101
|
Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet 2013; 9:e1003679. [PMID: 23990794 PMCID: PMC3749324 DOI: 10.1371/journal.pgen.1003679] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance. For most eukaryotes, recombination between homologous chromosomes during meiosis is an essential aspect of sexual reproduction. Meiotic recombination is initiated by programmed double-strand breaks in DNA, which have the potential to induce mutations if not efficiently repaired. To better understand the mechanisms that govern the initiation of recombination and regulate the formation of double-strand breaks, we use the nematode Caenorhabditis elegans as a model system. Here we describe a new gene, dsb-1, that is required for double-strand break formation in C. elegans. Through analysis of the encoded DSB-1 protein we illuminate an important regulatory pathway that promotes crossover recombination events on all chromosome pairs to ensure successful meiosis.
Collapse
Affiliation(s)
- Ericca L. Stamper
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
| | - Stacia E. Rodenbusch
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
| | - Simona Rosu
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Anne M. Villeneuve
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
102
|
Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 2013; 9:e1003637. [PMID: 23874232 PMCID: PMC3715423 DOI: 10.1371/journal.pgen.1003637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. Sexual reproduction entails an intricate 2-step division called meiosis in which homologous chromosomes and sister chromatids are sequentially segregated to yield gametes (eggs and sperm) with exactly one copy of each chromosome. The Drosophila meiosis protein SOLO is essential for cohesion between sister chromatids. SOLO localizes to centromeres throughout meiosis where it collaborates with the conserved cohesin complex to enable sister centromeres to orient properly – to the same pole during the first division and to opposite poles during the second division. In solo mutants, sister chromatids become disconnected early in meiosis and segregate randomly through both meiotic divisions generating gametes with random (and mostly wrong) numbers of chromosomes. In this study we show that SOLO also localizes to chromosome arms where it is required to construct stable synaptonemal complexes that connect homologs while they recombine. In addition, SOLO is required to prevent crossovers between sister chromatids, as only homolog crossovers are useful for forming the interhomolog connections (chiasmata) needed for homolog segregation. SOLO collaborates with cohesin for these tasks as well. We propose that SOLO is a subunit of a specialized meiotic cohesin complex and a multi-purpose cohesion protein that regulates several meiotic processes needed for proper chromosome segregation.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
103
|
Agostinho A, Meier B, Sonneville R, Jagut M, Woglar A, Blow J, Jantsch V, Gartner A. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases. PLoS Genet 2013; 9:e1003591. [PMID: 23901331 PMCID: PMC3715425 DOI: 10.1371/journal.pgen.1003591] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022] Open
Abstract
Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation but not resolution is likely to be required for this process.
Collapse
Affiliation(s)
- Ana Agostinho
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Remi Sonneville
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
104
|
Labrador L, Barroso C, Lightfoot J, Müller-Reichert T, Flibotte S, Taylor J, Moerman DG, Villeneuve AM, Martinez-Perez E. Chromosome movements promoted by the mitochondrial protein SPD-3 are required for homology search during Caenorhabditis elegans meiosis. PLoS Genet 2013; 9:e1003497. [PMID: 23671424 PMCID: PMC3649994 DOI: 10.1371/journal.pgen.1003497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 11/29/2022] Open
Abstract
Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement. Sexually reproducing organisms carry two copies of each chromosome (homologs), which must be separated during gamete formation to prevent chromosome duplication in each generation. This chromosome halving is achieved during meiosis, a type of cell division in which the homologs recognize and pair with one another before they become intimately glued together by a structure called the synaptonemal complex (SC). Homolog pairing and SC assembly coincide with movement of chromosomes inside the nucleus, but how chromosome mobility impacts these events is not understood. We find that the mitochondrial protein SPD-3 is required to ensure normal levels of motor-driven chromosome movement and that, although pairing-promoting proteins are normally recruited at the start of meiosis in spd-3 mutants, reduced chromosome mobility impairs homolog pairing. In contrast, SC assembly is normally started, leading to the installation of SC between non-homologous chromosomes and demonstrating a failure in the coordination of pairing and SC assembly. Reduced movement also causes a controlled delay in exit from early meiotic stages characterized by chromosome clustering and active homology search. Our findings show how the different events that lead to the correct association of homologous chromosomes during early meiosis are affected by chromosome mobility.
Collapse
Affiliation(s)
- Leticia Labrador
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Consuelo Barroso
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - James Lightfoot
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
105
|
Rog O, Dernburg AF. Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Curr Opin Cell Biol 2013; 25:349-56. [PMID: 23578368 DOI: 10.1016/j.ceb.2013.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022]
Abstract
Meiosis is the specialized cell division cycle that produces haploid gametes to enable sexual reproduction. Reduction of chromosome number by half requires elaborate chromosome dynamics that occur in meiotic prophase to establish physical linkages between each pair of homologous chromosomes. Caenorhabditis elegans has emerged as an excellent model organism for molecular studies of meiosis, enabling investigators to combine the power of molecular genetics, cytology, and live analysis. Here we focus on recent studies that have shed light on how chromosomes find and identify their homologous partners, and the structural changes that accompany and mediate these interactions.
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, United States
| | | |
Collapse
|
106
|
Schvarzstein M, Pattabiraman D, Bembenek JN, Villeneuve AM. Meiotic HORMA domain proteins prevent untimely centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Proc Natl Acad Sci U S A 2013; 110:E898-907. [PMID: 23401519 PMCID: PMC3593872 DOI: 10.1073/pnas.1213888110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In many species where oocytes lack centrosomes, sperm contribute both genetic material and centriole(s) to the zygote. Correct centriole organization during male meiosis is critical to guarantee a normal bipolar mitotic spindle in the zygote. During Caenorhabditis elegans male meiosis, centrioles normally undergo two rounds of duplication, resulting in haploid sperm each containing a single tightly engaged centriole pair. Here we identify an unanticipated role for C. elegans HORMA (Hop1/Rev7/Mad2) domain proteins HTP-1/2 and HIM-3 in regulating centriole disengagement during spermatocyte meiosis. In him-3 and htp-1 htp-2 mutants, centrioles separate inappropriately during meiosis II, resulting in spermatids with disengaged centrioles. Moreover, extra centrosomes are detected in a subset of zygotes. Together, these data implicate HIM-3 and HTP-1/2 in preventing centriole disengagement during meiosis II. We showed previously that HTP-1/2 prevents premature loss of sister chromatid cohesion during the meiotic divisions by inhibiting removal of meiotic cohesin complexes containing the REC-8 subunit. Worms lacking REC-8, or expressing a mutant separase protein with elevated local concentration at centrosomes and in sperm, likewise exhibit inappropriate centriole separation during spermatocyte meiosis. These observations are consistent with HIM-3 and HTP-1/2 preventing centriole disengagement by inhibiting separase-dependent cohesin removal. Our data suggest that the same specialized meiotic mechanisms that function to prevent premature release of sister chromatid cohesion during meiosis I in C. elegans also function to inhibit centriole separation at meiosis II, thereby ensuring that the zygote inherits the appropriate complement of chromosomes and centrioles.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37916
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
107
|
Lemmens BBLG, Johnson NM, Tijsterman M. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining. PLoS Genet 2013; 9:e1003276. [PMID: 23408909 PMCID: PMC3567172 DOI: 10.1371/journal.pgen.1003276] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.
