101
|
Maurer K, Ramen S, Shi L, Song L, Sullivan KE. Rapid induction of expression by LPS is accompanied by favorable chromatin and rapid binding of c-Jun. Mol Immunol 2018; 95:99-106. [PMID: 29433067 DOI: 10.1016/j.molimm.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/20/2023]
Abstract
The response to infection is managed in mammals by a coordinated immune response. Innate responses are rapid and hard wired and have been demonstrated to be regulated at the level of chromatin accessibility. This study examined primary human monocyte responses to LPS as a model of innate responses to bacteria. We utilized inhibitors of chromatin modifying enzymes to understand the inter-relationships of the chromatin complexes regulating transcription. Multiplex digital gene detection was utilized to quantitate changes in mRNA levels for genes induced by LPS. In the first 30 min, genes that were highly induced by LPS as a group exhibited minimal effect of the chemical inhibitors of chromatin modifications. At 60 min, the more highly expressed genes were markedly more inhibitable. The effects of the inhibitors were almost entirely concordant in spite of different mechanisms of action. Two focus groups of genes with either high LPS inducibility at 30 min or high LPS inducibility at 60 min (but not at 30 min) were further examined by ChIP assay. NFκB p65 binding was increased at the promoters of 30- and 60-min highly inducible genes equivalently. Binding of c-Jun was increased after LPS in the 30-min inducible gene set but not the 60-min inducible gene set. H3K4me3 and H4ac were not detectably altered by LPS stimulation. Baseline H3K4me3 and H4ac were higher in the 30-min highly inducible gene set compared to the 60-min highly inducible gene set. NFκB and JNK inhibitors led to diminished H4ac after LPS. The effects of DRB and C646 were greater for LPS-induced IL6 transcription at 30 min and LPS-stimulated H4ac compared to TNF where transcription was largely unaffected by the inhibitors. In conclusion, genes with very rapidly induced expression after LPS exhibited more favorable chromatin characteristics at baseline and were less inhibitable than genes induced at the later time points.
Collapse
Affiliation(s)
- Kelly Maurer
- The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Swathi Ramen
- The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihua Shi
- The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Li Song
- The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
102
|
Qiao Y, Kang K, Giannopoulou E, Fang C, Ivashkiv LB. IFN-γ Induces Histone 3 Lysine 27 Trimethylation in a Small Subset of Promoters to Stably Silence Gene Expression in Human Macrophages. Cell Rep 2018; 16:3121-3129. [PMID: 27653678 DOI: 10.1016/j.celrep.2016.08.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 06/14/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
The mechanisms by which IFN-γ activates expression of interferon-stimulated genes that have inflammatory and host defense functions are well understood. In contrast, little is known about how IFN-γ represses gene expression. By using transcriptomic and epigenomic analysis, we found that stable repression of a small group of genes by IFN-γ is associated with recruitment of the histone methyltransferase EZH2 and deposition of the negative mark histone 3 lysine 27 trimethylation (H3K27me3) at their promoters. Repressed genes included MERTK, PPARG, and RANK, which have anti-inflammatory functions and promote osteoclast differentiation. Gene repression and H3K27me3 persisted after IFN-γ signaling was terminated, and these silenced genes were no longer responsive to glucocorticoids, IL-4, and M-CSF. These results identify cytokine-induced H3K27 trimethylation as a mechanism that stabilizes gene silencing in macrophages. IFN-γ-induced macrophage activation is thus reinforced by a chromatin-based mechanism that blocks anti-inflammatory and opposing pathways.
Collapse
Affiliation(s)
- Yu Qiao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kyuho Kang
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | - Celeste Fang
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
103
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
104
|
Perkins DJ, Patel MC, Blanco JCG, Vogel SN. Epigenetic Mechanisms Governing Innate Inflammatory Responses. J Interferon Cytokine Res 2018; 36:454-61. [PMID: 27379867 DOI: 10.1089/jir.2016.0003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) are major receptors of the host innate immune system that recognize conserved pathogen-associated molecular patterns (PAMPs) of invading microbes. Activation of TLR signaling culminates in the expression of multiple genes in a coordinate and kinetically defined manner. In this review, we summarize the current studies describing the chromatin landscape of TLR-responsive inflammatory genes and how changes to this chromatin landscape govern cell type-specific and temporal gene expression. We further elaborate classical endotoxin tolerance and epigenetic mechanisms controlling tolerance and interferon priming effects on inflammatory promoters.
