101
|
Murdock CC, Blanford S, Luckhart S, Thomas MB. Ambient temperature and dietary supplementation interact to shape mosquito vector competence for malaria. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:37-44. [PMID: 24911425 PMCID: PMC4107084 DOI: 10.1016/j.jinsphys.2014.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 05/23/2023]
Abstract
The extent to which environmental factors influence the ability of Anopheles mosquitoes to transmit malaria parasites remains poorly explored. Environmental variation, such as change in ambient temperature, will not necessarily influence the rates of host and parasite processes equivalently, potentially resulting in complex effects on infection outcomes. As proof of principle, we used Anopheles stephensi and the rodent malaria parasite, Plasmodium yoelii, to examine the effects of a range of constant temperatures on one aspect of host defense (detected as alterations in expression of nitric oxide synthase gene - NOS) to parasite infection. We experimentally boosted mosquito midgut immunity to infection through dietary supplementation with the essential amino acid l-Arginine (l-Arg), which increases midgut nitric oxide (NO) levels by infection-induced NOS catalysis in A. stephensi. At intermediate temperatures, supplementation reduced oocyst prevalence, oocyst intensity, and sporozoite prevalence suggesting that the outcome of parasite infection was potentially dependent upon the rate of NOS-mediated midgut immunity. At low and high temperature extremes, however, infection was severely constrained irrespective of supplementation. The effects of l-Arg appeared to be mediated by NO-dependent negative feedback on NOS expression, as evidenced by depressed NOS expression in l-Arg treated groups at temperatures where supplementation decreased parasite infection. These results suggest the need to consider the direct (e.g. effects of mosquito body temperature on parasite physiology) and indirect effects (e.g. mediated through changes in mosquito physiology/immunity) of environmental factors on mosquito-malaria interactions in order to understand natural variation in vector competence.
Collapse
Affiliation(s)
- Courtney C Murdock
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Simon Blanford
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, United States.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| |
Collapse
|
102
|
Nava-Sánchez A, Munguía-Steyer R, Córdoba-Aguilar A. No Detectable Trade-Offs Among Immune Function, Fecundity, and Survival via a Juvenile Hormone Analog in the House Cricket. NEOTROPICAL ENTOMOLOGY 2014; 43:357-361. [PMID: 27193814 DOI: 10.1007/s13744-014-0215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/17/2014] [Indexed: 06/05/2023]
Abstract
Hormones are key regulators of resource allocation among functions and thus play an important role in resource-based trade-offs. The juvenile hormone (JH) is an insect hormone that mediates resource allocation between immunity and life history components. Here, we have tested whether this is the case using the house cricket. We investigated whether increased levels of JH (using methoprene, a JH analog) enable an enhanced survival and fecundity (via egg number) at the cost of reduced hemocyte number (a trait that is associated with immune response in insects) in the house cricket, Acheta domesticus L. We had three groups of adult crickets of both sexes: experimental (methoprene and acetone), positive control (methoprene), and negative control (no manipulation). Prior to and after experimental treatments, we counted the number of hemocytes (for the case of both sexes) and recorded the number of eggs laid and survival of females after the manipulation. There was no difference in hemocyte number, egg number, and survival. These results do not support a JH-mediated trade-off among immune ability, survival, and fecundity. We provide arguments to explain the lack of JH-mediated trade-offs in the house cricket.
Collapse
Affiliation(s)
- A Nava-Sánchez
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510, México, DF, Mexico
| | - R Munguía-Steyer
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510, México, DF, Mexico
| | - A Córdoba-Aguilar
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510, México, DF, Mexico.
| |
Collapse
|
103
|
TURNER AK, BELDOMENICO PM, BOWN K, BURTHE SJ, JACKSON JA, LAMBIN X, BEGON M. Host-parasite biology in the real world: the field voles of Kielder. Parasitology 2014; 141:997-1017. [PMID: 24612619 PMCID: PMC4047648 DOI: 10.1017/s0031182014000171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
Research on the interactions between the field voles (Microtus agrestis) of Kielder Forest and their natural parasites dates back to the 1930s. These early studies were primarily concerned with understanding how parasites shape the characteristic cyclic population dynamics of their hosts. However, since the early 2000s, research on the Kielder field voles has expanded considerably and the system has now been utilized for the study of host-parasite biology across many levels, including genetics, evolutionary ecology, immunology and epidemiology. The Kielder field voles therefore represent one of the most intensely and broadly studied natural host-parasite systems, bridging theoretical and empirical approaches to better understand the biology of infectious disease in the real world. This article synthesizes the body of work published on this system and summarizes some important insights and general messages provided by the integrated and multidisciplinary study of host-parasite interactions in the natural environment.