Collapse
Affiliation(s)
- Bennie B. L. G. Lemmens
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
108
|
Clemons AM, Brockway HM, Yin Y, Kasinathan B, Butterfield YS, Jones SJM, Colaiácovo MP, Smolikove S. akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. Mol Biol Cell 2013; 24:1053-67. [PMID: 23363597 PMCID: PMC3608493 DOI: 10.1091/mbc.e12-11-0841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Formation of a condensed and properly remodeled bivalent is required for accurate execution of meiosis. Meiotic roles are identified for the highly evolutionarily conserved protein AKIRIN in bivalent remodeling in a synaptonemal complex (SC)–dependent and SC–independent manner, demonstrating that proper SC disassembly is crucial for bivalent structure. During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.
Collapse
Affiliation(s)
- Amy M Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242 , USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
110
|
Lamelza P, Bhalla N. Histone methyltransferases MES-4 and MET-1 promote meiotic checkpoint activation in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003089. [PMID: 23166523 PMCID: PMC3499413 DOI: 10.1371/journal.pgen.1003089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Chromosomes that fail to synapse during meiosis become enriched for chromatin marks associated with heterochromatin assembly. This response, called meiotic silencing of unsynapsed or unpaired chromatin (MSUC), is conserved from fungi to mammals. In Caenorhabditis elegans, unsynapsed chromosomes also activate a meiotic checkpoint that monitors synapsis. The synapsis checkpoint signal is dependent on cis-acting loci called Pairing Centers (PCs). How PCs signal to activate the synapsis checkpoint is currently unknown. We show that a chromosomal duplication with PC activity is sufficient to activate the synapsis checkpoint and that it undergoes heterochromatin assembly less readily than a duplication of a non-PC region, suggesting that the chromatin state of these loci is important for checkpoint function. Consistent with this hypothesis, MES-4 and MET-1, chromatin-modifying enzymes associated with transcriptional activity, are required for the synapsis checkpoint. In addition, a duplication with PC activity undergoes heterochromatin assembly when mes-4 activity is reduced. MES-4 function is required specifically for the X chromosome, while MES-4 and MET-1 act redundantly to monitor autosomal synapsis. We propose that MES-4 and MET-1 antagonize heterochromatin assembly at PCs of unsynapsed chromosomes by promoting a transcriptionally permissive chromatin environment that is required for meiotic checkpoint function. Moreover, we suggest that different genetic requirements to monitor the behavior of sex chromosomes and autosomes allow for the lone unsynapsed X present in male germlines to be shielded from inappropriate checkpoint activation.
Collapse
Affiliation(s)
| | - Needhi Bhalla
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
111
|
Voelkel-Meiman K, Moustafa SS, Lefrançois P, Villeneuve AM, MacQueen AJ. Full-length synaptonemal complex grows continuously during meiotic prophase in budding yeast. PLoS Genet 2012; 8:e1002993. [PMID: 23071451 PMCID: PMC3469433 DOI: 10.1371/journal.pgen.1002993] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
the synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Sarah S. Moustafa
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
112
|
Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiácovo MP. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 2012; 10:e1001378. [PMID: 22927794 PMCID: PMC3424243 DOI: 10.1371/journal.pbio.1001378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
At the onset of the first meiotic division, the protein LAB-1 recruits the PP1 phosphatase to cohesion complexes, preventing Aurora B kinase from targeting cohesins for degradation prematurely and thereby ensuring proper progression of meiotic events in C. elegans. Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivo Van Bostelen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
113
|
HAL-2 promotes homologous pairing during Caenorhabditis elegans meiosis by antagonizing inhibitory effects of synaptonemal complex precursors. PLoS Genet 2012; 8:e1002880. [PMID: 22912597 PMCID: PMC3415444 DOI: 10.1371/journal.pgen.1002880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023] Open
Abstract
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification. For successful segregation of homologous chromosomes during sexual reproduction, homologs must first identify and pair with their correct partners. Further, many organisms stabilize and maintain alignment between paired homologs through assembly of a highly ordered structure known as the synaptonemal complex (SC). Pairing and synapsis must be tightly coordinated to ensure that SC assembly only occurs in a productive manner, linking the axes of correctly aligned homologous chromosomes. In this work, we identify HAL-2, a protein that concentrates in the nucleoplasm of germ cells, as a key player in mediating this coordination. We find that precursors of the SC have the potential to inhibit homolog pairing, interfering with the very process that the SC normally serves to stabilize. Moreover, we show that HAL-2 promotes homolog pairing and associated chromosome movement primarily by counteracting these detrimental inhibitory effects of SC precursors. Our data suggest that HAL-2 serves to prevent inappropriate association of SC precursors with chromosomes prior to licensing of SC assembly, and we propose that HAL-2 may enable precursors to accumulate in a manner that allows rapid, cooperative SC assembly upon homology verification.
Collapse
|
114
|
Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Stewart AF, Reményi A, Turner JMA, Tóth A. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev 2012; 26:958-73. [PMID: 22549958 DOI: 10.1101/gad.187559.112] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11(-/-), but not the asynaptic and DSB repair-defective Dmc1(-/-) oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline.
Collapse
Affiliation(s)
- Lukasz Wojtasz
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
La Volpe A, Barchi M. Meiotic double strand breaks repair in sexually reproducing eukaryotes: We are not all equal. Exp Cell Res 2012; 318:1333-9. [DOI: 10.1016/j.yexcr.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
|
116
|
Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 2012; 149:75-87. [PMID: 22464324 DOI: 10.1016/j.cell.2012.01.052] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/27/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022]
Abstract
Crossovers (COs) between homologous chromosomes ensure their faithful segregation during meiosis. We identify C. elegans COSA-1, a cyclin-related protein conserved in metazoa, as a key component required to convert meiotic double-strand breaks (DSBs) into COs. During late meiotic prophase, COSA-1 localizes to foci that correspond to the single CO site on each homolog pair and indicate sites of eventual concentration of other conserved CO proteins. Chromosomes gain and lose competence to load CO proteins during meiotic progression, with competence to load COSA-1 requiring prior licensing. Our data further suggest a self-reinforcing mechanism maintaining CO designation. Modeling of a nonlinear dose-response relationship between IR-induced DSBs and COSA-1 foci reveals efficient conversion of DSBs into COs when DSBs are limiting and a robust capacity to limit cytologically differentiated CO sites when DSBs are in excess. COSA-1 foci serve as a unique live cell readout for investigating CO formation and CO interference.
