101
|
Kageyama Y, Kasahara T, Nakamura T, Hattori K, Deguchi Y, Tani M, Kuroda K, Yoshida S, Goto YI, Inoue K, Kato T. Plasma Nervonic Acid Is a Potential Biomarker for Major Depressive Disorder: A Pilot Study. Int J Neuropsychopharmacol 2017; 21:207-215. [PMID: 29040586 PMCID: PMC5838832 DOI: 10.1093/ijnp/pyx089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diagnostic biomarkers of major depressive disorder, bipolar disorder, and schizophrenia are urgently needed, because none are currently available. METHODS We performed a comprehensive metabolome analysis of plasma samples from drug-free patients with major depressive disorder (n=9), bipolar disorder (n=6), schizophrenia (n=17), and matched healthy controls (n=19) (cohort 1) using liquid chromatography time-of-flight mass spectrometry. A significant effect of diagnosis was found for 2 metabolites: nervonic acid and cortisone, with nervonic acid being the most significantly altered. The reproducibility of the results and effects of psychotropic medication on nervonic acid were verified in cohort 2, an independent sample set of medicated patients [major depressive disorder (n=45), bipolar disorder (n=71), schizophrenia (n=115)], and controls (n=90) using gas chromatography time-of-flight mass spectrometry. RESULTS The increased levels of nervonic acid in patients with major depressive disorder compared with controls and patients with bipolar disorder in cohort 1 were replicated in the independent sample set (cohort 2). In cohort 2, plasma nervonic acid levels were also increased in the patients with major depressive disorder compared with the patients with schizophrenia. In cohort 2, nervonic acid levels were increased in the depressive state in patients with major depressive disorder compared with the levels in the remission state in patients with major depressive disorder and the depressive state in patients with bipolar disorder. CONCLUSION These results suggested that plasma nervonic acid is a good candidate biomarker for the depressive state of major depressive disorder.
Collapse
Affiliation(s)
- Yuki Kageyama
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan,Department of Neuropsychiatry, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Takemichi Nakamura
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasuhiko Deguchi
- Department of Neuropsychiatry, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | | | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Sumiko Yoshida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Yu-ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan,Correspondence: Tadafumi Kato, MD, PhD, Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan ()
| |
Collapse
|
102
|
Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, Tooyama I. Age-related changes in the metabolic profiles of rat hippocampus, medial prefrontal cortex and striatum. Biochem Biophys Res Commun 2017; 493:1356-1363. [PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
Collapse
Affiliation(s)
- Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| |
Collapse
|
103
|
Liu J, Zhan G, Chen D, Chen J, Yuan ZB, Zhang EL, Gao YX, Xu G, Sun BD, Liao W, Gao YQ. UPLC‑QTOFMS‑based metabolomic analysis of the serum of hypoxic preconditioning mice. Mol Med Rep 2017; 16:6828-6836. [PMID: 28901489 PMCID: PMC5865841 DOI: 10.3892/mmr.2017.7493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023] Open
Abstract
Hypoxic preconditioning (HPC) is well‑known to exert a protective effect against hypoxic injury; however, the underlying molecular mechanism remains unclear. The present study utilized a serum metabolomics approach to detect the alterations associated with HPC. In the present study, an animal model of HPC was established by exposing adult BALB/c mice to acute repetitive hypoxia four times. The serum samples were collected by orbital blood sampling. Metabolite profiling was performed using ultra‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry (UPLC‑QTOFMS), in conjunction with univariate and multivariate statistical analyses. The results of the present study confirmed that the HPC mouse model was established and refined, suggesting significant differences between the control and HPC groups at the molecular levels. HPC caused significant metabolic alterations, as represented by the significant upregulation of valine, methionine, tyrosine, isoleucine, phenylalanine, lysophosphatidylcholine (LysoPC; 16:1), LysoPC (22:6), linoelaidylcarnitine, palmitoylcarnitine, octadecenoylcarnitine, taurine, arachidonic acid, linoleic acid, oleic acid and palmitic acid, and the downregulation of acetylcarnitine, malate, citrate and succinate. Using MetaboAnalyst 3.0, a number of key metabolic pathways were observed to be acutely perturbed, including valine, leucine and isoleucine biosynthesis, in addition to taurine, hypotaurine, phenylalanine, linoleic acid and arachidonic acid metabolism. The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the protective mechanism of HPC.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Zhan
- Key Laboratory of High Altitude Medicine, Ministry of Education, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Dewei Chen
- Key Laboratory of High Altitude Medicine, Ministry of Education, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian Chen
- Key Laboratory of High Altitude Medicine, Ministry of Education, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhi-Bin Yuan
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yi-Xing Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing-Da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
104
|
Havelund JF, Heegaard NHH, Færgeman NJK, Gramsbergen JB. Biomarker Research in Parkinson's Disease Using Metabolite Profiling. Metabolites 2017; 7:E42. [PMID: 28800113 PMCID: PMC5618327 DOI: 10.3390/metabo7030042] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifactorial disease, which requires a more precise diagnosis and personalized medication to obtain optimal outcome. In recent years, advanced metabolite profiling of body fluids like serum/plasma, CSF or urine, known as "metabolomics", has become a powerful and promising tool to identify novel biomarkers or "metabolic fingerprints" characteristic for PD at various stages of disease. In this review, we discuss metabolite profiling in clinical and experimental PD. We briefly review the use of different analytical platforms and methodologies and discuss the obtained results, the involved metabolic pathways, the potential as a biomarker and the significance of understanding the pathophysiology of PD. Many of the studies report alterations in alanine, branched-chain amino acids and fatty acid metabolism, all pointing to mitochondrial dysfunction in PD. Aromatic amino acids (phenylalanine, tyrosine, tryptophan) and purine metabolism (uric acid) are also altered in most metabolite profiling studies in PD.