Collapse
Affiliation(s)
- A. K. TURNER
- Institute of Integrative Biology, University of
Liverpool, UK
| | - P. M. BELDOMENICO
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Laboratorio de Ecología de Enfermedades,
Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del
Litoral – Consejo de Investigaciones Científicas y Técnicas (UNL – CONICET),
Esperanza, Argentina
| | - K. BOWN
- Institute of Integrative Biology, University of
Liverpool, UK
- School of Environment & Life Sciences,
University of Salford, UK
| | - S. J. BURTHE
- Institute of Integrative Biology, University of
Liverpool, UK
- National Centre for Zoonosis Research, University
of Liverpool, UK
- Centre for Ecology & Hydrology, Natural
Environmental Research Council, Edinburgh,
UK
| | - J. A. JACKSON
- Institute of Integrative Biology, University of
Liverpool, UK
- Institute of Biological, Environmental and Rural
Sciences, University of Aberystwyth, UK
| | - X. LAMBIN
- School of Biological Sciences, University of
Aberdeen, UK
| | - M. BEGON
- Institute of Integrative Biology, University of
Liverpool, UK
| |
Collapse
|
104
|
Dheilly NM, Adema C, Raftos DA, Gourbal B, Grunau C, Du Pasquier L. No more non-model species: the promise of next generation sequencing for comparative immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:56-66. [PMID: 24508980 PMCID: PMC4096995 DOI: 10.1016/j.dci.2014.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France.
| | - Coen Adema
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France
| | - Christoph Grunau
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France
| | - Louis Du Pasquier
- University of Basel, Institute of Zoology and Evolutionary Biology, Basel, Switzerland
| |
Collapse
|
105
|
Meitern R, Andreson R, Hõrak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014; 15:533. [PMID: 24972896 PMCID: PMC4092216 DOI: 10.1186/1471-2164-15-533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Background Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. Results A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. Conclusions This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-533) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | |
Collapse
|
106
|
Lamaze FC, Pavey SA, Normandeau E, Roy G, Garant D, Bernatchez L. Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Mol Ecol 2014; 23:1730-48. [PMID: 24795997 DOI: 10.1111/mec.12684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capacity of an individual to battle infection is an important fitness determinant in wild vertebrate populations. The major histocompatibility complex (MHC) genes are crucial for a host's adaptive immune system to detect pathogens. However, anthropogenic activities may disrupt natural cycles of co-evolution between hosts and pathogens. In this study, we investigated the dynamic sequence and expression variation of host parasite interactions in brook charr (Salvelinus fontinalis) in a context of past human disturbance via population supplementation from domestic individuals. To do so, we developed a new method to examine selection shaping MHC diversity within and between populations and found a complex interplay between neutral and selective processes that varied between lakes that were investigated. We provided evidence for a lower introgression rate of domestic alleles and found that parasite infection increased with domestic genomic background of individuals. We also documented an association between individual MHC alleles and parasite taxa. Finally, longer cis-regulatory minisatellites were positively correlated with MHC II down-regulation and domestic admixture, suggesting that inadvertent selection during domestication resulted in a lower immune response capacity, through a trade-off between growth and immunity, which explained the negative selection of domestic alleles at least under certain circumstances.
Collapse
|
107
|
Singer MS, Mason PA, Smilanich AM. Ecological immunology mediated by diet in herbivorous insects. Integr Comp Biol 2014; 54:913-21. [PMID: 24951503 DOI: 10.1093/icb/icu089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A rapidly advancing area of ecological immunology concerns the effects of diet on animals' immunological responses to parasites and pathogens. Here, we focus on diet-mediated ecological immunology in herbivorous insects, in part because these organisms commonly experience nutritional limitations from their diets of plants. Nutritional immunology highlights nutrient-based trade-offs between immunological and other physiological processes as well as trade-offs among distinct immunological processes. This field reveals that nutrition influences the quality and quantity of immunological defense in herbivorous insects, and conversely that nutritional intake by herbivorous insects can be an adaptive response to the specific types of immune-challenge they face in the context of other physiological processes. Because the diets of herbivores challenge them physiologically with plants' secondary metabolites, another area of study analyzes constraints on immunological defense imposed by secondary metabolites of plants in the diets of herbivorous insects. Alternatively, some herbivores can use secondary metabolites as medicine against parasites or pathogens. Animal-medication theory makes an important contribution to ecological immunology by distinguishing prophylactic and therapeutic mechanisms of anti-parasite defense. Integrating ideas from animal-medication and nutritional immunology, we outline a conceptual framework in which the immunological role of the diet consists of mechanisms of prophylaxis, therapy, compensation, and combinations thereof. Then, we use this framework to organize findings from our own research on diet-mediated ecological immunology of woolly bear caterpillars. We show evidence that the woolly bear caterpillar, Grammia incorrupta (Hy. Edwards) (Lepidoptera, Erebidae, and Arctiinae), can employ both diet-mediated prophylaxis and therapy. First, increased consumption of carbohydrate-biased food prior to immune-challenge increased its melanization-response. Second, increased consumption of pyrrolizidine alkaloids (PAs) more than 24 h after parasitism by tachinid flies resulted in anti-parasite resistance. Caterpillars reduced feeding on protein-biased food within 24 h after immune-challenge, showing evidence of illness-induced anorexia. We synthesize our work to generate the hypothesis that a diet-mediated defense by the host against parasites acts as a temporally explicit, multi-stage process.