Collapse
Affiliation(s)
- Rayka Yokoo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
117
|
Dombecki CR, Chiang ACY, Kang HJ, Bilgir C, Stefanski NA, Neva BJ, Klerkx EPF, Nabeshima K. The chromodomain protein MRG-1 facilitates SC-independent homologous pairing during meiosis in Caenorhabditis elegans. Dev Cell 2012; 21:1092-103. [PMID: 22172672 DOI: 10.1016/j.devcel.2011.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/23/2011] [Accepted: 09/26/2011] [Indexed: 11/16/2022]
Abstract
Homologous chromosome pairing is a prerequisite to establish physical linkage between homologs, which is critical for faithful chromosome segregation during meiosis I. The establishment of pairing is genetically separable from subsequent synapsis, defined as stabilization of pairing by the synaptonemal complex (SC). The underlying mechanism of presynaptic pairing is poorly understood. In the nematode Caenorhabditis elegans, a unique cis-acting element, the pairing center (PC), is essential for presynaptic pairing; however, it is not known whether and how the remainder of the chromosome contributes to presynaptic pairing. Here we report direct evidence for presynaptic pairing activity intrinsic to non-PC regions, which is facilitated by a conserved chromodomain protein, MRG-1. In mrg-1 loss-of-function mutants, pairing is compromised specifically in non-PC regions, leading to nonhomologous SC assembly. Our data support a model in which presynaptic alignment in non-PC regions collaborates with initial PC pairing to ensure correct homologous synapsis.
Collapse
Affiliation(s)
- Carolyn R Dombecki
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Xu J, Sun X, Jing Y, Wang M, Liu K, Jian Y, Yang M, Cheng Z, Yang C. MRG-1 is required for genomic integrity in Caenorhabditis elegans germ cells. Cell Res 2012; 22:886-902. [PMID: 22212480 DOI: 10.1038/cr.2012.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During meiotic cell division, proper chromosome synapsis and accurate repair of DNA double strand breaks (DSBs) are required to maintain genomic integrity, loss of which leads to apoptosis or meiotic defects. The mechanisms underlying meiotic chromosome synapsis, DSB repair and apoptosis are not fully understood. Here, we report that the chromodomain-containing protein MRG-1 is an important factor for genomic integrity in meiosis in Caenorhabditis elegans. Loss of mrg-1 function resulted in a significant increase in germ cell apoptosis that was partially inhibited by mutations affecting DNA damage checkpoint genes. Consistently, mrg-1 mutant germ lines exhibited SPO-11-generated DSBs and elevated exogenous DNA damage-induced chromosome fragmentation at diakinesis. In addition, the excessive apoptosis in mrg-1 mutants was partially suppressed by loss of the synapsis checkpoint gene pch-2, and a significant number of meiotic nuclei accumulated at the leptotene/zygotene stages with an elevated level of H3K9me2 on the chromatin, which was similarly observed in mutants deficient in the synaptonemal complex, suggesting that the proper progression of chromosome synapsis is likely impaired in the absence of mrg-1. Altogether, these findings suggest that MRG-1 is critical for genomic integrity by promoting meiotic DSB repair and synapsis progression in meiosis.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Labella S, Woglar A, Jantsch V, Zetka M. Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing. Dev Cell 2011; 21:948-58. [PMID: 22018921 DOI: 10.1016/j.devcel.2011.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/09/2011] [Accepted: 07/21/2011] [Indexed: 10/16/2022]
Abstract
During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C. elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.
Collapse
Affiliation(s)
- Sara Labella
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec H2A 1B1, Canada
| | | | | | | |
Collapse
|
120
|
Baudrimont A, Penkner A, Woglar A, Mamnun YM, Hulek M, Struck C, Schnabel R, Loidl J, Jantsch V. A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans. PLoS One 2011; 6:e24799. [PMID: 21957461 PMCID: PMC3177864 DOI: 10.1371/journal.pone.0024799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022] Open
Abstract
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexandra Penkner
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasmine M. Mamnun
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Margot Hulek
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Cathrin Struck
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Ralf Schnabel
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Josef Loidl
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
121
|
Nabeshima K, Mlynarczyk-Evans S, Villeneuve AM. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis. PLoS Genet 2011; 7:e1002231. [PMID: 21876678 PMCID: PMC3158051 DOI: 10.1371/journal.pgen.1002231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/24/2011] [Indexed: 11/29/2022] Open
Abstract
During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. Successful sexual reproduction relies on the ability of germ cells to faithfully segregate homologous chromosomes in meiosis, which requires accurate sorting of chromosomes into homologous pairs and alignment of homologs along their entire lengths. The mechanisms underlying homolog sorting and alignment are not well understood, partly because of a scarcity of studies investigating homolog alignment at the level of whole chromosomes. This study provides a global view of the organization of chromosome territories during early meiotic prophase in the nematode Caenorhabditis elegans. We applied chromosome painting to visualize the entire lengths of chromosomes. Our study provides several conceptual advances. First, our study excluded several possible mechanisms as primary drivers of chromosome sorting. Second, our analysis has revealed both a robust capacity for full-lengthwise alignment between homologous chromosomes prior to the stabilization of pairing by the synaptonemal complex as well as a dramatic elongation of chromosome territories that could enable this alignment. We also identified a factor required for the elongation of chromosome territories. Elongation of chromosome territories could enable lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners by promoting utilization of information about chromosome identity that is distributed along the length of a chromosome.
Collapse
Affiliation(s)
- Kentaro Nabeshima
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor Michigan, USA.
| | | | | |
Collapse
|
122
|
Pradillo M, Santos JL. The template choice decision in meiosis: is the sister important? Chromosoma 2011; 120:447-54. [PMID: 21826413 DOI: 10.1007/s00412-011-0336-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/30/2022]
Abstract
Recombination between homologous chromosomes is crucial to ensure their proper segregation during meiosis. This is achieved by regulating the choice of recombination template. In mitotic cells, double-strand break repair with the sister chromatid appears to be preferred, whereas interhomolog recombination is favoured during meiosis. However, in the last year, several studies in yeast have shown the importance of the meiotic recombination between sister chromatids. Although this thinking seems to be new, evidences for sister chromatid exchange during meiosis were obtained more than 50 years ago in non-model organisms. In this mini-review, we comment briefly on the most recent advances in this hot topic and also describe observations which suggest the existence of inter-sister repair during meiotic recombination. For instance, the behaviour of mammalian XY bivalents and that of trivalents in heterozygotes for chromosomal rearrangements are cited as examples. The "rediscovering" of the requirement for the sister template, although it seems to occur at a low frequency, will probably prompt further investigations in organisms other than yeast to understand the complexity of the partner choice during meiosis.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Universidad Complutense de Madrid, Spain.
| | | |
Collapse
|
123
|
MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol 2011; 21:393-400. [PMID: 21531561 DOI: 10.1016/j.tcb.2011.03.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/20/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
Abstract
The coordinated execution of cell cycle processes during meiosis is essential for the production of viable gametes and fertility. Coordination is particularly important during meiotic prophase, when nuclei undergo a dramatic reorganization that requires the precise choreography of chromosome movements, pairing interactions and DNA double-strand break (DSB) repair. Analysis of the underlying regulatory mechanisms has revealed crucial and widespread roles for DNA-damage checkpoint proteins, not only in cell cycle surveillance, but also in controlling many processes uniquely characteristic of meiosis. The resulting regulatory network uses checkpoint machinery to provide an integral coordinating mechanism during every meiotic division and enables cells to safely maintain an error-prone event such as DSB formation as an essential part of the meiotic program.