Collapse
Affiliation(s)
- Jesper F Havelund
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institute, DK-2300 Copenhagen, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Nils J K Færgeman
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
105
|
Ghanta M, Panchanathan E, Lakkakula BVKS, Narayanaswamy A. Retrospection on the Role of Soluble Guanylate Cyclase in Parkinson's Disease. J Pharmacol Pharmacother 2017; 8:87-91. [PMID: 29081615 PMCID: PMC5642137 DOI: 10.4103/jpp.jpp_45_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Soluble guanylate cyclase (sGC) is an important transducing enzyme of cyclic guanosine monophosphate (cGMP) signaling pathway in striatum which has been considered as a potential target for the treatment of Parkinson's disease. Etiology of Parkinson's disease is multifactorial, finally resulting in abnormal proteinopathies causing degeneration of nigrostriatal pathways. Understanding the pathological basis of Parkinson's disease at molecular level is still an achievable target for the researchers and clinical practitioners. sGCs may be one of the causative factors resulting in Parkinson's disease due to glutamate toxicity or other event. This review presents the literature from articles of past five decades nearly as still this enzyme protein and its role in Parkinson's disease is not that clearly understood or presented till date. Recent interventions of this protein inhibition in the treatment of Parkinson's disease preclinically gave a chance to review the literature about this enzyme and its correlation with factors causing Parkinson's disease. We explored literature using PubMed and EMBASE for the role of sGC in Parkinson's disease. Databases were searched using the following terms: Parkinson's disease, neurotoxins, guanylate cyclase, sGC-cGMP pathway, and neurodegeneration. This review listed out the factors that have probability for stimulating sGC which already have been listed as a neurotoxins causing Parkinson's disease.
Collapse
Affiliation(s)
- Mohankrishna Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Elango Panchanathan
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Bhaskar V. K. S. Lakkakula
- Department of Molecular Genetics, Research Division, Sickle Cell Institute Chhattisgarh, Raipur, Chhattisgarh, India
| | - Anbumani Narayanaswamy
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
106
|
Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients. Indian J Clin Biochem 2017; 33:163-170. [PMID: 29651206 DOI: 10.1007/s12291-017-0661-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.
Collapse
|
107
|
Golubev A, Hanson AD, Gladyshev VN. Non-enzymatic molecular damage as a prototypic driver of aging. J Biol Chem 2017; 292:6029-6038. [PMID: 28264930 PMCID: PMC5391736 DOI: 10.1074/jbc.r116.751164] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The chemical potentialities of metabolites far exceed metabolic requirements. The required potentialities are realized mostly through enzymatic catalysis. The rest are realized spontaneously through organic reactions that (i) occur wherever appropriate reactants come together, (ii) are so typical that many have proper names (e.g. Michael addition, Amadori rearrangement, and Pictet-Spengler reaction), and (iii) often have damaging consequences. There are many more causes of non-enzymatic damage to metabolites than reactive oxygen species and free radical processes (the "usual suspects"). Endogenous damage accumulation in non-renewable macromolecules and spontaneously polymerized material is sufficient to account for aging and differentiates aging from wear-and-tear of inanimate objects by deriving it from metabolism, the essential attribute of life.
Collapse
Affiliation(s)
- Alexey Golubev
- From the Department of Biochemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia,
| | - Andrew D Hanson
- the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, and
| | - Vadim N Gladyshev
- the Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
108
|
Naudí A, Cabré R, Dominguez-Gonzalez M, Ayala V, Jové M, Mota-Martorell N, Piñol-Ripoll G, Gil-Villar MP, Rué M, Portero-Otín M, Ferrer I, Pamplona R. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:485-495. [PMID: 28185952 DOI: 10.1016/j.bbalip.2017.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/23/2016] [Accepted: 02/05/2017] [Indexed: 12/28/2022]
Abstract
Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Mayelin Dominguez-Gonzalez
- Institute of Neuropathology, Bellvitge University Hospital, Department of Pathology and Experimental Therapeutics, University of Barcelona, E-08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | | | | | - Montserrat Rué
- Department of Basic Medical Sciences, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Department of Pathology and Experimental Therapeutics, University of Barcelona, E-08908, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| |
Collapse
|
109
|
Cabré R, Naudí A, Dominguez-Gonzalez M, Ayala V, Jové M, Mota-Martorell N, Piñol-Ripoll G, Gil-Villar MP, Rué M, Portero-Otín M, Ferrer I, Pamplona R. Sixty years old is the breakpoint of human frontal cortex aging. Free Radic Biol Med 2017; 103:14-22. [PMID: 27979658 DOI: 10.1016/j.freeradbiomed.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022]
Abstract
Human brain aging is the physiological process which underlies as cause of cognitive decline in the elderly and the main risk factor for neurodegenerative diseases such as Alzheimer's disease. Human neurons are functional throughout a healthy adult lifespan, yet the mechanisms that maintain function and protect against neurodegenerative processes during aging are unknown. Here we show that protein oxidative and glycoxidative damage significantly increases during human brain aging, with a breakpoint at 60 years old. This trajectory is coincident with a decrease in the content of the mitochondrial respiratory chain complex I-IV. We suggest that the deterioration in oxidative stress homeostasis during aging induces an adaptive response of stress resistance mechanisms based on the sustained expression of REST, and increased or decreased expression of Akt and mTOR, respectively, over the adult lifespan in order to preserve cell neural survival and function.
