101
|
Design and straightforward synthesis of novel galloyl phytosterols with excellent antioxidant activity. Food Chem 2014; 163:171-7. [DOI: 10.1016/j.foodchem.2014.04.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 11/23/2022]
|
102
|
Villani TS, Reichert W, Ferruzzi MG, Pasinetti GM, Simon JE, Wu Q. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration. Food Chem 2014; 170:271-80. [PMID: 25306345 DOI: 10.1016/j.foodchem.2014.08.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Fundamental concerns in quality control arise due to increasing use of grape seed extract (GSE) and the complex chemical composition of GSE. Proanthocyanidin monomers and oligomers are the major bioactive compounds in GSE. Given no standardized criteria for quality, large variation exists in the composition of commercial GSE supplements. Using HPLC/UV/MS, 21 commercial GSE containing products were purchased and chemically profiled, major compounds quantitated, and compared against authenticated grape seed extract, peanut skin extract, and pine bark extract. The antioxidant capacity and total polyphenol content for each sample was also determined and compared using standard techniques. Nine products were adulterated, found to contain peanut skin extract. A wide degree of variability in chemical composition was detected in commercial products, demonstrating the need for development of quality control standards for GSE. A TLC method was developed to allow for rapid and inexpensive detection of adulteration in GSE by peanut skin.
Collapse
Affiliation(s)
- Tom S Villani
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - William Reichert
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Mario G Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, United States
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
103
|
Raymond M, Holtz-Mulholland M, Collins SK. Macrocyclic Olefin Metathesis at High Concentrations by Using a Phase-Separation Strategy. Chemistry 2014; 20:12763-7. [DOI: 10.1002/chem.201404202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 11/10/2022]
|
104
|
Choi BH, Kang KS, Kwak MK. Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules 2014; 19:12727-59. [PMID: 25140450 PMCID: PMC6271622 DOI: 10.3390/molecules190812727] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) is featured by a progressive decline of kidney function and is mainly caused by chronic diseases such as diabetes mellitus and hypertension. CKD is a complex disease due to cardiovascular complications and high morbidity; however, there is no single treatment to improve kidney function in CKD patients. Since biological markers representing oxidative stress are significantly elevated in CKD patients, oxidative stress is receiving attention as a contributing factor to CKD pathology. Nuclear factor erythroid-2 related factor 2 (NRF2) is a predominant transcription factor that regulates the expression of a wide array of genes encoding antioxidant proteins, thiol molecules and their generating enzymes, detoxifying enzymes, and stress response proteins, all of which can counteract inflammatory and oxidative damages. There is considerable experimental evidence suggesting that NRF2 signaling plays a protective role in renal injuries that are caused by various pathologic conditions. In addition, impaired NRF2 activity and consequent target gene repression have been observed in CKD animals. Therefore, a pharmacological intervention activating NRF2 signaling can be beneficial in protecting against kidney dysfunction in CKD. This review article provides an overview of the role of NRF2 in experimental CKD models and describes current findings on the renoprotective effects of naturally occurring NRF2 activators, including sulforaphane, resveratrol, curcumin, and cinnamic aldehyde. These experimental results, coupled with recent clinical experiences with a synthetic triterpenoid, bardoxolone methyl, have brought a light of hope for ameliorating CKD progression by preventing oxidative stress and maintaining cellular redox homeostasis.
Collapse
Affiliation(s)
- Bo-hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Korea.
| | - Kyung-Shin Kang
- Daewon Foreign Language High School, Kwangjin-gu, Seoul 143-713, Korea.
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420-743, Korea.
| |
Collapse
|
105
|
Moreno-Ulloa A, Nogueira L, Rodriguez A, Barboza J, Hogan MC, Ceballos G, Villarreal F, Ramirez-Sanchez I. Recovery of Indicators of Mitochondrial Biogenesis, Oxidative Stress, and Aging With (-)-Epicatechin in Senile Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1370-8. [PMID: 25143004 DOI: 10.1093/gerona/glu131] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/03/2014] [Indexed: 01/09/2023] Open
Abstract
There is evidence implicating oxidative stress (OS) as the cause of the deleterious effects of aging. In this study, we evaluated the capacity of the flavanol (-)-epicatechin (Epi) to reduce aging-induced OS and restore mitochondrial biogenesis, as well as, structural and functional endpoints in aged mice. Senile (S; 26-month-old) C57BL/6 male mice were randomly assigned to receive either water (vehicle) or 1mg/kg of Epi via oral gavage (twice daily) for 15 days. Young (Y; 6-month-old) mice were used as controls. In S brain, kidney, heart, and skeletal muscle (compared with Y animals) an increase in OS was observed as evidenced by increased protein-free carbonyls and decreased reduced glutathione levels as well as sirtuin 3, superoxide dismutase 2, catalase, thioredoxin and glutathione peroxidase protein levels. Well-recognized factors (eg, sirtuin 1) that regulate mitochondrial biogenesis and mitochondrial structure- and/or function-related endpoints (eg, mitofilin and citrate synthase) protein levels were also reduced in S organs. In contrast, the aging biomarker senescence-associated β-galactosidase was increased in S compared with Y animals, and Epi administration reduced levels towards those observed in Y animals. Altogether, these data suggest that Epi is capable of shifting the biology of S mice towards that of Y animals.