Collapse
Affiliation(s)
- Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
124
|
Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol 2011; 13:599-610. [PMID: 21478856 DOI: 10.1038/ncb2213] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/20/2011] [Indexed: 12/14/2022]
Abstract
Meiotic crossover formation between homologous chromosomes (homologues) entails DNA double-strand break (DSB) formation, homology search using DSB ends, and synaptonemal-complex formation coupled with DSB repair. Meiotic progression must be prevented until DSB repair and homologue alignment are completed, to avoid the formation of aneuploid gametes. Here we show that mouse HORMAD1 ensures that sufficient numbers of processed DSBs are available for successful homology search. HORMAD1 is needed for normal synaptonemal-complex formation and for the efficient recruitment of ATR checkpoint kinase activity to unsynapsed chromatin. The latter phenomenon was proposed to be important in meiotic prophase checkpoints in both sexes. Consistent with this hypothesis, HORMAD1 is essential for the elimination of synaptonemal-complex-defective oocytes. Synaptonemal-complex formation results in HORMAD1 depletion from chromosome axes. Thus, we propose that the synaptonemal complex and HORMAD1 are key components of a negative feedback loop that coordinates meiotic progression with homologue alignment: HORMAD1 promotes homologue alignment and synaptonemal-complex formation, and synaptonemal complexes downregulate HORMAD1 function, thereby permitting progression past meiotic prophase checkpoints.
Collapse
|
125
|
Lemmens BBLG, Tijsterman M. DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 2011; 120:1-21. [PMID: 21052706 PMCID: PMC3028100 DOI: 10.1007/s00412-010-0296-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/25/2022]
Abstract
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.
Collapse
Affiliation(s)
- Bennie B. L. G. Lemmens
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
126
|
An asymmetric chromosome pair undergoes synaptic adjustment and crossover redistribution during Caenorhabditis elegans meiosis: implications for sex chromosome evolution. Genetics 2011; 187:685-99. [PMID: 21212235 DOI: 10.1534/genetics.110.124958] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteromorphic sex chromosomes, such as the X/Y pair in mammals, differ in size and DNA sequence yet function as homologs during meiosis; this bivalent asymmetry presents special challenges for meiotic completion. In Caenorhabditis elegans males carrying mnT12, an X;IV fusion chromosome, mnT12 and IV form an asymmetric bivalent: chromosome IV sequences are capable of pairing and synapsis, while the contiguous X portion of mnT12 lacks a homologous pairing partner. Here, we investigate the meiotic behavior of this asymmetric neo-X/Y chromosome pair in C. elegans. Through immunolocalization of the axis component HIM-3, we demonstrate that the unpaired X axis has a distinct, coiled morphology while synapsed axes are linear and extended. By showing that loci at the fusion-proximal end of IV become unpaired while remaining synapsed as pachytene progresses, we directly demonstrate the occurrence of synaptic adjustment in this organism. We further demonstrate that meiotic crossover distribution is markedly altered in males with the asymmetric mnT12/+ bivalent relative to controls, resulting in greatly reduced crossover formation near the X;IV fusion point and elevated crossovers at the distal end of the bivalent. In effect, the distal end of the bivalent acts as a neo-pseudoautosomal region in these males. We discuss implications of these findings for mechanisms that ensure crossover formation during meiosis. Furthermore, we propose that redistribution of crossovers triggered by bivalent asymmetry may be an important driving force in sex chromosome evolution.
Collapse
|
127
|
Chromosome structure and homologous chromosome association during meiotic prophase in Caenorhabditis elegans. Methods Mol Biol 2011; 745:549-62. [PMID: 21660716 DOI: 10.1007/978-1-61779-129-1_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Successful meiotic recombination is driven by a series of programmed chromosome dynamics that include changes in the protein composition of meiotic chromosomes and the juxtaposition of homologous chromosomes. The simultaneous visualization of both chromosome-bound proteins and the status of homologous association is an important experimental approach to analyze the mechanisms supporting proper meiotic chromosome association. One of a number of model organisms used for meiosis research, the nematode Caenorhabditis elegans offers an excellent environment to study meiotic chromosome dynamics. Here I will describe how to visualize both chromosome structure and specific chromosomal loci simultaneously, in a whole-mount C. elegans germ line. It combines immunofluorescent (IF) staining for a meiotic chromosome structural component with fluorescent in situ hybridization (FISH).
Collapse
|
128
|
Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 2010; 143:924-37. [PMID: 21145459 PMCID: PMC3033573 DOI: 10.1016/j.cell.2010.11.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022]
Abstract
Meiotic double-strand break (DSB)-initiated recombination must occur between homologous maternal and paternal chromosomes ("homolog bias"), even though sister chromatids are present. Through physical recombination analyses, we show that sister cohesion, normally mediated by meiotic cohesin Rec8, promotes "sister bias"; that meiosis-specific axis components Red1/Mek1kinase counteract this effect, thereby satisfying an essential precondition for homolog bias; and that other components, probably recombinosome-related, directly ensure homolog partner selection. Later, Rec8 acts positively to ensure maintenance of bias. These complexities mirror opposing dictates for global sister cohesion versus local separation and differentiation of sisters at recombination sites. Our findings support DSB formation within axis-tethered recombinosomes containing both sisters and ensuing programmed sequential release of "first" and "second" DSB ends. First-end release would create a homology-searching "tentacle." Rec8 and Red1/Mek1 also independently license recombinational progression and abundantly localize to different domains. These domains could comprise complementary environments that integrate inputs from DSB repair and mitotic chromosome morphogenesis into the complete meiotic program.