Collapse
Affiliation(s)
- Michael S Singer
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA; Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Peri A Mason
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA; Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Angela M Smilanich
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA; Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
108
|
Downs CJ, Adelman JS, Demas GE. Mechanisms and methods in ecoimmunology: integrating within-organism and between-organism processes. Integr Comp Biol 2014; 54:340-52. [PMID: 24944113 DOI: 10.1093/icb/icu082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ecoimmunology utilizes techniques from traditionally laboratory-based disciplines--for example, immunology, genomics, proteomics, neuroendocrinology, and cell biology--to reveal how the immune systems of wild organisms both shape and respond to ecological and evolutionary pressures. Immunological phenotypes are embedded within a mechanistic pathway leading from genotype through physiology to shape higher-order biological phenomena. As such, "mechanisms" in ecoimmunology can refer to both the within-host processes that shape immunological phenotypes, or it can refer the ways in which different immunological phenotypes alter between-organism processes at ecological and evolutionary scales. The mechanistic questions ecoimmunologists can ask, both within-organisms and between-organisms, however, often have been limited by techniques that do not easily transfer to wild, non-model systems. Thus, a major focus in ecoimmunology has been developing and refining the available toolkit. Recently, this toolkit has been expanding at an unprecedented rate, bringing new challenges to choosing techniques and standardizing protocols across studies. By confronting these challenges, we will be able to enhance ecoimmunological inquiries into the physiological basis of life-history trade-offs; the development of low-cost biomarkers for susceptibility to disease; and the investigation of the ecophysiological underpinnings of disease ecology, behavior, and the coevolution of host-parasite systems. The technical advances in, and crossover technologies from, disciplines associated with ecoimmunology and how these advances can help us understand the mechanistic basis of immunological variability in wild species were the focus of the symposium, Methods and Mechanisms in Ecoimmunology.
Collapse
Affiliation(s)
- C J Downs
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - J S Adelman
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - G E Demas
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
109
|
Brock PM, Murdock CC, Martin LB. The history of ecoimmunology and its integration with disease ecology. Integr Comp Biol 2014; 54:353-62. [PMID: 24838746 DOI: 10.1093/icb/icu046] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host-parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future.
Collapse
Affiliation(s)
- Patrick M Brock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Courtney C Murdock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lynn B Martin
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
110
|
Hahn DC, Summers SG, Genovese KJ, He H, Kogut MH. Enhanced innate immune responses in a brood parasitic cowbird species: Degranulation and oxidative burst. Avian Dis 2014; 57:285-9. [PMID: 24689187 DOI: 10.1637/10317-080412-reg.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.
Collapse
|
111
|
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics 2014; 15:71. [PMID: 24467778 PMCID: PMC3909931 DOI: 10.1186/1471-2164-15-71] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022] Open
Abstract
Background The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. Description We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215–364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. Conclusions The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a “non-model system.”
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
112
|
Bashir-Tanoli S, Tinsley MC. Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Matthew C. Tinsley
- Biological and Environmental Sciences; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
113
|
Reavey CE, Warnock ND, Vogel H, Cotter SC. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav Ecol 2014. [DOI: 10.1093/beheco/art127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
114
|
Urbański A, Czarniewska E, Baraniak E, Rosiński G. Developmental changes in cellular and humoral responses of the burying beetle Nicrophorus vespilloides (Coleoptera, Silphidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 60:98-103. [PMID: 24295868 DOI: 10.1016/j.jinsphys.2013.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
Necrophagous beetles of the genus Nicrophorus have developed various defence mechanisms that reduce the negative effects of adverse environmental conditions. However, many physiological and ecological aspects, including the functioning of the immune system in burying beetles, are still unknown. In this study, we show developmental changes in cellular and humoral responses of larvae, pupae, and adults of Nicrophorus vespilloides. We assessed changes in total haemocyte count, phenoloxidase activity, and phagocytic ability of haemocytes. We found that during larval development there is a progressive increase in humoral and cellular activities, and these responses are correlated with alterations of total haemocyte counts in the haemolymph. In the pupal stage, a sharp drop in the number of phagocytic haemocytes and an increase in phenoloxidase activity were observed. In adults, cellular and humoral responses remained at a lower level. It is probable that high lytic activity of anal and oral secretions produced by parents supports a lower response of the immune system in the initial phase of larval development. In the studied stages, we also observed differences in polymerisation of F-actin cytoskeleton of haemocytes, number of haemocytes forming filopodia, and filopodia length. These results suggest that the differences in immune responses during various stages of development of N. vespilloides are associated with a dynamically changing environment and different risks of infection. For the first time a detailed analysis of stage-specific alterations in immune system activity during development of the burying beetle is presented.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Systematic Zoology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Elżbieta Czarniewska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Edward Baraniak
- Department of Systematic Zoology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
115
|
Mason PA, Smilanich AM, Singer MS. Reduced consumption of protein-rich foods follows immune challenge in a polyphagous caterpillar. J Exp Biol 2014; 217:2250-60. [DOI: 10.1242/jeb.093716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Advances in ecological immunity have illustrated that, like vertebrates, insects exhibit adaptive immunity, including induced changes in feeding behavior that aid the immune system. In particular, recent studies have pointed to the importance of protein intake in mounting an immune response. In this study, we tested the hypothesis that the polyphagous caterpillar, Grammia incorrupta (Hy. Edwards, Erebidae), would adaptively change its feeding behavior in response to immune challenge, predicting that caterpillars would increase their intake of dietary protein. We further predicted that this response would enhance the melanization response, a component of the immune system that acts against parasitoids. We challenged the immune system using either tachinid fly parasitoids or a bead injection technique that has been used in studies to simulate parasitism, and measured feeding before and after immune challenge on diets varying in their macronutrient content. To evaluate the effects of diet on melanization, we quantified melanization of beads following feeding assays. Contrary to our prediction, we found that parasitized or injected caterpillars given a choice between high and low protein foods reduced their intake of the high protein food. Furthermore, in a no-choice experiment, caterpillars offered food with a protein concentration that is optimal for growth reduced feeding following immune challenge, whereas those offered a low protein food did not. Although variation in protein intake did not change caterpillars' melanization response, increased carbohydrate intake did increase melanization, suggesting a prophylactic role for carbohydrates. We discuss alternative mechanisms by which variation in protein intake could negatively or positively affect parasitized caterpillars, including nutritional interactions with the caterpillar's self-medication response.