Collapse
Affiliation(s)
- Aldo Moreno-Ulloa
- Department of Medicine, University of California, San Diego, La Jolla, California, USA . Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Leonardo Nogueira
- Instituto de Bioquímica Médica Leopoldo De Méis, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Alonso Rodriguez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jonathan Barboza
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Guillermo Ceballos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Francisco Villarreal
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Israel Ramirez-Sanchez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA . Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
106
|
Mooradian AD, Haas MJ. The effect of nutritional supplements on serum high-density lipoprotein cholesterol and apolipoprotein A-I. Am J Cardiovasc Drugs 2014; 14:253-74. [PMID: 24604774 DOI: 10.1007/s40256-014-0068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the factors contributing to the increased risk of developing premature atherosclerosis is low plasma concentrations of high-density lipoprotein (HDL) cholesterol. Multiple potential mechanisms account for the cardioprotective effects of HDL and its main protein apolipoprotein A-I (apo A-I). Diet has an important role in modulating HDL cholesterol level. The widespread use of nutritional supplements may also alter the biology of HDL. In this review, we discuss the effect of select nutritional supplements on serum HDL cholesterol and apo A-I levels. Some nutritional supplements, such as phytosterols, soy proteins, and black seed extracts, may increase HDL cholesterol levels, while others such as cholic acid and high doses of commonly used antioxidant vitamins may downregulate HDL cholesterol levels and reduce its cardioprotection. Multiple mechanisms are involved in the regulation of HDL levels, so changes in production and clearance of HDL may have different clinical implications. The clinical relevance of the changes in HDL and apo A-I caused by nutrient supplementation needs to be tested in controlled clinical trials.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, 653-1 West 8th Street, 4th Floor, LRC, Jacksonville, FL, 32209, USA,
| | | |
Collapse
|
107
|
Mecocci P, Tinarelli C, Schulz RJ, Polidori MC. Nutraceuticals in cognitive impairment and Alzheimer's disease. Front Pharmacol 2014; 5:147. [PMID: 25002849 PMCID: PMC4066843 DOI: 10.3389/fphar.2014.00147] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Several chemical substances belonging to classes of natural dietary origin display protective properties against some age-related diseases including neurodegenerative ones, particularly Alzheimer's disease (AD). These compounds, known as nutraceuticals, differ structurally, act therefore at different biochemical and metabolic levels and have shown different types of neuroprotective properties. The aim of this review is to summarize data from observational studies, clinical trials, and randomized clinical trials (RCTs) in humans on the effects of selected nutraceuticals against age-related cognitive impairment and dementia. We report results from studies on flavonoids, some vitamins and other natural substances that have been studied in AD and that might be beneficial for the maintenance of a good cognitive performance. Due to the substantial lack of high-level evidence studies there is no possibility for recommendation of nutraceuticals in dementia-related therapeutic guidelines. Nevertheless, the strong potential for their neuroprotective action warrants further studies in the field.
Collapse
Affiliation(s)
- P. Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of PerugiaPerugia, Italy
| | - C. Tinarelli
- Section of Gerontology and Geriatrics, Department of Medicine, University of PerugiaPerugia, Italy
| | - R. J. Schulz
- Geriatrics Department, Medical Faculty, University of CologneCologne, Germany
| | - M. C. Polidori
- Geriatrics Department, Medical Faculty, University of CologneCologne, Germany
| |
Collapse
|
108
|
Resveratrol promotes degradation of the human bile acid transporter ASBT (SLC10A2). Biochem J 2014; 459:301-12. [PMID: 24498857 DOI: 10.1042/bj20131428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sodium/bile acid co-transporter ASBT [apical sodium-dependent bile acid transporter; SLC10A2 (solute carrier family 10 member 2)] plays a key role in the enterohepatic recycling of the bile acids and indirectly contributes to cholesterol homoeostasis. ASBT inhibitors reportedly lower plasma triglyceride levels and increase HDL (high-density lipoprotein) cholesterol levels. RSV (resveratrol), a major constituent of red wine, is known to lower LDL (low-density lipoprotein) cholesterol levels, but its mechanism of action is still unclear. In the present study, we investigated the possible involvement of ASBT in RSV-mediated cholesterol-lowering effects. We demonstrate that RSV inhibits ASBT protein expression and function via a SIRT1 (sirtuin 1)-independent mechanism. The effect was specific to ASBT since other transporters involved in cholesterol homoeostasis, NTCP (SLC10A1), OSTα (SLC51A) and ABCG1 (ATP-binding cassette G1), remained unaffected. ASBT inhibition by RSV was reversed by proteasome inhibitors (MG-132 and lactacystin) and the ubiquitin inhibitor LDN57444, suggesting involvement of the ubiquitin-proteasome pathway. Immunoprecipitation revealed high levels of ubiquitinated ASBT after RSV treatment. Phosphorylation at Ser335 and Thr339 was shown previously to play a role in proteosomal degradation of rat ASBT. However, mutation at corresponding residues in rat ASBT revealed that phosphorylation does not contribute to RSV-mediated degradation of ASBT. Combined, our data indicate that RSV promotes ASBT degradation via the ubiquitin-proteasome pathway without requiring phosphorylation. We conclude that regulation of ASBT expression by RSV may have clinical relevance with regard to the observed cholesterol-lowering effects of RSV.
Collapse
|
109
|
Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 2014; 63:693-701. [PMID: 24629563 DOI: 10.1016/j.metabol.2014.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/06/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Resveratrol (RSV) regulates NAD bioavailability and sirtuin-related metabolism, which relates to aging, metabolic syndrome and non-alcoholic fatty liver disease. The purpose of this study was to investigate the effects of resveratrol on hepatic metaflammation in a rodent model of high-fat (HF) diet-induced obesity (DIO). MATERIALS/METHODS DIO was induced in a subset of mice given an HF diet (45% kcal fat). After 6weeks of HF diet feeding, RSV was delivered via an osmotic pump for 4weeks. The experimental groups were as follows: 1) lean control fed with a standard diet, 2) HF diet-induced obese control, and 3) HF_RSV (8mg/kg/day). After 4weeks of each treatment, blood and liver tissues were collected and the indices of glucose control, serum and liver triglyceride (TG), sirtuin pathway, inflammation, and NOD-like receptor family, pryin domain containing 3 (NLRP3) inflammasome were analyzed. RESULTS Body weight and food intake were not altered by administering resveratrol. Glucose control was impaired, and serum and liver TG levels were increased by the HF diet. Hepatic inflammation was aggravated in mice fed with the HF diet, as shown by the increased levels of the pro-inflammatory markers interleukin-1 (IL-1), IL-6 and tumor necrosis factor-alpha in the liver. However, resveratrol administration significantly improved glucose control, and serum and liver TG contents. Also, resveratrol treatment reduced the levels of the pro-inflammatory markers. These improvements were accompanied by alterations in sirtuin pathway and NLRP3 inflammasome activation. CONCLUSION These results demonstrate that resveratrol ameliorates hepatic metaflammation, accompanied by alterations in NLRP3 inflammasome.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea.
