101
|
Venkatakrishnan S, Mackey D, Meier I. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana. PLoS One 2013; 8:e57283. [PMID: 23451199 PMCID: PMC3581476 DOI: 10.1371/journal.pone.0057283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022] Open
Abstract
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.
Collapse
Affiliation(s)
- Sowmya Venkatakrishnan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
102
|
Enervald E, Lindgren E, Katou Y, Shirahige K, Ström L. Importance of Polη for damage-induced cohesion reveals differential regulation of cohesion establishment at the break site and genome-wide. PLoS Genet 2013; 9:e1003158. [PMID: 23326240 PMCID: PMC3542068 DOI: 10.1371/journal.pgen.1003158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/25/2012] [Indexed: 01/15/2023] Open
Abstract
Genome integrity depends on correct chromosome segregation, which in turn relies on cohesion between sister chromatids from S phase until anaphase. S phase cohesion, together with DNA double-strand break (DSB) recruitment of cohesin and formation of damage-induced (DI) cohesion, has previously been shown to be required also for efficient postreplicative DSB repair. The budding yeast acetyltransferase Eco1 (Ctf7) is a common essential factor for S phase and DI-cohesion. The fission yeast Eco1 ortholog, Eso1, is expressed as a fusion protein with the translesion synthesis (TLS) polymerase Polη. The involvement of Eso1 in S phase cohesion was attributed to the Eco1 homologous part of the protein and bypass of UV-induced DNA lesions to the Polη part. Here we describe an additional novel function for budding yeast Polη, i.e. formation of postreplicative DI genome-wide cohesion. This is a unique Polη function not shared with other TLS polymerases. However, Polη deficient cells are DSB repair competent, as Polη is not required for cohesion locally at the DSB. This reveals differential regulation of DSB–proximal cohesion and DI genome-wide cohesion, and challenges the importance of the latter for DSB repair. Intriguingly, we found that specific inactivation of DI genome-wide cohesion increases chromosomal mis-segregation at the entrance of the next cell cycle, suggesting that S phase cohesion is not sufficient for correct chromosome segregation in the presence of DNA damage. Correct chromosome segregation requires that sister chromatids are held together by the protein complex cohesin, from S phase until anaphase. This S phase established cohesion is, together with DSB recruitment of cohesin and formation of damage-induced (DI) cohesion, also important for repair of DSBs. Eco1 is a common essential factor for S phase and DI-cohesion. The fission yeast Eco1 ortholog, Eso1, is important both for S phase cohesion and for bypass of UV-induced lesions, and is expressed as a fusion protein with Polη. The cohesion function has been attributed solely to Eso1 and the lesion bypass function to the Polη part of the protein. As we found the interaction between the two proteins intriguing, we decided to look for a functional connection also in budding yeast. Indeed, despite being dispensable for S phase cohesion, budding yeast Polη is required for formation of DI genome-wide cohesion. However, Polη-deficient cells are DSB repair competent, revealing differential regulation of DI-cohesion at the break and genome-wide. This finding challenges the importance of DI genome-wide cohesion for DSB repair, and based on our findings we suggest that S phase cohesion is not sufficient for correct chromosome segregation in the presence of DNA damage.
Collapse
Affiliation(s)
- Elin Enervald
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma Lindgren
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
103
|
Kumari S, Swaminathan A, Chatterjee S, Senapati P, Boopathi R, Kundu TK. Chromatin organization, epigenetics and differentiation: an evolutionary perspective. Subcell Biochem 2013; 61:3-35. [PMID: 23150244 DOI: 10.1007/978-94-007-4525-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.
Collapse
Affiliation(s)
- Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Post, Bangalore, 560064, India
| | | | | | | | | | | |
Collapse
|
104
|
Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2012; 2:1645-56. [PMID: 23246002 DOI: 10.1016/j.celrep.2012.11.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/15/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022] Open
Abstract
Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (~50 nm movement/30 ms), which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.
Collapse
|
105
|
Ni HJ, Chang YN, Kao PH, Chai SP, Hsieh YH, Wang DH, Fong JC. Depletion of SUMO ligase hMMS21 impairs G1 to S transition in MCF-7 breast cancer cells. Biochim Biophys Acta Gen Subj 2012; 1820:1893-900. [DOI: 10.1016/j.bbagen.2012.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 07/20/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
|
106
|
Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genet 2012; 8:e1002978. [PMID: 23133392 PMCID: PMC3486896 DOI: 10.1371/journal.pgen.1002978] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mammalian common fragile sites (CFSs) whose stability is regulated by ATR. Perturbation during S phase, leading to elevated levels of stalled replication forks, is necessary but not sufficient for chromosome breakage at RSZs or CFSs. To address the nature of additional event(s) required for the break formation, we examined involvement of the currently known or implicated mechanisms of endogenous chromosome breakage, including errors in replication fork restart, premature mitotic chromosome condensation, spindle tension, anaphase, and cytokinesis. Results revealed that chromosome breakage at RSZs is independent of the RAD52 epistasis group genes and of TOP3, SGS1, SRS2, MMS4, or MUS81, indicating that homologous recombination and other recombination-related processes associated with replication fork restart are unlikely to be involved. We also found spindle force, anaphase, or cytokinesis to be dispensable. RSZ breakage, however, required genes encoding condensin subunits (YCG1, YSC4) and topoisomerase II (TOP2). We propose that chromosome break formation at RSZs following Mec1 inactivation, a model for mammalian fragile site breakage, is mediated by internal chromosomal stress generated during mitotic chromosome condensation. Chromosome breakage can occur during normal cell division. When it occurs, the breaks do not arise randomly throughout the genome, but at preferred locations referred to as fragile sites. Chromosome breakage at fragile sites is an evolutionarily conserved phenomenon, implicated in evolution and speciation. In humans, fragile site instability is also implicated in mental retardation and cancer. Despite its biological and clinical relevance, the mechanism(s) by which breaks are introduced at mammalian fragile sites remains unresolved. Although several plausible models have been proposed, it has not been possible to ascertain their contribution, largely due to the lack of a suitable experimental system. Here, we study a yeast model system that closely recapitulates the phenomenon of chromosome breakage at mammalian fragile sites. We eliminate all but one of the currently considered models—premature compaction of the incompletely replicated genome in preparation for their segregation during cell division. We also find that the breakage required functions of three proteins involved in the genome compaction, an essential process that is evolutionarily conserved from bacteria to humans. Our findings suggest that a fundamental chromosomal process required for normal cell division can paradoxically cause genome instability and/or cell death, by triggering chromosome breakage at fragile sites.