Collapse
|
116
|
Bolte S, Roth O, Philipp EER, Saphörster J, Rosenstiel P, Reusch TBH. Specific immune priming in the invasive ctenophore Mnemiopsis leidyi. Biol Lett 2013; 9:20130864. [PMID: 24257875 DOI: 10.1098/rsbl.2013.0864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Specific immune priming enables an induced immune response upon repeated pathogen encounter. As a functional analogue to vertebrate immune memory, such adaptive plasticity has been described, for instance, in insects and crustaceans. However, towards the base of the metazoan tree our knowledge about the existence of specific immune priming becomes scattered. Here, we exposed the invasive ctenophore Mnemiopsis leidyi repeatedly to two different bacterial epitopes (Gram-positive or -negative) and measured gene expression. Ctenophores experienced either the same bacterial epitope twice (homologous treatments) or different bacterial epitopes (heterologous treatments). Our results demonstrate that immune gene expression depends on earlier bacterial exposure. We detected significantly different expression upon heterologous compared with homologous bacterial treatment at three immune activator and effector genes. This is the first experimental evidence for specific immune priming in Ctenophora and generally in non-bilaterian animals, hereby adding to our growing notion of plasticity in innate immune systems across all animal phyla.
Collapse
Affiliation(s)
- Sören Bolte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, , Düsternbrooker Weg 20, Kiel 24105, Germany
| | | | | | | | | | | |
Collapse
|
117
|
Wegner KM, Volkenborn N, Peter H, Eiler A. Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol 2013; 13:252. [PMID: 24206899 PMCID: PMC3840651 DOI: 10.1186/1471-2180-13-252] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. RESULTS While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. CONCLUSION The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Collapse
Affiliation(s)
- Karl Mathias Wegner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Coastal Ecology, Wadden Sea Station Sylt, Hafenstrasse 43, 25992, List/Sylt, Germany.
| | | | | | | |
Collapse
|
118
|
Guivier E, Galan M, Henttonen H, Cosson JF, Charbonnel N. Landscape features and helminth co-infection shape bank vole immunoheterogeneity, with consequences for Puumala virus epidemiology. Heredity (Edinb) 2013; 112:274-81. [PMID: 24149655 DOI: 10.1038/hdy.2013.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity in environmental conditions helps to maintain genetic and phenotypic diversity in ecosystems. As such, it may explain why the capacity of animals to mount immune responses is highly variable. The quality of habitat patches, in terms of resources, parasitism, predation and habitat fragmentation may, for example, trigger trade-offs ultimately affecting the investment of individuals in various immunological pathways. We described spatial immunoheterogeneity in bank vole populations with respect to landscape features and co-infection. We focused on the consequences of this heterogeneity for the risk of Puumala hantavirus (PUUV) infection. We assessed the expression of the Tnf-α and Mx2 genes and demonstrated a negative correlation between PUUV load and the expression of these immune genes in bank voles. Habitat heterogeneity was partly associated with differences in the expression of these genes. Levels of Mx2 were lower in large forests than in fragmented forests, possibly due to differences in parasite communities. We previously highlighted the positive association between infection with Heligmosomum mixtum and infection with PUUV. We found that Tnf-α was more strongly expressed in voles infected with PUUV than in uninfected voles or in voles co-infected with the nematode H. mixtum and PUUV. H. mixtum may limit the capacity of the vole to develop proinflammatory responses. This effect may increase the risk of PUUV infection and replication in host cells. Overall, our results suggest that close interactions between landscape features, co-infection and immune gene expression may shape PUUV epidemiology.
Collapse
Affiliation(s)
- E Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - M Galan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - H Henttonen
- Finnish Forest Research Institute, Vantaa, Finland
| | - J-F Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - N Charbonnel
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| |
Collapse
|
119
|
The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS One 2013; 8:e76246. [PMID: 24194830 PMCID: PMC3806765 DOI: 10.1371/journal.pone.0076246] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/21/2013] [Indexed: 11/20/2022] Open
Abstract
The "sicker sex" idea summarizes our knowledge of sex biases in parasite burden and immune ability whereby males fare worse than females. The theoretical basis of this is that because males invest more on mating effort than females, the former pay the costs by having a weaker immune system and thus being more susceptible to parasites. Females, conversely, have a greater parental investment. Here we tested the following: a) whether both sexes differ in their ability to defend against parasites using a natural host-parasite system; b) the differences in resource allocation conflict between mating effort and parental investment traits between sexes; and, c) effect of parasitism on survival for both sexes. We used a number of insect damselfly species as study subjects. For (a), we quantified gregarine and mite parasites, and experimentally manipulated gregarine levels in both sexes during adult ontogeny. For (b), first, we manipulated food during adult ontogeny and recorded thoracic fat gain (a proxy of mating effort) and abdominal weight (a proxy of parental investment) in both sexes. Secondly for (b), we manipulated food and gregarine levels in both sexes when adults were about to become sexually mature, and recorded gregarine number. For (c), we infected male and female adults of different ages and measured their survival. Males consistently showed more parasites than females apparently due to an increased resource allocation to fat production in males. Conversely, females invested more on abdominal weight. These differences were independent of how much food/infecting parasites were provided. The cost of this was that males had more parasites and reduced survival than females. Our results provide a resource allocation mechanism for understanding sexual differences in parasite defense as well as survival consequences for each sex.