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| |
Collapse
|
110
|
Abstract
The phytochemicals present in fruits and vegetables may play an important role in deceasing chronic disease risk. Grapes, one of the most popular and widely cultivated and consumed fruits in the world, are rich in phytochemicals. Epidemiological evidence has linked the consumption of grapes with reduced risk of chronic diseases, including certain types of cancer and cardiovascular disease. In vitro and in vivo studies have shown that grapes have strong antioxidant activity, inhibiting cancer cell proliferation and suppressing platelet aggregation, while also lowering cholesterol. Grapes contain a variety of phytochemicals, like phenolic acids, stilbenes, anthocyanins, and proanthocyanidins, all of which are strong antioxidants. The phytochemical composition of grapes, however, varies greatly among different varieties. While extensive research exists, a literature review of the health benefits of grapes and their phytochemicals has not been compiled to summarize this work. The aim of this paper is to critically review the most recent literature regarding the concentrations, biological activities, and mechanisms of grape phytochemicals.
Collapse
Affiliation(s)
- Jun Yang
- Frito-Lay R&D, 7701 Legacy Drive, Plano, TX 75024, USA.
| | | |
Collapse
|
111
|
Rienth M, Torregrosa L, Kelly MT, Luchaire N, Pellegrino A, Grimplet J, Romieu C. Is transcriptomic regulation of berry development more important at night than during the day? PLoS One 2014; 9:e88844. [PMID: 24551177 PMCID: PMC3923830 DOI: 10.1371/journal.pone.0088844] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/12/2014] [Indexed: 12/22/2022] Open
Abstract
Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far.
Collapse
Affiliation(s)
- Markus Rienth
- Fondation Jean Poupelain, Javrezac, France
- INRA-SupAgro, UMR AGAP, Montpellier, France
| | | | - Mary T. Kelly
- Laboratoire d’Oenologie, UMR1083, Faculté de Pharmacie, Montpellier, France
| | - Nathalie Luchaire
- INRA-SupAgro, UMR AGAP, Montpellier, France
- INRA, UMR LEPSE, Montpellier, France
| | | | - Jérôme Grimplet
- ICVV (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | | |
Collapse
|
112
|
Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6:391-415. [PMID: 24451310 PMCID: PMC3916869 DOI: 10.3390/nu6010391] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 01/06/2023] Open
Abstract
Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed.
Collapse
Affiliation(s)
- Vasil Georgiev
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Anthony Ananga
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| |
Collapse
|
113
|
Pandey KB, Rizvi SI. Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans. Rejuvenation Res 2014; 16:232-40. [PMID: 23537202 DOI: 10.1089/rej.2013.1419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative damage followed by disturbed cellular homeostasis is involved in aging and related consequences. Lipid peroxidation, post-translational modifications of proteins, and an impaired defense system due to increased oxidative stress jeopardize cell fate and functions, resulting in cell senescence. Resveratrol, a natural stilbene, has extensively been reported to elicit a plethora of health-promoting effects. The present study carried out on 97 healthy human subjects (62 males and 35 females) of both sexes provides experimental evidence that resveratrol confers ability to up-regulate the plasma membrane redox system (PMRS) along with ascorbate free radical reductase, a compensatory system operating in the cell to maintain cellular redox state. Furthermore, resveratrol provided significant protection against lipid peroxidation and protein carbonylation and restored the cellular redox homeostasis measured in terms of glutathione (GSH) and sulfhydryl (-SH) group levels during oxidation injury in erythrocytes of different age groups in humans. Findings suggest a possible role of resveratrol in retardation of age-dependent oxidative stress.
Collapse
|
114
|
|
115
|
|
116
|
Kim H, Bae S, Kim Y, Cho CH, Kim SJ, Kim YJ, Lee SP, Kim HR, Hwang YI, Kang JS, Lee WJ. Vitamin C prevents stress-induced damage on the heart caused by the death of cardiomyocytes, through down-regulation of the excessive production of catecholamine, TNF-α, and ROS production in Gulo(-/-)Vit C-Insufficient mice. Free Radic Biol Med 2013; 65:573-583. [PMID: 23886864 DOI: 10.1016/j.freeradbiomed.2013.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
It is thought that vitamin C has protective roles on stress-induced heart damage and the development of cardiovascular diseases, but its precise role and mechanisms are unclear. In the present study, we investigated the specific mechanisms by which vitamin C leads to protecting the heart from stress-induced damage in the Gulo(-/-) mice which cannot synthesize vitamin C like humans. By exposure to stress (1h/day), the heartbeat and cardiac output in vitamin C-insufficient Gulo(-/-) mice were definitely decreased, despite a significant increase of adrenaline (ADR) and noradrenaline (NA) production. A change of cardiac structure caused by the death of cardiomyocytes and an increased expression of matrix metalloprotease (MMP)-2 and -9 were also found. Moreover, lipid peroxidation and the production of tumor necrosis factor-alpha (TNF-α) in the heart were increased. Finally, all vitamin C-insufficient Gulo(-/-) mice were expired within 2 weeks. Interestingly, all of the findings in vitamin C-insufficient Gulo(-/-) mice were completely prevented by the supplementation of a sufficient amount of vitamin C. Taken together, vitamin C insufficiency increases the risk of stress-induced cardiac damage with structural and functional changes arising from the apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Seyeon Bae
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yong-Jin Kim
- Cardiovascular Center, Seoul National University Hospital, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Seung-Pyo Lee
- Cardiovascular Center, Seoul National University Hospital, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Hang-Rae Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Young-Il Hwang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| | - Wang Jae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
117
|
Renal protective effects of resveratrol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:568093. [PMID: 24379901 PMCID: PMC3863562 DOI: 10.1155/2013/568093] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023]
Abstract
Resveratrol (3,5,4′-trihydroxystilbene), a natural polyphenolic compound found in grapes and red wine, is reported to have beneficial effects on cardiovascular diseases, including renal diseases. These beneficial effects are thought to be due to this compound's antioxidative properties: resveratrol is known to be a robust scavenger of reactive oxygen species (ROS). In addition to scavenging ROS, resveratrol may have numerous protective effects against age-related disorders, including renal diseases, through the activation of SIRT1. SIRT1, an NAD+-dependent deacetylase, was identified as one of the molecules through which calorie restriction extends the lifespan or delays age-related diseases, and this protein may regulate multiple cellular functions, including apoptosis, mitochondrial biogenesis, inflammation, glucose/lipid metabolism, autophagy, and adaptations to cellular stress, through the deacetylation of target proteins. Previous reports have shown that resveratrol can ameliorate several types of renal injury, such as diabetic nephropathy, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and unilateral ureteral obstruction, in animal models through its antioxidant effect or SIRT1 activation. Therefore, resveratrol may be a useful supplemental treatment for preventing renal injury.