Collapse
Affiliation(s)
- Darren J Perkins
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland
| | - Mira C Patel
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland.,2 Sigmovir Biosystems, Inc. , Rockville, Maryland
| | | | - Stefanie N Vogel
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland
| |
Collapse
|
105
|
Marathe HG, Watkins-Chow DE, Weider M, Hoffmann A, Mehta G, Trivedi A, Aras S, Basuroy T, Mehrotra A, Bennett DC, Wegner M, Pavan WJ, de la Serna IL. BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Res 2017; 45:6442-6458. [PMID: 28431046 PMCID: PMC5499657 DOI: 10.1093/nar/gkx259] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.
Collapse
Affiliation(s)
- Himangi G Marathe
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gaurav Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Archit Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Tupa Basuroy
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| |
Collapse
|
106
|
Zhou H, Morales MG, Hashimoto H, Dickson ME, Song K, Ye W, Kim MS, Niederstrasser H, Wang Z, Chen B, Posner BA, Bassel-Duby R, Olson EN. ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes Dev 2017; 31:1770-1783. [PMID: 28982760 PMCID: PMC5666675 DOI: 10.1101/gad.305482.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts. Among a collection of inducers and repressors of cardiac reprogramming, we discovered that the zinc finger transcription factor 281 (ZNF281) potently stimulates cardiac reprogramming by genome-wide association with GATA4 on cardiac enhancers. Concomitantly, ZNF281 suppresses expression of genes associated with inflammatory signaling, suggesting the antagonistic convergence of cardiac and inflammatory transcriptional programs. Consistent with an inhibitory influence of inflammatory pathways on cardiac reprogramming, blockade of these pathways with anti-inflammatory drugs or components of the nucleosome remodeling deacetylase (NuRD) complex, which associate with ZNF281, stimulates cardiac gene expression. We conclude that ZNF281 acts at a nexus of cardiac and inflammatory gene programs, which exert opposing influences on fibroblast to cardiac reprogramming.
Collapse
Affiliation(s)
- Huanyu Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hisayuki Hashimoto
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Matthew E Dickson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kunhua Song
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wenduo Ye
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Min S Kim
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
107
|
Kobayashi K, Hiramatsu H, Nakamura S, Kobayashi K, Haraguchi T, Iba H. Tumor suppression via inhibition of SWI/SNF complex-dependent NF-κB activation. Sci Rep 2017; 7:11772. [PMID: 28924147 PMCID: PMC5603518 DOI: 10.1038/s41598-017-11806-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is constitutively activated in many epithelial tumors but few NF-κB inhibitors are suitable for cancer therapy because of its broad biological effects. We previously reported that the d4-family proteins (DPF1, DPF2, DPF3a/b) function as adaptor proteins linking NF-κB with the SWI/SNF complex. Here, using epithelial tumor cell lines, A549 and HeLaS3, we demonstrate that exogenous expression of the highly-conserved N-terminal 84-amino acid region (designated "CT1") of either DPF2 or DPF3a/b has stronger inhibitory effects on anchorage-independent growth than the single knockdown of any d4-family protein. This indicates that CT1 can function as an efficient dominant-negative mutant of the entire d4-family proteins. By in situ proximity ligation assay, CT1 was found to retain full adaptor function, indicating that the C-terminal region of d4-family proteins lacking in CT1 would include essential domains for SWI/SNF-dependent NF-κB activation. Microarray analysis revealed that CT1 suppresses only a portion of the NF-κB target genes, including representative SWI/SNF-dependent genes. Among these genes, IL6 was shown to strongly contribute to anchorage-independent growth. Finally, exogenous CT1 expression efficiently suppressed tumor formation in a mouse xenograft model, suggesting that the d4-family proteins are promising cancer therapy targets.