Collapse
|
107
|
Dávalos V, Súarez-López L, Castaño J, Messent A, Abasolo I, Fernandez Y, Guerra-Moreno A, Espín E, Armengol M, Musulen E, Ariza A, Sayós J, Arango D, Schwartz S. Human SMC2 protein, a core subunit of human condensin complex, is a novel transcriptional target of the WNT signaling pathway and a new therapeutic target. J Biol Chem 2012; 287:43472-81. [PMID: 23095742 DOI: 10.1074/jbc.m112.428466] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human SMC2 is part of the condensin complex, which is responsible for tightly packaging replicated genomic DNA prior to segregation into daughter cells. Engagement of the WNT signaling pathway is known to have a mitogenic effect on cells, but relatively little is known about WNT interaction with mitotic structural organizer proteins. In this work, we described the novel transcriptional regulation of SMC2 protein by direct binding of the β-catenin·TCF4 transcription factor to the SMC2 promoter. Furthermore, we identified the precise region in the SMC2 promoter that is required for β-catenin-mediated promoter activation. Finally, we explored the functional significance of down-regulating SMC2 protein in vivo. Treatment of WNT-activated intestinal tumor cells with SMC2 siRNA significantly reduced cell proliferation in nude mice, compared with untreated controls (p = 0.02). Therefore, we propose that WNT signaling can directly activate SMC2 transcription as a key player in the mitotic cell division machinery. Furthermore, SMC2 represents a new target for oncological therapeutic intervention.
Collapse
Affiliation(s)
- Verónica Dávalos
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035 Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
WANG YY, CHEN M, LI B. Dosage compensation mechanism of X chromosome. YI CHUAN = HEREDITAS 2012; 34:977-84. [DOI: 10.3724/sp.j.1005.2012.00977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
109
|
Kliszczak M, Stephan AK, Flanagan AM, Morrison CG. SUMO ligase activity of vertebrate Mms21/Nse2 is required for efficient DNA repair but not for Smc5/6 complex stability. DNA Repair (Amst) 2012; 11:799-810. [PMID: 22921571 DOI: 10.1016/j.dnarep.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/03/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022]
Abstract
Nse2/Mms21 is an E3 SUMO ligase component of the Smc5/6 complex, which plays multiple roles in maintaining genome stability. To study the functions of the vertebrate Nse2 orthologue, we generated Nse2-deficient chicken DT40 cells. Nse2 was dispensable for DT40 cell viability and required for efficient repair of bulky DNA lesions, although Nse2-deficient cells showed normal sensitivity to ionising radiation-induced DNA damage. Homologous recombination activities were reduced in Nse2(-/-/-) cells. Nse2 deficiency destabilised Smc5, but not Smc6. In rescue experiments, we found that the SUMO ligase activity of Nse2 was required for an efficient response to MMS- or cis-platin-induced DNA damage, and for homologous recombination, but not for Smc5 stability. Gel filtration analysis indicated that Smc5 and Nse2 remain associated during the cell cycle and after DNA damage and Smc5/Smc6 association is independent of Nse2. Analysis of Nse2(-/-/-)Smc5(-) clones, which were viable although slow-growing, showed no significant increase in DNA damage sensitivity. We propose that Nse2 determines the activity, but not the assembly, of the Smc5/6 complex in vertebrate cells, and this activity requires the Nse2 SUMO ligase function.
Collapse
Affiliation(s)
- Maciej Kliszczak
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | |
Collapse
|
110
|
Mehta GD, Rizvi SMA, Ghosh SK. Cohesin: a guardian of genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1324-42. [PMID: 22677545 DOI: 10.1016/j.bbamcr.2012.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
Ability to reproduce is one of the hallmark features of all life forms by which new organisms are produced from their progenitors. During this process each cell duplicates its genome and passes a copy of its genome to the daughter cells along with the cellular matrix. Unlike bacteria, in eukaryotes there is a definite time gap between when the genome is duplicated and when it is physically separated. Therefore, for precise halving of the duplicated genome into two, it is required that each pair of duplicated chromosomes, termed sister chromatids, should be paired together in a binary fashion from the moment they are generated. This pairing function between the duplicated genome is primarily provided by a multimeric protein complex, called cohesin. Thus, genome integrity largely depends on cohesin as it ensures faithful chromosome segregation by holding the sister chromatids glued together from S phase to anaphase. In this review, we have discussed the life cycle of cohesin during both mitotic and meiotic cell divisions including the structure and architecture of cohesin complex, relevance of cohesin associated proteins, mechanism of cohesin loading onto the chromatin, cohesion establishment and the mechanism of cohesin disassembly during anaphase to separate the sister chromatids. We have also focused on the role of posttranslational modifications in cohesin biology. For better understanding of the complexity of the cohesin regulatory network to the readers, we have presented an interactome profiling of cohesin core subunits in budding yeast during mitosis and meiosis.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | | |
Collapse
|
111
|
Zhou B, Yuan T, Liu M, Liu H, Xie J, Shen Y, Chen P. Overexpression of the structural maintenance of chromosome 4 protein is associated with tumor de-differentiation, advanced stage and vascular invasion of primary liver cancer. Oncol Rep 2012; 28:1263-8. [PMID: 22842912 DOI: 10.3892/or.2012.1929] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Structural maintenance of chromosome 4 (SMC4) is associated with tumorigenesis. The present study aimed at detecting SMC4 expression in primary liver cancer and its association with clinicopathological patient data. A total of 72 primary liver cancer tissues and 6 liver cell lines were assessed for expression of SMC4 mRNA and protein with qRT-PCR, western blotting and immunohistochemistry, respectively. SMC4 siRNAs were constructed to knockdown SMC4 expression, and phenotypic changes of hepatocellular carcinoma (HCC) cells were analyzed using flow cytometry and cell viability assays. The data showed that SMC4 mRNA and protein were highly expressed in HCC tissues compared to the normal tissues. Immunohistochemical analysis revealed that 52 of 72 (72.2%) paraffin-embedded primary liver cancer tissues displayed strong cytoplasmic staining of SMC4 protein, whereas only 6 (8.3%) normal liver tissues showed immunostaining of SMC4. Statistical analysis showed that SMC4 expression was significantly associated with tumor size, de-differentiation, advanced stages and vascular invasion of the primary liver cancers. Moreover, knockdown of SMC4 expression reduced HCC cell proliferation. These data demonstrated that expression of SMC4 protein may be useful for the early detection and prediction of primary liver cancer progression.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
112
|
Mouri K, Horiuchi SY, Uemura T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012; 17:509-24. [PMID: 22563761 DOI: 10.1111/j.1365-2443.2012.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planar cell polarity (PCP) refers to the coordination of global organ axes and individual cell polarity in vertebrate and invertebrate epithelia. Mechanisms of PCP have been best studied in the Drosophila wing, in which each epidermal cell produces a single wing hair at the distal cell edge, and this spatial specification is mediated by redistribution of the core group proteins, including the seven-pass transmembrane cadherin Flamingo/Starry night (Fmi/Stan), to selective plasma membrane domains. Through genetic screening, we found that a mutation of the SMC3 gene caused dramatic misspecification of wing hair positions. SMC3 protein is one subunit of the cohesin complex, which regulates sister chromatid cohesion and also plays a role in transcriptional control of gene expression. In the SMC3 mutant cells, Fmi appeared to be upregulated by a posttranscriptional mechanism(s), and this elevation of Fmi was at least one cause of the PCP defect. In addition to the PCP phenotype, the loss of the cohesin function affected wing morphogenesis at multiple levels: one malformation was loss of the wing margin, and this was most likely a result of downregulation of the homeodomain protein Cut. At the cellular level, apical cell size and hexagonal packing were affected in the mutant wing. Dysfunction of cohesin in humans results in Cornelia de Lange syndrome (CdLS), which is characterized by various developmental abnormalities and mental retardation. Our analysis of cohesin in epithelia may provide new insight into cellular and molecular mechanisms of CdLS.
