. Vaccines (Basel) 2021; 9:vaccines9090984. [PMID: 34579221 PMCID: PMC8473125 DOI: 10.3390/vaccines9090984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial and community-associated infection worldwide; however, there is no licensed vaccine available. S. aureus initiates infection via the mucosa; therefore, a mucosal vaccine is likely to be a promising approach against S. aureus infection. Lactobacilli, a non-pathogenic bacterium, has gained increasing interest as a mucosal delivery vehicle. Hence, we attempted to develop an oral S. aureus vaccine based on lactobacilli to cushion the stress of drug resistance and vaccine needs. In this study, we designed, constructed, and evaluated recombinant Lactobacillus strains synthesizing S. aureus nontoxic mutated α-hemolysins (HlaH35L). The results from animal clinical trials showed that recombinant Lactobacillus can persist for at least 72 h and can stably express heterologous protein in vivo. Recombinant L. plantarum WXD234 (pNZ8148-Hla) could induce robust mucosal immunity in the GALT, as evidenced by a significant increase in IgA and IL-17 production and the strong proliferation of T-lymphocytes derived from Peyer’s patches. WXD234 (pNZ8148-Hla) conferred up to 83% protection against S. aureus pulmonary infection and significantly reduced the abscess size in a S. aureus skin infection model. Of particular interest is the sharp reduction of the protective effect offered by WXD234 (pNZ8148-Hla) vaccination in γδ T cell-deficient or IL-17-deficient mice. In conclusion, for the first time, genetically engineered Lactobacillus WXD234 (pNZ8148-Hla) as an oral vaccine induced superior mucosal immunity, which was associated with high protection against pulmonary and skin infections caused by S. aureus. Taken together, our findings suggest the great potential for a delivery system based on lactobacilli and provide experimental data for the development of mucosal vaccines for S. aureus.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
- Basic Medical College, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (N.P.); (B.L.); (X.B.); (H.Z.); (S.S.); (Y.L.); (H.P.)
- Correspondence:
| |
Collapse
|
104
|
Phenotypical and genotypical differences among Leishmania (Leishmania) amazonensis isolates that caused different clinical frames in humans and dogs: A systematic review. Acta Trop 2021; 221:106018. [PMID: 34157292 DOI: 10.1016/j.actatropica.2021.106018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Leishmania (Leishmania) amazonensis is an important etiological agent of American cutaneous leishmaniasis (ACL) in Brazil. The species causes a large spectrum of clinical manifestations in humans and dogs, ranging from cutaneous, cutaneous diffuse, mucocutaneous, and visceral involvement, however, the factors that drive the development of different disease forms by the same species are not yet fully known. In the present work, it was systematically reviewed the studies addressing phenotypic and genotypic characteristics of Leishmania (L.) amazonensis isolates causing cutaneous and visceral clinical frames in humans and dogs, comparing the results observed. For this, four research databases were searched for the following keywords: (Leishmania amazonensis AND visceral leishmaniasis) AND (tropism OR virulence OR visceralization OR adaptations OR mutation OR clinical presentation OR resistance OR survival OR wide spectrum). The results revealed that the complexity disease seems to involve the combination of genetic factors of the parasite (as modifications in molecules related to the virulence and metabolism) and also of the host's immune background and status. Nonetheless, the exact mechanism that leads to different clinical manifestations between strains of the same species is still uncertain and future studies must be developed to better elucidate this phenomenon.
Collapse
|
105
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
106
|
Tharakan A, Shukla H, Benny IR, Tharakan M, George L, Koshy S. Immunomodulatory Effect of Withania somnifera (Ashwagandha) Extract-A Randomized, Double-Blind, Placebo Controlled Trial with an Open Label Extension on Healthy Participants. J Clin Med 2021; 10:jcm10163644. [PMID: 34441940 PMCID: PMC8397213 DOI: 10.3390/jcm10163644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
The immunomodulatory effect of Withania somnifera (WS) extract was tested in healthy adults. In this randomized placebo-controlled double-blinded study, subjects were allocated either 60 mg WS extract or placebo. It consists of a blinded 30-day period and an open-label extension study of another 30 days with crossover of only placebo to test. After the 30-day blinded study period, the WS test group reported significant increase (p < 0.05) in Ig’s (IgA, IgM, IgG, IgG2, IgG3 and IgG4), Cytokines (IFN-γ, IL4), TBNK (CD45+, CD3+, CD4+, CD8+, CD19+, NK cells) whereas in the placebo group TBNK cells showed significant decrease (p < 0.05) and Ig’s and cytokines showed no change (p > 0.05). In the extension period on day 60, the subjects on placebo who were crossed over to the WS test group showed significant increase (p < 0.05) in Ig’s, cytokines and TBNK cells and the subjects who continued on the WS group showed a further significant improvement (p < 0.05) in Ig’s, cytokines and TBNK cells. There were no adverse events reported in the study. WS extract significantly improved the immune profile of healthy subjects by modulating the innate and adaptive immune systems. Boosting the immune system of people at risk of infection and during widespread infections can be targeted with WS extract.
Collapse
Affiliation(s)
- Ajit Tharakan
- Department of Cardiothoracic Surgery, Oklahoma Heart Institute, University of Oklahoma College of Medicine, Tulsa, OK 73104, USA
- Correspondence:
| | - Himanshu Shukla
- Department of General Medicine, PGH Hospital, Uttam Nagar, New Delhi 110059, India;
| | - Irin Rosanna Benny
- Department of Pathology, Christian Medical College, Vellore 632004, India;
| | - Matthan Tharakan
- College of Engineering and Natural Sciences, Tulsa University, Tulsa, OK 74107, USA;
| | - Lekha George
- Department of Medicine, Texas Tech Health Science University, Lubbock, TX 79430, USA; (L.G.); (S.K.)
| | - Santhosh Koshy
- Department of Medicine, Texas Tech Health Science University, Lubbock, TX 79430, USA; (L.G.); (S.K.)
| |
Collapse
|
107
|
Miao Z, Zhang K, Bao R, Li J, Tang Y, Teng X. Th1/Th2 imbalance and heat shock protein mediated inflammatory damage triggered by manganese via activating NF-κB pathway in chicken nervous system in vivo and in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44361-44373. [PMID: 33847884 DOI: 10.1007/s11356-021-13782-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is a ubiquitous heavy metal pollutant in environment, and excess Mn can damage nervous system of humans and animals. However, molecular mechanism of Mn-induced poultry neurotoxicity on inflammatory injury is still not fully clear. Thus, the purpose of the conducted research was to explore molecular mechanism of inflammatory injury caused by Mn in chicken nervous system. Two Mn poisoning models were established in vivo and in vitro. One hundred and eighty chickens were randomly separated into four groups. One control group was raised drinking water and standard diet. Three Mn groups were raised drinking water, and the standard diet supplemented with three different concentrations of MnCl2 ∙ 4H2O. There were 45 birds and 3 replicates in each group. Neurocytes from chicken embryos were cultured in mediums without and with six different concentrations of MnCl2 ∙ 4H2O in vitro. Our experiments showed that excess Mn caused cerebral histomorphological structure alternations and damage, and increased the expressions (P < 0.05) of inflammation-related factor NF-κB, TNF-α, iNOS, COX-2, and PTGEs in vivo and in vitro, meaning that excess Mn caused inflammatory damage and inflammatory response in chicken nervous system. Moreover, there were an upregulated IFN-γ mRNA expression and a downregulated IL-4 mRNA expression (P < 0.05) in bird cerebra and embryonic neurocytes after exposure to Mn, indicating that Mn exposure caused Th1/Th2 imbalance and immunosuppression. Additionally, in our research, the elevation (P < 0.05) of five HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) was found, suggesting that HSPs participated molecular mechanism of Mn stress. In addition, the inflammatory toxicity of Mn to chicken nervous system was time- and dose-dependent. Taken all together, our findings indicated that Th1/Th2 imbalance and HSPs mediated Mn-caused inflammatory injury via NF-κB pathway in chicken nervous system in vivo and in vitro.