Collapse
Affiliation(s)
- Kazuyoshi Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hiroaki Hiramatsu
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Shinya Nakamura
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kyousuke Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takeshi Haraguchi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hideo Iba
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan.
| |
Collapse
|
108
|
Sumpf K, Nast R, Downie B, Salinas G, Lüder CG. Histone deacetylase inhibitor MS-275 augments expression of a subset of IFN-γ-regulated genes in Toxoplasma gondii-infected macrophages but does not improve parasite control. Exp Parasitol 2017; 180:45-54. [DOI: 10.1016/j.exppara.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/17/2023]
|
109
|
Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat Immunol 2017; 18:1104-1116. [PMID: 28825701 PMCID: PMC5605457 DOI: 10.1038/ni.3818] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
Cross-regulation of Toll-like receptor responses by cytokines is
essential for effective host defense, avoidance of toxicity, and homeostasis,
but the underlying mechanisms are not well understood. A comprehensive
epigenomic approach in human macrophages showed that the proinflammatory
cytokines TNF and type I IFNs induce transcriptional cascades that alter
chromatin states to broadly reprogram TLR4-induced responses. TNF tolerized
inflammatory genes to prevent toxicity, while preserving antiviral and metabolic
gene induction. Type I IFNs potentiated TNF inflammatory function by priming
chromatin to prevent silencing of inflammatory NF-κB target genes.
Priming of chromatin enabled robust transcriptional responses to weak upstream
signals. Similar chromatin regulation occurred in human diseases. Our findings
reveal that signaling crosstalk between IFNs and TNF is integrated at the level
of chromatin to reprogram inflammatory responses, and identify new functions and
mechanisms of action of these cytokines.
Collapse
|
110
|
Abstract
Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory.
Collapse
|
111
|
Mathy NW, Chen XM. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem 2017; 292:12375-12382. [PMID: 28615453 DOI: 10.1074/jbc.r116.760884] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as potential key regulators of the inflammatory response, particularly by modulating the transcriptional control of inflammatory genes. lncRNAs may act as an enhancer or suppressor to inflammatory transcription, function as scaffold molecules through interactions with RNA-binding proteins in chromatin remodeling complexes, and modulate dynamic and epigenetic control of inflammatory transcription in a gene-specific and time-dependent fashion. Here, we will review recent literature regarding the role of lncRNAs in transcriptional control of inflammatory responses. Better understanding of lncRNA regulation of inflammation will provide novel targets for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas W Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178.
| |
Collapse
|
112
|
Liang Z, Brown KE, Carroll T, Taylor B, Vidal IF, Hendrich B, Rueda D, Fisher AG, Merkenschlager M. A high-resolution map of transcriptional repression. eLife 2017; 6. [PMID: 28318487 PMCID: PMC5373822 DOI: 10.7554/elife.22767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/15/2017] [Indexed: 11/20/2022] Open
Abstract
Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities. DOI:http://dx.doi.org/10.7554/eLife.22767.001
Collapse
Affiliation(s)
- Ziwei Liang
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen E Brown
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Carroll
- Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Benjamin Taylor
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Isabel Ferreirós Vidal
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brian Hendrich
- Wellcome Trust - Medical Research Council Stem Cell Institute, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David Rueda
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Integrative Biology Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Epigenetics Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Integrative Biology Section, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
113
|
Song M, Fang F, Dai X, Yu L, Fang M, Xu Y. MKL1 is an epigenetic mediator of TNF-α-induced proinflammatory transcription in macrophages by interacting with ASH2. FEBS Lett 2017; 591:934-945. [DOI: 10.1002/1873-3468.12601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Mingzi Song
- Department of Physiology; Jiangsu Jiankang Vocational College; Nanjing Jiangsu China
| | - Fei Fang
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Mingming Fang
- Department of Nursing; Jiangsu Jiankang Vocational College; Nanjing Jiangsu China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| |
Collapse
|
114
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
115
|
De Luca M, Pels K, Moleirinho S, 1 Department of Biomedical and Clinical Sciences, L. Sacco, University of Milano, Milano, 20157, Italy, Curtale G. The epigenetic landscape of innate immunity. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
116
|
WU S, WANG J, LI F. Role of SNF5 in rheumatoid arthritis by upregulation ofp16 and inactivation of JNK pathway. Turk J Biol 2017. [DOI: 10.3906/biy-1610-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
117
|
