101
|
MEESTER LD, STOKS R, BRANS KI. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr Zool 2018; 13:372-391. [PMID: 29168625 PMCID: PMC6221008 DOI: 10.1111/1749-4877.12298] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity and regional scales.
Collapse
Affiliation(s)
- Luc De MEESTER
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| | - Robby STOKS
- Evolutionary Stress Ecology and EcotoxicologyLeuvenBelgium
| | - Kristien I. BRANS
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| |
Collapse
|
102
|
Christie MR, Searle CL. Evolutionary rescue in a host-pathogen system results in coexistence not clearance. Evol Appl 2018; 11:681-693. [PMID: 29875810 PMCID: PMC5979755 DOI: 10.1111/eva.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023] Open
Abstract
The evolutionary rescue of host populations may prevent extinction from novel pathogens. However, the conditions that facilitate rapid evolution of hosts, in particular the population variation in host susceptibility, and the effects of host evolution in response to pathogens on population outcomes remain largely unknown. We constructed an individual-based model to determine the relationships between genetic variation in host susceptibility and population persistence in an amphibian-fungal pathogen (Batrachochytrium dendrobatidis) system. We found that host populations can rapidly evolve reduced susceptibility to a novel pathogen and that this rapid evolution led to a 71-fold increase in the likelihood of host-pathogen coexistence. However, the increased rates of coexistence came at a cost to host populations; fewer populations cleared infection, population sizes were depressed, and neutral genetic diversity was lost. Larger adult host population sizes and greater adaptive genetic variation prior to the onset of pathogen introduction led to substantially reduced rates of extinction, suggesting that populations with these characteristics should be prioritized for conservation when species are threatened by novel infectious diseases.
Collapse
Affiliation(s)
- Mark Redpath Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
103
|
Hausch S, Vamosi SM, Fox JW. Effects of intraspecific phenotypic variation on species coexistence. Ecology 2018; 99:1453-1462. [DOI: 10.1002/ecy.2346] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Stephen Hausch
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta T2N 1N4 Canada
| | - Steven M. Vamosi
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta T2N 1N4 Canada
| | - Jeremy W. Fox
- Department of Biological Sciences University of Calgary 2500 University Dr. NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
104
|
Lázaro E, Arribas M, Cabanillas L, Román I, Acosta E. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures. Sci Rep 2018; 8:8080. [PMID: 29795535 PMCID: PMC5967308 DOI: 10.1038/s41598-018-26443-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/11/2018] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages are the most numerous biological entities on Earth. They are on the basis of most ecosystems, regulating the diversity and abundance of bacterial populations and contributing to the nutrient and energy cycles. Bacteriophages have two well differentiated phases in their life cycle, one extracellular, in which they behave as inert particles, and other one inside their hosts, where they replicate to give rise to a progeny. In both phases they are exposed to environmental conditions that often act as selective pressures that limit both their survival in the environment and their ability to replicate, two fitness traits that frequently cannot be optimised simultaneously. In this study we have analysed the evolutionary ability of an RNA bacteriophage, the bacteriophage Qβ, when it is confronted with a temperature increase that affects both the extracellular and the intracellular media. Our results show that Qβ can optimise its survivability when exposed to short-term high temperature extracellular heat shocks, as well as its replicative ability at higher-than-optimal temperature. Mutations responsible for simultaneous adaptation were the same as those selected when adaptation to each condition proceeded separately, showing the absence of important trade-offs between survival and reproduction in this virus.
Collapse
Affiliation(s)
- Ester Lázaro
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain. .,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - María Arribas
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Laura Cabanillas
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Ismael Román
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Esther Acosta
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Ctra de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
105
|
Abstract
Critical thermal maximum (CTmax) is a commonly and increasingly used measure of an animal's upper thermal tolerance limit. However, it is unknown how consistent CTmax is within an individual, and how physiologically taxing such experiments are. We addressed this by estimating the repeatability of CTmax in zebrafish, and measured how growth and survival were affected by multiple trials. The repeatability of CTmax over four trials was 0.22 (0.07-0.43). However, CTmax increased from the first to the second trial, likely because of thermal acclimation triggered by the heat shock. After this initial acclimation response individuals became more consistent in their CTmax, reflected in a higher repeatability measure of 0.45 (0.28-0.65) for trials 2-4. We found a high innate thermal tolerance led to a lower acclimation response, whereas a high acclimation response was present in individuals that displayed a low initial CTmax. This could indicate that different strategies for thermal tolerance (i.e. plasticity vs. high innate tolerance) can co-exist in a population. Additionally, repeated CTmax trials had no effect on growth, and survival was high (99%). This validates the method and, combined with the relatively high repeatability, highlights the relevance of CTmax for continued use as a metric for acute thermal tolerance.