Collapse
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
113
|
Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J 2012; 31:2090-102. [PMID: 22415368 PMCID: PMC3343463 DOI: 10.1038/emboj.2012.60] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
Vertebrates have two cohesin complexes that consist of Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity is unclear. Mouse embryos lacking SA1 show developmental delay and die before birth. Comparison of the genome-wide distribution of cohesin in wild-type and SA1-null cells reveals that SA1 is largely responsible for cohesin accumulation at promoters and at sites bound by the insulator protein CTCF. As a consequence, ablation of SA1 alters transcription of genes involved in biological processes related to Cornelia de Lange syndrome (CdLS), a genetic disorder linked to dysfunction of cohesin. We show that the presence of cohesin-SA1 at the promoter of myc and of protocadherin genes positively regulates their expression, a task that cannot be assumed by cohesin-SA2. Lack of SA1 also alters cohesin-binding pattern along some gene clusters and leads to dysregulation of genes within. We hypothesize that impaired cohesin-SA1 function in gene expression underlies the molecular aetiology of CdLS.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
114
|
Su YF, Yang T, Huang H, Liu LF, Hwang J. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity. PLoS One 2012; 7:e34250. [PMID: 22509284 PMCID: PMC3317942 DOI: 10.1371/journal.pone.0034250] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/25/2012] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.
Collapse
Affiliation(s)
- Yee-Fun Su
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tsunghan Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hoting Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Leroy F. Liu
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | - Jaulang Hwang
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
115
|
Matsunaga S, Takata H, Morimoto A, Hayashihara K, Higashi T, Akatsuchi K, Mizusawa E, Yamakawa M, Ashida M, Matsunaga TM, Azuma T, Uchiyama S, Fukui K. RBMX: a regulator for maintenance and centromeric protection of sister chromatid cohesion. Cell Rep 2012; 1:299-308. [PMID: 22832223 DOI: 10.1016/j.celrep.2012.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/12/2011] [Accepted: 02/09/2012] [Indexed: 01/06/2023] Open
Abstract
Cohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins. Cohesion defects caused by RBMX depletion can be detected as early as the G2 phase. Moreover, RBMX associates with the cohesin subunits, Scc1 and Smc3, and with the cohesion regulator, Wapl. RBMX is required for cohesion only in the presence of Wapl, suggesting that RBMX is an inhibitor of Wapl. We propose that RBMX is a cohesion regulator that maintains the proper cohesion of sister chromatids.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Rivera T, Ghenoiu C, Rodríguez-Corsino M, Mochida S, Funabiki H, Losada A. Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex. EMBO J 2012; 31:1467-79. [PMID: 22274615 PMCID: PMC3321187 DOI: 10.1038/emboj.2012.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.
Collapse
Affiliation(s)
- Teresa Rivera
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Ghenoiu
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Weill Cornell Graduate School of Biomedical Sciences, Cornell Medical School, New York, NY, USA
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Satoru Mochida
- Cell Cycle Control Group, Kumamoto University, Kumamoto City, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
117
|
Wu N, Yu H. The Smc complexes in DNA damage response. Cell Biosci 2012; 2:5. [PMID: 22369641 PMCID: PMC3329402 DOI: 10.1186/2045-3701-2-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/03/2023] Open
Abstract
The structural maintenance of chromosomes (Smc) proteins regulate nearly all aspects of chromosome biology and are critical for genomic stability. In eukaryotes, six Smc proteins form three heterodimers--Smc1/3, Smc2/4, and Smc5/6--which together with non-Smc proteins form cohesin, condensin, and the Smc5/6 complex, respectively. Cohesin is required for proper chromosome segregation. It establishes and maintains sister-chromatid cohesion until all sister chromatids achieve bipolar attachment to the mitotic spindle. Condensin mediates chromosome condensation during mitosis. The Smc5/6 complex has multiple roles in DNA repair. In addition to their major functions in chromosome cohesion and condensation, cohesin and condensin also participate in the cellular DNA damage response. Here we review recent progress on the functions of all three Smc complexes in DNA repair and their cell cycle regulation by posttranslational modifications, such as acetylation, phosphorylation, and sumoylation. An in-depth understanding of the mechanisms by which these complexes promote DNA repair and genomic stability may help us to uncover the molecular basis of genomic instability in human cancers and devise ways that exploit this instability to treat cancers.
Collapse
Affiliation(s)
- Nan Wu
- Department of Pharmacology, Howard Hughes Medical Institute, 6001 Forest Park Road, Dallas, TX 75390, USA.
| | | |
Collapse
|
118
|
Iwasaki O, Noma KI. Global genome organization mediated by RNA polymerase III-transcribed genes in fission yeast. Gene 2012; 493:195-200. [PMID: 21195141 PMCID: PMC3115467 DOI: 10.1016/j.gene.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic genomes exist as an elaborate three-dimensional structure in the nucleus. Recent studies have shown that this higher-order organization of the chromatin fiber is coupled to various nuclear processes including transcription. In fission yeast, we demonstrated that RNA polymerase III (Pol III)-transcribed genes such as tRNA and 5S rRNA genes, dispersed throughout chromosomal arm regions, localize to centromeres in interphase. This centromeric association of Pol III genes, mediated by the condensin complex, becomes prominent during mitosis. Here, we discuss potential roles of the Pol III gene-mediated genome organization during interphase and mitosis, and hypothesize that the interphase genome structure serves as a scaffold for the efficient assembly of condensed mitotic chromosomes and that tethering of chromosomal arm regions to centromeres allows chromosomes to properly segregate along the spindle microtubules during anaphase.