Collapse
Affiliation(s)
- Zhiying Miao
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kun Zhang
- Heihe University, Heihe, 164300, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
108
|
Sharma A, Upadhyay DK, Gupta GD, Narang RK, Rai VK. IL-23/Th17 Axis: A Potential Therapeutic Target of Psoriasis. Curr Drug Res Rev 2021; 14:24-36. [PMID: 34238181 DOI: 10.2174/2589977513666210707114520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022]
Abstract
Psoriasis is an immune-mediated skin disease that leads to the initiation of abnormal production of inflammatory mediators and keratinocytes hyper-proliferation. Th-1 cell expressing cytokines such as IL-1β and TNF-α have been the important hallmarks in the management of psoriasis. However, investigations carried out in the previous few years underline the involvement of another subset of T helper cells, i.e. Th-17 in psoriasis exacerbation, and hence become the point of focus now. The immunopathogenesis of Th-17 is the result of the IL-23/Th-17 axis. It involves the release of IL-17 and IL-22 in response to the activated NF-kβ dependent activation of IL-23. The function of human Th-17 cells as well as the crucial role of IL-23/Th-17 axis in the exacerbation of psoriasis and treatment have been well explored. Therefore, considering IL-23/Th17 axis as a pertinent therapeutic target in immune driven disorders, extensive investigations are now highlighting the utility of biopharmaceuticals and/or biological agents acting on these targets. Here, we review the IL-23/Th-17 axis based therapeutic targets, different types of active moieties based on their source of availability and most useful USFDA approved Mabs targeting the IL-23/Th17 axis in psoriasis for a better understanding of the future possibilities in this area.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | | | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
109
|
Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front Immunol 2021; 12:703972. [PMID: 34276700 PMCID: PMC8281042 DOI: 10.3389/fimmu.2021.703972] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction resulting in oxidative stress could be associated with tissue and cell damage common in many T cell-mediated autoimmune diseases. Autoreactive CD4 T cell effector subsets (Th1,Th17) driving these diseases require increased glycolytic metabolism to upregulate key transcription factors (TF) like T-bet and RORγt that drive differentiation and proinflammatory responses. However, research in immunometabolism has demonstrated that mitochondrial-derived reactive oxygen species (ROS) act as signaling molecules contributing to T cell fate and function. Eliminating autoreactive T cells by targeting glycolysis or ROS production is a potential strategy to inhibit autoreactive T cell activation without compromising systemic immune function. Additionally, increasing self-tolerance by promoting functional immunosuppressive CD4 T regulatory (Treg) cells is another alternative therapeutic for autoimmune disease. Tregs require increased ROS and oxidative phosphorylation (OxPhos) for Foxp3 TF expression, differentiation, and anti-inflammatory IL-10 cytokine synthesis. Decreasing glycolytic activity or increasing glutathione and superoxide dismutase antioxidant activity can also be beneficial in inhibiting cytotoxic CD8 T cell effector responses. Current treatment options for T cell-mediated autoimmune diseases such as Type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) include global immunosuppression, antibodies to deplete immune cells, and anti-cytokine therapy. While effective in diminishing autoreactive T cells, they can also compromise other immune responses resulting in increased susceptibility to other diseases and complications. The impact of mitochondrial-derived ROS and immunometabolism reprogramming in autoreactive T cell differentiation could be a potential target for T cell-mediated autoimmune diseases. Exploiting these pathways may delay autoimmune responses in T1D.
Collapse
Affiliation(s)
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
110
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
111
|
Soyoz M, Pehlivan M, Tatar E, Cerci B, Coven HIK, Ayna TK. Consideration of IL-2, IFN-γ and IL-4 expression and methylation levels in CD4+ T cells as a predictor of rejection in kidney transplant. Transpl Immunol 2021; 68:101414. [PMID: 34044071 DOI: 10.1016/j.trim.2021.101414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Kidney transplantation is the certain treatment for the end-stage-kidney disease patients. However after transplantation, allograft rejection or graft dysfunction are serious problems which the patients can be encountered. In several studies new biomarkers to predict rejection episodes tried to be evaluated and cytokines are thought to be one of these biomarkers. Additionally, epigenetic regulation of the cytokine genes can be an opportunity to detect the graft survival or dysfunction that lead to rejection. In this study, we aimed to detect the expression levels and methylation profile of cytokines IL-2, IL-4 and IFN-γ to follow the clinical situation of the patients. 25 kidney transplant patients were included in our study group and peripheral blood samples were collected before and 6 months after transplantation. CD4+ T cells were separated by using magnetic separation system and expression levels are detected by qPCR while methylation profile analysis was performed by pyrosequencing. According to our study we noticed that all of the patients with allograft rejection have increased expression levels of IFN-γ. When methylation profile of the CpGs in the promotor region of IFN-γ is evaluated, +128CpG was found as methylated when compared with +122. In conclusion, epigenetic mechanisms can effect several processed in renal transplantation and further studies with higher numbers of patients are needed to detect new biomarkers for prediction of allograft rejection.
Collapse
Affiliation(s)
- Mustafa Soyoz
- Izmir Katip Celebi University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey.
| | - Melek Pehlivan
- Izmir Katip Celebi University, Vocational School of Health Services, Izmir, Turkey
| | - Erhan Tatar
- Health Sciences University, Bozyaka Training and Research Hospital, Clinic of Nephrology, Izmir, Turkey
| | - Burcu Cerci
- Izmir Katip Celebi University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | | | - Tulay Kilicaslan Ayna
- Izmir Katip Celebi University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| |
Collapse
|
112
|
Cui J, Shan K, Yang Q, Qi Y, Qu H, Li J, Wang R, Jia L, Chen W, Feng N, Chen YQ. Prostaglandin E 3 attenuates macrophage-associated inflammation and prostate tumour growth by modulating polarization. J Cell Mol Med 2021; 25:5586-5601. [PMID: 33982835 PMCID: PMC8184682 DOI: 10.1111/jcmm.16570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
Alternative polarization of macrophages regulates multiple biological processes. While M1‐polarized macrophages generally mediate rapid immune responses, M2‐polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)‐derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti‐inflammatory role by inhibiting LPS and interferon‐γ‐induced M1 polarization and promoting interleukin‐4‐mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell‐macrophage co‐culture system. Experimental results showed that PGE3 inhibited the polarization of tumour‐associated M2 macrophages (TAM), consequently producing indirect anti‐tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti‐inflammatory effect and anti‐tumour effect in prostate cancer.
Collapse
Affiliation(s)
- Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
113
|
Abstract
The presence of immune cells is a morphological hallmark of rapidly progressive glomerulonephritis, a disease group that includes anti-glomerular basement membrane glomerulonephritis, lupus nephritis, and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. The cellular infiltrates include cells from both the innate and the adaptive immune responses. The latter includes CD4+ and CD8+ T cells. In the past, CD4+ T cell subsets were viewed as terminally differentiated lineages with limited flexibility. However, it is now clear that Th17 cells can in fact have a high degree of plasticity and convert, for example, into pro-inflammatory Th1 cells or anti-inflammatory Tr1 cells. Interestingly, Th17 cells in experimental GN display limited spontaneous plasticity. Here we review the literature of CD4+ T cell plasticity focusing on immune-mediated kidney disease. We point out the key findings of the past decade, in particular that targeting pathogenic Th17 cells by anti-CD3 injection can be a tool to modulate the CD4+ T cell response. This anti-CD3 treatment can trigger a regulatory phenotype in Th17 cells and transdifferentiation of Th17 cells into immunosuppressive IL-10-expressing Tr1 cells (Tr1exTh17 cells). Thus, targeting Th17 cell plasticity could be envisaged as a new therapeutic approach in patients with glomerulonephritis.