Collapse
|
106
|
Escudero JA, MacLean RC, San Millan A. Testing the Role of Multicopy Plasmids in the Evolution of Antibiotic Resistance. J Vis Exp 2018. [PMID: 29781985 DOI: 10.3791/57386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multicopy plasmids are extremely abundant in prokaryotes but their role in bacterial evolution remains poorly understood. We recently showed that the increase in gene copy number per cell provided by multicopy plasmids could accelerate the evolution of plasmid-encoded genes. In this work, we present an experimental system to test the ability of multicopy plasmids to promote gene evolution. Using simple molecular biology methods, we constructed a model system where an antibiotic resistance gene can be inserted into Escherichia coli MG1655, either in the chromosome or on a multicopy plasmid. We use an experimental evolution approach to propagate the different strains under increasing concentrations of antibiotics and we measure survival of bacterial populations over time. The choice of the antibiotic molecule and the resistance gene is so that the gene can only confer resistance through the acquisition of mutations. This "evolutionary rescue" approach provides a simple method to test the potential of multicopy plasmids to promote the acquisition of antibiotic resistance. In the next step of the experimental system, the molecular bases of antibiotic resistance are characterized. To identify mutations responsible for the acquisition of antibiotic resistance we use deep DNA sequencing of samples obtained from whole populations and clones. Finally, to confirm the role of the mutations in the gene under study, we reconstruct them in the parental background and test the resistance phenotype of the resulting strains.
Collapse
Affiliation(s)
- Jose Antonio Escudero
- Department of Animal Health, Universidad Complutense de Madrid.,Visavet Health Surveillance Centre, Universidad Complutense de Madrid
| | | | - Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and CIBERESP;
| |
Collapse
|
107
|
Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun 2018; 9:1719. [PMID: 29712900 PMCID: PMC5928086 DOI: 10.1038/s41467-018-03906-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/22/2018] [Indexed: 11/08/2022] Open
Abstract
Diatoms contribute roughly 20% of global primary production, but the factors determining their ability to adapt to global warming are unknown. Here we quantify the capacity for adaptation to warming in the marine diatom Thalassiosira pseudonana. We find that evolutionary rescue under severe (32 °C) warming is slow, but adaptation to more realistic scenarios where temperature increases are moderate (26 °C) or fluctuate between benign and severe conditions is rapid and linked to phenotypic changes in metabolic traits and elemental composition. Whole-genome re-sequencing identifies genetic divergence among populations selected in the different warming regimes and between the evolved and ancestral lineages. Consistent with the phenotypic changes, the most rapidly evolving genes are associated with transcriptional regulation, cellular responses to oxidative stress and redox homeostasis. These results demonstrate that the evolution of thermal tolerance in marine diatoms can be rapid, particularly in fluctuating environments, and is underpinned by major genomic and phenotypic change.
Collapse
Affiliation(s)
- C-Elisa Schaum
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK.
- Institute for Hydrobiology and Fisheries, Section Oceanography, Hamburg University, 22767, Hamburg, Germany.
| | - A Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK
| | - N Smirnoff
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building University of Exeter, Exeter, EX4 4QD, UK
| | - D J Studholme
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building University of Exeter, Exeter, EX4 4QD, UK
| | - G Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK.
| |
Collapse
|
108
|
Marrot P, Charmantier A, Blondel J, Garant D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. J Anim Ecol 2018; 87:754-764. [PMID: 29337354 DOI: 10.1111/1365-2656.12794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional selection acting on laying date could favour an adaptive response in this trait, since it is heritable.
Collapse
Affiliation(s)
- Pascal Marrot
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,CEFE-UMR 5175, Montpellier, France
| | | | | | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
109
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
110
|
Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments. Genetics 2017; 208:307-322. [PMID: 29141909 DOI: 10.1534/genetics.117.300519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022] Open
Abstract
The fitness landscape is a concept that is widely used for understanding and predicting evolutionary adaptation. The topography of the fitness landscape depends critically on the environment, with potentially far-reaching consequences for evolution under changing conditions. However, few studies have assessed directly how empirical fitness landscapes change across conditions, or validated the predicted consequences of such change. We previously evolved replicate yeast populations in the presence of either gradually increasing, or constant high, concentrations of the heavy metals cadmium (Cd), nickel (Ni), and zinc (Zn), and analyzed their phenotypic and genomic changes. Here, we reconstructed the local fitness landscapes underlying adaptation to each metal by deleting all repeatedly mutated genes both by themselves and in combination. Fitness assays revealed that the height, and/or shape, of each local fitness landscape changed considerably across metal concentrations, with distinct qualitative differences between unconditionally (Cd) and conditionally toxic metals (Ni and Zn). This change in topography had particularly crucial consequences in the case of Ni, where a substantial part of the individual mutational fitness effects changed in sign across concentrations. Based on the Ni landscape analyses, we made several predictions about which mutations had been selected when during the evolution experiment. Deep sequencing of population samples from different time points generally confirmed these predictions, demonstrating the power of landscape reconstruction analyses for understanding and ultimately predicting evolutionary dynamics, even under complex scenarios of environmental change.