Collapse
Affiliation(s)
- Keun P. Kim
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Beth M. Weiner
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Liangran Zhang
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Amy Jordan
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| | - Job Dekker
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01655 USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology Harvard University, 7 Divinity Avenue Cambridge, MA 02138 USA
| |
Collapse
|
129
|
Baudrimont A, Penkner A, Woglar A, Machacek T, Wegrostek C, Gloggnitzer J, Fridkin A, Klein F, Gruenbaum Y, Pasierbek P, Jantsch V. Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001219. [PMID: 21124819 PMCID: PMC2991264 DOI: 10.1371/journal.pgen.1001219] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022] Open
Abstract
The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates. During meiosis, homologous chromosomes from each parent must pair, synapse, and recombine before being assorted to the gametes. In Caenorhabditis elegans, to find the correct pairing partner, telomere-led chromosome movement occurs in a restricted subvolume of the nucleus. This feature is comparable to the widely conserved meiotic bouquet, a configuration where telomeres cluster in a limited area at the nuclear periphery. Chromosomes are moved by cytoskeletal forces transmitted via the SUN/KASH bridge across the nuclear envelope, and abrogation of movement leads to precocious nonhomologous synapsis. Using live cell imaging, we followed the movement of matefin/SUN-1 aggregates, which highlight chromosome ends. Instead of single chromosome ends looking for their homologous partners, we observed that duplets/multiplets and single chromosome ends were brought together into “patches” by the ongoing movement during the leptotene/zygotene stages of meiosis. Chromosome ends then shuffled through these patches in search of the correct partner. This study was a comprehensive analysis of matefin/SUN-1 aggregate dynamics in wild type, known Caenorhabditis elegans pairing mutants, and the recombination mutant spo-11; and it examined the contributions of these genotypes to leptotene/zygotene chromosome movement.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Alexandra Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Machacek
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christina Wegrostek
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Jiradet Gloggnitzer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Franz Klein
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Yosef Gruenbaum
- Department of Genetics, Hebrew University, Jerusalem, Israel
| | - Pawel Pasierbek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Molecular Pathology, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
130
|
Zhou K, Hanna-Rose W. Movers and shakers or anchored: Caenorhabditis elegans nuclei achieve it with KASH/SUN. Dev Dyn 2010; 239:1352-64. [PMID: 20108325 DOI: 10.1002/dvdy.22226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The invariant cell division patterns that characterize Caenorhabditis elegans development make it an ideal system to study the mechanisms that control nuclear movement and positioning. Forward genetic screens in this system allowed identification of the key molecular machinery for connecting the nucleus to the cytoskeleton; pairs of protein partners, consisting of a KASH domain protein and a SUN domain protein, bridge the nuclear envelope to connect the nucleus to cytoskeletal components. The C. elegans genome encodes several KASH/SUN pairs, and mutant phenotypes as well as tissue-specific expression patterns suggest a diversity of functions. These functions include moving the nucleus but have been extended to effects on the chromosomes inside the nucleus as well. We review the impact of the C. elegans system in pioneering this field as well as the functions of these KASH/SUN protein pairs across spatial and temporal C. elegans development.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
131
|
Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLoS Genet 2010; 6:e1001028. [PMID: 20661436 PMCID: PMC2908675 DOI: 10.1371/journal.pgen.1001028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/16/2010] [Indexed: 11/29/2022] Open
Abstract
In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the successful completion of homolog-independent recombination is crucial for germ cell genomic stability. Sperm and oocytes are essential for the faithful transmission of genetic information during sexual reproduction. As germ cells mature into sperm and oocytes, DNA double-strand breaks (DSBs) are deliberately created on each chromosome and a subset of DSBs is repaired to form meiotic crossovers between homologous chromosomes. Because germ cells must undergo this programmed process of deliberate DNA damage and repair, identifying repair factors active in germ cells and determining the requirement of their functions in meiotic DSB repair are important first steps in understanding infertility and developmental disorders caused by defective sperm and oocytes. In this manuscript, we find that the evolutionarily conserved SMC-5 and SMC-6 proteins fulfill a critical role in preserving genomic stability in germ cells in C. elegans. Our findings further describe the genetic mechanisms by which the C. elegans SMC-5/6 proteins function in meiotic DSB repair. These data reveal that inter-sister homologous recombination, a repair mechanism thought to function as a back-up repair method in meiosis, serves a more significant role in normal meiosis than was previously appreciated.
Collapse
|
132
|
The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans meiosis. Genetics 2010; 186:45-58. [PMID: 20592266 DOI: 10.1534/genetics.110.115501] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a highly ordered proteinaceous structure that assembles at the interface between aligned homologous chromosomes during meiotic prophase. The SC has been demonstrated to function both in stabilization of homolog pairing and in promoting the formation of interhomolog crossovers (COs). How the SC provides these functions and whether it also plays a role in inhibiting CO formation has been a matter of debate. Here we provide new insight into assembly and function of the SC by investigating the consequences of reducing (but not eliminating) SYP-1, a major structural component of the SC central region, during meiosis in Caenorhabditis elegans. First, we find an increased incidence of double CO (DCO) meiotic products following partial depletion of SYP-1 by RNAi, indicating a role for SYP-1 in mechanisms that normally limit crossovers to one per homolog pair per meiosis. Second, syp-1 RNAi worms exhibit both a strong preference for COs to occur on the left half of the X chromosome and a significant bias for SYP-1 protein to be associated with the left half of the chromosome, implying that the SC functions locally in promoting COs. Distribution of SYP-1 on chromosomes in syp-1 RNAi germ cells provides strong corroboration for cooperative assembly of the SC central region and indicates that SYP-1 preferentially associates with X chromosomes when it is present in limiting quantities. Further, the observed biases in the distribution of both COs and SYP-1 protein support models in which synapsis initiates predominantly in the vicinity of pairing centers (PCs). However, discontinuities in SC structure and clear gaps between localized foci of PC-binding protein HIM-8 and X chromosome-associated SYP-1 stretches allow refinement of models for the role of PCs in promoting synapsis. Our data suggest that the CO landscape is shaped by a combination of three attributes of the SC central region: a CO-promoting activity that functions locally at CO sites, a cooperative assembly process that enables CO formation in regions distant from prominent sites of synapsis initiation, and CO-inhibitory role(s) that limit CO number.
Collapse
|
133
|
Jaramillo-Lambert A, Engebrecht J. A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 2010; 184:613-28. [PMID: 20008570 PMCID: PMC2845332 DOI: 10.1534/genetics.109.110338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/07/2009] [Indexed: 12/26/2022] Open
Abstract
In many organisms, female and male meiosis display extensive sexual dimorphism in the temporal meiotic program, the number and location of recombination events, sex chromosome segregation, and checkpoint function. We show here that both meiotic prophase timing and germ-line apoptosis, one output of checkpoint signaling, are dictated by the sex of the germ line (oogenesis vs. spermatogenesis) in Caenorhabditis elegans. During oogenesis in feminized animals (fem-3), a single pair of asynapsed autosomes elicits a checkpoint response, yet an unpaired X chromosome fails to induce checkpoint activation. The single X in males and fem-3 worms is a substrate for the meiotic recombination machinery and repair of the resulting double strand breaks appears to be delayed compared with worms carrying paired X chromosomes. Synaptonemal complex axial HORMA domain proteins, implicated in repair of meiotic double strand breaks (DSBs) and checkpoint function, are assembled and disassembled on the single X similarly to paired chromosomes, but the central region component, SYP-1, is not loaded on the X chromosome in males. In fem-3 worms some X chromosomes achieve nonhomologous self-synapsis; however, germ cells with SYP-1-positive X chromosomes are not preferentially protected from apoptosis. Analyses of chromatin and X-linked gene expression indicate that a single X, unlike asynapsed X chromosomes or autosomes, maintains repressive chromatin marks and remains transcriptionally silenced and suggests that this state locally precludes checkpoint signaling.