Collapse
|
114
|
Matsumura-Kawashima M, Ogata K, Moriyama M, Murakami Y, Kawado T, Nakamura S. Secreted factors from dental pulp stem cells improve Sjögren's syndrome via regulatory T cell-mediated immunosuppression. Stem Cell Res Ther 2021; 12:182. [PMID: 33726818 PMCID: PMC7962357 DOI: 10.1186/s13287-021-02236-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Sjögren’s syndrome (SS) is a chronic autoimmune disease primarily characterized by inflammation in the salivary and lacrimal glands. Activated T cells contribute to disease pathogenesis by producing proinflammatory cytokines, which leads to a positive feedback loop establishment. The study aimed to evaluate the effects of secreted factors derived from dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BMMSCs) on hyposalivation in SS and to investigate the mechanism involved. Methods Eighty percent confluent stem cells were replenished with serum-free Dulbecco’s modified Eagle’s medium and incubated for 48 h; following which, conditioned media from DPSCs (DPSC-CM) and BMMSCs (BMMSC-CM) were collected. Cytokine array analysis was performed to assess the types of cytokines present in the media. Flow cytometric analysis was performed to evaluate the number of activated T cells cultured in DPSC-CM or BMMSC-CM. Subsequently, DPSC-CM or BMMSC-CM was administered to an SS mouse model. The mice were categorized into the following groups (n = 6 each): non-treatment, Dulbecco’s modified Eagle’s medium (−), BMMSC-CM, and DPSC-CM. Histological analysis of the salivary glands was performed. The gene and protein expression levels of cytokines associated with T helper subsets in the submandibular glands (SMGs) were evaluated. Results DPSC-CM contained more secreted factors with tissue-regenerating mechanisms, such as cell proliferation, anti-inflammatory effects, and immunomodulatory effects. DPSC-CM was more effective in suppressing the activated T cells than other groups in the flow cytometric analysis. The stimulated salivary flow rate increased in SS mice with DPSC-CM compared with that in the other groups. In addition, the number of inflammation sites in SMGs of the mice administered with DPSC-CM was lower than that in the other groups. The expression levels of interleukin (Il)-10 and transforming growth factor-β1 were upregulated in the DPSC-CM group, whereas those of Il-4 and Il-17a were downregulated. The DPSC-CM-administered group presented with a significantly increased percentage of regulatory T (Treg) cells and a significantly decreased percentage of type 17 Th (Th17) cells compared with the other groups. Conclusions These results indicated that DPSC-CM ameliorated SS by promoting Treg cell differentiation and inhibiting Th17 cell differentiation in the mouse spleen. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02236-6.
Collapse
Affiliation(s)
- Mayu Matsumura-Kawashima
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuya Kawado
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
115
|
Differential Immunomodulatory Effect of Carbon Dots Influenced by the Type of Surface Passivation Agent. Inflammation 2021; 43:777-783. [PMID: 31873835 DOI: 10.1007/s10753-019-01165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanodots (CDs) are often synthesized from natural sources including honey, molasses, fruits, and foods, and plant extracts simply through caramelization. They have wide biological applications especially as drug delivery vehicles and bioimaging agent due to their small size and biocompatibility. This article details the synthesis of carbon dots from carob and its derivatives by surface passivation with polyethylene glycol (PEG), polyvinyl alcohol (PVA), and alginate (ALG). We investigated the immune response against CDs and evaluated the effect of surface passivation agents on their immunomodulatory functions. CDPVA had strong anti-inflammatory activities, whereas CDALG were pro-inflammatory. CDPEG had mild anti-inflammatory activities suggesting that these CDs can be used in the drug delivery studies as inert carriers. These results showed that depending on the type of activated groups dominated on the surface, CDs exerted differential effects on the inflammatory potential of the macrophages by changing the pro-inflammatory TNFα and IL6 production levels.
Collapse
|
116
|
Majdalawieh AF, Yousef SM, Abu-Yousef IA, Nasrallah GK. Immunomodulatory and anti-inflammatory effects of sesamin: mechanisms of action and future directions. Crit Rev Food Sci Nutr 2021; 62:5081-5112. [PMID: 33544009 DOI: 10.1080/10408398.2021.1881438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with the development and progression of various disorders including atherosclerosis, diabetes mellitus and cancer. Sesamin, a fat-soluble lignan derived from Sesamum indicum seeds and oil, has received increased attention due to its wide array of pharmacological properties including its immunomodulatory and anti-inflammatory potential. To date, no review has been conducted to summarize or analyze the immunomodulatory and anti-inflammatory roles of sesamin. Herein, we provide a comprehensive review of experimental findings that were reported with regards to the ability of sesamin to modulate inflammation, cellular and humoral adaptive immune responses and Th1/Th2 paradigm. The potential influence of sesamin on the cytotoxic activity of NK cells against cancer cells is also highlighted. The molecular mechanisms and the signal transduction pathways underlying such effects are underscored. The metabolism, pharmacokinetics, absorption, tissue distribution and bioavailability of sesamin in different species, including humans, are reviewed. Moreover, we propose future preclinical and clinical investigations to further validate the potential preventive and/or therapeutic efficacy of sesamin against various immune-related and inflammatory conditions. We anticipate that sesamin may be employed in future therapeutic regimens to enhance the efficacy of treatment and dampen the adverse effects of synthetic chemical drugs currently used to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
117
|
Jin T, Mohammad M, Pullerits R, Ali A. Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (M.M.); (R.P.); (A.A.)
| |
Collapse
|
118
|
Mavian C, Ramirez-Mata AS, Dollar JJ, Nolan DJ, Cash M, White K, Rich SN, Magalis BR, Marini S, Prosperi MCF, Amador DM, Riva A, Williams KC, Salemi M. Brain tissue transcriptomic analysis of SIV-infected macaques identifies several altered metabolic pathways linked to neuropathogenesis and poly (ADP-ribose) polymerases (PARPs) as potential therapeutic targets. J Neurovirol 2021; 27:101-115. [PMID: 33405206 PMCID: PMC7786889 DOI: 10.1007/s13365-020-00927-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
Abstract
Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals' quality of life, as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was compared among SIV-infected animals (n = 11), with or without CD8+ lymphocyte depletion, based on detectable (n = 6) or non-detectable (n = 5) presence of the virus in frontal cortex tissues. Significant enrichment in activation of monocyte and macrophage cellular pathways was found in animals with detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by real-time polymerase chain reaction. Our results shed light on involvement of PARPs in SIV infection of the brain and their role in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel therapeutic target for HIV-related neuropathology.
Collapse
Affiliation(s)
- Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Andrea S Ramirez-Mata
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - James Jarad Dollar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - David J Nolan
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Melanie Cash
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kevin White
- Biology Department, Boston College, Boston, MD, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Shannan N Rich
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - Brittany Rife Magalis
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - Mattia C F Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Biology Department, Boston College, Boston, MD, USA
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Kenneth C Williams
- Biology Department, Boston College, Boston, MD, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
119
|
Effect of Pinkwater BioSolve on expression of proinflammatory cytokines and histological changes in Gallus domesticus embryo. Toxicol Rep 2021; 7:1634-1639. [PMID: 33384940 PMCID: PMC7772439 DOI: 10.1016/j.toxrep.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/04/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Pinkwater Biosolve (BioSolve®) is one bioremediating chemical which has been widely used for cleanup of crude oil spill in Nigeria. It is a water-based formulation of nonionic surfactants and other specialty chemicals. The level of toxicity resulting from environmental exposure to this chemical has not been well understood. The level of expression of proinflammatory cytokines and histological changes in Gallus domesticus embryo were investigated. The embryo were pretreated with different doses of BioSolve, soil water from remediated soil sample, 10% soluble crude oil portion and a combination of the BioSolve with the soluble crude portion all constituted in normal saline solution. Reverse transcriptase PCR technique was used to assess the expression of hepatic proinflammatory cytokines. Histological examination was also carried out on liver fragments. The results showed that the pretreatment caused lesion on hepatocytes of all tested chick embryos except in the group administered with normal saline solution when compared with the normal control. The chick embryo exposed to 0.5 mg/kg BioSolve, 5% decanted soil water (v/v) obtained from crude oil remediated (using BioSolve) soil, and 10% (v/v) decanted crude oil remediated (using BioSolve) soil water all showed significant expression (at p < 0.05) of IFNγ, TGFβ1, IL-1β, IL-2 and TNF. The group treated with 10% soluble portion of crude oil showed significant changes in their expression pattern when compared with the control; TNF was up regulated, while IL-1β, IFNγ and TGFβ1 were down regulated. Only TNF was upregulated at p < 0.05 indicating the chances of soluble portion of crude oil causing cancer. IFNγ, TGFβ1, IL-1β and IL-2 were all down regulated significantly at p < 0.05 due to exposure to a combination of 10% soluble crude and 0.036 mg/kg BioSolve. The combination of 10% soluble crude and 0.36 mg/kg BioSolve caused lethal effect to the developing chick embryo.