Collapse
|
120
|
Murdock CC, Moller-Jacobs LL, Thomas MB. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc Biol Sci 2013; 280:20132030. [PMID: 24048159 PMCID: PMC3779341 DOI: 10.1098/rspb.2013.2030] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Considerable research effort has been directed at understanding the genetic and molecular basis of mosquito innate immune mechanisms. Whether environmental factors interact with these mechanisms to shape overall resistance remains largely unexplored. Here, we examine how changes in mean ambient temperature, diurnal temperature fluctuation and time of day of infection affected the immunity and resistance of Anopheles stephensi to infection with Escherichia coli. We used quantitative PCR to estimate the gene expression of three immune genes in response to challenge with heat-killed E. coli. We also infected mosquitoes with live E. coli and ran bacterial growth assays to quantify host resistance. Both mosquito immune parameters and resistance were directly affected by mean temperature, diurnal temperature fluctuation and time of day of infection. Furthermore, there was a suite of complex two- and three-way interactions yielding idiosyncratic phenotypic variation under different environmental conditions. The results demonstrate mosquito immunity and resistance to be strongly influenced by a complex interplay of environmental variables, challenging the interpretation of the very many mosquito immune studies conducted under standard laboratory conditions.
Collapse
Affiliation(s)
- Courtney C Murdock
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, , Merkle Lab, Orchard Road, University Park, PA 16802, USA
| | | | | |
Collapse
|
121
|
Lindenau JD, Salzano FM, Guimarães LSP, Callegari-Jacques SM, Hurtado AM, Hill KR, Petzl-Erler ML, Tsuneto LT, Hutz MH. Distribution patterns of variability for 18 immune system genes in Amerindians - relationship with history and epidemiology. ACTA ACUST UNITED AC 2013; 82:177-85. [DOI: 10.1111/tan.12183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 12/22/2022]
Affiliation(s)
- J. D. Lindenau
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| | - F. M. Salzano
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| | - L. S. P. Guimarães
- Unidade de Epidemiologia e Estatística; Hospital de Clínicas de Porto Alegre; Porto Alegre; Brazil
| | | | - A. M. Hurtado
- School of Human Evolution & Social Change; Arizona State University; Tempe; AZ; USA
| | - K. R. Hill
- School of Human Evolution & Social Change; Arizona State University; Tempe; AZ; USA
| | - M. L. Petzl-Erler
- Departamento de Genética; Universidade Federal do Paraná; Curitiba; Brazil
| | - L. T. Tsuneto
- Departamento de Análises Clínicas; Universidade Estadual de Maringá; Maringá; Brazil
| | - M. H. Hutz
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| |
Collapse
|
122
|
Lefèvre T, Vantaux A, Dabiré KR, Mouline K, Cohuet A. Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog 2013; 9:e1003365. [PMID: 23818841 PMCID: PMC3688545 DOI: 10.1371/journal.ppat.1003365] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.
Collapse
Affiliation(s)
- Thierry Lefèvre
- MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR Universités Montpellier 1 & 2, CNRS 5290, IRD 224, Montpellier, France.
| | | | | | | | | |
Collapse
|
123
|
Reproductive status alters transcriptomic response to infection in female Drosophila melanogaster. G3-GENES GENOMES GENETICS 2013; 3:827-40. [PMID: 23550122 PMCID: PMC3656730 DOI: 10.1534/g3.112.005306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mating and consequent reproduction significantly reduce the ability of female Drosophila melanogaster to defend against systemic bacterial infection. The goal of the present study was to identify genes likely to inform the mechanism of this post-mating immunosuppression. We used microarrays to contrast genome-wide transcript levels in virgin vs. mated females before and after infection. Because the immunosuppressive effect of mating is contingent on the presence of a germline in females, we repeated the entire experiment by using female mutants that do not form a germline. We found that multiple genes involved in egg production show reduced expression in response to infection, and that this reduction is stronger in virgins than it is in mated females. In germline-less females, expression of egg-production genes was predictably low and not differentially affected by infection. We also identified several immune responsive genes that are differentially induced after infection in virgins vs. mated females. Immune genes affected by mating status and egg production genes altered by infection are candidates to inform the mechanism of the trade-off between mating and immune defense.
Collapse
|
124
|
Zhong D, Wang MH, Pai A, Yan G. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum). Exp Parasitol 2013; 134:61-7. [PMID: 23380036 DOI: 10.1016/j.exppara.2013.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 01/31/2023]
Abstract
The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
125
|
Hahn DC, Summers SG, Genovese KJ, He H, Kogut MH. Obligate Brood Parasites Show More Functionally Effective Innate Immune Responses: An Eco-immunological Hypothesis. Evol Biol 2013. [DOI: 10.1007/s11692-013-9231-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
126
|
Giglio A, Giulianini PG. Phenoloxidase activity among developmental stages and pupal cell types of the ground beetle Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:466-474. [PMID: 23384937 DOI: 10.1016/j.jinsphys.2013.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
In ecological immunology is of great importance the study of the immune defense plasticity as response to a variable environment. In holometabolous insects the fitness of each developmental stage depends on the capacity to mount a response (i.e. physiological, behavioral) under environmental pressure. The immune response is a highly dynamic trait closely related to the ecology of organism and the variation in the expression of an immune system component may affect another fitness relevant trait of organism (i.e. growth, reproduction). The present research quantified immune function (total and differential number of hemocytes, phagocytosis in vivo and activity of phenoloxidase) in the pupal stage of Carabus (Chaetocarabus) lefebvrei. Moreover, the cellular and humoral immune function was compared across the larval, pupal and adult stages to evaluate the changes in immunocompetence across the developmental stages. Four types of circulating hemocytes were characterized via transmission electron microscopy in the pupal stage: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The artificial non-self-challenge treatments performed in vivo have shown that plasmatocytes and granulocytes are responsible for phagocytosis. The level of active phenoloxidase increases with the degree of pigmentation of the cuticle in each stage. In C. lefebvrei, there are different strategies in term of immune response to enhance the fitness of each life stage. The results have shown that the variation in speed and specificity of immune function across the developmental stages is correlated with differences in infection risk, life expectancy and biological function of the life cycle.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via P. Bucci, I-87036 Arcavacata di Rende, Italy.