Collapse
|
111
|
Low-Décarie E, Boatman TG, Bennett N, Passfield W, Gavalás-Olea A, Siegel P, Geider RJ. Predictions of response to temperature are contingent on model choice and data quality. Ecol Evol 2017; 7:10467-10481. [PMID: 29238568 PMCID: PMC5723626 DOI: 10.1002/ece3.3576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023] Open
Abstract
The equations used to account for the temperature dependence of biological processes, including growth and metabolic rates, are the foundations of our predictions of how global biogeochemistry and biogeography change in response to global climate change. We review and test the use of 12 equations used to model the temperature dependence of biological processes across the full range of their temperature response, including supra- and suboptimal temperatures. We focus on fitting these equations to thermal response curves for phytoplankton growth but also tested the equations on a variety of traits across a wide diversity of organisms. We found that many of the surveyed equations have comparable abilities to fit data and equally high requirements for data quality (number of test temperatures and range of response captured) but lead to different estimates of cardinal temperatures and of the biological rates at these temperatures. When these rate estimates are used for biogeographic predictions, differences between the estimates of even the best-fitting models can exceed the global biological change predicted for a decade of global warming. As a result, studies of the biological response to global changes in temperature must make careful consideration of model selection and of the quality of the data used for parametrizing these models.
Collapse
Affiliation(s)
| | | | - Noah Bennett
- School of Biological Sciences University of Essex Colchester UK
| | - Will Passfield
- School of Biological Sciences University of Essex Colchester UK
| | - Antonio Gavalás-Olea
- School of Biological Sciences University of Essex Colchester UK.,Instituto de Investigaciones Marinas (IIM-CSIC) Vigo Spain
| | - Philipp Siegel
- School of Biological Sciences University of Essex Colchester UK
| | | |
Collapse
|
112
|
Skene KR. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
113
|
Orive ME, Barfield M, Fernandez C, Holt RD. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue. Am Nat 2017; 190:469-490. [PMID: 28937809 DOI: 10.1086/693006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Collapse
|
114
|
Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms? J Therm Biol 2017; 68:195-199. [DOI: 10.1016/j.jtherbio.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
|
115
|
Albecker MA, McCoy MW. Adaptive responses to salinity stress across multiple life stages in anuran amphibians. Front Zool 2017; 14:40. [PMID: 28775757 PMCID: PMC5539974 DOI: 10.1186/s12983-017-0222-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022] Open
Abstract
Background In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea, a species repeatedly observed in saline wetlands. Results Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC50. Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Conclusions Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0222-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| | - Michael W McCoy
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| |
Collapse
|
116
|
Engen S, Sæther BE. Extinction Risk and Lack of Evolutionary Rescue under Resource Depletion or Area Reduction. Am Nat 2017; 190:73-82. [DOI: 10.1086/692011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
117
|
Kvalnes T, Ringsby TH, Jensen H, Hagen IJ, Rønning B, Pärn H, Holand H, Engen S, Saether BE. Reversal of response to artificial selection on body size in a wild passerine. Evolution 2017; 71:2062-2079. [DOI: 10.1111/evo.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Ingerid Julie Hagen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Steinar Engen
- Centre for Biodiversity Dynamics (CBD); Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| |
Collapse
|
118
|
Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J. Evolution caused by extreme events. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160146. [PMID: 28483875 PMCID: PMC5434096 DOI: 10.1098/rstb.2016.0146] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2016] [Indexed: 12/15/2022] Open
Abstract
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marc T J Johnson
- Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Andrew H Knoll
- Department of Organismal Biology, Harvard University, Cambridge, MA 02138, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
119
|
Hopkins GR, French SS, Brodie ED. Interacting stressors and the potential for adaptation in a changing world: responses of populations and individuals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161057. [PMID: 28680662 PMCID: PMC5493904 DOI: 10.1098/rsos.161057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/19/2017] [Indexed: 05/12/2023]
Abstract
To accurately predict the impact of environmental change, it is necessary to assay effects of key interacting stressors on vulnerable organisms, and the potential resiliency of their populations. Yet, for the most part, these critical data are missing. We examined the effects of two common abiotic stressors predicted to interact with climate change, salinity and temperature, on the embryonic survival and development of a model freshwater vertebrate, the rough-skinned newt (Taricha granulosa) from different populations. We found that salinity and temperature significantly interacted to affect newt embryonic survival and development, with the negative effects of salinity most pronounced at temperature extremes. We also found significant variation among, and especially within, populations, with different females varying in the performance of their eggs at different salinity-temperature combinations, possibly providing the raw material for future natural selection. Our results highlight the complex nature of predicting responses to climate change in space and time, and provide critical data towards that aim.
Collapse
|
120
|
Gomulkiewicz R, Krone SM, Remien CH. Evolution and the duration of a doomed population. Evol Appl 2017; 10:471-484. [PMID: 28515780 PMCID: PMC5427677 DOI: 10.1111/eva.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Many populations are doomed to extinction, but little is known about how evolution contributes to their longevity. We address this by modeling an asexual population consisting of genotypes whose abundances change independently according to a system of continuous branching diffusions. Each genotype is characterized by its initial abundance, growth rate, and reproductive variance. The latter two components determine the genotype's "risk function" which describes its per capita probability of extinction at any time. We derive the probability distribution of extinction times for a polymorphic population, which can be expressed in terms of genotypic risk functions. We use this to explore how spontaneous mutation, abrupt environmental change, or population supplementation and removal affect the time to extinction. Results suggest that evolution based on new mutations does little to alter the time to extinction. Abrupt environmental changes that affect all genotypes can have more substantial impact, but, curiously, a beneficial change does more to extend the lifetime of thriving than threatened populations of the same initial abundance. Our results can be used to design policies that meet specific conservation goals or management strategies that speed the elimination of agricultural pests or human pathogens.