Collapse
|
120
|
Bruellman R, Llorente C. A Perspective Of Intestinal Immune-Microbiome Interactions In Alcohol-Associated Liver Disease. Int J Biol Sci 2021; 17:307-327. [PMID: 33390852 PMCID: PMC7757023 DOI: 10.7150/ijbs.53589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Ryan Bruellman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
121
|
Nambam B, Haller MJ, Winter WE, Schatz D. Autoimmune Polyglandular Syndromes. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:884-903. [DOI: 10.1016/b978-0-323-62520-3.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
122
|
Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020. [DOI: 10.3390/vaccines8040783
expr 839529059 + 832255227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
|
123
|
Lukacs NW, Malinczak CA. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020; 8:783. [PMID: 33371275 PMCID: PMC7766447 DOI: 10.3390/vaccines8040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
Affiliation(s)
- Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
124
|
Kim SY, Shin JS, Chung KS, Han HS, Lee HH, Lee JH, Kim SY, Ji YW, Ha Y, Kang J, Rhee YK, Lee KT. Immunostimulatory Effects of Live Lactobacillus sakei K040706 on the CYP-Induced Immunosuppression Mouse Model. Nutrients 2020; 12:nu12113573. [PMID: 33266362 PMCID: PMC7700367 DOI: 10.3390/nu12113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Our previous studies have shown that heat-killed Lactobacillus sakei K040706 exerts immunostimulatory and anti-inflammatory activities in macrophages, cyclophosphamide (CYP)-treated mice, and dextran sulfate sodium–induced colitis mice. However, the immunostimulatory effects of live Lactobacillus sakei K040706 (live K040706) against CYP-induced immunosuppression and its underlying molecular mechanisms remain unknown. Therefore, we investigated the immunostimulatory effects of live K040706 (108 or 109 colony forming unit (CFU)/day, p.o.) in CYP-induced immunosuppressed mice. Oral administration of live K040706 prevented the CYP-induced decreases in body weight, thymus index, natural killer (NK) cell activity, T and B cell proliferation, and cytokine (interferon (IFN)-γ, interleukin (IL)-2, and IL-12) production. The administration of live K040706 also exerted positive effects on the gut microbiota of CYP-induced mice, resulting in a microbiota composition similar to that of normal mice. Moreover, live K040706 significantly enhanced IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in the splenocytes and Peyer’s patch (PP) cells of mice and increased bone marrow (BM) cell proliferation. Taken together, our data indicate that live K040706 may effectively accelerate recovery from CYP-induced immunosuppression, leading to activation of the immune system. Therefore, live K040706 may serve as a potential immunomodulatory agent against immunosuppression.
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yong Woo Ji
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea;
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yejin Ha
- NOVAREX Co. Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 363-885, Korea; (Y.H.); (J.K.)
| | - Jooyeon Kang
- NOVAREX Co. Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 363-885, Korea; (Y.H.); (J.K.)
| | - Young Kyoung Rhee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0860; Fax: +82-2-961-0356
| |
Collapse
|
125
|
Ojo AS, Balogun SA, Williams OT, Ojo OS. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med 2020; 2020:6175964. [PMID: 32850151 PMCID: PMC7439160 DOI: 10.1155/2020/6175964] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023] Open
Abstract
Although pulmonary fibrosis can occur in the absence of a clear-cut inciting agent, and without a clinically clear initial acute inflammatory phase, it is more commonly associated with severe lung injury. This may be due to respiratory infections, chronic granulomatous diseases, medications, and connective tissue disorders. Pulmonary fibrosis is associated with permanent pulmonary architectural distortion and irreversible lung dysfunction. Available clinical, radiographic, and autopsy data has indicated that pulmonary fibrosis is central to severe acute respiratory distress syndrome (SARS) and MERS pathology, and current evidence suggests that pulmonary fibrosis could also complicate infection by SARS-CoV-2. The aim of this review is to explore the current literature on the pathogenesis of lung injury in COVID-19 infection. We evaluate the evidence in support of the putative risk factors for the development of lung fibrosis in the disease and propose risk mitigation strategies. We conclude that, from the available literature, the predictors of pulmonary fibrosis in COVID-19 infection are advanced age, illness severity, length of ICU stay and mechanical ventilation, smoking and chronic alcoholism. With no proven effective targeted therapy against pulmonary fibrosis, risk reduction measures should be directed at limiting the severity of the disease and protecting the lungs from other incidental injuries.
Collapse
Affiliation(s)
- Ademola S. Ojo
- Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, Grenada
| | - Simon A. Balogun
- Department of Surgery, Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Nigeria
| | - Oyeronke T. Williams
- Department of Medicine, Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Nigeria
| | - Olusegun S. Ojo
- Department of Morbid Anatomy, Obafemi Awolowo University Teaching Hospital Complex, Ile Ife, Nigeria
| |
Collapse
|
126
|
Cytokine production in patients with recurrent acute tonsillitis: analysis of tonsil samples and blood. Sci Rep 2020; 10:13006. [PMID: 32747802 PMCID: PMC7400737 DOI: 10.1038/s41598-020-69981-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to examine T cell function in tonsils of patients with recurrent acute tonsillitis (RAT) or peritonsillar abscess (PTA) by analyzing the cytokine production following T cell receptor (TCR) and co-receptor stimulation with a combination of anti-CD3 and anti-CD28 antibodies. The release of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10 and IL-17A from isolated, stimulated T cells of 27 palatine tonsils (10 RAT, 7 PTA, 10 tonsils without inflammation) was measured via a bead-based flow cytometric analysis. The results were compared with the cytokine release of isolated peripheral T cells in a subset of the same patients (6 PTA, 4 patients without signs of inflammation in the blood). TCR stimulation increased the concentration of released cytokines in tonsil and blood as well as in different forms of inflammation and tissue with no inflammation. Stimulation increased the pro-inflammatory cytokines TNF-α, IFN-γ, and IL-2 more than the anti-inflammatory cytokines IL-4 and IL-10 in tonsil and blood samples in RAT, PTA, and samples without inflammation. Blood of patients with PTA showed a higher pro-inflammatory cytokine level compared to the samples of patients without inflammation. T cells in tonsils are fully responsive and competent for antigen-induced cytokine production in RAT and PTA. One should be aware that tonsillectomy, if indicated, might remove a functioning immune organ. Tonsillotomy might be an alternative even in adults to maintain immunological function.