Collapse
Affiliation(s)
- Aimee Jaramillo-Lambert
- Department of Molecular and Cellular Biology, Genetics Graduate Group, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
134
|
Schvarzstein M, Wignall SM, Villeneuve AM. Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev 2010; 24:219-28. [PMID: 20123904 DOI: 10.1101/gad.1863610] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organisms that reproduce sexually must reduce their chromosome number by half during meiosis to generate haploid gametes. To achieve this reduction in ploidy, organisms must devise strategies to couple sister chromatids so that they stay together during the first meiotic division (when homologous chromosomes separate) and then segregate away from one another during the second division. Here we review recent findings that shed light on how Caenorhabditis elegans, an organism with holocentric chromosomes, deals with these challenges of meiosis by differentiating distinct chromosomal subdomains and remodeling chromosome structure during prophase. Furthermore, we discuss how features of chromosome organization established during prophase affect later chromosome behavior during the meiotic divisions. Finally, we illustrate how analysis of holocentric meiosis can inform our thinking about mechanisms that operate on monocentric chromosomes.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
135
|
Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res 2010; 316:158-71. [PMID: 19686734 DOI: 10.1016/j.yexcr.2009.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
Abstract
HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
136
|
Tang L, Machacek T, Mamnun YM, Penkner A, Gloggnitzer J, Wegrostek C, Konrat R, Jantsch MF, Loidl J, Jantsch V. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age. Mol Biol Cell 2010; 21:885-96. [PMID: 20071466 PMCID: PMC2836969 DOI: 10.1091/mbc.e09-09-0811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Faithful meiotic chromosome segregation requires pairing, synapsis and recombination of homologous chromosomes. In mammals, chromosomal non-disjunction increases with age. A mutation in Caenorhabditis eleganshim-19 mimics these age-dependent chromosome segregation defects and might therefore further our understanding of this phenomenon. From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.
Collapse
Affiliation(s)
- Lois Tang
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 2009; 183:1297-314. [PMID: 19805814 PMCID: PMC2787422 DOI: 10.1534/genetics.109.109686] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022] Open
Abstract
Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Mara Schvarzstein
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Anne M. Villeneuve
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Sam Guoping Gu
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Verena Jantsch
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Andrew Z. Fire
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Antoine Baudrimont
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
138
|
Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM, Wynne DJ, Kasad RA, Dernburg AF. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 2009; 139:907-19. [PMID: 19913287 DOI: 10.1016/j.cell.2009.10.039] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/04/2009] [Accepted: 10/28/2009] [Indexed: 11/17/2022]
Abstract
During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Collapse
Affiliation(s)
- Aya Sato
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 2009; 139:920-33. [PMID: 19913286 DOI: 10.1016/j.cell.2009.10.045] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/16/2009] [Accepted: 10/30/2009] [Indexed: 11/21/2022]
Abstract
Genome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process. They bridge the nuclear envelope, connecting the cytoplasm and the nucleoplasm to transmit forces that allow chromosome movement and homolog pairing and prevent nonhomologous synapsis. Here, we show that Matefin/SUN-1 forms rapidly moving aggregates at putative chromosomal attachment sites in the meiotic transition zone (TZ). We analyzed requirements for aggregate formation and identified multiple phosphotarget residues in the nucleoplasmic domain of Matefin/SUN-1. These CHK-2 dependent phosphorylations occur in leptotene/zygotene, diminish during pachytene and are involved in pairing. Mimicking phosphorylation causes an extended TZ and univalents at diakinesis. Our data suggest that the properties of the nuclear envelope are altered during the time window when homologs are sorted and Matefin/SUN-1 aggregates form, thereby controling the movement, homologous pairing and interhomolog recombination of chromosomes.
Collapse
|
140
|
Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ, Toth A. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 2009; 5:e1000702. [PMID: 19851446 PMCID: PMC2758600 DOI: 10.1371/journal.pgen.1000702] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals. Generation of haploid gametes in most organisms requires that homologues become connected via crossovers during meiosis. Efficient formation of crossovers depends on HORMA-domain proteins in diverse taxa. These proteins ensure that programmed meiotic DSBs are preferentially repaired from homologues, rather than from sister chromatids. This inter-homologue bias is crucial for homology search and crossovers formation. HORMA-domain proteins have been also implicated in DSB formation, in suppression of synaptonemal complex formation between non-homologous chromosomes, and in the meiotic prophase checkpoint that monitors DSB repair. Despite the importance of HORMA-domain proteins in various organisms, a role for these proteins in mammalian meiosis hasn't been reported. We examined the behaviour of meiotic mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type and meiotic mutants. HORMAD1/2 preferentially accumulate on unsynapsed chromosome axes. Our data suggest that HORMAD1/2 depletion from chromosomes is a response to synaptonemal complex formation and it that is a conserved process supported by TRIP13/Pch2 AAA-ATPase. Assuming that HORMA-domain functions are conserved in mammals, we speculate that depletion of HORMADs from axes might contribute to the down-regulation of inter-homologue bias and the prophase checkpoint once homology search is completed and synaptonemal complexes form between aligned homologues.
Collapse
Affiliation(s)
- Lukasz Wojtasz
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Katrin Daniel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ignasi Roig
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | - Huiling Xu
- Divisions of Radiation Oncology and Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Verawan Boonsanay
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Howard J. Cooke
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Michael J. McKay
- Department of Radiation Oncology, Australian National University and the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Attila Toth
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
141
|
Smolikov S, Schild-Prüfert K, Colaiácovo MP. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis. PLoS Genet 2009; 5:e1000669. [PMID: 19798442 PMCID: PMC2742731 DOI: 10.1371/journal.pgen.1000669] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022] Open
Abstract
The proper assembly of the synaptonemal complex (SC) between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR) proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly. Meiosis is a two-part cell division program that ensures the formation of haploid gametes (e.g. eggs and sperm), which can then reconstitute a species' ploidy through fertilization. A critical step towards accomplishing this task is the accurate segregation of homologous chromosomes away from each other during meiosis I. This requires the formation of at least one obligatory crossover event (genetic exchange) between each pair of homologous chromosomes. In most organisms, the formation of all crossover events greatly relies on the synaptonemal complex (SC). This “zipper-like” structure holds the pairs of homologous chromosomes together during meiotic prophase I, and crossover recombination is completed in the context of the fully formed SCs. Here, we identify SYP-4 as a novel structural component of the SC in the nematode C. elegans. In its absence, SCs fail to form, resulting in a lack of crossover formation and increased errors in chromosome segregation. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of the SC proteins, and its localization onto chromosomes is interdependent with SYP-1, SYP-2, and SYP-3 proteins. SYP-4 therefore plays a critical role during C. elegans meiosis in generating the ultrastructurally conserved SC that is ubiquitously present from yeast to humans.