Collapse
|
121
|
Esbaugh AJ. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 2017; 188:1-13. [PMID: 28547292 DOI: 10.1007/s00360-017-1105-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Ocean acidification (OA) is an impending environmental stress facing all marine life, and as such has been a topic of intense research interest in recent years. Numerous detrimental effects have been documented in marine fish, ranging from reduced mortality to neurosensory impairment, and the prevailing opinions state that these effects are largely the downstream consequences of altered blood carbon dioxide chemistry caused by respiratory acid-base disturbances. While the respiratory acid-base disturbances are consistent responses to OA across tested fish species, it is becoming increasingly clear that there is wide variability in the degree of downstream impairments between species. This can also be extended to intraspecies variability, whereby some individuals have tolerant physiological traits, while others succumb to the effects of OA. This review will synthesize relevant literature on marine fish to highlight consistent trends of impairment, as well as observed interspecies variability in the responses to OA, and the potential routes of physiological acclimation. In all cases, whole animal responses are linked to demonstrated or proposed physiological impairments. Major topics of focus include: (1) respiratory acid-base disturbances; (2) early life survival and growth; (3) the implications for metabolic performance, activity, and reproduction; and (4) emerging physiological theories pertaining to neurosensory impairment and the role of GABAA receptors. Particular emphasis is placed on the importance of understanding the underlying physiological traits that confer inter- and intraspecies tolerance, as the abundance of these traits will decide the long-term outlook of marine fish.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| |
Collapse
|
122
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
123
|
Prentice MB, Bowman J, Khidas K, Koen EL, Row JR, Murray DL, Wilson PJ. Selection and drift influence genetic differentiation of insular Canada lynx ( Lynx canadensis) on Newfoundland and Cape Breton Island. Ecol Evol 2017; 7:3281-3294. [PMID: 28480025 PMCID: PMC5415520 DOI: 10.1002/ece3.2945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/16/2023] Open
Abstract
Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin-like growth factor-1 (IGF-1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF-1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF-1 locus of insular lynx.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
| | - Kamal Khidas
- Vertebrate Zoology Canadian Museum of Nature Ottawa ON Canada
| | - Erin L Koen
- Biology Department Trent University Peterborough ON Canada
| | - Jeffrey R Row
- Department of Environment and Resource Studies University of Waterloo Waterloo ON Canada
| | | | - Paul J Wilson
- Biology Department Trent University Peterborough ON Canada
| |
Collapse
|
124
|
Rudman SM, Kreitzman M, Chan KMA, Schluter D. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends Ecol Evol 2017; 32:403-415. [PMID: 28336183 DOI: 10.1016/j.tree.2017.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| | - Maayan Kreitzman
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kai M A Chan
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
125
|
Killeen J, Gougat-Barbera C, Krenek S, Kaltz O. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms. Mol Ecol 2017; 26:1734-1746. [PMID: 28222239 DOI: 10.1111/mec.14068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche.
Collapse
Affiliation(s)
- Joshua Killeen
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Claire Gougat-Barbera
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
126
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Evol Appl 2017; 10:267-275. [PMID: 28250811 PMCID: PMC5322406 DOI: 10.1111/eva.12447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Dustin J. Marshall
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Keyne Monro
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| |
Collapse
|
127
|
Oziolor EM, Bickham JW, Matson CW. Evolutionary toxicology in an omics world. Evol Appl 2017; 10:752-761. [PMID: 29151868 PMCID: PMC5680431 DOI: 10.1111/eva.12462] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Evolutionary toxicology is a young field that has grown rapidly in the past two decades. The potential of this field comes from the ability to link chemical contamination to multigenerational and population-wide effects in various species. The advancements and rapidly decreasing costs of -omic tools are improving the power and resolution of evolutionary toxicology studies. In this manuscript, we aim to address the trajectories and perspectives for conducting evolutionary toxicology studies with -omic approaches. We discuss the complementarity of using multiple -omic tools (genomics, eDNA, transcriptomics, proteomics, and metabolomics) for utility in understanding the toxicological relevance of adaptive responses in populations. In addition, we discuss phenotypic plasticity and its relevance to transcriptomic studies in toxicology. As evolutionary toxicology grows and expands its capacity to link toxicology with population-wide end points, we emphasize the applications of such studies in answering questions about ecological and population health, as well as future applicability to regulation. Thus, we aim to emphasize the enormous potential for evolutionary toxicology in an -omics world and give perspectives on the directions of future investigations.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| | - John W Bickham
- Department of Wildlife and Fisheries Science Texas A&M University College Station TX USA
| | - Cole W Matson
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| |
Collapse
|
128
|
Reid NM, Jackson CE, Gilbert D, Minx P, Montague MJ, Hampton TH, Helfrich LW, King BL, Nacci DE, Aluru N, Karchner SI, Colbourne JK, Hahn ME, Shaw JR, Oleksiak MF, Crawford DL, Warren WC, Whitehead A. The landscape of extreme genomic variation in the highly adaptable Atlantic killifish. Genome Biol Evol 2017; 9:659-676. [PMID: 28201664 PMCID: PMC5381573 DOI: 10.1093/gbe/evx023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/22/2022] Open
Abstract
Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
Collapse
Affiliation(s)
- Noah M Reid
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| | - Craig E Jackson
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405
| | - Don Gilbert
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Michael J Montague
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Hanover, NH 03755
| | - Lily W Helfrich
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672
| | - Diane E Nacci
- US Environmental Protection Agency, Office of Research and Development, Narragansett, RI, 02882
| | - Neel Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - John K Colbourne
- School of Biosciences, University of Birmingham, United Kingdom, B15 2TT
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405
| | - Marjorie F Oleksiak
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149
| | - Douglas L Crawford
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| |
Collapse
|
129
|
Betini GS, McAdam AG, Griswold CK, Norris DR. A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size. eLife 2017; 6:e18770. [PMID: 28164780 PMCID: PMC5340529 DOI: 10.7554/elife.18770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.