Collapse
|
118
|
Chrysohoou C, Stefanadis C. Longevity and diet. Myth or pragmatism? Maturitas 2013; 76:303-7. [PMID: 24210636 DOI: 10.1016/j.maturitas.2013.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/26/2022]
Abstract
Longevity is a very complex phenomenon, because many environmental, behavioral, socio-demographic and dietary factors influence the physiological pathways of aging and life-expectancy. Nutrition has been recognized to have an important impact on overall mortality and morbidity; and its role in extending life expectancy has been the object of extensive scientific research. This paper reviews the pathophysiological mechanisms that potentially link aging with diet and the scientific evidence supporting the anti-aging effect of the traditional Mediterranean diet, as well as of some specific foods. The diet and several of its components have additionally been shown to have beneficial effects on the co-morbidities typical of elderly populations. Furthermore, the epigenetic effects of diet on the aging process - through calorie restriction and the consumption of foods like red wine, orange juice, probiotics and prebiotics - have attracted scientific interest. Some, such as dark chocolate, red wine, nuts, beans, avocados are being promoted as anti-aging foods, due to their anti-oxidative and anti-inflammatory properties. Finally, an important moderator in the relationship between diet, longevity and human health remains the socio-economic status of individual, as a healthy diet, due to its higher cost, is closely related to higher financial and educational status.
Collapse
Affiliation(s)
- Christina Chrysohoou
- First Cardiology Clinic, Hippokration Hospital, School of Medicine, University of Athens, Greece.
| | | |
Collapse
|
119
|
Fullwood JE, Mostaghimi Z, Granger CB, Washam JB, Bride W, Zhao Y, Granger BB. Alcohol withdrawal prevention: a randomized evaluation of lorazepam and ethanol--a pilot study. Am J Crit Care 2013; 22:398-406. [PMID: 23996419 DOI: 10.4037/ajcc2013283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alcohol withdrawal syndrome, characterized by confusion, agitation, and hallucinations, decreases the safety of patients with acute myocardial infarction. Unexpected hospitalization and sudden cessation of alcohol consumption may increase in-hospital complications and length of stay and even precipitate death. PURPOSE To perform a randomized evaluation of lorazepam and ethanol/lorazepam to evaluate the safety and efficacy of these 2 strategies for preventing alcohol withdrawal syndrome in patients with acute coronary syndromes. METHODS Patients (n = 57) with myocardial infarction were screened for alcohol dependence by using the CAGE questionnaire and randomized to treatment with lorazepam or ethanol with lorazepam. Demographics and complication rates were analyzed by using χ² tests (categorical variables) and t tests (continuous variables). Safety (composite complication rates) of the treatment strategy was evaluated by using the Fisher exact test, and length of stay by using the Wilcoxon rank-sum test. RESULTS Safety-associated complication rates (self-extubation, delirium tremens, reinfarction) did not differ between groups (24% lorazepam vs 18% ethanol; P = .56). Days spent in the cardiac intensive care unit (7% lorazepam vs 2% ethanol; P = .32) and overall hospital stay (6% lorazepam vs 6% ethanol; P = .72) did not differ between the 2 groups. CONCLUSIONS These preliminary findings suggest that a randomized evaluation of treatment strategies to prevent complications associated with alcohol withdrawal in patients with acute myocardial infarction is safe and feasible.
Collapse
Affiliation(s)
- Joyce E Fullwood
- Cardiac Intensive Care Unit, Duke University Hospital, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The metabolic syndrome is one of the most vibrant and widely prevailing health concerns worldwide. It is characterized by several metabolic abnormalities, which involve obesity, insulin resistance, dyslipidemia, enhanced oxidative stress; hypertension and increased pro-inflammatory state that ultimate contribute towards poor health. The prevalence of metabolic syndrome in Pakistan according to different definitions is reported to be from 18 % to 46 %. Fifty percent of Pakistani population is at high risk of metabolic syndrome as being hypertensive. In studying dyslipidemia in Pakistan, hypertriglyceridemia is found in 27-54 % of the population, whereas 68-81 % has low levels of high-density lipoprotein (HDL). Population likes to eat healthier diet without changing their fundamental dietary pattern. Nutrition science has moved on from the classical concepts of avoiding nutrient deficiencies and basic nutritional adequacy to the concept of positive or optimal nutrition. Many traditional food products including fruits, vegetables, flaxseed, oat, barley, whole grains, soy and milk have been found to contain component with potential health benefits. Nowadays, functional foods are used in the prevention and amelioration of several chronic diseases, such as the metabolic syndrome. The relation of the consumption of certain functional foods and the improvement in health status is regulated through health claims. This review focuses on the different features of the metabolic syndrome and the influence of functional foods on these aspects, involving dyslipidemia, improvement of insulin sensitivity, serum lipid profile, antioxidant status, anti-inflammatory status and weight management of humans.