Ma S, Ming Z, Gong AY, Wang Y, Chen X, Hu G, Zhou R, Shibata A, Swanson PC, Chen XM. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. FASEB J 2016; 31:1215-1225. [PMID: 27979905 DOI: 10.1096/fj.201601056r] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. We report here that the lincRNA gene lincRNA-Tnfaip3, located at mouse chromosome 10 proximal to the tumor necrosis factor α-induced protein 3 (Tnfaip3) gene, is an early-primary response gene controlled by nuclear factor-κB (NF-κB) signaling in murine macrophages. Functionally, lincRNA- Tnfaip3 appears to mediate both the activation and repression of distinct classes of inflammatory genes in macrophages. Specifically, induction of lincRNA-Tnfaip3 is required for the transactivation of NF-κB-regulated inflammatory genes in response to bacterial LPSs stimulation. LincRNA-Tnfaip3 physically interacts with the high-mobility group box 1 (Hmgb1), assembling a NF-κB/Hmgb1/lincRNA-Tnfaip3 complex in macrophages after LPS stimulation. This resultant NF-κB/Hmgb1/lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modifications and, ultimately, transactivation of inflammatory genes in mouse macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-κB-induced lincRNA-Tnfaip3 to act as a coactivator of NF-κB for the transcription of inflammatory genes in innate immune cells through modulation of epigenetic chromatin remodeling.-Ma, S., Ming, Z., Gong, A.-Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., Chen, X.-M. A long noncoding RNA, LincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages.
Collapse
Affiliation(s)
- Shibin Ma
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Zhenping Ming
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA.,Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Hubei, China; and
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Yang Wang
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Guoku Hu
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Rui Zhou
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Hubei, China; and
| | - Annemarie Shibata
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, Nebraska, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA;
| |
Collapse
|
118
|
Tough DF, Prinjha RK. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention. Epigenomics 2016; 9:573-584. [PMID: 27925476 DOI: 10.2217/epi-2016-0144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide polymorphisms in the human genome that are statistically associated with particular disease traits. In this Perspective, we review emerging data suggesting that most single nucleotide polymorphisms associated with immune-mediated diseases are found in regulatory regions of the DNA - parts of the genome that control expression of the protein encoding genes - rather than causing mutations in proteins. We discuss how the emerging understanding of particular gene regulatory regions, gene enhancers and the epigenetic mechanisms by which they are regulated is opening up new opportunities for the treatment of immune-mediated diseases, focusing particularly on the BET family of epigenetic reader proteins as potential therapeutic targets.
Collapse
Affiliation(s)
- David F Tough
- Epigenetics DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| | - Rab K Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| |
Collapse
|
119
|
Sanford JA, Zhang LJ, Williams MR, Gangoiti JA, Huang CM, Gallo RL. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol 2016; 1:1/4/eaah4609. [DOI: 10.1126/sciimmunol.aah4609] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 11/02/2022]
|
120
|
|
121
|
Sandoval J, Pereda J, Pérez S, Finamor I, Vallet-Sánchez A, Rodríguez JL, Franco L, Sastre J, López-Rodas G. Epigenetic Regulation of Early- and Late-Response Genes in Acute Pancreatitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4137-4150. [PMID: 27798150 DOI: 10.4049/jimmunol.1502378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Chromatin remodeling seems to regulate the patterns of proinflammatory genes. Our aim was to provide new insights into the epigenetic mechanisms that control transcriptional activation of early- and late-response genes in initiation and development of severe acute pancreatitis as a model of acute inflammation. Chromatin changes were studied by chromatin immunoprecipitation analysis, nucleosome positioning, and determination of histone modifications in promoters of proinflammatory genes in vivo in the course of taurocholate-induced necrotizing pancreatitis in rats and in vitro in rat pancreatic AR42J acinar cells stimulated with taurocholate or TNF-α. Here we show that the upregulation of early and late inflammatory genes rely on histone acetylation associated with recruitment of histone acetyltransferase CBP. Chromatin remodeling of early genes during the inflammatory response in vivo is characterized by a rapid and transient increase in H3K14ac, H3K27ac, and H4K5ac as well as by recruitment of chromatin-remodeling complex containing BRG-1. Chromatin remodeling in late genes is characterized by a late and marked increase in histone methylation, particularly in H3K4. JNK and p38 MAPK drive the recruitment of transcription factors and the subsequent upregulation of early and late inflammatory genes, which is associated with nuclear translocation of the early gene Egr-1 In conclusion, specific and strictly ordered epigenetic markers such as histone acetylation and methylation, as well as recruitment of BRG-1-containing remodeling complex are associated with the upregulation of both early and late proinflammatory genes in acute pancreatitis. Our findings highlight the importance of epigenetic regulatory mechanisms in the control of the inflammatory cascade.