Collapse
Affiliation(s)
- Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Alba Naudí
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Mayelin Dominguez-Gonzalez
- Institute of Neuropathology, Department of Pathology and Experimental Therapeutics, University of Barcelona, E-08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Victòria Ayala
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | | | | | - Montserrat Rué
- Department of Basic Medical Sciences, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| | - Isidre Ferrer
- Institute of Neuropathology, Department of Pathology and Experimental Therapeutics, University of Barcelona, E-08908 L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), E-25198 Lleida, Spain.
| |
Collapse
|
110
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
111
|
Conte C, Roscini L, Sardella R, Mariucci G, Scorzoni S, Beccari T, Corte L. Toll Like Receptor 4 Affects the Cerebral Biochemical Changes Induced by MPTP Treatment. Neurochem Res 2017; 42:493-500. [PMID: 28108849 DOI: 10.1007/s11064-016-2095-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
The etiology and pathogenesis of Parkinson's disease (PD) are still unclear. However, multiple lines of evidence suggest a critical role of the toll like receptor 4 (TLR4) in inflammatory response and neuronal death. Neuroinflammation may be associated with the misfolding and aggregation of proteins accompanied by a change in their secondary structure. Recent findings also suggest that biochemical perturbations in cerebral lipid content could contribute to the pathogenesis of central nervous system (CNS) disorders, including PD. Thus, it is of great importance to determine the biochemical changes that occur in PD. In this respect, Fourier Transform Infrared (FTIR) spectroscopy represents a useful tool to detect molecular alterations in biological systems in response to stress stimuli. By relying upon FTIR approach, this study was designed to elucidate the potential role of TLR4 in biochemical changes induced by methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin in a mouse model of PD. The analysis of the FTIR spectra was performed in different brain regions of both wild type (WT) and toll like receptor 4-deficient (TLR4-/-) mice. It revealed that each brain region exhibited a characteristic molecular fingerprint at baseline, with no significant differences between genotypes. Conversely, WT and TLR4-/- mice showed differential biochemical response to MPTP toxicity, principally related to lipid and protein composition. These differences appeared to be characteristic for each brain area. Furthermore, the present study showed that WT mice resulted more vulnerable than TLR4-/- animals to striatal dopamine (DA) depletion following MPTP treatment. These results support the hypothesis of a possible involvement of TLR4 in biochemical changes occurring in neurodegeneration.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy.
| | - Luca Roscini
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Giuseppina Mariucci
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Stefania Scorzoni
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences, Section of Biochemical and Health Sciences, University of Perugia, Via del Giochetto, 06123, Perugia, Italy
| |
Collapse
|
112
|
Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics 2017; 14:35-53. [PMID: 27738903 PMCID: PMC5233625 DOI: 10.1007/s13311-016-0481-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent failures of potential disease-modifying drugs for Alzheimer's disease (AD) may reflect the fact that the enrolled participants in clinical trials are already too advanced to derive a clinical benefit. Thus, well-validated biomarkers for the early detection and accurate diagnosis of the preclinical stages of AD will be crucial for therapeutic advancement. The combinatorial use of biomarkers derived from biological fluids, such as cerebrospinal fluid (CSF), with advanced molecular imaging and neuropsychological testing may eventually achieve the diagnostic sensitivity and specificity necessary to identify people in the earliest stages of the disease when drug modification is most likely possible. In this regard, positive amyloid or tau tracer retention on positron emission tomography imaging, low CSF concentrations of the amyloid-β 1-42 peptide, high CSF concentrations in total tau and phospho-tau, mesial temporal lobe atrophy on magnetic resonance imaging, and temporoparietal/precuneus hypometabolism or hypoperfusion on 18F-fluorodeoxyglucose positron emission tomography have all emerged as biomarkers for the progression to AD. However, the ultimate AD biomarker panel will likely involve the inclusion of novel CSF and blood biomarkers more precisely associated with confirmed pathophysiologic mechanisms to improve its reliability for detecting preclinical AD. This review highlights advancements in biological fluid and imaging biomarkers that are moving the field towards achieving the goal of a preclinical detection of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Natosha Mercado
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
113
|
Cabré R, Jové M, Naudí A, Ayala V, Piñol-Ripoll G, Gil-Villar MP, Dominguez-Gonzalez M, Obis È, Berdun R, Mota-Martorell N, Portero-Otin M, Ferrer I, Pamplona R. Specific Metabolomics Adaptations Define a Differential Regional Vulnerability in the Adult Human Cerebral Cortex. Front Mol Neurosci 2016; 9:138. [PMID: 28008307 PMCID: PMC5143679 DOI: 10.3389/fnmol.2016.00138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions-entorhinal cortex, hippocampus, and frontal cortex-using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle) specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.
Collapse
Affiliation(s)
- Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Alba Naudí
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | | | | | | | - Èlia Obis
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Rebeca Berdun
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, University of BarcelonaBarcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases, Instituto de Salud Carlos III - ISCIIIBarcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida) Lleida, Spain
| |
Collapse
|
114
|
Purroy F, Cambray S, Mauri-Capdevila G, Jové M, Sanahuja J, Farré J, Benabdelhak I, Molina-Seguin J, Colàs-Campàs L, Begue R, Gil MI, Pamplona R, Portero-Otín M. Metabolomics Predicts Neuroimaging Characteristics of Transient Ischemic Attack Patients. EBioMedicine 2016; 14:131-138. [PMID: 27843094 PMCID: PMC5161417 DOI: 10.1016/j.ebiom.2016.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroimaging is essential for the diagnosis and prognosis of transient ischemic attack (TIA). The discovery of a plasmatic biomarker related to neuroimaging findings is of enormous interest because, despite its relevance, magnetic resonance diffusion weighted imaging (DWI) is not always available in all hospitals that attend to TIA patients. METHODS Metabolomic analyses were performed by liquid chromatography coupled to mass spectrometry in order to establish the metabolomic patterns of positive DWI, DWI patterns and acute ischemic lesion volumes. We used these methods with an initial TIA cohort of 129 patients and validated them with a 2nd independent cohort of 152 patients. FINDINGS Positive DWI was observed in 115 (40.9%) subjects and scattered pearls in one arterial territory was the most frequent lesion pattern (35.7%). The median acute ischemic lesion volume was 0.33 (0.15-1.90)cm3. We detected a specific metabolomic profile common to both cohorts for positive DWI (11 molecules including creatinine, threoninyl-threonine, N-acetyl-glucosamine, lyso phosphatidic acid and cholesterol-related molecules) and ischemic lesion volume (10 molecules including lysophosphatidylcholine, hypoxanthine/threonate, and leucines). Moreover lysophospholipids and creatinine clearly differed the subcortical DWI pattern from other patterns. INTERPRETATION There are specific metabolomic profiles associated with representative neuroimaging features in TIA patients. Our findings could allow the development of serum biomarkers related to acute ischemic lesions and specific acute ischemic patterns.