Collapse
Affiliation(s)
- Muhammad Issa Khan
- National institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan,
| | | | | | | |
Collapse
|
121
|
Gonçalves JL, Alves VL, Rodrigues FP, Figueira JA, Câmara JS. A semi-automatic microextraction in packed sorbent, using a digitally controlled syringe, combined with ultra-high pressure liquid chromatography as a new and ultra-fast approach for the determination of prenylflavonoids in beers. J Chromatogr A 2013; 1304:42-51. [DOI: 10.1016/j.chroma.2013.06.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022]
|
122
|
Cardozo LFMF, Pedruzzi LM, Stenvinkel P, Stockler-Pinto MB, Daleprane JB, Leite M, Mafra D. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 2013; 95:1525-33. [PMID: 23643732 DOI: 10.1016/j.biochi.2013.04.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
Abstract
The nuclear factor E2-related factor 2 (Nrf2) plays an important role in cellular protection against cancer, renal, pulmonary, cardiovascular and neurodegenerative diseases where oxidative stress and inflammation are common conditions. The Nrf2 regulates the expression of detoxifying enzymes by recognizing the human Antioxidant Response Element (ARE) binding site and it can regulate antioxidant and anti-inflammatory cellular responses, playing an important protective role on the development of the diseases. Studies designed to investigate how effective Nrf2 activators or modulators are need to be initiated. Several recent studies have shown that nutritional compounds can modulate the activation of Nrf2-Keap1 system. This review aims to discuss some of the key nutritional compounds that promote the activation of Nrf2, which may have impact on the human health.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Federal Fluminense University, Graduate Programme in Cardiovascular Sciences, Niterói-RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
123
|
Mukhopadhyay P, Das S, Ahsan MK, Otani H, Das DK. Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and γ-tocotrienol. J Cell Mol Med 2013; 16:2504-17. [PMID: 22050707 PMCID: PMC3823443 DOI: 10.1111/j.1582-4934.2011.01480.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Resveratrol, a constituent of red wine, and γ-tocotrienol, a constituent of palm oil are important for cardioprotection. Although microRNAs are known regulators for genes involved in cardiac remodelling, the regulatory pathway involving microRNA has not been studied so far. We explored the cardioprotection by resveratrol, longevinex and γ−tocotrienol in ischaemia/reperfusion(I/R) model of rat and determined miRNA profile from isolated RNA. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches. Resveratrol and γ-tocotrienol, either alone or in combination, modulated the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 75 miRNAs, some of them, such as miR-21 and miR-20b (anti-angiogenic) were previously implicated in cardiac remodelling. The target genes for the highest differentially expressed miRNA include genes of various molecular functions such as TGFβ1–Smad3 signalling pathway, inflammation and their transcription factors, which may play key role in reducing I/R injury. Administration of antagomiR-20 attenuated I/R induced vascular endothelial growth factor and HIF1α level. All the interventions treated for 3 weeks lead to significant cardioprotection against ischaemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or γ-tocotrienol. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R rat. Interestingly, resveratrol and γ-tocotrienol resulted in synergestic action.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
124
|
Barbagallo I, Galvano F, Frigiola A, Cappello F, Riccioni G, Murabito P, D'Orazio N, Torella M, Gazzolo D, Li Volti G. Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases. Antioxid Redox Signal 2013; 18:507-521. [PMID: 23025298 DOI: 10.1089/ars.2011.4360] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defenses and modulate the cellular redox state. Such effects may have wide-ranging consequences for cellular growth and differentiation. CRITICAL ISSUES The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. One possible protective molecular mechanism of polyphenols is nuclear factor erythroid 2-related factor (Nrf2) activation, which in turn regulates a number of detoxification enzymes. RECENT ADVANCES Among the latter, the heme oxygenase-1 (HO-1) pathway is likely to contribute to the established and powerful antioxidant/anti-inflammatory properties of polyphenols. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to prevention of cardiovascular diseases in various experimental models. FUTURE DIRECTIONS The focus of this review is on the role of natural HO-1 inducers as a potential therapeutic strategy to protect the cardiovascular system against various stressors in several pathological conditions.
Collapse
|
125
|
Petyaev IM, Tsibezov VV, Osipov SN, Kyle NH, Vorobjeva DV, Bashmakov YK. Generation of Monoclonal Antibody Against trans-Resveratrol. Hybridoma (Larchmt) 2012; 31:449-54. [DOI: 10.1089/hyb.2012.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Valeriy V. Tsibezov
- Ivanovsky Institute Of Virology, Ministry of Health, Moscow, Russian Federation
| | - Sergey N. Osipov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, Moscow, Russian Federation
| | | | - Daria V. Vorobjeva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, Moscow, Russian Federation
| | | |
Collapse
|
126
|
|
127
|
Abstract
The level of health care spending in the United States and other developed nations is rising at a disturbingly rapid rate. However, in the United States, these increases are not justified by superior performance. Rather, most other wealthy countries' inhabitants live longer and suffer from fewer medical problems than the average American. This paper demonstrates the continued abundance of opportunities for substantially reducing health care costs without decreasing the quality of care. In particular, it emphasizes the need to reduce the practice of defensive medicine and to enlarge the cadre of non-specialist physicians who educate future doctors. Such cost-saving opportunities are not rare phenomena but are widely available and offer the United States opportunities to move toward the markedly lower cost levels that have been achieved in other countries.
Collapse
|
128
|
Zhang XH, Huang B, Choi SK, Seo JS. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation. Nutr Res Pract 2012; 6:286-93. [PMID: 22977681 PMCID: PMC3439571 DOI: 10.4162/nrp.2012.6.4.286] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/01/2012] [Accepted: 07/09/2012] [Indexed: 11/09/2022] Open
Abstract
Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.
Collapse
Affiliation(s)
- Xian-Hua Zhang
- Department of Food and Nutrition, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongbuk 712-749, Korea
| | | | | | | |
Collapse
|
129
|
Walker BN, Stolee JA, Vertes A. Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry. Anal Chem 2012; 84:7756-62. [DOI: 10.1021/ac301238k] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bennett N. Walker
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Jessica A. Stolee
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Akos Vertes
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| |
Collapse
|
130
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012; 12:148. [PMID: 22908993 PMCID: PMC3528476 DOI: 10.1186/1471-2229-12-148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lijun Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
131
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012. [PMID: 22908993 DOI: 10.1186/1471-2229-12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
132
|
Diet and aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:741468. [PMID: 22928085 PMCID: PMC3425961 DOI: 10.1155/2012/741468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms. CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms (e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g., TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake, and the use of plant-derived polyphenol resveratrol as a food supplement.