Collapse
Affiliation(s)
- Juan Sandoval
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Azahara Vallet-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| | - José Luis Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| |
Collapse
|
122
|
Philip NH, DeLaney A, Peterson LW, Santos-Marrero M, Grier JT, Sun Y, Wynosky-Dolfi MA, Zwack EE, Hu B, Olsen TM, Rongvaux A, Pope SD, López CB, Oberst A, Beiting DP, Henao-Mejia J, Brodsky IE. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathog 2016; 12:e1005910. [PMID: 27737018 PMCID: PMC5063320 DOI: 10.1371/journal.ppat.1005910] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. TLR signaling induces expression of key inflammatory cytokines and pro-survival factors that facilitate control of microbial infection. TLR signaling can also engage cell death pathways through activation of enzymes known as caspases. Caspase-8 activates apoptosis in response to infection by pathogens that interfere with NF-κB signaling, including Yersinia, but has also recently been linked to control of inflammatory gene expression. Pathogenic Yersinia can cause severe disease ranging from gastroenteritis to plague. While caspase-8 mediates cell death in response to Yersinia infection as well as other signals, its precise role in gene expression and host defense during in vivo infection is unknown. Here, we show that caspase-8 activity promotes cell-intrinsic cytokine expression, independent of its role in cell death in response to Yersinia infection. Our studies further demonstrate that caspase-8 enzymatic activity plays a previously undescribed role in ensuring optimal TLR-induced gene expression by innate cells during bacterial infection. This work sheds new light on mechanisms that regulate essential innate anti-bacterial immune defense.
Collapse
Affiliation(s)
- Naomi H. Philip
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Alexandra DeLaney
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Lance W. Peterson
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Melanie Santos-Marrero
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jennifer T. Grier
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Yan Sun
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Erin E. Zwack
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Baofeng Hu
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Tayla M. Olsen
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Clinical Research Division and Program in Immunology, Seattle, Washington, United States of America
| | - Scott D. Pope
- Yale University School of Medicine, Department of Immunobiology, New Haven, Connecticut, United States of America
| | - Carolina B. López
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Andrew Oberst
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Daniel P. Beiting
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
123
|
Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
124
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
125
|
Mancino A, Natoli G. Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. J Interferon Cytokine Res 2016; 36:462-9. [DOI: 10.1089/jir.2016.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alessandra Mancino
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
126
|
Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol 2016; 17:806-15. [DOI: 10.1038/ni.3464] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
|
127
|
Affiliation(s)
- Scott D Pope
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
128
|
Rialdi A, Campisi L, Zhao N, Lagda AC, Pietzsch C, Ho JSY, Martinez-Gil L, Fenouil R, Chen X, Edwards M, Metreveli G, Jordan S, Peralta Z, Munoz-Fontela C, Bouvier N, Merad M, Jin J, Weirauch M, Heinz S, Benner C, van Bakel H, Basler C, García-Sastre A, Bukreyev A, Marazzi I. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science 2016; 352:aad7993. [PMID: 27127234 DOI: 10.1126/science.aad7993] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response.