Collapse
Affiliation(s)
- Francisco Purroy
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain.
| | - Serafi Cambray
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Gerard Mauri-Capdevila
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Mariona Jové
- NUTREN-Nutrigenomics Center, Department of Experimental Medicine, Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | - Jordi Sanahuja
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Joan Farré
- Laboratori Clinic, Universitari Arnau de Vilanova de Lleida, Clinical Neurosciences Group IRBLleida, Spain
| | - Ikram Benabdelhak
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Jessica Molina-Seguin
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Laura Colàs-Campàs
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Robert Begue
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - M Isabel Gil
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
| | - Reinald Pamplona
- NUTREN-Nutrigenomics Center, Department of Experimental Medicine, Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | - Manuel Portero-Otín
- NUTREN-Nutrigenomics Center, Department of Experimental Medicine, Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| |
Collapse
|
115
|
McKay J, Tkáč I. Quantitative in vivo neurochemical profiling in humans: where are we now? Int J Epidemiol 2016; 45:1339-1350. [PMID: 27794521 DOI: 10.1093/ije/dyw235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Proton nuclear magnetic resonance spectroscopy of biofluids has become one of the key techniques for metabolic profiling and phenotyping. This technique has been widely used in a number of epidemiological studies and in a variety of health disorders. However, its utilization in brain disorders is limited due to the blood-brain barrier, which not only protects the brain from unwanted substances in the blood, but also substantially limits the potential of finding biomarkers for neurological disorders in serum. This review article focuses on the potential of localized in vivo proton magnetic resonance spectroscopy (1H-MRS) for non-invasive neurochemical profiling in the human brain. First, methodological aspects of 1H-MRS (data acquisition, processing and metabolite quantification) that are essential for reliable non-invasive neurochemical profiling are described. Second, the power of 1H-MRS-based neurochemical profiling is demonstrated using some examples of its application in neuroscience and neurology. Finally, the authors present their vision and propose necessary steps to establish 1H-MRS as a method suitable for large-scale neurochemical profiling in epidemiological research.
Collapse
Affiliation(s)
- Jessica McKay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
116
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
117
|
Fei H, Hou J, Wu Z, Zhang L, Zhao H, Dong X, Chen Y. Plasma metabolomic profile and potential biomarkers for missed abortion. Biomed Chromatogr 2016; 30:1942-1952. [PMID: 27229294 DOI: 10.1002/bmc.3770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
A missed abortion (MA) is an in utero death of the embryo or fetus before the 20th week of gestation with retained products of conception, and this condition is currently common in China. In order to discover novel biomarkers for MA, ultrahigh performance liquid chromatography was applied to study plasma metabolite profiles for 33 patients with MA and 29 control subjects. Thirty-seven differential plasma metabolites were found to discriminate between the two groups in the initial cohort (15 subjects with MA and 15 healthy controls). The feasibility of using these potential biomarkers to predict MA was further evaluated in the validation cohort (18 subjects with MA and 14 healthy controls) and 15 had an area under the receiver operating characteristic curve of >0.80, making them satisfactory. Tryptophan metabolism and sphingolipid metabolism were identified as important potential target pathways for MA using metabolic pathway impact analysis. Furthermore, three of the 15 satisfactory metabolites (glyceric acid, indole and sphingosine) were combined to establish a predictive model with 100% sensitivity and 100% specificity in the validation cohort. Taken together, these results suggest that MA results in significant disturbance of metabolism and those various novel biomarkers have satisfactory diagnostic and predictive power for MA.
Collapse
Affiliation(s)
- He Fei
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Jiebin Hou
- Second Military Medical University, Shanghai, People's Republic of China
| | - Zhenghong Wu
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Liwen Zhang
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| | - Hongxia Zhao
- Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Dong
- Second Military Medical University, Shanghai, People's Republic of China
| | - Yaping Chen
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
118
|
Shen C, Sun FL, Zhang RY, Zhang L, Li YL, Zhang L, Li L. Tetrahydroxystilbene glucoside ameliorates memory and movement functions, protects synapses and inhibits α-synuclein aggregation in hippocampus and striatum in aged mice. Restor Neurol Neurosci 2016; 33:531-41. [PMID: 26409411 DOI: 10.3233/rnn-150514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) on the memory and movement functions and its mechanisms related to synapses and α-synuclein in aged mice. METHODS The memory ability of mice was detected by step-through passive avoidance task. The movement function was measured by the pole test and rotarod test. Transmission electron microscopy was used to observe the synaptic ultrastructure. Western blotting was applied to measure the expression of synapse-related proteins and α-synuclein. RESULTS Intragastrical administration of TSG for 3 months significantly improved the memory and movement functions in aged mice. TSG treatment obviously protected the synaptic ultrastructure and increased the number of synaptic connections in the hippocampal CA1 region and striatum; enhanced the expression of synaptophysin, phosphorylated synapsin I and postsynaptic density protein 95 (PSD95), elevated phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) expression, and inhibited the overexpression and aggregation of α-synuclein in the hippocampus, striatum and cerebral cortex of aged mice. CONCLUSION TSG improved the memory and movement functions in aged mice through protecting synapses and inhibiting α-synuclein overexpression and aggregation in multiple brain regions. The results suggest that TSG may be beneficial to the treatment of ageing-related neurodegenerative diseases.