Collapse
Affiliation(s)
- Osamu Iwasaki
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ken-ichi Noma
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
119
|
Demant M, Trapphoff T, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum Reprod 2012; 27:1096-111. [PMID: 22258663 DOI: 10.1093/humrep/der453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Vitrification is a fast and effective method to cryopreserve ovarian tissue, but it might influence mitochondrial activity and affect gene expression to cause persistent alterations in the proteome of oocytes that grow and mature following cryopreservation. METHODS In part one of the study, the inner mitochondrial membrane potential (Ψ(mit)) of JC-1 stained oocytes from control and CryoTop vitrified pre-antral follicles was analyzed by confocal microscopy at Day 0, or after culture of follicles for 1 or 12 days. In part two, proteins of in vivo grown germinal vesicle (GV) oocytes were subjected to proteome analysis by SDS polyacrylamide gel electrophoresis, tryptic in-gel digestion of gel slices, and one-dimensional-nano-liquid chromatography of peptides on a multi-dimensional-nano-liquid chromatography system followed by mass spectrometry (LC-MS/MS) and Uniprot Gene Ontology (GO) analysis. In part three, samples containing the protein amount of 40 GV and metaphase II (MII) oocytes, respectively, from control and vitrified pre-antral follicles cultured for 12 or 13 days were subjected to 2D DIGE saturation labeling and separated by isoelectric focusing and SDS gel electrophoresis (2D DIGE), followed by DeCyder(Tm) analysis of spot patterns in three independent biological replicates. Statistical and hierarchical cluster analysis was employed to compare control and vitrified groups. RESULTS (i) Mitochondrial inner membrane potential differs significantly between control and vitrified GV oocytes at Day 0 and Day 1, but is similar at Day 12 of culture. (ii) LC-MS/MS analysis of SDS gel fractionated protein lysates of 988 mouse GV oocytes revealed identification of 1123 different proteins with a false discovery rate of <1%. GO analysis assigned 811 proteins to the 'biological process' subset. Thirty-five percent of the proteins corresponded to metabolic processes, about 15% to mitochondrion and transport, each, and close to 8% to oxidation-reduction processes. (iii) From the 2D-saturation DIGE analysis 1891 matched spots for GV-stage and 1718 for MII oocyte proteins were detected and the related protein abundances in vitrified and control oocytes were quantified. None of the spots was significantly altered in intensity, and hierarchical cluster analysis as well as histograms of p and q values suggest that vitrification at the pre-antral stage does not significantly alter the proteome of GV or MII oocytes compared with controls. CONCLUSIONS Vitrification appears to be associated with a significant transient increase in Ψ(mit) in oocyte mitochondria, which disappears when oocyte/cumulus cell apposition is restored upon development to the antral stage. The nano-LC-MS/MS analysis of low numbers of oocytes is useful to obtain information on relevant biological signaling pathways based on protein identifications. For quantitative comparisons, saturation 2D DIGE analysis is superior to LC-MS/MS due to its high sensitivity in cases where the biological material is very limited. Genetic background, age of the female, and/or stimulation protocol appear to influence the proteome pattern. However, the quantitative 2D DIGE approach provides evidence that vitrification does not affect the oocyte proteome after recovery from transient loss of cell-cell interactions, in vitro growth and in vitro maturation under tested conditions. Therefore, transient changes in mitochondrial activity by vitrification do not appear causal to persistent alterations in the mitochondrial or overall oocyte proteome.
Collapse
Affiliation(s)
- Myriam Demant
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität, München 81377, Germany
| | | | | | | | | |
Collapse
|
120
|
Tanizawa H, Noma KI. Unravelling global genome organization by 3C-seq. Semin Cell Dev Biol 2011; 23:213-21. [PMID: 22120510 DOI: 10.1016/j.semcdb.2011.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022]
Abstract
Eukaryotic genomes exist in the cell nucleus as an elaborate three-dimensional structure which reflects various nuclear processes such as transcription, DNA replication and repair. Next-generation sequencing (NGS) combined with chromosome conformation capture (3C), referred to as 3C-seq in this article, has recently been applied to the yeast and human genomes, revealing genome-wide views of functional associations among genes and their regulatory elements. Here, we compare the latest genomic approaches such as 3C-seq and ChIA-PET, and provide a condensed overview of how eukaryotic genomes are functionally organized in the nucleus.
Collapse
|
121
|
Abstract
BRCA1 has been implicated in the DNA damage pathway and regulation of genome stability, however, it does not contain intrinsic catalytic activity to repair the DNA lesions. Thus, a potential activity of BRCA1 is to assemble proteins that sense DNA damage and to transduce checkpoint signals to downstream. We have recently isolated a protein termed BAAT1, which binds to BRCA1, ATM, DNA-PKcs, and SMC1. Phosphorylation of ATM/DNA-PKcs is greatly reduced in BAAT1-knockdown cells, suggesting that sensing of DNA lesions mediated by BRCA1/BAAT1 is critical for activation of these kinases.
Collapse
Affiliation(s)
- Mutsuko Ouchi
- NUHS, Systems Biology Program, Pritzker School of Medicine, The University of Chicago, Evanston, IL, USA
| | | |
Collapse
|
122
|
Muto A, Calof AL, Lander AD, Schilling TF. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome. PLoS Biol 2011; 9:e1001181. [PMID: 22039349 PMCID: PMC3201921 DOI: 10.1371/journal.pbio.1001181] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/13/2011] [Indexed: 12/31/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is the founding member of a class of multi-organ system birth defect syndromes termed cohesinopathies, named for the chromatin-associated protein complex cohesin, which mediates sister chromatid cohesion. Most cases of CdLS are caused by haploinsufficiency for Nipped-B-like (Nipbl), a highly conserved protein that facilitates cohesin loading. Consistent with recent evidence implicating cohesin and Nipbl in transcriptional regulation, both CdLS cell lines and tissues of Nipbl-deficient mice show changes in the expression of hundreds of genes. Nearly all such changes are modest, however--usually less than 1.5-fold--raising the intriguing possibility that, in CdLS, severe developmental defects result from the collective action of many otherwise innocuous perturbations. As a step toward testing this hypothesis, we developed a model of nipbl-deficiency in zebrafish, an organism in which we can quantitatively investigate the combinatorial effects of gene expression changes. After characterizing the structure and embryonic expression of the two zebrafish nipbl genes, we showed that morpholino knockdown of these genes produces a spectrum of specific heart and gut/visceral organ defects with similarities to those in CdLS. Analysis of nipbl morphants further revealed that, as early as gastrulation, expression of genes involved in endodermal differentiation (sox32, sox17, foxa2, and gata5) and left-right patterning (spaw, lefty2, and dnah9) is altered. Experimental manipulation of the levels of several such genes--using RNA injection or morpholino knockdown--implicated both additive and synergistic interactions in causing observed developmental defects. These findings support the view that birth defects in CdLS arise from collective effects of quantitative changes in gene expression. Interestingly, both the phenotypes and gene expression changes in nipbl morphants differed from those in mutants or morphants for genes encoding cohesin subunits, suggesting that the transcriptional functions of Nipbl cannot be ascribed simply to its role in cohesin loading.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Anne L. Calof
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
- Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| |
Collapse
|
123
|
Gloyd M, Ghirlando R, Guarné A. The role of MukE in assembling a functional MukBEF complex. J Mol Biol 2011; 412:578-90. [PMID: 21855551 PMCID: PMC3482342 DOI: 10.1016/j.jmb.2011.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 01/07/2023]
Abstract
The MukB-MukE-MukF protein complex is essential for chromosome condensation and segregation in Escherichia coli. The central component of this complex, the MukB protein, is related functionally and structurally to the ubiquitous SMC (structural maintenance of chromosomes) proteins. In a manner similar to SMC, MukB requires the association of two accessory proteins (MukE and MukF) for its function. MukF is a constitutive dimer that bridges the interaction between MukB and MukE. While MukB can condense DNA on its own, it requires MukF and MukE to ensure proper chromosome segregation. Here, we present a novel structure of the E. coli MukE-MukF complex, in which the intricate crystal packing interactions reveal an alternative MukE dimerization interface spanning both N- and C-terminal winged-helix domains of the protein. The structure also unveils additional cross-linking interactions between adjacent MukE-MukF complexes mediated by MukE. A variant of MukE encompassing point mutations on one of these surfaces does not affect assembly of the MukB-MukE-MukF complex and yet cannot restore the temperature sensitivity of the mukE∷kan strain, suggesting that this surface may mediate critical protein-protein interactions between MukB-MukE-MukF complexes. Since the dimerization interface of MukE overlaps with the region of the protein that interacts with MukB in the MukB-MukE-MukF complex, we suggest that competing MukB-MukE and MukE-MukE interactions may regulate the formation of higher-order structures of bacterial condensin.