| | | |
Collapse
|
127
|
Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R. Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 2013. [DOI: 10.1093/beheco/art014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
128
|
Russo J, Madec L. Linking immune patterns and life history shows two distinct defense strategies in land snails (gastropoda, pulmonata). Physiol Biochem Zool 2013; 86:193-204. [PMID: 23434779 DOI: 10.1086/669482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Life history integration of the defense response was investigated at intra- and interspecific levels in land snails of the family Helicidae. Two hypotheses were tested: (i) fitness consequences of defense responses are closely related to life history traits such as size at maturity and life span; (ii) different pathways of the immune response based on "nonspecific" versus "specific" responses may reflect different defense options. Relevant immune responses to a challenge with E. coli were measured using the following variables: blood cell density, cellular or plasma antibacterial activity via reactive oxygen species (ROS) level, and bacterial growth inhibition. The results revealed that the largest snails did not exhibit the strongest immune response. Instead, body mass influenced the type of response in determining the appropriate strategy. Snails with a higher body mass at maturity had more robust plasma immune responses than snails with a lower mass, which had greater cell-mediated immune responses with a higher hemocyte density. In addition, ROS appeared also to be a stress mediator as attested by differences between sites and generations for the same species.
Collapse
Affiliation(s)
- Jacqueline Russo
- Université de Rennes 1, Unité Mixte de Recherche 6553 ECOBIO, Campus de Beaulieu, Rennes Cedex, France.
| | | |
Collapse
|
129
|
Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. Integrating nutrition and immunology: a new frontier. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:130-7. [PMID: 23159523 DOI: 10.1016/j.jinsphys.2012.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 05/20/2023]
Abstract
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
130
|
Gerritsma S, Haan AD, Zande LVD, Wertheim B. Natural variation in differentiated hemocytes is related to parasitoid resistance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:148-158. [PMID: 23123513 DOI: 10.1016/j.jinsphys.2012.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
As a measure of parasitoid resistance, hemocyte load and encapsulation ability were measured in lines collected from natural populations of Drosophila melanogaster in Europe. Results show large geographic variation in resistance against the parasitoid wasp Asobara tabida among the field lines, but there was no clear correlation between resistance and total hemocyte load, neither before nor after parasitization. This was in contrast to the patterns that had been found in a comparison among species of Drosophila, where total hemocyte counts were positively correlated to encapsulation rates. This suggests that the mechanisms underlying between-species variation in parasitoid resistance do not extend to the natural variation that exists within a species. Although hemocyte counts did not correspond to encapsulation ability within D. melanogaster, the ratios of lamellocytes and crystal cells were very similar in lines with successful encapsulation responses. Apart from variation in the hemocytic response of the different hemocyte types, within-species variation was also observed for accurate targeting of the foreign body by the hemocytes. These results are discussed in the context of possible causes of variation in immune functions among natural populations.
Collapse
Affiliation(s)
- Sylvia Gerritsma
- Evolutionary Genetics, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
131
|
Meylan S, Richard M, Bauer S, Haussy C, Miles D. Costs of Mounting an Immune Response during Pregnancy in a Lizard. Physiol Biochem Zool 2013; 86:127-36. [DOI: 10.1086/668637] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
132
|
Brave new immunology. Trends Ecol Evol 2012. [DOI: 10.1016/j.tree.2012.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
133
|
Killpack TL, Karasov WH. Ontogeny of adaptive antibody response to a model antigen in captive altricial zebra finches. PLoS One 2012; 7:e47294. [PMID: 23056621 PMCID: PMC3467253 DOI: 10.1371/journal.pone.0047294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Based on studies from the poultry literature, all birds are hypothesized to require at least 4 weeks to develop circulating mature B-cell lineages that express functionally different immunoglobulin specificities. However, many altricial passerines fledge at adult size less than four weeks after the start of embryonic development, and therefore may experience a period of susceptibility during the nestling and post-fledging periods. We present the first study, to our knowledge, to detail the age-related changes in adaptive antibody response in an altricial passerine. Using repeated vaccinations with non-infectious keyhole limpet hemocyanin (KLH) antigen, we studied the ontogeny of specific adaptive immune response in altricial zebra finches Taeniopygia guttata. Nestling zebra finches were first injected at 7 days (7d), 14 days (14d), or 21 days post-hatch (21d) with KLH-adjuvant emulsions, and boosted 7 days later. Adults were vaccinated in the same manner. Induced KLH-specific IgY antibodies were measured using ELISA. Comparisons within age groups revealed no significant increase in KLH-specific antibody levels between vaccination and boost in 7d birds, yet significant increases between vaccination and boost were observed in 14d, 21d, and adult groups. There was no significant difference among age groups in KLH antibody response to priming vaccination, yet KLH antibody response post-boost significantly increased with age among groups. Post-boost antibody response in all nestling age groups was significantly lower than in adults, indicating that mature adult secondary antibody response level was not achieved in zebra finches prior to fledging (21 days post-hatch in zebra finches). Findings from this study contribute fundamental knowledge to the fields of developmental immunology and ecological immunology and strengthen the utility of zebra finches as a model organism for future studies of immune ontogeny.