Collapse
|
127
|
Piersanti RL, Horlock AD, Block J, Santos JEP, Sheldon IM, Bromfield JJ. Persistent effects on bovine granulosa cell transcriptome after resolution of uterine disease. Reproduction 2020; 158:35-46. [PMID: 30933928 DOI: 10.1530/rep-19-0037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Metritis is associated with reduced fertility in dairy cows, but the mechanisms are unclear because the disease resolves several weeks before insemination. One hypothesis is that metritis causes persistent changes in granulosa cells during follicle development, which might be evident in the transcriptome of granulosa cells from dominant follicles weeks after parturition. To test this hypothesis, we collected the follicular fluid and granulosa cells from dominant follicles 63 days post partum from cows previously diagnosed with metritis, at least 6 weeks after resolution of the disease and from cows not diagnosed with metritis (control cows). Bacterial lipopolysaccharide was detected in follicular fluid, and concentrations were associated with follicular fluid IL-8 and glucose concentrations. Transcriptome analysis using RNAseq revealed 177 differentially expressed genes in granulosa cells collected from cows that had metritis compared with control cows. The most upregulated genes were ITLN1, NCF2, CLRN3, FSIP2 and ANKRD17, and the most downregulated genes were ACSM1, NR4A2, GHITM, CBARP and NR1I3. Pathway analysis indicated that the differentially expressed genes were involved with immune function, cell-cell communication, cell cycle and cellular metabolism. Predicted upstream regulators of the differentially expressed genes included NFκB, IL-21 and lipopolysaccharide, which are associated with infection and immunity. Our data provide evidence for a persistent effect of metritis on the transcriptome of granulosa cells in ovarian follicles after the resolution of disease.
Collapse
Affiliation(s)
- Rachel L Piersanti
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Anthony D Horlock
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Jeremy Block
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - José E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
128
|
Xiong J, Jiang B, Luo Y, Zou J, Gao X, Xu D, Du Y, Hao L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:4151-4169. [PMID: 32606670 PMCID: PMC7305853 DOI: 10.2147/ijn.s246447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Die Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Ultrasonography Department, The Fourth People's Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing 400014, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
129
|
Persiyanova EV, Kuznetsova TA, Silchenko AS. Effect of Sulfated Polysaccharides from Marine Hydrobionts on Humoral Immune Response to Ovalbumin in Mice. Bull Exp Biol Med 2020; 169:246-248. [PMID: 32651818 DOI: 10.1007/s10517-020-04860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 10/23/2022]
Abstract
Adjuvant activity of fucoidans in experimental vaccine compositions with ovalbumin was studied on a mouse model. Compositions with sulfated polysaccharides from brown alga Fucus evanescens (native fucoidan in combination with polyphenols, and a product of fucoidan enzymatic hydrolysis) induced multiple productions of antigen-specific antibodies - total IgG, its isotypes IgG1 and, especially, IgG2a, in comparison with an individual ovalbumin. The adjuvant effect of native and structurally modified fucoidans is slightly inferior to that of the traditional licensed aluminum hydroxide adjuvant. The results indicate the prospects of using sulfated polysaccharides from F. evanescens as adjuvants in vaccines.
Collapse
Affiliation(s)
- E V Persiyanova
- Laboratory of Immunology, G. P. Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russia.
| | - T A Kuznetsova
- Laboratory of Immunology, G. P. Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - A S Silchenko
- Laboratory of Enzyme Chemistry, G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| |
Collapse
|
130
|
Liu Q, Su H, Bian X, Wang S, Kong Q. Live attenuated Salmonella Typhimurium with monophosphoryl lipid A retains ability to induce T-cell and humoral immune responses against heterologous polysaccharide of Shigella flexneri 2a. Int J Med Microbiol 2020; 310:151427. [PMID: 32654768 DOI: 10.1016/j.ijmm.2020.151427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Shigella flexneri 2a (Sf2a) is one of the most frequently isolated Shigella strains that causes the endemic shigellosis in developing countries. In this study, we used recombinant attenuated Salmonella vaccine (RASV) strains to deliver Sf2a O-antigen and characterized the immune responses induced by the vectored O-antigen. First, we identified genes sufficient for biosynthesis of Sf2a O-antigen. A plasmid containing the identified genes was then introduced into the RASV strains, which were manipulated to produce only the heterologous O-antigen and modified lipid A. After oral immunization of mice, we demonstrated that RASV strains could induce potent humoral immune responses as well as robust CD4+ T-cell responses against Sf2a Lipopolysaccharide (LPS) and protect mice against virulent Sf2a challenge. The induced serum antibodies mediated high levels of Shigella-specific serum bactericidal activity and C3 deposition. Moreover, the IgG+ B220low/int BM cell and T follicular helper (Tfh) cell responses could also be triggered effectively. The live attenuated Salmonella with the modified lipid A delivering Sf2a O-antigen polysaccharide showed the same ability to induce immune responses against Sf2a LPS as the strain with the original lipid A. These findings underscore the potential of RASV delivered Sf2a O-antigen for induction of robust CD4+ T-cell and IgG responses and warrant further studies toward the development of Shigella vaccine candidates with RASV strains.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Huali Su
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China; Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
131
|
Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther 2020; 20:1073-1082. [PMID: 32264720 DOI: 10.1080/14712598.2020.1753696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life. Despite RSV being a high priority for vaccine development, there is currently no safe and effective vaccine available. There are many challenges to developing an RSV vaccine and there are limited antiviral drugs or biologics available for the management of infection. In this article, we review the antiviral treatments, vaccination strategies along with alternative therapies for RSV. AREAS COVERED This review is a summary of the current antiviral and RSV vaccination approaches noting strategies and alternative therapies that may prevent or decrease the disease severity in RSV susceptible populations. EXPERT OPINION This review discusses anti-RSV strategies given that no safe and efficacious vaccines are available, and therapeutic treatments are limited. Various biologicals that target for RSV are considered for disease intervention, as it is likely that it may be necessary to develop separate vaccines or therapeutics for each at-risk population.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
132
|
Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. Hemasphere 2020; 4:e350. [PMID: 32309787 PMCID: PMC7162079 DOI: 10.1097/hs9.0000000000000350] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The alkylating agent cyclophosphamide has been used in the treatment of multiple myeloma for over 60 years. At low doses, cyclophosphamide also has significant immunomodulatory activity, which can be used to modify the immunosuppressive tumor microenvironment in order to augment responses to existing therapies. Immune-mediated therapies are becoming more widespread in modern approaches to myeloma treatment. In this review, we discuss the effects cyclophosphamide has on the immune system, and how it can be used synergistically with other treatment modalities including the immunomodulatory agents, monoclonal antibodies and cellular therapies.
Collapse
|
133
|
Desmedt O, Broers VJV, Zamariola G, Pachikian B, Delzenne N, Luminet O. Effects of prebiotics on affect and cognition in human intervention studies. Nutr Rev 2020; 77:81-95. [PMID: 30535275 DOI: 10.1093/nutrit/nuy052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies conducted in rodents have highlighted that neurobiological processes underlying cognition and affect are modulated by the gut microbiota. Certain dietary fibers are able to modulate the composition of gut microbiota and are thus considered prebiotics. A review of the impact of the available prebiotic intervention studies in humans on cognition and affect, addressing the potential mediating role of the microbiota, was conducted. PubMed, Scopus, and PsycINFO were selected as sources. Fourteen articles were eligible for narrative synthesis. Data extraction and quality assessment were performed with characteristics established a priori. Some chronic prebiotic interventions (>28 d) improved affect and verbal episodic memory compared with a placebo. Acute prebiotic interventions (<24 h) were more efficient in improving cognitive variables (eg, verbal episodic memory). Future research should measure microbiota using adequate methodologies and recruit patients with dysbiosis, inflammation, or psychopathology. More research is needed to unravel the conditions required to obtain effects on affect and cognition.
Collapse
Affiliation(s)
- Olivier Desmedt
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valérie J V Broers
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Giorgia Zamariola
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Barbara Pachikian
- Louvain Drug Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathalie Delzenne
- Louvain Drug Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Luminet
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Fonds de la Recherche Scientifique (FNRS), Brussels, Belgium
| |
Collapse
|
134
|
Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, Villar M, Cabezas-Cruz A, de la Fuente J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front Cell Infect Microbiol 2020; 10:78. [PMID: 32211341 PMCID: PMC7075944 DOI: 10.3389/fcimb.2020.00078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
135
|
Andreou NP, Legaki E, Gazouli M. Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann Gastroenterol 2020; 33:125-133. [PMID: 32127733 PMCID: PMC7049232 DOI: 10.20524/aog.2020.0457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is still unclear, but includes both inflammatory and autoimmune reactions. Current methodological approaches could better elucidate the cytokine pathways and the genetics involved in the etiopathogenesis of this disease. Interferons (IFNs) are cytokines that play a key role in autoimmune/inflammatory disorders because of their pro- and anti-inflammatory properties as well as their immunoregulatory functions. An increased expression of IFN-regulated genes, widely known as an IFN signature, has been reported in blood and tissue from patients with autoimmune disorders. In this review, we present the function as well as the clinical and therapeutic potential of the IFN signature. Current data demonstrate that the IFN signature can be used as a biomarker that defines disease activity in autoimmune diseases, although this has not been thoroughly studied in IBD. Consequently, further investigation of the IFN signature in IBD would be essential for a better understanding of its actions.