Collapse
Affiliation(s)
- Melanie Gloyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Drive, Bethesda MD 20892-0540, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada,Corresponding author: Alba Guarné, Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada., Phone: 1-905-5259140 (x26394), FAX: 1-905-5229033,
| |
Collapse
|
124
|
A model for segregation of chromatin after replication: segregation of identical flexible chains in solution. Biophys J 2011; 100:2539-47. [PMID: 21641298 DOI: 10.1016/j.bpj.2011.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/16/2011] [Accepted: 03/25/2011] [Indexed: 11/21/2022] Open
Abstract
We study the segregation of two long chains from parallel but randomly twisted start conformations under good solvent conditions using Monte Carlo simulations to mimic chromatin segregation after replication in eukaryotic cells in the end of prophase. To measure the segregation process, we consider the center-of-mass separation between the two chains and the average square distance between the monomers which were connected before segregation starts. We argue that segregation is dominated by free diffusion of the chains, assuming that untwisting can be achieved by Rouse-like fluctuations on the length scale of a twisted loop. Using scaling analysis, we find that chain dynamics is in very good agreement with the free diffusion hypothesis, and segregation dynamics follows this scaling nearly. Long chains, however, show retardation effects that can be described by a new (to us) dynamical exponent, which is slightly larger than the dynamical exponent for Rouse-like diffusion. Our results indicate that nearly free diffusion of chains during a timescale of a few Rouse-times can lead to segregation of chains. A main obstacle during segregation by free diffusion is random twists between daughter strands. We have calculated the number of twists formed by the daughter strands in the start conformations, which turns out to be rather low and increases only with the square-root of the chain length.
Collapse
|
125
|
Abstract
To segregate chromosomes properly, the cell must prevent merotely, an error that occurs when a single kinetochore is attached to microtubules emanating from both spindle poles. Recent evidence suggests that cooperation between Pcs1/Mde4 and condensin complexes plays an important role in preventing merotely.
Collapse
|
126
|
Böhmdorfer G, Schleiffer A, Brunmeir R, Ferscha S, Nizhynska V, Kozák J, Angelis KJ, Kreil DP, Schweizer D. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:420-33. [PMID: 21481027 DOI: 10.1111/j.1365-313x.2011.04604.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks (DSBs) pose one of the most severe threats to genome integrity, potentially leading to cell death. After detection of a DSB, the DNA damage and repair response is initiated and the DSB is repaired by non-homologous end joining and/or homologous recombination. Many components of these processes are still unknown in Arabidopsis thaliana. In this work, we characterized γ-irradiation and mitomycin C induced 1 (GMI1), a member of the SMC-hinge domain-containing protein family. RT-PCR analysis and promoter-GUS fusion studies showed that γ-irradiation, the radio-mimetic drug bleocin, and the DNA cross-linking agent mitomycin C strongly enhance GMI1 expression particularly in meristematic tissues. The induction of GMI1 by γ-irradiation depends on the signalling kinase Ataxia telangiectasia-mutated (ATM) but not on ATM and Rad3-related (ATR). Epistasis analysis of single and double mutants demonstrated that ATM acts upstream of GMI1 while the atr gmi1-2 double mutant was more sensitive than the respective single mutants. Comet assay revealed a reduced rate of DNA double-strand break repair in gmi1 mutants during the early recovery phase after exposure to bleocin. Moreover, the rate of homologous recombination of a reporter construct was strongly reduced in gmi1 mutant plants upon exposure to bleocin or mitomycin C. GMI1 is the first member of its protein family known to be involved in DNA repair.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Comet Assay
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Flowers/drug effects
- Flowers/metabolism
- Flowers/radiation effects
- Gene Expression Regulation, Plant
- Gene Fusion
- Meristem/drug effects
- Meristem/metabolism
- Meristem/radiation effects
- Microarray Analysis
- Mitomycin/pharmacology
- Mutagenesis, Insertional
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Seedlings/drug effects
- Seedlings/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Baumann C, Daly CM, McDonnell SM, Viveiros MM, De La Fuente R. Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis. Chromosoma 2011; 120:227-44. [PMID: 21274552 PMCID: PMC3100478 DOI: 10.1007/s00412-010-0306-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 12/03/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
Abstract
Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348, USA
| | | | | | | | | |
Collapse
|
128
|
Cheong CY, Lon Ng PM, Ponnampalam R, Tsai HH, Bourque G, Lufkin T. In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther 2011; 2:26. [PMID: 21569470 PMCID: PMC3218817 DOI: 10.1186/scrt67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Octamer-binding transcription factor 4 (Oct4) is a master regulator of early mammalian development. Its expression begins from the oocyte stage, becomes restricted to the inner cell mass of the blastocyst and eventually remains only in primordial germ cells. Unearthing the interactions of Oct4 would provide insight into how this transcription factor is central to cell fate and stem cell pluripotency. METHODS In the present study, affinity-tagged endogenous Oct4 cell lines were established via homologous recombination gene targeting in embryonic stem (ES) cells to express tagged Oct4. This allows tagged Oct4 to be expressed without altering the total Oct4 levels from their physiological levels. RESULTS Modified ES cells remained pluripotent. However, when modified ES cells were tested for their functionality, cells with a large tag failed to produce viable homozygous mice. Use of a smaller tag resulted in mice with normal development, viability and fertility. This indicated that the choice of tags can affect the performance of Oct4. Also, different tags produce a different repertoire of Oct4 interactors. CONCLUSIONS Using a total of four different tags, we found 33 potential Oct4 interactors, of which 30 are novel. In addition to transcriptional regulation, the molecular function associated with these Oct4-associated proteins includes various other catalytic activities, suggesting that, aside from chromosome remodeling and transcriptional regulation, Oct4 function extends more widely to other essential cellular mechanisms. Our findings show that multiple purification approaches are needed to uncover a comprehensive Oct4 protein interaction network.