Collapse
Affiliation(s)
- Alex Rialdi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arvin Cesar Lagda
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Colette Pietzsch
- Department of Pathology, Microbiology, and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica Sook Yuin Ho
- Laboratory of Methyltransferases in Development and Disease, Institute of Molecular and Cell Biology, Singapore
| | - Luis Martinez-Gil
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
| | - Romain Fenouil
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Edwards
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zuleyma Peralta
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cesar Munoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Structural and Chemical Biology, Department of Oncological Sciences, and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sven Heinz
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chris Benner
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Harm van Bakel
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Bukreyev
- Department of Pathology, Microbiology, and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
129
|
Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O'Neill LAJ, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science 2016; 352:aaf1098. [PMID: 27102489 DOI: 10.1126/science.aaf1098] [Citation(s) in RCA: 1743] [Impact Index Per Article: 193.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, Bonn University, Bonn, Germany. Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
130
|
Petzl W, Günther J, Mühlbauer K, Seyfert HM, Schuberth HJ, Hussen J, Sauter-Louis C, Hafner-Marx A, Zerbe H. Early transcriptional events in the udder and teat after intra-mammary Escherichia coli and Staphylococcus aureus challenge. Innate Immun 2016; 22:294-304. [DOI: 10.1177/1753425916640057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/19/2016] [Indexed: 12/31/2022] Open
Abstract
Intra-mammary bacterial infections can result in harmful clinical mastitis or subclinical mastitis with persistent infections. Research during the last decades closely examined the pathophysiology of inflamed udders. Initial events after pathogen perception but before the onset of mastitis have not been examined in vivo. The objective of this study was to develop a mastitis model in cows by monitoring initial transcriptional pathogen-specific host response before clinical signs occur. We applied a short-term infection model to analyse transcripts encoding chemokines, cytokines and antimicrobial molecules in the teat cistern (TC) and lobulo-alveolar parenchyma (LP) up to 3 h after challenge with E. and Staphylococcus aureus. Both pathogens elicited an immune reaction by 1 h after challenge. Escherichia coli induced all analysed factors ( CCL20, CXCL8, TNF, IL6, IL12B, IL10, LAP, S100A9); however, S. aureus failed to induce IL12B, IL10, LAP and S100A9 expression. The E. coli-induced up-regulation was 25–105 times greater than that after S. aureus challenge. Almost all the responses were restricted to the TC. The short-term mastitis model demonstrates that a divergent pathogen-specific response is generated during the first h. It confirms that the first transcripts are generated in the TC prior to a response in the LP.
Collapse
Affiliation(s)
- Wolfram Petzl
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Katharina Mühlbauer
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Jamal Hussen
- Institute of Immunology, University of Veterinary Medicine, Hannover, Germany
| | - Carola Sauter-Louis
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Angela Hafner-Marx
- Bavarian Authority for Health and Food Safety, Oberschleissheim, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
131
|
Hu G, Gong AY, Wang Y, Ma S, Chen X, Chen J, Su CJ, Shibata A, Strauss-Soukup JK, Drescher KM, Chen XM. LincRNA-Cox2 Promotes Late Inflammatory Gene Transcription in Macrophages through Modulating SWI/SNF-Mediated Chromatin Remodeling. THE JOURNAL OF IMMUNOLOGY 2016; 196:2799-2808. [PMID: 26880762 DOI: 10.4049/jimmunol.1502146] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which was recently shown to mediate the activation and repression of distinct classes of immune genes in innate immune cells. We report that lincRNA-Cox2, located at chromosome 1 proximal to the PG-endoperoxide synthase 2 (Ptgs2/Cox2) gene, is an early-primary inflammatory gene controlled by NF-κB signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-κB-regulated late-primary inflammatory response genes stimulated by bacterial LPS. Specifically, lincRNA-Cox2 is assembled into the switch/sucrose nonfermentable (SWI/SNF) complex in cells after LPS stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-κB subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory-response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role for NF-κB-induced lincRNA-Cox2 as a coactivator of NF-κB for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Shibin Ma
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jing Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Chun-Jen Su
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Annemarie Shibata
- Department of Biology, Creighton University College of Arts and Sciences, Omaha, NE 68178, USA
| | - Juliane K Strauss-Soukup