Collapse
|
119
|
Domínguez M, de Oliveira E, Odena MA, Portero M, Pamplona R, Ferrer I. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly. Free Radic Biol Med 2016; 95:1-15. [PMID: 26968793 DOI: 10.1016/j.freeradbiomed.2016.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 02/08/2023]
Abstract
Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation.
Collapse
Affiliation(s)
- Mayelín Domínguez
- Institute of Neuropathology, University Hospital of Bellvitge, IDIBELL (Biomedical Research Institute of Bellvitge), Carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain.
| | | | | | - Manuel Portero
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, 25198 Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, 25198 Lleida, Spain.
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital of Bellvitge, IDIBELL (Biomedical Research Institute of Bellvitge), Carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Spain.
| |
Collapse
|
120
|
Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jüllig M, Curtis MA, Waldvogel HJ, Faull RLM, Unwin RD, Cooper GJS. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1084-92. [PMID: 26957286 PMCID: PMC4856736 DOI: 10.1016/j.bbadis.2016.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Paul Begley
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stephanie J Church
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Katherine A Hollywood
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mia Jüllig
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Auckland Science Analytical Services, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
121
|
Vasilopoulou CG, Margarity M, Klapa MI. Metabolomic Analysis in Brain Research: Opportunities and Challenges. Front Physiol 2016; 7:183. [PMID: 27252656 PMCID: PMC4878281 DOI: 10.3389/fphys.2016.00183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results.
Collapse
Affiliation(s)
- Catherine G Vasilopoulou
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Human and Animal Physiology Laboratory, Department of Biology, University of PatrasPatras, Greece
| | - Marigoula Margarity
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Departments of Chemical and Biomolecular Engineering and Bioengineering, University of MarylandCollege Park, MD, USA
| |
Collapse
|
122
|
Ponnusamy V, Kapellou O, Yip E, Evanson J, Wong LF, Michael-Titus A, Yip PK, Shah DK. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatr Res 2016; 79:799-805. [PMID: 26720606 DOI: 10.1038/pr.2015.276] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The potential of microRNAs (miRNAs) as bedside biomarkers in selecting newborns with hypoxic-ischemic encephalopathy (HIE) for neuroprotection has yet to be explored. Commonly, blood-based biomarker tests use plasma or serum which don't allow evaluation of both intracellular and extracellular changes. METHODS We describe a technique to extract and compare expression of miRNAs from a single small 6-mm-diameter dried blood spot (DBS) stored at room temperature with those from EDTA-blood, plasma, and urine. Three miRNAs (RNU6B, let7b, and miR-21) were quantified via extraction and quantitative RT-PCR performed from a DBS and compared with levels from EDTA-blood, plasma, and urine. Secondarily, candidate miRNAs let7b, miR-21, miR-29b, miR-124, and miR-155 in DBS were evaluated as potential biomarkers for HIE. RESULTS Candidate miRNAs were extractable in all biosamples from newborns, with the highest expression in DBS. There was a good correlation between miRNAs' levels in DBS and EDTA-blood at -80 °C. No significant difference was observed in the miRNA levels between the favorable and unfavorable outcome groups for babies with HIE. CONCLUSION DBS may be useful for studying the potential of miRNAs as biomarkers for brain injury.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Center of Paediatrics, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Neonatal Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK.,Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, UK
| | - Olga Kapellou
- Neonatal Intensive Care Unit, Homerton University Hospitals NHS Foundation Trust, London, UK
| | - Ellen Yip
- Center of Paediatrics, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Evanson
- Imaging Services, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Liang-Fong Wong
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Adina Michael-Titus
- Center of Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ping K Yip
- Center of Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Divyen K Shah
- Center of Paediatrics, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Neonatal Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
123
|
CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol 2016; 138-140:36-53. [DOI: 10.1016/j.pneurobio.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
|
124
|
An M, Gao Y. Urinary Biomarkers of Brain Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:345-54. [PMID: 26751805 PMCID: PMC4747650 DOI: 10.1016/j.gpb.2015.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.
Collapse
Affiliation(s)
- Manxia An
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Youhe Gao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory of Gene Engineering and Biotechnology, Beijing 100875, China.
| |
Collapse
|
125
|
Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank. Exp Gerontol 2015; 73:31-41. [PMID: 26631761 DOI: 10.1016/j.exger.2015.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/25/2023]
Abstract
The temporal lobe is a portion of the cerebral cortex with critical functionality. The age-related protein profile changes in the human temporal lobe have not been previously studied. This 4-plex tandem mass tag labeled proteomic study was performed on samples of temporal lobe from Chinese donors. Tissue samples were assigned to four age groups: Group A (the young, age: 34±13 years); Group B (the elderly, 62±5 years); Group C (the aged, 84±4 years) and Group D (the old, 95±1 years). Pooled samples from the different groups were subjected to proteomics and bioinformatics analysis to identify age-related changes in protein expression and associated pathways. We isolated 5072 proteins, and found that 67 proteins were downregulated and 109 proteins were upregulated in one or more groups during the aging process. Western blotting assays were performed to verify the proteomic results. Bioinformatic analysis identified proteins involved in neuronal degeneration, including proteins involved in neuronal firing, myelin sheath damage, and cell structure stability. We also observed the accumulation of extracellular matrix and lysosomal proteins which imply the occurrence of fibrosis and autophagy. Our results suggest a series of changes across a wide range of proteins in the human temporal lobe that may relate to aging and age-related neurodegenerative disorders.