Collapse
Affiliation(s)
- Clara Yujing Cheong
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | | | | | | | | | | |
Collapse
|
129
|
Kanno T, Habu Y. siRNA-mediated chromatin maintenance and its function in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:444-51. [PMID: 21605714 DOI: 10.1016/j.bbagrm.2011.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 01/13/2023]
Abstract
Small interfering RNAs (siRNAs) are widespread in various eukaryotes and are involved in maintenance of chromatin modifications, especially those for inert states represented by covalent modifications of cytosine and/or histones. In contrast to mammalian genomes, in which cytosine methylation is restricted mostly to CG dinucleotide sequences, inert chromatin in plants carries cytosine methylation in all sequence contexts, and siRNAs play a major role in directing cytosine methylation through the process of RNA-directed DNA methylation. Recent advances in this field have revealed that siRNA-mediated maintenance of inert chromatin has diverse roles in development as well as in plant responses to the environment. Various proteinaceous factors required for siRNA-mediated chromatin modification have been identified in Arabidopsis thaliana, and much effort has been invested in understanding their function and interaction, resulting in the assignment of many of these factors to specific biochemical activities and engagement with specific steps such as transcription of intergenic RNAs, RNA processing, and cytosine methylation. However, the precise functions of a number of factors remain undesignated, and interactions of distinct pathways for siRNA-mediated chromatin modification are largely unknown. In this review, we summarize the roles of siRNA-mediated chromatin modification in various biological processes of A. thaliana, and present some speculation on the functions and interactions of silencing factors that, while not yet assigned to defined biochemical activities, have been loosely assigned to specific events in siRNA-mediated chromatin modification pathways. Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Tatsuo Kanno
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | |
Collapse
|
130
|
The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett 2011; 585:2907-13. [PMID: 21550342 DOI: 10.1016/j.febslet.2011.04.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 01/21/2023]
Abstract
There exist three highly-conserved structural maintenance of chromosomes (Smc) complexes that ensure genome stability during eukaryotic cell division. There are the well-characterized cohesin and condensin complexes and the third Smc complex, Smc5/6. Nse2/Mms21, a SUMO ligase, is a component of the Smc5/6 complex and recent data have indicated that Nse1 may function as a ubiquitin ligase. Smc5/6 regulates sister chromatid cohesion, homologous recombination and chromatin structure and conformation. This review examines the functions of Smc5/6 in DNA repair and the maintenance of genomic integrity and explores the roles of the associated SUMO and ubiquitin ligases. Recent findings have indicated that Smc5/6 may play a topological role in chromosome dynamics, which may help understand the complexity of its activities.
Collapse
|
131
|
Rai R, Varma SPMV, Shinde N, Ghosh S, Kumaran SP, Skariah G, Laloraya S. Small ubiquitin-related modifier ligase activity of Mms21 is required for maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in Saccharomyces cerevisiae. J Biol Chem 2011; 286:14516-30. [PMID: 21324902 PMCID: PMC3077650 DOI: 10.1074/jbc.m110.157149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 02/12/2011] [Indexed: 01/01/2023] Open
Abstract
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
Collapse
Affiliation(s)
- Ragini Rai
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Satya P. M. V. Varma
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Nikhil Shinde
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Shilpa Ghosh
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Srikala P. Kumaran
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Geena Skariah
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Shikha Laloraya
- From the Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka 560012, India
| |
Collapse
|
132
|
Abstract
Homologous recombination plays a critical role in maintaining genetic diversity as well as genome stability. Interesting examples implying hyper-recombination are found in nature. In chloroplast DNA (cpDNA) and the herpes simplex virus 1 (HSV-1) genome, DNA sequences flanked by inverted repeats undergo inversion very frequently, suggesting hyper-recombinational events. However, mechanisms responsible for these events remain unknown. We previously observed very frequent inversion in a designed amplification system based on double rolling circle replication (DRCR). Here, utilizing the yeast 2-μm plasmid and an amplification system, we show that DRCR is closely related to hyper-recombinational events. Inverted repeats or direct repeats inserted into these systems frequently caused inversion or deletion/duplication, respectively, in a DRCR-dependent manner. Based on these observations, we suggest that DRCR might be also involved in naturally occurring chromosome rearrangement associated with gene amplification and the replication of cpDNA and HSV genomes. We propose a model in which DRCR markedly stimulates homologous recombination.
Collapse
Affiliation(s)
- Haruko Okamoto
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki, Japan
| | | | | |
Collapse
|
133
|
So EY, Ouchi T. Functional interaction of BRCA1/ATM-associated BAAT1 with the DNA-PK catalytic subunit. Exp Ther Med 2011; 2:443-447. [PMID: 22977523 DOI: 10.3892/etm.2011.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/02/2011] [Indexed: 01/10/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) play a crucial role in the initial stages of cell response, when cells are exposed to DNA insult such as ionizing radiation (IR) and chemical agents. We previously demonstrated that ATM requires BAAT1 for its activation in response to IR. In the present study, BAAT1 was found to bind to the DNA-PK catalytic subunit (DNA-PKcs) and SMC1. Biochemical analysis indicated that several regions of BAAT1 were responsible for the interaction with these proteins, and their binding affinity was altered after treatment with the IR mimetic, neocarzinostatin (NCS). Phosphorylation of the DNA-PKcs at Ser2056 and SMC1 at Ser966 was induced by NCS, while phosphorylation was reduced when BAAT1 was depleted by siRNA. These results indicate that BAAT1 globally regulates DNA damage signaling during the early stages of apoptosis.
Collapse
Affiliation(s)
- Eui Young So
- Department of Medicine, NUHS, Systems Biology Program, Pritzker School of Medicine, The University of Chicago, Evanston, IL 60201, USA
| | | |
Collapse
|
134
|
Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus. PLoS One 2011; 6:e16070. [PMID: 21347358 PMCID: PMC3037368 DOI: 10.1371/journal.pone.0016070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/06/2010] [Indexed: 01/09/2023] Open
Abstract
GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms.
Collapse
|
135
|
Bauerschmidt C, Woodcock M, Stevens DL, Hill MA, Rothkamm K, Helleday T. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells. Exp Cell Res 2011; 317:330-7. [PMID: 21056556 PMCID: PMC3087432 DOI: 10.1016/j.yexcr.2010.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 10/27/2010] [Indexed: 12/18/2022]
Abstract
Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.
Collapse
Affiliation(s)
- Christina Bauerschmidt
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Michael Woodcock
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - David L. Stevens
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Mark A. Hill
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Kai Rothkamm
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards, Chilton, OX11 0RQ, UK
| | - Thomas Helleday
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
- Department of Genetics Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
136
|
Qiao H, Lohmiller LD, Anderson LK. Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosome Res 2011; 19:193-207. [PMID: 21234670 DOI: 10.1007/s10577-010-9184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523-1878, USA
| | | | | |
Collapse
|
137
|
Chavez A, Agrawal V, Johnson FB. Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex. J Biol Chem 2010; 286:5119-25. [PMID: 21138837 DOI: 10.1074/jbc.m110.201608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The essential and evolutionarily conserved Smc5-Smc6 complex (Smc5/6) is critical for the maintenance of genome stability. Partial loss of Smc5/6 function yields several defects in DNA repair, which are rescued by inactivation of the homologous recombination (HR) machinery. Thus HR is thought to be toxic to cells with defective Smc5/6. Recent work has highlighted a role for Smc5/6 and the Sgs1 DNA helicase in preventing the accumulation of unresolved HR intermediates. Here we investigate how deletion of MPH1, encoding the orthologue of the human FANCM DNA helicase, rescues the DNA damage sensitivity of smc5/6 but not sgs1Δ mutants. We find that MPH1 deletion diminishes accumulation of HR intermediates within both smc5/6 and sgs1Δ cells, suggesting that MPH1 deletion is sufficient to decrease the use of template switch recombination (TSR) to bypass DNA lesions. We further explain how avoidance of TSR is nonetheless insufficient to rescue defects in sgs1Δ mutants, by demonstrating a requirement for Sgs1, along with the post-replicative repair (PRR) and HR machinery, in a pathway that operates in mph1Δ mutants. In addition, we map the region of Mph1 that binds Smc5, and describe a novel allele of MPH1 encoding a protein unable to bind Smc5 (mph1-Δ60). Remarkably, mph1-Δ60 supports normal growth and responses to DNA damaging agents, indicating that Smc5/6 does not simply restrain the recombinogenic activity of Mph1 via direct binding. These data as a whole highlight a role for Smc5/6 and Sgs1 in the resolution of Mph1-dependent HR intermediates.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine., University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
138
|
Carretero M, Remeseiro S, Losada A. Cohesin ties up the genome. Curr Opin Cell Biol 2010; 22:781-7. [PMID: 20675112 DOI: 10.1016/j.ceb.2010.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 11/17/2022]
Abstract
Cohesin was originally identified as a mediator of sister chromatid cohesion both in mitosis and meiosis. Emerging evidences suggest that it also participates in the organization of interphase chromatin. The ring-shaped complex regulates gene expression by constraining chromatin topology in concert with factors such as the insulator CTCF, at least in certain loci. The global relevance of this function of cohesin remains to be assessed, but its contribution to the pathology of the Cornelia de Lange syndrome seems evident. Our current knowledge of the molecular mechanisms underlying cohesin behavior should now be considered from the perspective of its novel functions, which promise to be as relevant for cell viability as cohesion.