- Department of Chemistry, Creighton University College of Arts and Sciences, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
132
|
Liu XF, Jie C, Zhang Z, Yan S, Wang JJ, Wang X, Kurian S, Salomon DR, Abecassis M, Hummel M. Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter. J Gen Virol 2016; 97:941-954. [PMID: 26795571 DOI: 10.1099/jgv.0.000407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactivation of latent human cytomegalovirus is a significant infectious complication of organ transplantation and current therapies target viral replication once reactivation of latent virus has already occurred. The specific molecular pathways that activate viral gene expression in response to transplantation are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients. Murine cytomegalovirus (MCMV) is a valuable model for studying latency and reactivation of CMV in vivo. We previously demonstrated that transplantation of MCMV-latently infected kidneys into allogeneic recipients induces reactivation of immediate early (IE) gene expression and epigenetic reprogramming of the major immediate early promoter (MIEP) within 48 h. We hypothesize that these events are mediated by activation of signalling pathways that lead to binding of transcription factors to the MIEP, including AP-1 and NF-κB. Here we show that transplantation induces rapid activation of several members of the AP-1 and NF-κB transcription factor family and we demonstrate that canonical NF-κB (p65/p50), the junD component of AP-1, and nucleosome remodelling complexes are recruited to the MIEP following transplantation. Proteomic analysis of recipient plasma and transcriptome analysis of kidney RNA identified five extracellular ligands, including TNF, IL-1β, IL-18, CD40L and IL-6, and three intracellular signalling pathways associated with reactivation of IE gene expression. Identification of the factors that mediate activation of these signalling pathways may eventually lead to new therapies to prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunfa Jie
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xueqiong Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Michael Abecassis
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hummel
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
133
|
Abstract
Our understanding of epigenetics in complex diseases is rapidly advancing and increasingly influencing the practice of medicine. Much is known about disruption of chromatin-modifying enzymes in malignant disease, but knowledge of irregular epigenetics in immune-driven disorders is just emerging. Epigenetic factors, such as DNA or histone modifications, are indispensable for precise gene expression in diverse immune cell types. Thus a disruption of epigenetic landscapes likely has a large impact on immune homeostasis. Moreover, the low concordance rates for most autoimmune diseases suggest that epigenetics contribute to immune tolerance disturbance. Here we review the important role of epigenetics for initiation, maintenance, tolerance, and training of immune responses. We discuss evolving evidence that DNA/histone modifications and chromatin-modifying enzymes are altered in immune-based diseases. Furthermore, we explore the potential of small molecules targeting epigenetic machinery, some of which are already used in oncology, as a way to reset the immune response in disease.
Collapse
|
134
|
Welsby I, Goriely S. Regulation of Interleukin-23 Expression in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:167-189. [DOI: 10.1007/978-94-024-0921-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
135
|
Cieślik M, Bekiranov S. Genome-wide predictors of NF-κB recruitment and transcriptional activity. BioData Min 2015; 8:37. [PMID: 26617673 PMCID: PMC4661973 DOI: 10.1186/s13040-015-0071-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible transcription factors (TFs) mediate transcriptional responses to environmental cues. In response to multiple inflammatory signals active NF-κB dimers enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs. Although much is known about NF-κB inducing pathways and about locus-specific mechanisms of transcriptional control, it is poorly understood how the pre-existing chromatin landscape determines NF-κB target selection and activation. Specifically, it is not known which epigenetic marks and pre-bound TFs serve genome-wide as positive (negative) cues for active NF-κB. RESULTS We applied multivariate and combinatorial data mining techniques on a comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding. Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but also hyper-methylated DNA outside of promoters and CpG-islands. Many of these predictors showed combinatorial cooperativity and statistically significant interactions. Recruitment to pre-accessible sites was more frequent and influenced by chromatin-associated TFs. We observed that specific TF-combinations are greatly enriched for (or depleted of) NF-κB binding events. CONCLUSIONS We provide evidence of NF-κB binding within genomic regions that lack classical marks of activity. These pioneer binding events are relatively often associated with transcriptional regulation. Further, our predictive models indicate that specific combinations of epigenetic marks and transcription factors predetermine the NF-κB cistrome, supporting the feasibility of using statistical approaches to identify "histone codes".