Collapse
Affiliation(s)
- Gustavo S Betini
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | | | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
130
|
Shefferson RP, Mizuta R, Hutchings MJ. Predicting evolution in response to climate change: the example of sprouting probability in three dormancy-prone orchid species. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160647. [PMID: 28280565 PMCID: PMC5319331 DOI: 10.1098/rsos.160647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Although many ecological properties of species respond to climate change, their evolutionary responses are poorly understood. Here, we use data from long-term demographic studies to predict evolutionary responses of three herbaceous perennial orchid species, Cypripedium parviflorum, C. candidum and Ophrys sphegodes, to predicted climate changes in the habitats they occupy. We focus on the evolution of sprouting probability, because all three species exhibit long-term vegetative dormancy, i.e. individual plants may not emerge above-ground, potentially for several consecutive years. The drivers of all major vital rates for populations of the species were analysed with general linear mixed models (GLMMs). High-dimensionality function-based matrix projection models were then developed to serve as core elements of deterministic and stochastic adaptive dynamics models used to analyse the adaptive context of sprouting in all populations. We then used regional climate forecasts, derived from high-resolution general atmospheric circulation models, of increased mean annual temperatures and spring precipitation at the occupied sites, to predict evolutionary trends in sprouting. The models predicted that C. parviflorum and O. sphegodes will evolve higher and lower probabilities of sprouting, respectively, by the end of the twenty-first century, whereas, after considerable variation, the probability of sprouting in C. candidum will return to its current level. These trends appear to be driven by relationships between mortality and size: in C. parviflorum and C. candidum, mortality is negatively related to size in the current year but positively related to growth since the previous year, whereas in O. sphegodes, mortality is positively related to size.
Collapse
Affiliation(s)
- Richard P. Shefferson
- Organization for Programs on Environmental Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Ryo Mizuta
- Meteorological Research Institute, Tsukuba, Japan
| | - Michael J. Hutchings
- School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QGUK
| |
Collapse
|
131
|
Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn ME, Nacci D, Oleksiak MF, Crawford DL, Whitehead A. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 2016; 354:1305-1308. [PMID: 27940876 PMCID: PMC5206662 DOI: 10.1126/science.aah4993] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023]
Abstract
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor-based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediating genes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversity has likely been a crucial substrate for selective sweeps to propel rapid adaptation.
Collapse
Affiliation(s)
- Noah M Reid
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Dina A Proestou
- Agricultural Research Service, U.S. Department of Agriculture, Kingston, RI 02881, USA
| | - Bryan W Clark
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - John K Colbourne
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R Shaw
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Diane Nacci
- Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Marjorie F Oleksiak
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Douglas L Crawford
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
132
|
|
133
|
Marshall DJ, Burgess SC, Connallon T. Global change, life-history complexity and the potential for evolutionary rescue. Evol Appl 2016; 9:1189-1201. [PMID: 27695526 PMCID: PMC5039331 DOI: 10.1111/eva.12396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
Most organisms have complex life cycles, and in marine taxa, larval life‐history stages tend to be more sensitive to environmental stress than adult (reproductive) life‐history stages. While there are several models of stage‐specific adaptation across the life history, the extent to which differential sensitivity to environmental stress (defined here as reductions in absolute fitness across the life history) affects the tempo of adaptive evolution to change remains unclear. We used a heuristic model to explore how commonly observed features associated with marine complex life histories alter a population's capacity to cope with environmental change. We found that increasing the complexity of the life history generally reduces the evolutionary potential of taxa to cope with environmental change. Our model also predicted that genetic correlations in stress tolerance between stages, levels of genetic variance in each stage, and the relative plasticity of different stages, all interact to affect the maximum rate of environmental change that will permit species persistence. Our results suggest that marine organisms with complex life cycles are particularly vulnerable to anthropogenic global change, but we lack empirical estimates of key parameters for most species.