Collapse
|
133
|
A sensitive microextraction by packed sorbent-based methodology combined with ultra-high pressure liquid chromatography as a powerful technique for analysis of biologically active flavonols in wines. Anal Chim Acta 2012; 739:89-98. [DOI: 10.1016/j.aca.2012.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
134
|
Kristo AS, Malavaki CJ, Lamari FN, Karamanos NK, Klimis-Zacas D. Wild blueberry (V. angustifolium)-enriched diets alter aortic glycosaminoglycan profile in the spontaneously hypertensive rat. J Nutr Biochem 2012; 23:961-5. [DOI: 10.1016/j.jnutbio.2011.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/19/2023]
|
135
|
Lanzilli G, Cottarelli A, Nicotera G, Guida S, Ravagnan G, Fuggetta MP. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation 2012; 35:240-8. [PMID: 21369944 DOI: 10.1007/s10753-011-9310-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine produced, although not exclusively, by T helper 17 recently identified as a distinct T helper lineage mediating tissue inflammation. IL-17 is known to be involved in a number of chronic disorders although the mechanisms regulating its production in inflammatory disease are still unclear. The beneficial properties of the polyphenolic compound resveratrol including its anti-inflammatory, antioxidant, and antitumor effects, its role in the aging process and in the prevention of heart and neurodegenerative diseases are well-known. In addition, derivatives of resveratrol, including glucosylated molecules as polydatin have been linked to similar beneficial effects. We have investigated the effects of resveratrol and polydatin on the in vitro production of IL-17 in a model of inflammation in vitro. The results obtained by activated human peripheral blood mononuclear cells, stimulated with anti-CD3/anti-CD28 monoclonal antibodies and treated with these polyphenolic compounds at different concentrations show that both decrease IL-17 production in a concentration-dependent manner. This study confirms the anti-inflammatory activity of resveratrol and its derivatives and suggests a potential clinical relevance in the therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Giulia Lanzilli
- Institute of Translational Pharmacology (IFT), National Council of Research, Rome, Via Fosso del Cavaliere 100, 00173, Rome, Italy
| | | | | | | | | | | |
Collapse
|
136
|
Lee SJ, Park SS, Kim WJ, Moon SK. Gleditsia sinensis thorn extract inhibits proliferation and TNF-α-induced MMP-9 expression in vascular smooth muscle cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:373-86. [PMID: 22419430 DOI: 10.1142/s0192415x12500292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thorns of Gleditsia sinensis, which are extensively used as a medicinal herb in Asian countries, have been reported to exert various pharmacological effects. However, the anti-atherogenic effect of Gleditsia sinensis thorns has never been investigated. In the present study, we investigated the role and effect of the ethanol extract of Gleditsia sinensis thorns (EEGS) on cultured vascular smooth muscle cells (VSMC). Treatment of VSMC with EEGS led to a significant decrease in cell growth by arresting cells in the G2/M-phase of the cell cycle, which was associated with up-regulated p21WAF1 levels and suppression of G2/M cell cycle regulators, cyclinB1, Cdc2 and Cdc25c. In addition, EEGS treatment led to the induction of extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, and JNK (c-Jun N-terminal kinases) activation. EEGS-induced p21WAF1 expression was blocked by treatment with the p38 MAPK-specific inhibitor SB203580. SB203580 also markedly recovered the inhibition of cell growth and decrease in cell cycle proteins in EEGS-treated VSMC. Moreover, EEGS inhibited matrix metalloproteinase-9 (MMP-9) expression induced by tumor necrosis factor-α (TNF-α) in VSMC. Finally, an electrophoresis mobility shift assay demonstrated that EEGS suppressed expression of transcription factor, nuclear factor kappaB (NF-κB) and activator protein-1 (AP-1), which are essential cis-elements for the MMP-9 promoter in TNF-α-treated VSMC. These results demonstrate that EEGS exerts a potent inhibitory effect on cell proliferation and MMP-9 expression in VSMC. These unexpected novel findings represent theoretical data for the preventive and therapeutic use of EEGS for the treatment of atherosclerosis disease.
Collapse
Affiliation(s)
- Se-Jung Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
| | | | | | | |
Collapse
|
137
|
Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int J Mol Med 2012; 30:606-14. [PMID: 22751734 DOI: 10.3892/ijmm.2012.1045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/30/2012] [Indexed: 11/05/2022] Open
Abstract
Three major sources of flavonoids and phenolic compounds, which are commonly used in food industry, namely loquat leaf (LL), grape skin (GS) and acai puree, were tested in regard to their potential anti-atherosclerotic and anti-diabetic activity. The compounds were evaluated by in vitro antioxidant assay using a macrophage model and for in vivo hypolipidemic activity using zebrafish. In assays in vitro, all extracts demonstrated potent ferric ion reductive capacity, radical-scavenging activity and inhibition of low-density lipoprotein (LDL) oxidation at a final concentration of 0.1 mg/ml. Extracts could also abrogate fructose-mediated protein glycation and mildly inhibit cholesteryl ester transfer protein (CETP). Cellular uptake of oxidized or acetylated LDL into macrophages was inhibited by acai treatment (final concentration, 0.1 mg/ml) and moderately diminished by GS and LL extracts. After 4 weeks of feeding on a high cholesterol diet (HCD), zebrafish exhibited serum total cholesterol (TC) and triglyceride (TG) levels 2.5-fold higher than those fed a normal diet (ND). Within the experimental group, those fed acai demonstrated the lowest serum TC and CETP activity, while the LL-consuming group showed a reduction in serum TC and TG relative to HCD-fed fish. Serum glucose levels also increased in the HCD group, to threefold above the ND group; GS and LL feeding elicited the greatest reduction in hyperglycemia. The groups consuming acai and LL showed much less hepatic inflammation, as well as attenuation of fatty liver and a reduced content of oxidized species. In conclusion, extracts of LL, GS, and acai shared antioxidant, anti-inflammatory and anti-atherosclerotic activity in cellular assays and in a hypercholesterolemic zebrafish model.