Collapse
Affiliation(s)
- Sarit Smolikov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kristina Schild-Prüfert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
142
|
Fpr3 and Zip3 ensure that initiation of meiotic recombination precedes chromosome synapsis in budding yeast. Curr Biol 2009; 19:1519-26. [PMID: 19765989 DOI: 10.1016/j.cub.2009.08.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Homolog pairing, synaptonemal complex (SC) assembly (chromosome synapsis), and crossover recombination are essential for successful meiotic chromosome segregation. A distinguishing feature of meiosis in budding yeast and mammals is that synapsis between homologs depends upon recombination; however, the molecular basis for this contingency is not understood. RESULTS We show here that the yeast proline isomerase Fpr3 and the small ubiquitin-like modifier (SUMO) ligase Zip3 ensure that SC assembly is dependent upon recombination initiation. When Fpr3 and Zip3 are absent, synapsis occurs even in a mutant that fails to initiate recombination and homolog pairing. Fpr3 and Zip3 appear to specifically prevent synapsis initiation at centromeric sites. This result is consistent with previous observations of SC proteins localizing to centromeres prior to and independent of meiotic recombination initiation. Finally, we show that without Fpr3 and Zip3 activities, the synapsis initiation components Zip2 and Zip4 are dispensable for chromosome synapsis. CONCLUSIONS Fpr3 and Zip3 represent parallel pathways that function in a checkpoint-like manner to ensure that chromosome synapsis is contingent on the initiation of recombination. We propose that, during normal meiosis, Zip2 and Zip4 act downstream of recombination signals to oppose Fpr3- and Zip3-mediated inhibitions to initiating SC assembly at centromeres. These data suggest a role for centromeres in coordinating major meiotic chromosomal events and draw an interesting parallel between yeast centromeres and C. elegans pairing centers.
Collapse
|
143
|
McGee MD, Stagljar I, Starr DA. KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. J Cell Sci 2009; 122:2895-905. [PMID: 19638405 DOI: 10.1242/jcs.051607] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klarsicht, ANC-1 and Syne homology (KASH) proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. KASH proteins interact with Sad1-UNC-84 (SUN) proteins to transfer forces across the nuclear envelope to position nuclei or move chromosomes. A new KASH protein, KDP-1, was identified in a membrane yeast two-hybrid screen of a Caenorhabditis elegans library using the SUN protein UNC-84 as bait. KDP-1 also interacted with SUN-1. KDP-1 was enriched at the nuclear envelope in a variety of tissues and required SUN-1 for nuclear envelope localization in the germline. Genetic analyses showed that kdp-1 was essential for embryonic viability, larval growth and germline development. kdp-1(RNAi) delayed the entry into mitosis in embryos, led to a small mitotic zone in the germline, and caused an endomitotic phenotype. Aspects of these phenotypes were similar to those seen in sun-1(RNAi), suggesting that KDP-1 functions with SUN-1 in the germline and early embryo. The data suggest that KDP-1 is a novel KASH protein that functions to ensure the timely progression of the cell cycle between the end of S phase and the entry into mitosis.
Collapse
Affiliation(s)
- Matthew D McGee
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
144
|
Abstract
Accurate segregation of chromosomes during meiosis requires physical links between homologs. These links are usually established through chromosome pairing, synapsis, and recombination, which occur during meiotic prophase. How chromosomes pair with their homologous partners is one of the outstanding mysteries of meiosis. Surprisingly, experimental evidence indicates that different organisms have found more than one way to accomplish this feat. Whereas some species depend on recombination machinery to achieve homologous pairing, others are able to pair and synapse their homologs in the absence of recombination. To ensure specific pairing between homologous chromosomes, both recombination-dependent and recombination-independent mechanisms must strike the proper balance between forces that promote chromosome interactions and activities that temper the promiscuity of those interactions. The initiation of synapsis is likely to be a tightly regulated step in a process that must be mechanically coupled to homolog pairing.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
145
|
Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 2008; 22:2886-901. [PMID: 18923085 DOI: 10.1101/gad.1694108] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Segregation of homologous chromosomes during meiosis depends on linkages (chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference.
Collapse
Affiliation(s)
- Enrique Martinez-Perez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
146
|
Mochizuki K, Novatchkova M, Loidl J. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. J Cell Sci 2008; 121:2148-58. [PMID: 18522989 PMCID: PMC3184542 DOI: 10.1242/jcs.031799] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During meiosis, the micronuclei of the ciliated protist Tetrahymena thermophila elongate dramatically. Within these elongated nuclei, chromosomes are arranged in a bouquet-like fashion and homologous pairing and recombination takes place. We studied meiotic chromosome behavior in Tetrahymena in the absence of two genes, SPO11 and a homolog of HOP2 (HOP2A), which have conserved roles in the formation of meiotic DNA double-strand breaks (DSBs) and their repair, respectively. Single-knockout mutants for each gene display only a moderate reduction in chromosome pairing, but show a complete failure to form chiasmata and exhibit chromosome missegregation. The lack of SPO11 prevents the elongation of meiotic nuclei, but it is restored by the artificial induction of DSBs. In the hop2ADelta mutant, the transient appearance of gamma-H2A.X and Rad51p signals indicates the formation and efficient repair of DSBs; but this repair does not occur by interhomolog crossing over. In the absence of HOP2A, the nuclei are elongated, meaning that DSBs but not their conversion to crossovers are required for the development of this meiosis-specific morphology. In addition, by in silico homology searches, we compiled a list of likely Tetrahymena meiotic proteins as the basis for further studies of the unusual synaptonemal complex-less meiosis in this phylogenetically remote model organism.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr Gasse 1, A-1030 Vienna, Austria
| |
Collapse
|
147
|
Smolikov S, Schild-Prüfert K, Colaiácovo MP. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis. PLoS Genet 2008; 4:e1000088. [PMID: 18535664 PMCID: PMC2408554 DOI: 10.1371/journal.pgen.1000088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/02/2008] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans. Accurate meiotic chromosome segregation relies on homologous chromosome pairing, synapsis, and recombination. Although formation of the “zipper-like” structure known as the synaptonemal complex (SC) is critical for homologous chromosome synapsis in most sexually reproducing organisms, regulation of SC formation is still poorly understood. Previous studies revealed that whereas SC formation is dependent on the formation of double-strand breaks (DSBs) in yeast, plants, and mammals, it is DSB-independent in flies and nematodes. Here we introduce CRA-1, a novel and conserved protein required for the formation of the SC in the nematode C. elegans. In cra-1 mutants, SC central region components for the most part fail to link homologous chromosome axes and stabilize homologous pairing interactions. As a result, crossover recombination is impaired and there is increased chromosome nondisjunction. Analysis of cra-1 mutants also reveals that DSB formation and repair can promote the assembly of SC proteins along chromosome axes. Therefore, we propose that CRA-1 promotes a productive SC assembly, and demonstrate, in our analysis of cra-1 mutants, an unanticipated interconnection between the recruitment of central region components onto chromosome axes and the recombination pathway in C. elegans.