Collapse
Affiliation(s)
- Dustin J Marshall
- Centre for Geometric Biology Monash University Melbourne Vic.Australia; School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Scott C Burgess
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Tim Connallon
- School of Biological Sciences Monash University Melbourne Vic. Australia
| |
Collapse
|
134
|
Baselga-Cervera B, Costas E, Bustillo-Avendaño E, García-Balboa C. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium. PeerJ 2016; 4:e1823. [PMID: 27019784 PMCID: PMC4806628 DOI: 10.7717/peerj.1823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/28/2022] Open
Abstract
The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be) is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER). Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be-resistant genotype suggest a pleiotropic effect mediated by an advantageous mutation; however, no sequencing confirmation was performed.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Genetics, Department of Animal Production, Universidad Complutense de Madrid , Madrid , Spain
| | - Eduardo Costas
- Genetics, Department of Animal Production, Universidad Complutense de Madrid , Madrid , Spain
| | - Estéfano Bustillo-Avendaño
- Genetics, Department of Animal Production, Universidad Complutense de Madrid, Madrid, Spain; I+D+I, Biotechnological Environmental Solutions S.L., Madrid, Spain
| | - Camino García-Balboa
- Genetics, Department of Animal Production, Universidad Complutense de Madrid, Madrid, Spain; I+D+I, Biotechnological Environmental Solutions S.L., Madrid, Spain
| |
Collapse
|
135
|
Abstract
The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field.
Collapse
|
136
|
Hopkins GR, Brodie ED. Occurrence of Amphibians in Saline Habitats: A Review and Evolutionary Perspective. HERPETOLOGICAL MONOGRAPHS 2015. [DOI: 10.1655/herpmonographs-d-14-00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
137
|
Esbaugh AJ, Ern R, Nordi WM, Johnson AS. Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B 2015; 186:97-109. [DOI: 10.1007/s00360-015-0940-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 01/10/2023]
|
138
|
Chirgwin E, Monro K, Sgro CM, Marshall DJ. Revealing hidden evolutionary capacity to cope with global change. GLOBAL CHANGE BIOLOGY 2015; 21:3356-3366. [PMID: 25781417 DOI: 10.1111/gcb.12929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The extent to which global change will impact the long-term persistence of species depends on their evolutionary potential to adapt to future conditions. While the number of studies that estimate the standing levels of adaptive genetic variation in populations under predicted global change scenarios is growing all the time, few studies have considered multiple environments simultaneously and even fewer have considered evolutionary potential in multivariate context. Because conditions will not be constant, adaptation to climate change is fundamentally a multivariate process so viewing genetic variances and covariances over multivariate space will always be more informative than relying on bivariate genetic correlations between traits. A multivariate approach to understanding the evolutionary capacity to cope with global change is necessary to avoid misestimating adaptive genetic variation in the dimensions in which selection will act. We assessed the evolutionary capacity of the larval stage of the marine polychaete Galeolaria caespitosa to adapt to warmer water temperatures. Galeolaria is an important habitat-forming species in Australia, and its earlier life-history stages tend to be more susceptible to stress. We used a powerful quantitative genetics design that assessed the impacts of three temperatures on subsequent survival across over 30 000 embryos across 204 unique families. We found adaptive genetic variation in the two cooler temperatures in our study, but none in the warmest temperature. Based on these results, we would have concluded that this species has very little capacity to evolve to the warmest temperature. However, when we explored genetic variation in multivariate space, we found evidence that larval survival has the potential to evolve even in the warmest temperatures via correlated responses to selection across thermal environments. Future studies should take a multivariate approach to estimating evolutionary capacity to cope with global change lest they misestimate a species' true adaptive potential.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Carla M Sgro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
139
|
Hao YQ, Brockhurst MA, Petchey OL, Zhang QG. Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol Lett 2015; 18:892-8. [PMID: 26119065 DOI: 10.1111/ele.12465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Rapid evolutionary adaptation has the potential to rescue from extinction populations experiencing environmental changes. Little is known, however, about the impact of short-term environmental fluctuations during long-term environmental deterioration, an intrinsic property of realistic environmental changes. Temporary environmental amelioration arising from such fluctuations could either facilitate evolutionary rescue by allowing population recovery (a positive demographic effect) or impede it by relaxing selection for beneficial mutations required for future survival (a negative population genetic effect). We address this uncertainty in an experiment with populations of a bacteriophage virus that evolved under deteriorating conditions (gradually increasing temperature). Periodic environmental amelioration (short periods of reduced temperature) caused demographic recovery during the early phase of the experiment, but ultimately reduced the frequency of evolutionary rescue. These experimental results suggest that environmental fluctuations could reduce the potential of evolutionary rescue.