Collapse
|
138
|
Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct 2012; 3:745-52. [PMID: 22572890 DOI: 10.1039/c2fo10271d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic intestinal inflammation is an established risk factor for colon cancer. Polyphenolic compounds from fruit and vegetables have been shown to have anti-inflammatory properties in several cell lines and tissues. However, their anti-inflammatory mechanisms, involving microRNAs in the regulation of inflammation, have not been extensively investigated. The goal of this research was to assess the chemopreventive potential of polyphenolics extracted from red wine made with Lenoir grapes (Vitis aestivalis hybrid) in human colon-derived CCD-18Co myofibroblasts cells, and to assess the potential involvement of microRNA-126 (miR-126) in the underlying mechanisms. The results show that the polyphenolic red wine extract (WE) decreased mRNA expression of lipopolysaccharide (LPS)-induced inflammatory mediators NF-kB, ICAM-1, VCAM-1, and PECAM-1 by 1.95-, 1.98-, 1.52-, and 1.84-fold respectively, in a dose dependent manner (0-100 μg of gallic acid equivalent (GAE) mL(-1)) down to 0.80-, 0.79-, 0.66-, and 0.68-fold in DMSO-treated control cells not challenged with LPS, respectively. Correspondingly, miR-126, which has a target region within the 3'-UTR of VCAM-1 mRNA, was increased 2.79-fold by the WE at 100 μg GAE mL(-1). The potential role of miR-126 was confirmed by transfecting cells with a specific miR-126-antagomir, as-miR-126. Transfection with as-miR-126 down-regulated miR-126 to 0.71-fold in the control cells and up-regulated mRNA levels of NF-kB, ICAM-1, VCAM-1, and PECAM-1 to 1.80-, 1.49-, 2.30-, and 1.95-fold of controls, respectively. WE at 100 μg GAE mL(-1) partially reversed the effects of the as-miR-126 to 1.02-, 1.01-, 1.04-, and 1.05-fold, for mRNA levels of NF-kB, ICAM-1, VCAM-1, and PECAM-1 respectively. This indicates the potential role of miR-126 in the anti-inflammatory properties of polyphenolics from red wine in CCD-18Co myofibroblasts cells.
Collapse
Affiliation(s)
- Gabriela Angel-Morales
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
139
|
Gorbunov N, Petrovski G, Gurusamy N, Ray D, Kim DH, Das DK. Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells. J Cell Mol Med 2012; 16:174-84. [PMID: 21352470 PMCID: PMC3823103 DOI: 10.1111/j.1582-4934.2011.01281.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The major problem in stem cell therapy includes viability and engraftment efficacy of stem cells after transplantation. Indeed, the vast majority of host-transfused cells do not survive beyond 24–72 hrs. To increase the survival and engraftment of implanted cardiac stem cells in the host, we developed a technique of treating these cells with resveratrol, and tested it in a rat model of left anterior descending (LAD) occlusion. Multi-potent clonogenic cardiac stem cells isolated from rat heart and stably transfected with EGFP were pre-treated with 2.5 μM resveratrol for 60 min. Rats were anaesthetized, hearts opened and the LAD occluded to induce heart attack. One week later, the cardiac reduced environment was confirmed in resveratrol treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). M-mode echocardiography after stem cell therapy, showed improvement in cardiac function (left ventricular ejection fraction, fractional shortening and cardiac output) in both, the treated and control group after 7 days, but only resveratrol-modified stem cell group revealed improvement in cardiac function at the end of 1, 2 and 4 months time. The improvement of cardiac function was accompanied by enhanced stem cell survival and engraftment as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the expression of EGFP up to 4 months after LAD occlusion in the resveratrol-treated stem cell group. Expression of stromal cell-derived factor and myosin conclusively demonstrated homing of stem cells in the infarcted myocardium, its regeneration leading to improvement of cardiac function.
Collapse
Affiliation(s)
- Nikolai Gorbunov
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
140
|
Protective effects of grape seed extract against oxidative and nitrative damage of plasma proteins. Int J Biol Macromol 2012; 51:183-7. [PMID: 22584076 DOI: 10.1016/j.ijbiomac.2012.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 04/24/2012] [Accepted: 05/05/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress, vascular inflammation, endothelial dysfunction plays a crucial role in the pathogenesis of cardiovascular diseases. The aim of our in vitro study was to examine the antioxidative properties of grape seed extract, and its potential protective effect on the haemostatic function of human fibrinogen under oxidative stress conditions, induced by peroxynitrite (100 μM). The preincubation of plasma with the tested extract (0.5-50 μg/ml or 0.5-300 μg/ml) reduced the formation of 3-nitrotyrosine and diminished oxidation of thiol groups in plasma proteins. The low concentrations (0.5-50 μg/ml) of grape seed extract also decreased the level of carbonyl groups, however at higher concentrations (100-300 μg/ml) this effect was not observed. Furthermore, grape seed extract counteracted the inhibitory effect of peroxynitrite on human plasma clotting. The results obtained in this study indicate that components of the grape seed extract posses antioxidative properties and may be promising substances for the creation of new dietary supplements.
Collapse
|
141
|
Frombaum M, Le Clanche S, Thérond P, Nubret E, Bonnefont-Rousselot D, Borderie D. Penetration of resveratrol into bovine aortic endothelial cells (BAEC): a possible passive diffusion. C R Biol 2012; 335:247-52. [PMID: 22578570 DOI: 10.1016/j.crvi.2012.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated that, in a context of oxidative stress, resveratrol, a polyphenol found in wine, could act as a protective agent on endothelial cells by various mechanisms but without showing that it could penetrate inside the cell. The aim of this study was to detect for the first time resveratrol inside bovine endothelial aortic cells and to determine which kind of transport mechanism was involved. Intracellular and membrane concentrations of resveratrol have been measured by high performance liquid chromatography after incubation of several concentrations of resveratrol with endothelial cells for 24h. Concentrations of resveratrol in the culture media have been determined by UV spectrophotometry and experiments of transport mechanisms have been performed. Our results showed that, for the concentrations tested (1, 5, 10 and 50 μM), resveratrol was detected inside the cells and suggested that it was able to penetrate into the cells through a passive diffusion mechanism.