Collapse
Affiliation(s)
- Nicolaos-Panagiotis Andreou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
136
|
Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, Kim JH, Zhang P, Wu H, Jun HW, Cheon K. Pulp-Dentin Tissue Healing Response: A Discussion of Current Biomedical Approaches. J Clin Med 2020; 9:jcm9020434. [PMID: 32033375 PMCID: PMC7074340 DOI: 10.3390/jcm9020434] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dental pulp tissue exposed to mechanical trauma or cariogenic process results in root canal and/or periapical infections, and conventionally treated with root canal procedures. The more recent regenerative endodontic procedure intends to achieve effective root canal disinfection and adequate pulp–dentin tissue regeneration; however, numerous limitations are reported. Because tooth is composed of vital soft pulp enclosed by the mineralized hard tissue in a highly organized structure, complete pulp–dentin tissue regeneration has been challenging to achieve. In consideration of the limitations and unique dental anatomy, it is important to understand the healing and repair processes through inflammatory-proliferative-remodeling phase transformations of pulp–dentin tissue. Upon cause by infectious and mechanical stimuli, the innate defense mechanism is initiated by resident pulp cells including immune cells through chemical signaling. After the expansion of infection and damage to resident pulp–dentin cells, consequent chemical signaling induces pluripotent mesenchymal stem cells (MSCs) to migrate to the injury site to perform the tissue regeneration process. Additionally, innovative biomaterials are necessary to facilitate the immune response and pulp–dentin tissue regeneration roles of MSCs. This review highlights current approaches of pulp–dentin tissue healing process and suggests potential biomedical perspective of the pulp–dentin tissue regeneration.
Collapse
Affiliation(s)
- Dishant Shah
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Tyler Lynd
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Donald Ho
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Jeremy Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Hwi-Dong Jung
- Department of Oral & Maxillofacial Surgery College of Dentistry, Yonsei University, 50-1 Yonsei-Ro, Seodeamun-Gu, Seoul 03722, Korea;
| | - Ji-Hun Kim
- Department of Dentistry, Wonju College of Medicine, Yonsei University, 20 Il-San-ro, Wonju, Gangwon-Do 26426, Korea;
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Kyounga Cheon
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
- Correspondence: ; Tel.: +1-205-975-4303
| |
Collapse
|
137
|
Kiernan CH, Asmawidjaja PS, Fahy N, Witte-Bouma J, Wolvius EB, Brama PAJ, Lubberts E, Farrell E. Allogeneic Chondrogenic Mesenchymal Stromal Cells Alter Helper T Cell Subsets in CD4+ Memory T Cells. Tissue Eng Part A 2020; 26:490-502. [PMID: 31797740 DOI: 10.1089/ten.tea.2019.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Implantation of chondrogenically differentiated mesenchymal stromal cells (MSCs) leads to bone formation in vivo through the process of endochondral ossification. The use of allogeneic MSCs for this purpose may be a promising new approach to replace the current gold standard of bone regeneration. However, the success of using allogeneic cells depends on the interaction between the implanted cells and the host's endogenous immune cells. Th17 T cells and other CD4 helper T cell subtypes have been shown to negatively impact chondrogenesis, however, it is unclear how the interaction between these cells affects bone regeneration mediated by these cells. The aim of the current work was to assess the effect of chondrogenic MSC pellets on Th1, Th2, Th17, and regulatory T cells in vitro. Human MSCs were nonchondrogenic (-TGFβ3) and chondrogenically (+TGFβ3) differentiated for 7 or 21 days. Memory T cells (sorted from the CD4 population of peripheral blood mononuclear cells [PBMCs]), as well as total PBMCs were cocultured with allogeneic nonchondrogenic and chondrogenic MSC pellets for 3 days. Seven-day differentiated allogeneic nonchondrogenic and chondrogenic MSC pellets that were cocultured with memory T cells resulted in a significant increase in Th2 and a decrease in Th1 T cells. Furthermore, the co-culture of 21-day differentiated nonchondrogenic and chondrogenic MSC pellets with memory T cells resulted in a significant increase in Th2 and Th17 T cells, as well as a decrease in Th1 and regulatory T cells. Interleukin (IL)-6 was identified as a predominant cytokine involved in this interaction between allogeneic chondrogenically differentiated MSC pellets and memory CD4 T cells, with high levels of IL-6 being secreted in the supernatants of this cocultured condition. The findings of this study highlight the potential of chondrogenically differentiated MSC pellets to alter the ratio of Th1 and Th2 as well as Th17 and regulatory T cell subsets. Additional analysis investigating bone formation by chondrogenically differentiated MSCs in an allogeneic setting may identify a novel role of these T cell subsets in bone regeneration processes mediated by chondrogenically differentiated MSCs. Impact statement Allogeneic mesenchymal stromal cells (MSCs) have the potential to be an off-the-shelf treatment for bone repair. However, the lack of knowledge of the immune cells involved in this process has hampered the progression to the clinic. The current study has shown that allogeneic chondrogenic MSCs have the potential to skew the ratio of specific helper CD4 T cell subsets in vitro. This has now provided insight for future in vivo experiments to investigate the role of these T cell subsets in the early stages of bone regeneration mediated by allogeneic chondrogenic MSCs.
Collapse
Affiliation(s)
- Caoimhe H Kiernan
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Niamh Fahy
- Department of Orthopaedics, and Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Janneke Witte-Bouma
- Department of Orthopaedics, and Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pieter A J Brama
- School of Veterinary Medicine, Veterinary Science Center, University College Dublin, Dublin, Ireland
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
138
|
Baked Bread Enhances the Immune Response and the Catabolism in the Human Body in Comparison with Steamed Bread. Nutrients 2019; 12:nu12010001. [PMID: 31861252 PMCID: PMC7019488 DOI: 10.3390/nu12010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/02/2022] Open
Abstract
It is unclear whether different processing methods change the biological functions of foods and how these functions are evaluated in the human body. Here, steamed bread and baked bread, the traditional staple foods in China and many Western countries, were made by steaming and baking, respectively, using one piece of fermented wheat dough and then consumed by 16 healthy young volunteers. By detecting 38 cytokines, 12 metabolic enzymes, glucose, lactate, and nicotinamide adenine dinucleotide (NADH) in the serum, the cytokine network and central metabolic pathway network were investigated to compare the effects of the two staple foods on immunity and metabolism. Compared with steamed bread, baked bread increased (p < 0.05) concentrations of fractalkine and macrophage-derived chemokine, decreased (p < 0.05) the concentration of interleukin-1RA, increased (p < 0.05) the expression level of phosphofructokinase, and decreased (p < 0.05) the expression level of glucose-6-phosphate dehydrogenase in the serum. Two network analyses indicated that baked bread, as compared to the steamed bread, enhanced communication between immune cells, increased catabolism, and decreased anabolism. Further, a correlation analysis of cytokines and metabolic enzymes suggested that the two staple foods may affect metabolism by regulating the secretion of cytokines. These findings highlight how the same raw food material processed by different methods may have different impacts on immunity and metabolism in humans.