Collapse
Affiliation(s)
- Yi-Qi Hao
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| | | | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
140
|
Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum. Genetics 2015; 200:1255-74. [PMID: 26038348 PMCID: PMC4574244 DOI: 10.1534/genetics.115.178574] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so-called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution of adaptive substitutions from standing genetic variation, that is, the distribution of the phenotypic effects of those alleles from the standing variation that become fixed during adaptation. Our results are checked against individual-based simulations. We find that, compared to adaptation from de novo mutations, (i) adaptation from standing variation proceeds by the fixation of more alleles of small effect and (ii) populations that adapt from standing genetic variation can traverse larger distances in phenotype space and, thus, have a higher potential for adaptation if the rate of environmental change is fast rather than slow.
Collapse
|
141
|
Wiser MJ, Lenski RE. A Comparison of Methods to Measure Fitness in Escherichia coli. PLoS One 2015; 10:e0126210. [PMID: 25961572 PMCID: PMC4427439 DOI: 10.1371/journal.pone.0126210] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 12/05/2022] Open
Abstract
In order to characterize the dynamics of adaptation, it is important to be able to quantify how a population’s mean fitness changes over time. Such measurements are especially important in experimental studies of evolution using microbes. The Long-Term Evolution Experiment (LTEE) with Escherichia coli provides one such system in which mean fitness has been measured by competing derived and ancestral populations. The traditional method used to measure fitness in the LTEE and many similar experiments, though, is subject to a potential limitation. As the relative fitness of the two competitors diverges, the measurement error increases because the less-fit population becomes increasingly small and cannot be enumerated as precisely. Here, we present and employ two alternatives to the traditional method. One is based on reducing the fitness differential between the competitors by using a common reference competitor from an intermediate generation that has intermediate fitness; the other alternative increases the initial population size of the less-fit, ancestral competitor. We performed a total of 480 competitions to compare the statistical properties of estimates obtained using these alternative methods with those obtained using the traditional method for samples taken over 50,000 generations from one of the LTEE populations. On balance, neither alternative method yielded measurements that were more precise than the traditional method.
Collapse
Affiliation(s)
- Michael J. Wiser
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Richard E. Lenski
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
142
|
Sæther BE, Engen S. The concept of fitness in fluctuating environments. Trends Ecol Evol 2015; 30:273-81. [PMID: 25843273 DOI: 10.1016/j.tree.2015.03.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Fitness is a central concept in evolutionary biology, but there is no unified definition. We review recent theoretical developments showing that including fluctuating environments and density dependence has important implications for how differences among phenotypes in their contributions to future generations should be quantified. The rate of phenotypic evolution will vary through time because of environmental stochasticity. Density dependence may produce fluctuating selection for large growth rates at low densities but for larger carrying capacities when population sizes are large. In general, including ecologically realistic assumptions when defining the concept of fitness is crucial for estimating the potential of evolutionary rescue of populations affected by environmental perturbations such as climate change.
Collapse
Affiliation(s)
- Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Steinar Engen
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
143
|
Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 2015; 5:1265-1280. [PMID: 26101696 PMCID: PMC4473309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/06/2015] [Indexed: 06/04/2023] Open
Abstract
Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A "plumbing model" is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Chuanwei Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zhenduo Yang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, The University of Texas Medical SchoolHouston, TX 77030, USA
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zesheng Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| |
Collapse
|
144
|
Lau JA, terHorst CP. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints. Mol Ecol 2015; 24:1987-98. [PMID: 25677573 DOI: 10.1111/mec.13084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/29/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
Biological invasions are a major challenge to native communities and have the potential to exert strong selection on native populations. As a result, native taxa may adapt to the presence of invaders through increased competitive ability, increased antipredator defences or altered morphologies that may limit encounters with toxic prey. Yet, in some cases, species may fail to adapt to biological invasions. Many challenges to adaptation arise because biological invasions occur in complex species-rich communities in spatially and temporally variable environments. Here, we review these 'ecological' constraints on adaptation, focusing on the complications that arise from the need to simultaneously adapt to multiple biotic agents and from temporal and spatial variation in both selection and demography. Throughout, we illustrate cases where these constraints might be especially important in native populations faced with biological invasions. Our goal was to highlight additional complexities empiricists should consider when studying adaptation to biological invasions and to begin to identify conditions when adaptation may fail to be an effective response to invasion.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | | |
Collapse
|
145
|
Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 2015; 5:928-944. [PMID: 26045978 PMCID: PMC4449427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023] Open
Abstract
Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A "plumbing model" is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Chuanwei Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zhenduo Yang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, The University of Texas Medical SchoolHouston, TX 77030, USA
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zesheng Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| |
Collapse
|
146
|
Day T, Huijben S, Read AF. Is selection relevant in the evolutionary emergence of drug resistance? Trends Microbiol 2015; 23:126-33. [PMID: 25680587 DOI: 10.1016/j.tim.2015.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The emergence of drug-resistant pathogens is often considered a canonical case of evolution by natural selection. Here we argue that the strength of selection can be a poor predictor of the rate of resistance emergence. It is possible for a resistant strain to be under negative selection and still emerge in an infection or spread in a population. Measuring the right parameters is a necessary first step toward the development of evidence-based resistance-management strategies. We argue that it is the absolute fitness of the resistant strains that matters most and that a primary determinant of the absolute fitness of a resistant strain is the ecological context in which it finds itself.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Jeffery Hall, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada; The Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Silvie Huijben
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Andrew F Read
- The Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
147
|
Blackburn TM, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol 2015; 24:1942-53. [PMID: 25641210 DOI: 10.1111/mec.13075] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
The process by which a species becomes a biological invader, at a location where it does not naturally occur, can be divided into a series of sequential stages (transport, introduction, establishment and spread). A species' success at passing through each of these stages depends, in a large part, on the number of individuals available to assist making each transition. Here, we review the evidence that numbers determine success at each stage of the invasion process and then discuss the likely mechanisms by which numbers affect success. We conclude that numbers of individuals affect transport and introduction by moderating the likelihood that abundant (and widespread) species are deliberately or accidentally translocated; affect establishment success by moderating the stochastic processes (demographic, environmental, genetic or Allee) to which small, introduced populations will be vulnerable; and affect invasive spread most likely because of persistent genetic effects determined by the numbers of individuals involved in the establishment phase. We finish by suggesting some further steps to advance our understanding of the influence of numbers on invasion success, particularly as they relate to the genetics of the process.