Collapse
Affiliation(s)
- María Carretero
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
139
|
Bermúdez-López M, Ceschia A, de Piccoli G, Colomina N, Pasero P, Aragón L, Torres-Rosell J. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res 2010; 38:6502-12. [PMID: 20571088 PMCID: PMC2965248 DOI: 10.1093/nar/gkq546] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 11/20/2022] Open
Abstract
Mitotic chromosome segregation requires the removal of physical connections between sister chromatids. In addition to cohesin and topological entrapments, sister chromatid separation can be prevented by the presence of chromosome junctions or ongoing DNA replication. We will collectively refer to them as DNA-mediated linkages. Although this type of structures has been documented in different DNA replication and repair mutants, there is no known essential mechanism ensuring their timely removal before mitosis. Here, we show that the dissolution of these connections is an active process that requires the Smc5/6 complex, together with Mms21, its associated SUMO-ligase. Failure to remove DNA-mediated linkages causes gross chromosome missegregation in anaphase. Moreover, we show that Smc5/6 is capable to dissolve them in metaphase-arrested cells, thus restoring chromosome resolution and segregation. We propose that Smc5/6 has an essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy.
Collapse
Affiliation(s)
- Marcelino Bermúdez-López
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Audrey Ceschia
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Giacomo de Piccoli
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Neus Colomina
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Philippe Pasero
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Luis Aragón
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Jordi Torres-Rosell
- IRBLLEIDA, Department of Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, c/Montserrat Roig 2, 25008 Lleida, Spain, Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK and Department of Genome Dynamics, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| |
Collapse
|
140
|
Shintomi K, Hirano T. Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 2010; 119:459-67. [PMID: 20352243 DOI: 10.1007/s00412-010-0271-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 01/07/2023]
Abstract
When chromosomes start to assemble in mitotic prophase, duplicated chromatids are not discernible within each chromosome. As condensation proceeds, they gradually show up, culminating in two rod-shaped structures apposed along their entire length within a metaphase chromosome. This process, known as sister chromatid resolution, is thought to be a prerequisite for rapid and synchronous separation of sister chromatids in anaphase. From a mechanistic point of view, the resolution process can be dissected into three distinct steps: (1) release of cohesin from chromosome arms; (2) formation of chromatid axes mediated by condensins; and (3) untanglement of inter-sister catenation catalyzed by topoisomerase II (topo II). In this review article, we summarize recent progress in our understanding the molecular mechanisms of sister chromatid resolution with a major focus on its first step, cohesin release. An emerging idea is that this seemingly simple step is regulated by an intricate network of positive and negative factors, including cohesin-binding proteins and mitotic kinases. Interestingly, some key factors responsible for cohesin release in early mitosis also play important roles in controlling cohesin functions during interphase. Finally, we discuss how the step of cohesin release might mechanistically be coordinated with the actions of condensins and topo II.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, Japan
| | | |
Collapse
|
141
|
Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 2010; 402:491-509. [PMID: 20678503 PMCID: PMC2978331 DOI: 10.1016/j.jmb.2010.07.051] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/15/2010] [Accepted: 07/26/2010] [Indexed: 12/19/2022]
Abstract
The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs' 5' end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a "superfamily") is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs' 5' seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike.
Collapse
Affiliation(s)
- John R Finnerty
- Division of Neuropathology, Department of Pathology, University of Kentucky Medical Center and Sanders-BrownCenter on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
142
|
Ccq1p and the condensin proteins Cut3p and Cut14p prevent telomere entanglements in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2010; 9:1612-21. [PMID: 20709788 DOI: 10.1128/ec.00339-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Schizosaccharomyces pombe telomere-associated protein Ccq1p has previously been shown to participate in telomerase recruitment, heterochromatin formation, and suppression of checkpoint activation. Here we characterize a critical role for Ccq1p in mitotic transit. We show that mitotic cells lacking Ccq1p lose minichromosomes at high frequencies but that conditional knockdown of Ccq1p expression results in telomere bridging within one cell cycle. Elevating Ccq1p expression resolves the telomere entanglements caused by decreased Taz1p activity. Ccq1p affects telomere resolution in the absence of changes in telomere size, indicating a role for Ccq1p that is independent of telomere length regulation. Using affinity purification, we identify the condensin proteins Cut3p and Cut14p as candidate Ccq1p interactors in this activity. Condensin loss-of-function disrupts Ccq1p telomeric localization and normal intertelomere clustering, while condensin overexpression relieves the chromosome segregation defects associated with conditional Ccq1p knockdown. These data suggest that Ccq1p and condensins collaborate to mediate resolution of telomeres in mitosis and regulate intertelomeric clustering during interphase.
Collapse
|
143
|
Kim BJ, Li Y, Zhang J, Xi Y, Li Y, Yang T, Jung SY, Pan X, Chen R, Li W, Wang Y, Qin J. Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells. J Biol Chem 2010; 285:22784-92. [PMID: 20501661 PMCID: PMC2906269 DOI: 10.1074/jbc.m110.134577] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/25/2010] [Indexed: 01/06/2023] Open
Abstract
The cohesin complex plays a central role in genome maintenance by regulation of chromosome segregation in mitosis and DNA damage response (DDR) in other phases of the cell cycle. The ATM/ATR phosphorylates SMC1 and SMC3, two core components of the cohesin complex to regulate checkpoint signaling and DNA repair. In this report, we show that the genome-wide binding of SMC1 and SMC3 after ionizing radiation (IR) is enhanced by reinforcing pre-existing cohesin binding sites in human cancer cells. We demonstrate that ATM and SMC3 phosphorylation at Ser(1083) regulate this process. We also demonstrate that acetylation of SMC3 at Lys(105) and Lys(106) is induced by IR and this induction depends on the acetyltransferase ESCO1 as well as the ATM/ATR kinases. Consistently, both ESCO1 and SMC3 acetylation are required for intra-S phase checkpoint and cellular survival after IR. Although both IR-induced acetylation and phosphorylation of SMC3 are under the control of ATM/ATR, the two forms of modification are independent of each other and both are required to promote reinforcement of SMC3 binding to cohesin sites. Thus, SMC3 modifications is a mechanism for genome-wide reinforcement of cohesin binding in response to DNA damage response in human cells and enhanced cohesion is a downstream event of DDR.