Collapse
|
126
|
Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci Rep 2015; 5:15126. [PMID: 26459926 PMCID: PMC4602305 DOI: 10.1038/srep15126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/17/2015] [Indexed: 01/12/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.
Collapse
|
127
|
Sharma U, Upadhyay D, Mewar S, Mishra A, Das P, Gupta SD, Dwivedi SN, Makharia GK, Jagannathan NR. Metabolic abnormalities of gastrointestinal mucosa in celiac disease: An in vitro proton nuclear magnetic resonance spectroscopy study. J Gastroenterol Hepatol 2015; 30:1492-1498. [PMID: 25867107 DOI: 10.1111/jgh.12979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Celiac disease (CeD) is a common autoimmune disorder in which ingestion of gluten and related proteins leads to inflammation in the small intestine. Although the histological findings in CeD are characteristic, they are not specific. In this study, proton nuclear magnetic resonance (NMR) spectroscopy was used to investigate the differences in metabolic profile of duodenal mucosal biopsies of patients with CeD and controls to find out the biomarker/s of villous atrophy. METHODS Duodenal mucosal biopsies were collected from 29 CeD patients (mean age 26.2 ± 10.8 years) and 17 controls (mean age 34.1 ± 11.1 years) and were subjected to proton NMR spectroscopy following perchloric acid extraction. Assignment of metabolite resonances was carried out and their concentrations were determined. For comparison between the groups unpaired t-test/Wilcoxon rank sum test was used. Partial least squares-discriminant analysis was performed to study the clustering behavior of the samples from CeD patients and controls using the Unscrambler 10.2 software. RESULTS Partial least squares-discriminant analysis clearly differentiated CeD patients from controls. Significantly higher concentrations of isoleucine, leucine, aspartate, succinate, and pyruvate, and lower concentration of glycerophosphocholine, were observed in the duodenal mucosa of CeD patients compared with controls. The results suggest abnormalities in glycolysis, Krebs cycle (energy deficiency), and amino acid metabolism, which may affect the biosynthetic pathways and consequently contribute to villous atrophy. CONCLUSIONS NMR spectroscopy with multivariate analysis of duodenal mucosal biopsies revealed a characteristic metabolic profile in CeD patients. The work provided an insight in determining biomarker/s for villous atrophy and diagnosis of CeD patients.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Upadhyay
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Sujeet Mewar
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Asha Mishra
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sada Nand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
128
|
Oliveira-Pinto AV, Andrade-Moraes CH, Oliveira LM, Parente-Bruno DR, Santos RM, Coutinho RA, Alho ATL, Leite REP, Suemoto CK, Grinberg LT, Pasqualucci CA, Jacob-Filho W, Lent R. Do age and sex impact on the absolute cell numbers of human brain regions? Brain Struct Funct 2015; 221:3547-59. [PMID: 26416171 DOI: 10.1007/s00429-015-1118-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
What is the influence of sex and age on the quantitative cell composition of the human brain? By using the isotropic fractionator to estimate absolute cell numbers in selected brain regions, we looked for sex- and age-related differences in 32 medial temporal lobes (comprised basically by the hippocampal formation, amygdala and parahippocampal gyrus), sixteen male (29-92 years) and sixteen female (25-82); and 31 cerebella, seventeen male (29-92 years) and fourteen female (25-82). These regions were dissected from the brain, fixed and homogenized, and then labeled with a DNA-marker (to count all nuclei) and with a neuron-specific nuclear marker (to estimate neuron number). Total number of cells in the medial temporal lobe was found to be 1.91 billion in men, and 1.47 billion in women, a difference of 23 %. This region showed 34 % more neurons in men than in women: 525.1 million against 347.4 million. In contrast, no sex differences were found in the cerebellum. Regarding the influence of age, a quadratic correlation was found between neuronal numbers and age in the female medial temporal lobe, suggesting an early increase followed by slight decline after age 50. The cerebellum showed numerical stability along aging for both neurons and non-neuronal cells. In sum, results indicate a sex-related regional difference in total and neuronal cell numbers in the medial temporal lobe, but not in the cerebellum. On the other hand, aging was found to impact on cell numbers in the medial temporal lobe, while the cerebellum proved resilient to neuronal losses in the course of life.
Collapse
Affiliation(s)
- Ana V Oliveira-Pinto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H Andrade-Moraes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lays M Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raquel M Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan A Coutinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana T L Alho
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Israelita Albert Einstein, Brain Institute, São Paulo, SP, Brazil
| | - Renata E P Leite
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil.,Discipline of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil.,Discipline of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil.,Department of Neurology and Pathology, University of California, San Francisco, USA
| | - Carlos A Pasqualucci
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Brazilian Aging Brain Study Group, LIM 22, University of São Paulo Medical School, São Paulo, Brazil.,Discipline of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,National Institute of Translational Neuroscience, Ministry of Science and Technology, São Paulo, Brazil. .,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas 373, Sl. F1-31, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| |
Collapse
|
129
|
Neth K, Lucio M, Walker A, Zorn J, Schmitt-Kopplin P, Michalke B. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats. PLoS One 2015; 10:e0138270. [PMID: 26383269 PMCID: PMC4575095 DOI: 10.1371/journal.pone.0138270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism.
Collapse
Affiliation(s)
- Katharina Neth
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- * E-mail:
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Julia Zorn
- Research Unit Comparative Medicine, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D- 85354, Freising-Weihenstephan, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| |
Collapse
|
130
|
Ruiz M, Jové M, Schlüter A, Casasnovas C, Villarroya F, Guilera C, Ortega FJ, Naudí A, Pamplona R, Gimeno R, Fourcade S, Portero-Otín M, Pujol A. Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy. Hum Mol Genet 2015; 24:6861-76. [PMID: 26370417 DOI: 10.1093/hmg/ddv375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the β-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.