Collapse
Affiliation(s)
- Tim M Blackburn
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK; Institute of Zoology, ZSL, Regent's Park, London, NW1 4RY, UK; Distinguished Scientist Fellowship Program, King Saud University, PO Box 2455, Riyadh, 1145, Saudi Arabia; School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | |
Collapse
|
148
|
Bromham L. Macroevolutionary patterns of salt tolerance in angiosperms. ANNALS OF BOTANY 2015; 115:333-41. [PMID: 25452251 PMCID: PMC4332609 DOI: 10.1093/aob/mcu229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/29/2014] [Accepted: 09/30/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Halophytes are rare, with only 0·25% of angiosperm species able to complete their life cycle in saline conditions. This could be interpreted as evidence that salt tolerance is difficult to evolve. However, consideration of the phylogenetic distribution of halophytes paints a different picture: salt tolerance has evolved independently in many different lineages, and halophytes are widely distributed across angiosperm families. In this Viewpoint, I will consider what phylogenetic analysis of halophytes can tell us about the macroevolution of salt tolerance. HYPOTHESIS Phylogenetic analyses of salt tolerance have shown contrasting patterns in different families. In some families, such as chenopods, salt tolerance evolved early in the lineage and has been retained in many lineages. But in other families, including grasses, there have been a surprisingly large number of independent origins of salt tolerance, most of which are relatively recent and result in only one or a few salt-tolerant species. This pattern of many recent origins implies either a high transition rate (salt tolerance is gained and lost often) or a high extinction rate (salt-tolerant lineages do not tend to persist over macroevolutionary timescales). While salt tolerance can evolve in a wide range of genetic backgrounds, some lineages are more likely to produce halophytes than others. This may be due to enabling traits that act as stepping stones to developing salt tolerance. The ability to tolerate environmental salt may increase tolerance of other stresses or vice versa. CONCLUSIONS Phylogenetic analyses suggest that enabling traits and cross-tolerances may make some lineages more likely to adapt to increasing salinization, a finding that may prove useful in assessing the probable impact of rapid environmental change on vegetation communities, and in selecting taxa to develop for use in landscape rehabilitation and agriculture.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
149
|
Day E, Kokko H. Relaxed selection when you least expect it: why declining bird populations might fail to respond to phenological mismatches. OIKOS 2014. [DOI: 10.1111/oik.01340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emma Day
- Centre of Excellence of Biological Interactions, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National Univ.; Canberra ACT 0200 Australia
| | - Hanna Kokko
- Centre of Excellence of Biological Interactions, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National Univ.; Canberra ACT 0200 Australia
| |
Collapse
|
150
|
Ketola T, Hiltunen T. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens. Ecol Evol 2014; 4:3901-8. [PMID: 25505519 PMCID: PMC4242574 DOI: 10.1002/ece3.1253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 11/25/2022] Open
Abstract
Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133-day-long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the other three treatments (ancestral conditions, nonsaline conditions, and fluctuating salt conditions). Evolutionary theories suggest that fastest evolutionary changes could be observed in intermediate selection pressures. Therefore, we originally hypothesized that extreme conditions, such as our 100 g/L salinity treatment, could lead to slower adaptation due to low population sizes. However, no evolutionary differences were observed between populations evolved in harsh and extreme conditions. This suggests that in the study presented here, low population sizes did not prevent evolution in the long run. On the whole, the adaptive potential observed here could be important for the transition of pathogenic S. marcescens bacteria from human-impacted freshwater environments, such as wastewater treatment plants, to marine habitats, where they are known to infect and kill corals (e.g., through white pox disease).
Collapse
Affiliation(s)
- Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä P.O. Box 35, Jyväskylä, FI-40014, Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki P.O. Box 65, Helsinki, 00014, Finland
| |
Collapse
|