Collapse
Affiliation(s)
- Beom-Jun Kim
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Yehua Li
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Jinglan Zhang
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Yuanxin Xi
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | | | - Tao Yang
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | - Sung Yun Jung
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- Department of Molecular and Cellular Biology
| | - Xuewen Pan
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | | | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Yi Wang
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- Department of Molecular and Cellular Biology
| | - Jun Qin
- From the
Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- Department of Molecular and Cellular Biology
| |
Collapse
|
144
|
Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 2010; 466:508-12. [PMID: 20622854 PMCID: PMC3059551 DOI: 10.1038/nature09272] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 06/18/2010] [Indexed: 12/11/2022]
Abstract
While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.
Collapse
Affiliation(s)
- Wen Liu
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Graduate Program in Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Bogdan Tanasa
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Oksana V. Tyurina
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Tian Yuan Zhou
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Reto Gassmann
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Wei Ting Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences/Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Kenneth A. Ohgi
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Chris Benner
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ivan Garcia-Bassets
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Aneel K. Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029. USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences/Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
145
|
Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG, Dick FA. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev 2010; 24:1351-63. [PMID: 20551166 DOI: 10.1101/gad.1917610] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Condensation and segregation of mitotic chromosomes is a critical process for cellular propagation, and, in mammals, mitotic errors can contribute to the pathogenesis of cancer. In this report, we demonstrate that the retinoblastoma protein (pRB), a well-known regulator of progression through the G1 phase of the cell cycle, plays a critical role in mitotic chromosome condensation that is independent of G1-to-S-phase regulation. Using gene targeted mutant mice, we studied this aspect of pRB function in isolation, and demonstrate that it is an essential part of pRB-mediated tumor suppression. Cancer-prone Trp53(-/-) mice succumb to more aggressive forms of cancer when pRB's ability to condense chromosomes is compromised. Furthermore, we demonstrate that defective mitotic chromosome structure caused by mutant pRB accelerates loss of heterozygosity, leading to earlier tumor formation in Trp53(+/-) mice. These data reveal a new mechanism of tumor suppression, facilitated by pRB, in which genome stability is maintained by proper condensation of mitotic chromosomes.
Collapse
Affiliation(s)
- Courtney H Coschi
- London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Heterochromatin Protein 1 (HP1) is a transcriptional repressor that directly binds to the methylated lysine 9 residue of histone H3 (H3K9me), which is a hallmark histone modification for transcriptionally silenced heterochromatin. Studies of homologs in different organisms have provided significant insight into the function of HP1 and the role of H3K9me. Initially discovered to be a major constituent of heterochromatin important for gene silencing, HP1 is now known to be a dynamic protein that also functions in transcriptional elongation, centromeric sister chromatid cohesion, telomere maintenance and DNA repair. Furthermore, recent studies have begun to uncover functional differences between HP1 variants and their H3K9me-independent mode of action. As our understanding of HP1 expands, however, conflicting data has also been reported that requires further reconciliation. Here we focus on some of the recent findings and controversies concerning HP1 functions in mammalian cells in comparison to studies in other organisms.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| | - Alexander R. Ball
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| | - Kyoko Yokomori
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| |
Collapse
|
147
|
Sjögren C, Ström L. S-phase and DNA damage activated establishment of sister chromatid cohesion--importance for DNA repair. Exp Cell Res 2010; 316:1445-53. [PMID: 20043905 DOI: 10.1016/j.yexcr.2009.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/23/2023]
Abstract
By holding sister chromatids together from the moment of their formation until their separation at anaphase, the multi subunit protein complex Cohesin guarantees correct chromosome segregation. This S-phase established chromatid cohesion is also essential for repair of DNA double strand breaks (DSB) in postreplicative cells. In addition, Cohesin has to be recruited to a DSB, and new cohesion has to form in response to the damage for repair. When it became clear that cohesion is created de novo in response to DNA breaks, the term "damage induced cohesion" (DI-cohesion) was coined. It is now established that certain factors are needed for establishment of both S-phase and DI-cohesion, while others have been found to be unique for respective process. In addition, post-translational modifications of Cohesin components that are functionally important for cohesion formation, either during S-phase or in response to damage, have recently been identified. Here, we present and discuss the current models for establishment of S-phase and DI-cohesion in the context of their involvement in DSB repair.
Collapse
Affiliation(s)
- Camilla Sjögren
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
148
|
Fazzio TG, Panning B. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. ACTA ACUST UNITED AC 2010; 188:491-503. [PMID: 20176923 PMCID: PMC2828918 DOI: 10.1083/jcb.200908026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Loss of the condensin complex components Smc2 and -4 disrupts epigenetic modifications required for embryonic stem cell survival. In an RNA interference screen interrogating regulators of mouse embryonic stem (ES) cell chromatin structure, we previously identified 62 genes required for ES cell viability. Among these 62 genes were Smc2 and -4, which are core components of the two mammalian condensin complexes. In this study, we show that for Smc2 and -4, as well as an additional 49 of the 62 genes, knockdown (KD) in somatic cells had minimal effects on proliferation or viability. Upon KD, Smc2 and -4 exhibited two phenotypes that were unique to ES cells and unique among the ES cell–lethal targets: metaphase arrest and greatly enlarged interphase nuclei. Nuclear enlargement in condensin KD ES cells was caused by a defect in chromatin compaction rather than changes in DNA content. The altered compaction coincided with alterations in the abundance of several epigenetic modifications. These data reveal a unique role for condensin complexes in interphase chromatin compaction in ES cells.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Biochemistry and Biophysics Department, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
149
|
Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. Virus Res 2010; 151:10-8. [PMID: 20302897 DOI: 10.1016/j.virusres.2010.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 02/06/2023]
Abstract
Infection of domestic swine with highly virulent, classical swine fever virus (CSFV) strain Brescia, causes lethal disease in all infected animals. However, the molecular mechanisms involved in modulating the host cellular processes and evasion of the immune response have not been clearly established. To gain insight into, the early host response to CSFV, we analyzed the pattern of gene expression in infected swine macrophages, using custom designed swine microarrays. Macrophages, the target cell for CSFV infection, were isolated from primary cultures of peripheral blood mononuclear cells, allowing us to utilize identical uninfected macrophages at the same time points as CSFV-infected macrophages, allowing only genes induced by CSFV to be identified. First, microarray probes were optimized by screening 244,000 probes for hybridization with RNA from infected and uninfected macrophages. Probes that hybridized and passed quality control standards were used to design a 44,000 probe microarray for this study. Changes in expression levels of 79 genes (48 up- and 31 down-regulated) during the first 48h post-infection were observed. As expected many of the genes with an altered pattern of expression are involved in the development of an innate immune response. Several of these genes had differential expression in an attenuated strain NS4B.VGIv, suggesting that some of these differences are responsible for virulence. The observed gene expression profile might help to explain the immunological and pathological changes associated with infection of pigs with CSFV Brescia.
Collapse
|
150
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|