Collapse
Affiliation(s)
- Matthieu Frombaum
- EA 4466 Stress cellulaire : physiopathologie, stratégies nutritionnelles et thérapeutiques innovantes, UFR des sciences pharmaceutiques et biologiques, université Paris Descartes, Sorbonne Paris Cité, 4, avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
142
|
Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. J Bioenerg Biomembr 2012; 44:281-96. [DOI: 10.1007/s10863-012-9429-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
143
|
Potential health benefits of moderate alcohol consumption: current perspectives in research. Proc Nutr Soc 2012; 71:307-15. [PMID: 22391060 DOI: 10.1017/s0029665112000171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The benefits of moderate amounts of alcohol for a better health and longer life expectancy compared with abstinence have been suggested by the findings of numerous studies. However, controversies have emerged regarding the influence of confounding factors and the systematic errors that might have been inadvertently disregarded in the early studies. This review includes a description of the findings of those research studies published in the last 5 years on the effects of moderate alcohol consumption on all-cause mortality, CVD and inflammation, the immune system, insulin sensitivity, non-alcoholic fatty liver disease (NAFLD) and cancer. Promising evidences exist from both animal studies and human clinical trials regarding intermediate end-points of CHD and insulin sensitivity, such as HDL, adiponectin or fibrinogen. However, controversies and inconsistent findings exist regarding many of these diseases and related functions and biomarkers. Further research and human randomised-controlled trials with adequate standardisation of the study conditions are necessary in order to draw a comparison between studies, establish the causal effect of moderate alcohol intake on disease protection and reach consensus on the circumstances that allow the recommendation of moderate alcohol habitual intakes as a strategy for health maintenance.
Collapse
|
144
|
Gonçalves J, Mendes B, Silva CL, Câmara JS. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. J Chromatogr A 2012; 1229:13-23. [DOI: 10.1016/j.chroma.2012.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
|
145
|
|
146
|
Xuzhu G, Komai-Koma M, Leung BP, Howe HS, McSharry C, McInnes IB, Xu D. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis 2012; 71:129-35. [PMID: 21953348 DOI: 10.1136/ard.2011.149831] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Alcohol intake is inversely related to rheumatoid arthritis (RA) disease incidence and severity. Resveratrol, a safe, well-described plant-derived compound, possesses anti-inflammation and immune-regulatory properties and is present in red wine. As such, it could mediate anti-inflammatory properties of the latter and offer novel therapeutic utility in is own right. OBJECTIVE To evaluate the therapeutic effect of resveratrol on collagen-induced arthritis (CIA) and its putative immune modulation in mice. METHODS CIA was induced in DBA1 mice by immunisation with collagen II. Different doses of resveratrol were administered before or after the development of CIA. The levels of antibody and cytokines in serum or in draining lymph node (DLN) lymphocyte culture supernatants were measured by ELISA and Th17 cell development in DLN was monitored by flow cytometry. RESULTS Either prophylactic or therapeutic administration of resveratrol attenuated clinical parameters and bone erosion in CIA mice. The arthritis-protective effects were associated with markedly reduced serum levels of pro-inflammatory cytokines and collagen-specific, but not total, IgG, and with reduced numbers of Th17 cells and the production of IL-17 in DLN. CONCLUSION Resveratrol modulates inflammatory arthritis in rodents by selectively suppressing key cellular and humoral responses necessary for disease development. This may partly explain the protective effects of red wine but importantly may offer a novel, effective and safe pathway whereby novel agents could be developed to treat RA.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Autoantibodies/biosynthesis
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/methods
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Inflammation Mediators/metabolism
- Male
- Mice
- Mice, Inbred DBA
- Resveratrol
- Stilbenes/administration & dosage
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Th17 Cells/drug effects
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Gao Xuzhu
- Institute of Infection, Immunity and Infl ammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
147
|
Angel-Morales G, Noratto G, Mertens-Talcott SU. Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct 2012; 3:1286-93. [DOI: 10.1039/c2fo30023k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
148
|
Kolesarova A, Capcarova M, Maruniakova N, Lukac N, Ciereszko RE, Sirotkin AV. Resveratrol inhibits reproductive toxicity induced by deoxynivalenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1329-1334. [PMID: 22540658 DOI: 10.1080/10934529.2012.672144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this in vitro study was to examine the release of progesterone by porcine ovarian granulosa cells (GCs) after exposure to toxic concentrations of deoxynivalenol (DON), resveratrol (RSV), and their combination (DON with RSV). Ovarian granulosa cells were incubated without (control) or with treatments of natural substances at various doses for 24 h: RSV (10, 30 and 50 μg/mL) / DON (2000, 3000 and 5000 ng/mL), and their combination (10 μg/mL of RSV with 2000 ng/mL of DON; 30 μg/mL of RSV with 3000 ng/mL of DON; 50 μg/mL of RSV with 5000 ng/mL of DON). Progesterone was determined by radioimmunoassay (RIA). Progesterone release was significantly (P < 0.05) stimulated by RSV at the doses 50 μg/mL but not at 30 and 10 μg/mL and by DON treatment at all used doses (2000, 3000 and 5000 ng/mL). RSV in combination with DON stimulated significantly (P < 0.05) the progesterone release by GCs at the highest doses (50 μg/mL of RSV with 5000 ng/mL of DON). On the other hand, the stimulatory effect of RSV in combination with DON was significantly (P < 0.05) lower in comparison with alone DON effect. In conclusion, our results indicate, (1) the dose-depended stimulatory effects of RSV, DON and combination of RSV with DON on release of steroid hormone progesterone and (2) reduction of the stimulatory effect of DON by RSV. Our in vitro results suggest that reproductive toxicity of animals induced by a mycotoxin - deoxynivalenol can be inhibited by a protective natural substance - resveratrol.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
149
|
Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Bioorg Med Chem 2012; 20:157-66. [DOI: 10.1016/j.bmc.2011.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022]
|
150
|
Panchal SK, Brown L. Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus petraea L.) extract in rats. Eur J Nutr 2011; 52:397-408. [DOI: 10.1007/s00394-011-0277-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/03/2011] [Indexed: 01/21/2023]
|