Collapse
Affiliation(s)
- Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER)
| | - Mariona Jové
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER)
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, c/ Feixa Llarga s/n, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Villarroya
- Center for Biomedical Research on Physiopathology of Obesity and Nutrition, ISCIII, Spain, Departament de Bioquimica i Biologia Molecular and Institut de Biomedicina IBUB, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER)
| | - Francisco J Ortega
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER)
| | - Alba Naudí
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Ramón Gimeno
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain and
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER)
| | - Manuel Portero-Otín
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Institute of Neuropathology, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, Center for Biomedical Research on Rare Diseases (CIBERER), Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
131
|
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015; 125:3572-84. [PMID: 26280576 DOI: 10.1172/jci79942] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.
Collapse
|
132
|
Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R. Lipidomics of human brain aging and Alzheimer's disease pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:133-89. [PMID: 26358893 DOI: 10.1016/bs.irn.2015.05.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Hugo Gonzalo
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain.
| |
Collapse
|
133
|
Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson's disease. Neurobiol Aging 2015; 36:2607-16. [PMID: 26130063 DOI: 10.1016/j.neurobiolaging.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/29/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
Benign paroxysmal positional vertigo (BPPV) is one of the most frequently encountered primary complaints in dizziness clinics. The incidence of BPPV has been proven to increase with age. The relationship between BPPV and another neurodegenerative disease, Parkinson's disease (PD), has not been previously discussed. This study aimed to investigate the relationship of BPPV and PD with oxidative stress. A total of 30,811 subjects participated in our cohort study. The study cohort comprised 5057 BPPV patients and a comparison cohort of 25,754 nonBPPV patients. SIRT1 axis gene expression was investigated in BPPV patient blood samples and a PD cell model of 6-hydroxydopamine (6-OHDA)-treated PC-12 cells to elucidate the potential in vitro and in vivo mechanisms of degeneration in PD and BPPV. Our data suggest that BPPV patients with histories of head injuries show a significantly higher hazard to develop subsequent PD (hazard ratio, 3.942; confidence interval, 1.523-10.205, p = 0.005). We also observed that oxidative status is increased in blood samples from patients with BPPV. Our in vitro study suggests that SIRT1 function is inhibited by oxidative stress, which thereby promotes 6-hydroxydopamine-induced cell death. We conclude that BPPV is independently associated with an increased risk of PD. This finding may be attributed to oxidative stress-mediated inhibition of SIRT1 expression levels.
Collapse
|
134
|
Christofoletti G, Felippe LA, Müller PDT, Beinotti F, Borges G. Cognitive processes affect the gait of subjects with Parkinson’s and Alzheimer’s disease in dual tasks. JORNAL BRASILEIRO DE PSIQUIATRIA 2015. [DOI: 10.1590/0047-2085000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective To investigate the relation between gait parameters and cognitive impairments in subjects with Parkinson’s disease (PD) and Alzheimer’s disease (AD) during the performance of dual tasks. Methods This was a cross-sectional study involving 126 subjects divided into three groups: Parkinson group (n = 43), Alzheimer group (n = 38), and control group (n = 45). The subjects were evaluated using the Timed Up and Go test administered with motor and cognitive distracters. Gait analyses consisted of cadence and speed measurements, with cognitive functions being assessed by the Brief Cognitive Screening Battery and the Clock Drawing Test. Statistical procedures included mixed-design analyses of variance to observe the gait patterns between groups and tasks and the linear regression model to investigate the influence of cognitive functions in this process. A 5% significant level was adopted. Results Regarding the subjects’ speed, the data show a significant difference between group vs task interaction (p = 0.009), with worse performance of subjects with PD in motor dual task and of subjects with AD in cognitive dual task. With respect to cadence, no statistical differences was seen between group vs task interaction (p = 0.105), showing low interference of the clinical conditions on such parameter. The linear regression model showed that up to 45.79%, of the variance in gait can be explained by the interference of cognitive processes. Conclusion Dual task activities affect gait pattern in subjects with PD and AD. Differences between groups reflect peculiarities of each disease and show a direct interference of cognitive processes on complex tasks.
Collapse
|
135
|
Jové M, Maté I, Naudí A, Mota-Martorell N, Portero-Otín M, De la Fuente M, Pamplona R. Human Aging Is a Metabolome-related Matter of Gender. J Gerontol A Biol Sci Med Sci 2015; 71:578-85. [DOI: 10.1093/gerona/glv074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
|
136
|
A Potent Multi-functional Neuroprotective Derivative of Tetramethylpyrazine. J Mol Neurosci 2015; 56:977-987. [DOI: 10.1007/s12031-015-0566-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 11/26/2022]
|
137
|
Jaeger C, Glaab E, Michelucci A, Binz TM, Koeglsberger S, Garcia P, Trezzi JP, Ghelfi J, Balling R, Buttini M. The mouse brain metabolome: region-specific signatures and response to excitotoxic neuronal injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1699-712. [PMID: 25934215 DOI: 10.1016/j.ajpath.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies.
Collapse
Affiliation(s)
- Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tina M Binz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sandra Koeglsberger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Pierre Trezzi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
138
|
Cotman SL, Mole SE, Kohan R. Future perspectives: Moving towards NCL treatments. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2336-8. [PMID: 25857620 DOI: 10.1016/j.bbadis.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Clinicians, basic researchers, representatives from pharma and families from around the world met in Cordoba, Argentina in October, 2014 to discuss recent research progress at the 14th International Congress on Neuronal Ceroid Lipofuscinoses (NCLs; Batten disease), a group of clinically overlapping fatal, inherited lysosomal disorders with primarily neurodegenerative symptoms. This brief review article will provide perspectives on the anticipated future directions of NCL basic and clinical research as we move towards improved diagnosis, care and treatment of NCL patients. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease).