Collapse
|
139
|
Coias J, Marzuka A, Hosler GA, Chong BF. T-cell polarization differs in various stages of discoid lupus erythematosus skin. Br J Dermatol 2019; 182:1291-1293. [PMID: 31721152 DOI: 10.1111/bjd.18704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- J Coias
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - A Marzuka
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - G A Hosler
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A.,ProPath, Dallas, TX, U.S.A
| | - B F Chong
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| |
Collapse
|
140
|
Th17 and MAIT cell mediated inflammation in antipsychotic free schizophrenia patients. Schizophr Res 2019; 212:47-53. [PMID: 31439420 DOI: 10.1016/j.schres.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
The immune hypothesis of schizophrenia has gained significant popularity in recent years in schizophrenia research. Evidence suggests that the peripheral immune system communicates with central nervous system and the effect propagates through microglial and lymphocyte crosstalk, especially during neuro-inflammation. Although, there is previous literature indicating changes in lymphocyte population in schizophrenia, detailed studies with respect to T and B cells are scarce. Mucosal associated invariant T (MAIT) cells are functionally associated with the gut microbiome. The gut microbiome has been implicated in the pathogenesis of schizophrenia. However, there is no information on the frequency of MAIT cells in schizophrenia. Hence, we investigated changes in proportions of T cells, B cells and MAIT cells in peripheral blood mononuclear cells derived from antipsychotic-free patients with schizophrenia in comparison to healthy controls. In line with earlier reports, we noted perturbations in Th17 cells. This study for the first time reports changes in frequencies of MAIT cells in a homogenous population of antipsychotic-free patients with schizophrenia. These changes, though not common across all patients nevertheless point to the fact that inflammation is prevalent in a significant subset of schizophrenia cases.
Collapse
|
141
|
Circulating Th1, Th2, Th17, Treg, and PD-1 Levels in Patients with Brucellosis. J Immunol Res 2019; 2019:3783209. [PMID: 31467933 PMCID: PMC6701318 DOI: 10.1155/2019/3783209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/11/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Brucella is an intracellular infection bacterium; the pathogenesis of Brucella and chronicity of infection may be related to the immune response of T cells. T lymphocytes mainly participate in cellular immune response. The extent of different T cell subsets imbalanced and their function dysregulated in patients with brucellosis remain not explicit. We grouped patients at different stages (acute, chronic, and convalescent). The frequencies of Th1, Th2, Th17, Treg, and PD-1 (programmed cell death protein 1) in peripheral blood were examined by flow cytometry, and the expressions of T lymphocyte cytokines in serum were detected by cytometric bead array. Th1, Th17, and Treg cell immunity was predominant in the acute stage, while Th2, Th17, and Treg cell immunity was predominant in the chronic stage. The expressions of PD-1 on CD4+ and CD8+ T lymphocytes were significantly different in acute and chronic patients. The percentages of Th1 cells in convalescent patients were still higher than those in healthy controls within one year after withdrawal. The expression of T lymphocyte cytokines in serum was different in patients at different stages. These results indicate that peripheral T lymphocyte immunity was involved in patients with brucellosis and represents a target for the preclinical and clinical assessment of novel immunomodulating therapeutics. The patients' immune function had not completely recovered in a short period of time during convalescence, so long-term follow-up of convalescent patients is needed.
Collapse
|
142
|
Bunte K, Beikler T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2019; 20:ijms20143394. [PMID: 31295952 PMCID: PMC6679067 DOI: 10.3390/ijms20143394] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
143
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
144
|
Rahimi K, Ahmadi A, Hassanzadeh K, Soleimani Z, Sathyapalan T, Mohammadi A, Sahebkar A. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev 2019; 18:738-748. [PMID: 31059845 DOI: 10.1016/j.autrev.2019.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
CD4+ T helper (Th) cells are a crucial player in host defense but under certain conditions can contribute to the pathogenesis of inflammatory and autoimmune diseases. Beside the Th1/Th2 subset, several additional Th subsets have been identified, each with a distinctive transcription factor, functional properties, signature cytokine profile, and possible role in the pathophysiology of diseases. These newer Th subsets include Th17, regulatory Th cells (Tregs), and more recently, Th9, Th22, and follicular T helper cells. Interestingly, imbalance of Th subsets contributes to the immunopathology of several disease states. Therefore, targeting the imbalance of Th subsets and their signature cytokine profiles by a safe, effective and inexpensive nutraceutical agent such as curcumin could be helpful to treat autoimmune and inflammatory diseases. In this study different Th subsets and how the imbalance of these subsets could promote pathology of several diseases has been reviewed. Furthermore, the role of curcumin in this process will be discussed and the impact of targeting Th subsets by curcumin.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Soleimani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
145
|
Alpinia oxyphylla Fruit Extract Ameliorates Experimental Autoimmune Encephalomyelitis through the Regulation of Th1/Th17 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6797030. [PMID: 31001353 PMCID: PMC6437745 DOI: 10.1155/2019/6797030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
Abstract
Alpinia oxyphylla is a traditional Chinese medicine widely used for treating diarrhea, ulceration, and enuresis. Moreover, A. oxyphylla is effective for cognitive function improvement and nerve regeneration. Multiple sclerosis (MS) is a chronic neuronal inflammatory autoimmune disease that commonly affects young adults in high-latitude regions. The aim of this study was to evaluate the beneficial effects of A. oxyphylla in an experimental autoimmune encephalomyelitis (EAE) mouse model, which is an extensively used model for human MS. The ethanolic extract of A. oxyphylla fruit (AO-1) was orally administered to EAE mice. Our results showed AO-1 significantly reduced EAE symptoms. Histopathological analysis showed AO-1 reduced demyelination, inflammation, gliosis, and axonal swelling in the spinal cord. Furthermore, immunohistochemistry and quantitative polymerase chain reaction (qPCR) studies revealed that the infiltration of CD4+, CD8+ T cells, and CD11b+ monocytes into the spinal cord decreased in the AO-1-treated group. Mechanistically, the Th1 transcription factor T-bet, Th17 transcription factor retinoic acid receptor–related orphan receptor γ (RORγt), and inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17 were reduced in the spinal cords of mice treated with AO-1. The expression levels of T-bet and RORγt were also lowered in the spleens of those mice. Further in vitro study showed AO-1 inhibited production of IFN-γ, IL-2, and tumor necrosis factor-α from MOG35-55-peptide-stimulated splenocytes. One component isolated from AO-1, yakuchinone A, inhibited IL-17 production in vitro and reduced EAE symptoms in the mice. Collectively, our results indicate that AO-1 ameliorated the severity of EAE in mice and may involve the regulation of Th1/Th17 response. A. oxyphylla warrants further investigation, particularly regarding its clinical benefits for MS.
Collapse
|
146
|
Kienzl P, Polacek R, Reithofer M, Reitermaier R, Hagenbach P, Tajpara P, Vierhapper M, Gschwandtner M, Mildner M, Jahn-Schmid B, Elbe-Bürger A. The cytokine environment influence on human skin-derived T cells. FASEB J 2019; 33:6514-6525. [PMID: 30807238 PMCID: PMC6463918 DOI: 10.1096/fj.201801416r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skin resident T cells provide immediate immunologic responses at their specific location and play a role in the pathogenesis of skin diseases such as psoriasis. Recently, IL-9-producing T cells were described as a major T-cell subtype present in the skin, but knowledge on the biology and in situ regulation of this T-cell subtype is scarce. Here, we investigated the cytokine influence on skin T cells with focus on IL-9-producing T cells because a better understanding of their biology may identify novel therapeutic approaches. Healthy human skin biopsies were cultured either in the presence of IL-2, IL-4, and TGF-β [T helper (Th)9-promoting condition (Th9-PC)] or IL-2 and IL-15 [standard condition (SC)]. Paired analysis of enzymatically isolated skin T cells and emigrated T cells after 4 wk of skin culture showed significant alterations of T-cell phenotypes, cytokine production, and IL-9-producing T-cell frequency. RNA sequencing analysis revealed differentially regulated pathways and identified CXCL8 and CXCL13 as top up-regulated genes in Th9-PC compared with SC. Functionally supernatant of stimulated skin-derived T cells, CXCL8 and CXCL13 increased neutrophil survival. We report that the cytokine environment alters skin-derived T-cell phenotype and functional properties.-Kienzl, P., Polacek, R., Reithofer, M., Reitermaier, R., Hagenbach, P., Tajpara, P., Vierhapper, M., Gschwandtner, M., Mildner, M. Jahn-Schmid, B., Elbe-Bürger, A. The cytokine environment influence on human skin-derived T cells.