Collapse
Affiliation(s)
- Tess L Killpack
- Department of Zoology, University of Wisconsin, Madison, United States of America.
| | | |
Collapse
|
134
|
Lenz TL, Eizaguirre C, Rotter B, Kalbe M, Milinski M. Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. Mol Ecol 2012; 22:774-86. [PMID: 22971109 PMCID: PMC3579235 DOI: 10.1111/j.1365-294x.2012.05756.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 11/28/2022]
Abstract
Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | | | | | | | | |
Collapse
|
135
|
de Roode JC, Lefèvre T. Behavioral Immunity in Insects. INSECTS 2012; 3:789-820. [PMID: 26466629 PMCID: PMC4553590 DOI: 10.3390/insects3030789] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022]
Abstract
Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied.
Collapse
Affiliation(s)
- Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Thierry Lefèvre
- MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), Centre IRD, 911 Av. Agropolis-BP 64501, Montpellier 34394, France.
| |
Collapse
|
136
|
Blastocystis: past pitfalls and future perspectives. Trends Parasitol 2012; 28:327-34. [PMID: 22738855 DOI: 10.1016/j.pt.2012.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/08/2023]
Abstract
Blastocystis is a genetically heterogeneous protist found in the intestinal tract (IT) of many vertebrates, and although it is implicated in a variety of human intestinal disorders, data regarding the clinical relevance of Blastocystis is at best speculative. Several research issues, including a lack of standardization across studies, the potential for intrasubtype variation in pathogenicity, and difficulties associated with diagnostics for many idiopathic disorders of the human IT have led to conflicting reports in support of a role for Blastocystis pathogenicity. Here, several research areas and methodologies are reviewed that if integrated appropriately into a prospective study may prove useful and facilitate a better understanding of the role of Blastocystis in human health and disease.
Collapse
|
137
|
Mostowy R, Engelstädter J, Salathé M. Non-genetic inheritance and the patterns of antagonistic coevolution. BMC Evol Biol 2012; 12:93. [PMID: 22720868 PMCID: PMC3514154 DOI: 10.1186/1471-2148-12-93] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/25/2012] [Indexed: 11/17/2022] Open
Abstract
Background Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence. Results Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences between the two species affect the threshold value. These results strongly suggest that the lack of phenotype frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species. Conclusions Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions, we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.
Collapse
Affiliation(s)
- Rafal Mostowy
- Institute for Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
138
|
Sánchez-Guillén RA, Martínez-Zamilpa SMJ, Jiménez-Cortés JG, Forbes MRL, Córdoba-Aguilar A. Maintenance of polymorphic females: do parasites play a role? Oecologia 2012; 171:105-13. [PMID: 22710614 DOI: 10.1007/s00442-012-2388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
The role of parasites in explaining maintenance of polymorphism is an unexplored research avenue. In odonates, female-limited color polymorphism (one female morph mimicking the conspecific male and one or more gynochromatic morphs) is widespread. Here we investigated whether parasitism contributes to color polymorphism maintenance by studying six species of female dimorphic damselflies using large databases of field-collected animals. We predicted that androchrome females (male mimics) would be more intensively parasitized than gynochrome females which is, according to previous studies, counterbalanced by the advantages of the former when evading male harassment compared to gynochrome females. Here we show that in Ischnura denticollis and Enallagma novahispaniae, androchrome females suffer from a higher degree of parasitism than gynochromatic females, and contrary to prediction, than males. Thus, our study has detected a correlation between color polymorphism and parasitic burden in odonates. This leads us to hypothesize that natural selection, via parasite pressure, can explain in part how androchrome and gynochrome female color morphs can be maintained. Both morphs may cope with parasites in a different way: given that androchrome females are more heavily parasitized, they may pay a higher fecundity costs, in comparison to gynochrome females.
Collapse
Affiliation(s)
- R A Sánchez-Guillén
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF, Mexico.
| | | | | | | | | |
Collapse
|
139
|
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. INSECTS 2012; 3:573-92. [PMID: 26466545 PMCID: PMC4553612 DOI: 10.3390/insects3020573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests.
Collapse
|
140
|
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB. Complex effects of temperature on mosquito immune function. Proc Biol Sci 2012; 279:3357-66. [PMID: 22593107 PMCID: PMC3385736 DOI: 10.1098/rspb.2012.0638] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host–parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools.