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Human Genetic Research and Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| | - Sara E Mole
- MRC Laboratory for Cell Biology, Department of Genetics, Evolution & Environment, UCL Institute of Child Health, University College London, Gower St, London, WC1E 6BT, UK
| | - Romina Kohan
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| |
Collapse
|
139
|
Fernandez-Irigoyen J, Labarga A, Zabaleta A, de Morentin XM, Perez-Valderrama E, Zelaya MV, Santamaria E. Toward defining the anatomo-proteomic puzzle of the human brain: An integrative analysis. Proteomics Clin Appl 2015; 9:796-807. [PMID: 25418211 DOI: 10.1002/prca.201400127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
Abstract
The human brain is exceedingly complex, constituted by billions of neurons and trillions of synaptic connections that, in turn, define ∼900 neuroanatomical subdivisions in the adult brain (Hawrylycz et al. An anatomically comprehensive atlas of the human brain transcriptome. Nature 2012, 489, 391-399). The human brain transcriptome has revealed specific regional transcriptional signatures that are regulated in a spatiotemporal manner, increasing the complexity of the structural and molecular organization of this organ (Kang et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483-489). During the last decade, neuroproteomics has emerged as a powerful approach to profile neural proteomes using shotgun-based MS, providing complementary information about protein content and function at a global level. Here, we revise recent proteome profiling studies performed in human brain, with special emphasis on proteome mapping of anatomical macrostructures, specific subcellular compartments, and cerebrospinal fluid. Moreover, we have performed an integrative functional analysis of the protein compilation derived from these large-scale human brain proteomic studies in order to obtain a comprehensive view of human brain biology. Finally, we also discuss the potential contribution of our meta-analysis to the Chromosome-centric Human Proteome Project initiative.
Collapse
Affiliation(s)
- Joaquín Fernandez-Irigoyen
- Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Pamplona, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed, Fundación Miguel Servet, Pamplona, Spain
| | - Aintzane Zabaleta
- Biofunctional Nanomaterials Laboratory, CIC Biomagune, San Sebastian, Spain
| | - Xabier Martínez de Morentin
- Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Pamplona, Spain
| | - Estela Perez-Valderrama
- Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Pamplona, Spain
| | | | - Enrique Santamaria
- Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Pamplona, Spain
| |
Collapse
|
140
|
Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:53-80. [DOI: 10.1016/bs.irn.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
141
|
Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin Biochem 2014; 47:16-26. [PMID: 25087975 DOI: 10.1016/j.clinbiochem.2014.07.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Metabonomics is a powerful and promising analytic tool that allows assessment of global low-molecular-weight metabolites in biological systems. It has a great potential for identifying useful biomarkers for early diagnosis, prognosis and assessment of therapeutic interventions in clinical practice. The aim of this review is to provide a brief summary of the recent advances in UPLC-based metabonomic approach for biomarker discovery in a variety of diseases, and to discuss their significance in clinical chemistry. DESIGN AND METHODS All the available information on UPLC-based metabonomic applications for discovering biomarkers of diseases were collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Springer, Google Scholar, etc.). RESULTS Metabonomics has been used in clinical chemistry to identify and evaluate potential biomarkers and therapeutic targets in various diseases affecting the liver (hepatocarcinoma and liver cirrhosis), lung (lung cancer and pneumonia), gastrointestinal tract (colorectal cancer) and urogenital tract (prostate cancer, ovarian cancer and chronic kidney disease), as well as metabolic diseases (diabetes) and neuropsychiatric disorders (Alzheimer's disease and schizophrenia), etc. CONCLUSIONS The information provided highlights the potential value of determination of endogenous low-molecular-weight metabolites and the advantages and potential drawbacks of the application of UPLC-based metabonomics in clinical setting.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, PR China; Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92868, USA.
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, 2 Tiantan Xili, Beijing 100050, PR China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92868, USA
| | - Shuman Liu
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92868, USA
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Beijing 100029, PR China.
| |
Collapse
|
142
|
Ansoleaga B, Jové M, Schlüter A, Garcia-Esparcia P, Moreno J, Pujol A, Pamplona R, Portero-Otín M, Ferrer I. Deregulation of purine metabolism in Alzheimer's disease. Neurobiol Aging 2014; 36:68-80. [PMID: 25311278 DOI: 10.1016/j.neurobiolaging.2014.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/05/2014] [Indexed: 12/30/2022]
Abstract
The neuroprotective role of adenosine and the deregulation of adenosine receptors in Alzheimer's disease (AD) have been extensively studied in recent years. However, little is known about the involvement of purine metabolism in AD. We started by analyzing gene expression in the entorhinal cortex of human controls and AD cases with whole-transcript expression arrays. Once we identified deregulation of the cluster purine metabolism, messenger RNA expression levels of 23 purine metabolism genes were analyzed with qRT-PCR in the entorhinal cortex, frontal cortex area 8, and precuneus at stages I-II, III-IV, and V-VI of Braak and Braak and controls. APRT, DGUOK, POLR3B, ENTPD3, AK5, NME1, NME3, NME5, NME7, and ENTPD2 messenger RNAs were deregulated, with regional variations, in AD cases when compared with controls. In addition, liquid chromatography mass spectrometry based metabolomics in the entorhinal cortex identified altered levels of dGMP, glycine, xanthosine, inosine diphosphate, guanine, and deoxyguanosine, all implicated in this pathway. Our results indicate stage- and region-dependent deregulation of purine metabolism in AD.
Collapse
Affiliation(s)
- Belén Ansoleaga
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Jesús Moreno
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, L'Hospitalet de Llobregat, Spain; Centre for Biomedical Research on Rare Diseases (CIBERER), Institute Carlos III, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; University of Barcelona, Bellvitge Campus, L'Hospitalet de Llobregat, Spain; Centre for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.
| |
Collapse
|