Collapse
Affiliation(s)
- Philip Kienzl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Romana Polacek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Manuel Reithofer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - René Reitermaier
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pia Hagenbach
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pooja Tajpara
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
147
|
Gao M, Ou H, Jiang Y, Wang K, Peng Y, Zhang H, Yang M, Xiao X. Tanshinone IIA attenuates sepsis-induced immunosuppression and improves survival rate in a mice peritonitis model. Biomed Pharmacother 2019; 112:108609. [PMID: 30784917 DOI: 10.1016/j.biopha.2019.108609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The importance of sepsis-induced immunosuppression and its contribution to mortality has recently emerged. In this study we examined the effects of Tanshinone II-A (TSN), a widely used traditional Chinese medicine, on immunosuppression in experimental peritonitis induced septic mice. MATERIALS AND METHODS Sepsis was achieved by means of cecal ligation and puncture (CLP). TSN at different doses (5, 15 and 45 mg/kg, i.p.) were used at different time-points (0, 3, 6 and 12 h) after CLP to evaluate its effect on the survival of septic mice. In parallel experiments, mice given TSN at optimal dose and time-point were euthanized to collect peritoneal macrophages, blood and tissue samples at 24 h after the CLP. RESULTS TSN improved the survival of septic mice in a dose- and time-dependent manner. TSN reduced CLP-induced serum biochemical parameters and protected organs from histopathological injuries. CLP-induced apoptosis and decreased percentages of splenic CD4+ and CD8+ T cells were reversed in TSN-treated mice. Moreover, CLP-induced formation of regulatory T cells (Treg) in the spleen was abolished in TSN-treated mice. CLP greatly decreased the levels of interferon-γ and interleukin (IL)-2 in the spleen, while the levels of IL-4 and IL-10 increased after CLP. TSN completely reversed these alterations and elicited a more-balanced Th1/Th2 response. Moreover, TSN promoted macrophage phagocytotic activity and improved bacterial clearance of septic mice. Lastly, TSN abolished CLP-triggered increase in serum HMBG1 level. And HMGB1 neutralization could increase the percentages of splenic CD3+CD4+/CD3+CD8+ lymphocytes and decreased the Treg population. CONCLUSIONS Overall, our data suggest that TSN exerts immune modulatory effect and might be a useful strategy to ameliorate immunosuppression in polymicrobial sepsis.
Collapse
Affiliation(s)
- Min Gao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hao Ou
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, People's Republic of China
| | - Kangkai Wang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yue Peng
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Huali Zhang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Mingshi Yang
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Xianzhong Xiao
- Translational Medicine Center of Sepsis, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
148
|
Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci 2019; 20:ijms20030739. [PMID: 30744173 PMCID: PMC6387410 DOI: 10.3390/ijms20030739] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory, polygenic skin disorder affecting approximately 2% of the population. It has a great impact on quality of life; patients often experience depression, anxiety, stigma as well as suicidal behavior. Even though psoriasis is one of the most studied dermatological conditions, the pathogenesis of the disease is still not completely elucidated. The complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells are responsible for the histopathological changes seen in psoriasis. The pathogenic model leading to the formation of psoriatic plaques has however evolved a lot over the years. There is now enough evidence to support the role of interleukin (IL) -23, IL-17, IL-22, T helper (Th) -17 cells, Th-22 cells, T regulatory cells, transforming growth factor (TGF)-β1 and IL-10 in the pathogenesis of the disease. Moreover, several inflammatory and anti-inflammatory molecules are currently being investigated, some of them showing promising results. The aim of this paper is to look over the most recent advances in the immunological pathways involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania.
| | - Maria-Isabela Sarbu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Cristina-Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Madalina-Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
| |
Collapse
|
149
|
Szczepanik A, Iasella CJ, McDyer JF, Ensor CR. Cytokine-targeted therapy for the management of solid organ transplant recipients. Hum Immunol 2018; 80:184-190. [PMID: 30562564 DOI: 10.1016/j.humimm.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The number of solid organ transplants completed annually continues to trend upwards each year. Despite this, maintenance immunosuppression available on the market has remained relatively stagnant. Standard triple immunosuppression, composed typically of tacrolimus, mycophenolate, and steroids, lead to many side effects that limit the use of these medications. Tacrolimus, specifically, causes nephrotoxicity that can lead to renal dysfunction requiring a kidney transplant down the road. Alternative therapies for the management of immunosuppression need to be identified to try to mitigate these adverse effects. BODY: Cytokines are responsible for facilitating T cell differentiation and lead to the activation of inflammatory mediators that can contribute to graft damage and ultimately rejection. IL-4, IL-6, IL-12/23, and IL-15 are attractive targets for medications to try to ameliorate graft rejection. Various cytokine-targeted medications are currently available on the market for the treatment of inflammatory and autoimmune conditions such as rheumatoid arthritis, psoriatic arthritis, Crohn's, and multiple sclerosis. CONCLUSION This article reviews cytokine involvement in alloimmunity and the potential role cytokine-targeted therapy may play in prevention of allograft rejection in solid organ transplant recipients.
Collapse
Affiliation(s)
- Amanda Szczepanik
- University Hospitals Cleveland Medical Center, 11100 Euclid Avenue Mather B400, Cleveland, OH 44106, United States.
| | - Carlo J Iasella
- University of Pittsburgh, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, 200 Lothrop St, Pittsburgh, PA 15261, United States.
| | - John F McDyer
- University of Pittsburgh, Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, 200 Lothrop St, Pittsburgh, PA 15261, United States.
| | - Christopher R Ensor
- Florida Hospital Transplant Institute, AdventHealth Orlando, 601 East Rollins St, Orlando, FL 32707, United States
| |
Collapse
|
150
|
Smita S, Ahad A, Ghosh A, Biswas VK, Koga MM, Gupta B, Acha-Orbea H, Raghav SK. Importance of EMT Factor ZEB1 in cDC1 "MutuDC Line" Mediated Induction of Th1 Immune Response. Front Immunol 2018; 9:2604. [PMID: 30483264 PMCID: PMC6243008 DOI: 10.3389/fimmu.2018.02604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The role of Epithelial to Mesenchymal Transition (EMT) factor Zeb1 is well defined in metastasis and cancer progression but it's importance in dendritic cells (DCs) is unexplored until now. For the first time we report here that Zeb1 controls immunogenic responses of CD8α+ conventional Type-I (cDC1) DCs. We found that ZEB1 expression increases significantly after TLR9 stimulation and its depletion impairs activation, co-stimulation and secretion of important cytokines like IL-6, IL-10 and IL-12 in cDC1 MutuDC line. We further confirmed our findings in primary cDC1 DCs derived from bone marrow. Co-culture of these Zeb1 knock down (KD) DCs with OT-II CD4+ T helper cells skewed their differentiation toward Th2 subtype. Moreover, adoptive transfer of activated Zeb1 KD DCs cleared intestinal worms in helminth infected mice by increasing Th2 responses in vivo. Integrative genomic analysis showed Zeb1 as an activator of immune response genes in cDC1 MutuDCs as compared to other pathway genes. In addition, differentially regulated genes in Zeb1 KD RNA-seq showed significant enrichment of Th2 activation pathways supporting our in vitro findings. Mechanistically, we showed that decreased IL-12 secreted by Zeb1 KD DCs is the plausible mechanism for increased Th2 differentiation. Collectively our data demonstrate that Zeb1 could be targeted in DCs to modulate T-cell mediated adaptive immune responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Abdul Ahad
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov K Biswas
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Marianna M Koga
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|