Collapse
Affiliation(s)
- Sarit Smolikov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kristina Schild-Prüfert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
148
|
Hayashi M, Chin GM, Villeneuve AM. C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression. PLoS Genet 2008; 3:e191. [PMID: 17983271 PMCID: PMC2048528 DOI: 10.1371/journal.pgen.0030191] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/17/2007] [Indexed: 11/19/2022] Open
Abstract
Chromosome inheritance during sexual reproduction relies on deliberate induction of double-strand DNA breaks (DSBs) and repair of a subset of these breaks as interhomolog crossovers (COs). Here we provide a direct demonstration, based on our analysis of rad-50 mutants, that the meiotic program in Caenorhabditis elegans involves both acquisition and loss of a specialized mode of double-strand break repair (DSBR). In premeiotic germ cells, RAD-50 is not required to load strand-exchange protein RAD-51 at sites of spontaneous or ionizing radiation (IR)-induced DSBs. A specialized meiotic DSBR mode is engaged at the onset of meiotic prophase, coincident with assembly of meiotic chromosome axis structures. This meiotic DSBR mode is characterized both by dependence on RAD-50 for rapid accumulation of RAD-51 at DSB sites and by competence for converting DSBs into interhomolog COs. At the mid-pachytene to late pachytene transition, germ cells undergo an abrupt release from the meiotic DSBR mode, characterized by reversion to RAD-50-independent loading of RAD-51 and loss of competence to convert DSBs into interhomolog COs. This transition in DSBR mode is dependent on MAP kinase-triggered prophase progression and coincides temporally with a major remodeling of chromosome architecture. We propose that at least two developmentally programmed switches in DSBR mode, likely conferred by changes in chromosome architecture, operate in the C. elegans germ line to allow formation of meiotic crossovers without jeopardizing genomic integrity. Our data further suggest that meiotic cohesin component REC-8 may play a role in limiting the activity of SPO-11 in generating meiotic DSBs and that RAD-50 may function in counteracting this inhibition. Faithful inheritance of chromosomes during sexual reproduction depends on the deliberate formation of double-strand DNA breaks (DSBs) and subsequent repair of a subset of these breaks by a mechanism that leads to crossovers between homologous chromosome pairs. The requirement for crossovers to ensure chromosome segregation poses a challenge for sexually reproducing organisms, as DSBs constitute a danger to genomic integrity in other contexts. This manuscript provides insight into the mechanisms that allow germ cells to generate recombination-based linkages that ensure chromosome inheritance while at the same time protecting the integrity of their genomes. Specifically, we provide a direct demonstration, based on our analysis of rad-50 mutants, that the meiotic program in C. elegans involves both acquisition and loss of a specialized meiotic mode of double-strand break repair (DSBR). We propose that the ability to revert to a less constrained DSBR environment at a late stage of meiotic prophase serves as a fail-safe mechanism for safeguarding the genome, as it provides an opportunity to repair any remaining DBSs and restore chromosome integrity prior to chromosome segregation.
Collapse
Affiliation(s)
- Michiko Hayashi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gregory M Chin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev Cell 2008; 14:263-74. [PMID: 18267094 DOI: 10.1016/j.devcel.2007.11.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/18/2007] [Accepted: 11/17/2007] [Indexed: 01/02/2023]
Abstract
Repair of the programmed meiotic double-strand breaks (DSBs) that initiate recombination must be coordinated with homolog pairing to generate crossovers capable of directing chromosome segregation. Chromosome pairing and synapsis proceed independently of recombination in worms and flies, suggesting a paradoxical lack of coregulation. Here, we find that the meiotic axis component HTP-3 links DSB formation with homolog pairing and synapsis. HTP-3 forms complexes with the DSB repair components MRE-11/RAD-50 and the meiosis-specific axis component HIM-3. Loss of htp-3 or mre-11 recapitulates meiotic phenotypes consistent with a failure to generate DSBs, suggesting that HTP-3 associates with MRE-11/RAD-50 in a complex required for meiotic DSB formation. Loss of HTP-3 eliminates HIM-3 localization to axes and HIM-3-dependent homolog alignment, synapsis, and crossing over. Our study reveals a mechanism for coupling meiotic DSB formation with homolog pairing through the essential participation of an axis component with complexes mediating both processes.
Collapse
Affiliation(s)
- William Goodyer
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | | | |
Collapse
|
150
|
Zhao Y, O'Neil NJ, Rose AM. Poly-G/poly-C tracts in the genomes of Caenorhabditis. BMC Genomics 2007; 8:403. [PMID: 17986356 PMCID: PMC2211496 DOI: 10.1186/1471-2164-8-403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 11/07/2007] [Indexed: 01/26/2023] Open
Abstract
Background In the genome of Caenorhabditis elegans, homopolymeric poly-G/poly-C tracts (G/C tracts) exist at high frequency and are maintained by the activity of the DOG-1 protein. The frequency and distribution of G/C tracts in the genomes of C. elegans and the related nematode, C. briggsae were analyzed to investigate possible biological roles for G/C tracts. Results In C. elegans, G/C tracts are distributed along every chromosome in a non-random pattern. Most G/C tracts are within introns or are close to genes. Analysis of SAGE data showed that G/C tracts correlate with the levels of regional gene expression in C. elegans. G/C tracts are over-represented and dispersed across all chromosomes in another Caenorhabditis species, C. briggsae. However, the positions and distribution of G/C tracts in C. briggsae differ from those in C. elegans. Furthermore, the C. briggsae dog-1 ortholog CBG19723 can rescue the mutator phenotype of C. elegans dog-1 mutants. Conclusion The abundance and genomic distribution of G/C tracts in C. elegans, the effect of G/C tracts on regional transcription levels, and the lack of positional conservation of G/C tracts in C. briggsae suggest a role for G/C tracts in chromatin structure but not in the transcriptional regulation of specific genes.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364 - 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| | | | | |
Collapse
|