Collapse
Affiliation(s)
- C C Murdock
- Department of Entomology, Center for Infectious Disease Dynamics, Merkle Lab, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Garnier R, Boulinier T, Gandon S. Coevolution between maternal transfer of immunity and other resistance strategies against pathogens. Evolution 2012; 66:3067-78. [PMID: 23025598 DOI: 10.1111/j.1558-5646.2012.01665.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Among the wide variety of resistance mechanisms to parasitism, the transgenerational transfer of immunity from mother to offspring has largely been overlooked and never included in evolutionary or coevolutionary studies of resistance mechanisms. Here we study the evolution and coevolution of various resistance mechanisms with a special focus on maternal transfer of immunity. In particular we show that maternal transfer of immunity is only expected to evolve when cross immunity is high and when the pathogens have an intermediate virulence. We also show that the outcome of the coevolution between various resistance mechanisms depends critically on the life span of the host. We predict that short-lived species should invest in avoidance strategies, whereas long-lived species should invest in acquired resistance mechanisms. These results may help understanding the diversity of resistance strategies that have evolved in vertebrate species. Our framework also provides a general basis for the study of the evolution of other transgenerational resistance mechanisms.
Collapse
Affiliation(s)
- Romain Garnier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE-CNRS UMR 5175, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
142
|
Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala MJ, Sild E, Hõrak P. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp Biochem Physiol A Mol Integr Physiol 2012; 161:422-8. [DOI: 10.1016/j.cbpa.2011.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022]
|
143
|
Martemyanov VV, Dubovskiy IM, Rantala MJ, Salminen JP, Belousova IA, Pavlushin SV, Bakhvalov SA, Glupov VV. The Effects of Defoliation-Induced Delayed Changes in Silver Birch Foliar Chemistry on Gypsy Moth Fitness, Immune Response, and Resistance to Baculovirus Infection. J Chem Ecol 2012; 38:295-305. [DOI: 10.1007/s10886-012-0090-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
144
|
Bulté G, Robinson SA, Forbes MR, Marcogliese DJ. Is there such thing as a parasite free lunch? The direct and indirect consequences of eating invasive prey. ECOHEALTH 2012; 9:6-16. [PMID: 22451166 DOI: 10.1007/s10393-012-0757-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/15/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
As the number of invasive species increases globally, more and more native predators are reported to shift their diet toward invasive prey. The consequences of such diet shifts for the health of populations of native predators are poorly studied, but diet shifts are expected to have important parasitological and immunological consequences, ultimately affecting predator fitness. We reviewed evidence that diet shifts from native to invasive prey can alter parasite exposure directly and also indirectly affect immune functions via changes in condition and contaminant exposure. We highlight relevant conceptual and methodological tools that should be used for the design of experiments aimed at exploring important links between invasive prey and parasitism, contaminants and fitness of their native predators.
Collapse
Affiliation(s)
- Grégory Bulté
- Department of Biology, Carleton University, 1125 Colonel By, Ottawa, ON, K1S 5B6, Canada.
| | | | | | | |
Collapse
|
145
|
Vetter MM, Kronholm I, He F, Häweker H, Reymond M, Bergelson J, Robatzek S, de Meaux J. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol Biol Evol 2012; 29:1655-67. [PMID: 22319159 DOI: 10.1093/molbev/mss011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana, the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.
Collapse
Affiliation(s)
- M Madlen Vetter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Valtonen TM, Rantala MJ. Poor Early Nutrition Reveals the Trade-Off between Immune Defense and Mating Success. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/epi/235523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
147
|
González-Tokman DM, Córdoba-Aguilar A, Forbes MR. Effect of juvenile hormone analog in a natural host-parasite system. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9546-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
148
|
Zhou Z, Wang L, Shi X, Zhang H, Gao Y, Wang M, Kong P, Qiu L, Song L. The modulation of catecholamines to the immune response against bacteria Vibrio anguillarum challenge in scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1065-1071. [PMID: 21979298 DOI: 10.1016/j.fsi.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Catecholamines are pivotal signal molecules in the neuroendocrine-immune regulatory network, and implicated in the modulation of immune response. In the present study, the activities of some immune-related enzymes and the concentration of catecholamines were determined in circulating haemolymph of scallops Chlamys farreri after bacteria Vibrio anguillarum challenge. The activities of superoxide dismutase (SOD), catalase (CAT) and lysozyme (LYZ) increased significantly and reached 610 U mg(-1) at 12 h, 37.6 U mg(-1) at 6 h and 261.5 U mg(-1) at 6 h after bacteria challenge, respectively. The concentration of norepinephrine, epinephrine and dopamine also increased significantly and reached 114.9 ng mL(-1) at 12 h, 86.9 ng mL(-1) at 24 h and 480.4 pg mL(-1) at 12 h after bacteria challenge, respectively. Meanwhile, the activities of these immune-related enzymes in haemolymph were monitored in those scallops which were challenged by bacteria V. anguillarum and stimulated simultaneously with norepinephrine, epinephrine and adrenoceptor antagonist. The injection of norepinephrine and epinephrine repressed significantly the induction of bacteria challenge on the activities of immune-related enzymes, and they were reduced to about half of that in the control groups. The blocking of α and β-adrenoceptor by antagonist only repressed the increase of CAT and LYZ activities significantly, while no significant effect was observed on the increase of SOD activities. The collective results indicated that scallop catecholaminergic neuroendocrine system could be activated by bacteria challenge to release catecholamines after the immune response had been triggered, and the immune response against bacteria challenge could been negatively modulated by norepinephrine, epinephrine, and adrenoceptor antagonist. This information is helpful to further understand the immunomodulation of catecholamines in scallops.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Niemelä PT, Vainikka A, Hedrick AV, Kortet R. Integrating behaviour with life history: boldness of the field cricket, Gryllus integer, during ontogeny. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01939.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
150
|
|