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
136
|
Tong Q, Gong AY, Zhang XT, Lin C, Ma S, Chen J, Hu G, Chen XM. LincRNA-Cox2 modulates TNF-α-induced transcription of Il12b gene in intestinal epithelial cells through regulation of Mi-2/NuRD-mediated epigenetic histone modifications. FASEB J 2015; 30:1187-97. [PMID: 26578685 DOI: 10.1096/fj.15-279166] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) can regulate the transcription of inflammatory genes and thus may represent a new group of inflammatory mediators with a potential pathogenic role in inflammatory diseases. Here, our genome-wide transcriptomic data show that TNF-α stimulation caused up-regulation of 171 lincRNAs and down-regulation of 196 lincRNAs in murine intestinal epithelial cells in culture. One of the up-regulated lincRNAs, lincRNA-Cox2, is an early-responsive lincRNA induced by TNF-α through activation of the NF-ĸB signaling pathway. Knockdown of lincRNA-Cox2 resulted in reprogramming of the gene expression profile in intestinal epithelial cells in response to TNF-α stimulation. Specifically, lincRNA-Cox2 silencing significantly (P < 0.05) enhanced the transcription of Il12b, a secondary late-responsive gene induced by TNF-α. Mechanistically, lincRNA-Cox2 promoted the recruitment of the Mi-2/nucleosome remodeling and deacetylase (Mi-2/NuRD) repressor complex to the Il12b promoter region. Recruitment of the Mi-2/NuRD complex was associated with decreased H3K27 acetylation and increased H3K27 dimethylation at the Il12b promoter region, which might contribute to Il12b trans-suppression by lincRNA-Cox2. Thus, our data demonstrate a novel mechanism of epigenetic modulation by lincRNA-Cox2 on Il12b transcription, supporting an important role for lincRNAs in the regulation of intestinal epithelial inflammatory responses.
Collapse
Affiliation(s)
- Qiang Tong
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ai-Yu Gong
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin-Tian Zhang
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengchi Lin
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shibin Ma
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Chen
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoku Hu
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xian-Ming Chen
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
137
|
Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity. Biomolecules 2015; 5:3087-111. [PMID: 26569329 PMCID: PMC4693271 DOI: 10.3390/biom5043087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.
Collapse
|
138
|
Tartey S, Takeuchi O. Chromatin Remodeling and Transcriptional Control in Innate Immunity: Emergence of Akirin2 as a Novel Player. Biomolecules 2015; 5:1618-33. [PMID: 26287257 PMCID: PMC4598767 DOI: 10.3390/biom5031618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 12/24/2022] Open
Abstract
Transcriptional regulation of inflammatory gene expression has been at the forefront of studies of innate immunity and is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. The growing evidence for involvement of chromatin in the regulation of gene expression in innate immune cells, has uncovered an evolutionarily conserved role of microbial sensing and chromatin remodeling. Toll-like receptors and RIG-I-like receptors trigger these signaling pathways leading to transcriptional expression of a set of genes involved in inflammation. Tightly regulated control of this gene expression is a paramount, and often foremost, goal of most biological endeavors. In this review, we will discuss the recent progress about the molecular mechanisms governing control of pro-inflammatory gene expression by an evolutionarily conserved novel nuclear protein Akirin2 in macrophages and its emergence as an essential link between NF-κB and chromatin remodelers for transcriptional regulation.
Collapse
Affiliation(s)
- Sarang Tartey
- Laboratory of Infection and Prevention, Institute for Virus research, Kyoto University, 53 Shogoin, Kawara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development-Core Research for Engineering, Science, and Technology, Kyoto 606-8501, Japan.
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Virus research, Kyoto University, 53 Shogoin, Kawara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development-Core Research for Engineering, Science, and Technology, Kyoto 606-8501, Japan.
| |
Collapse
|
139
|
Nerlich A, Ruangkiattikul N, Laarmann K, Janze N, Dittrich-Breiholz O, Kracht M, Goethe R. C/EBPβ is a transcriptional key regulator of IL-36α in murine macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:966-78. [PMID: 26066982 DOI: 10.1016/j.bbagrm.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-36α - one of the novel members of the IL-1 family of cytokines - is a potent regulator of dendritic and T cells and plays an important role in inflammatory processes like experimental skin inflammation in mice and in mouse models for human psoriasis. Here, we demonstrate that C/EBPβ, a transcription factor required for the selective expression of inflammatory genes, is a key activator of the Il36A gene in murine macrophages. RNAi-mediated suppression of C/EBPβ expression in macrophages (C/EBPβ(low) cells) significantly impaired Il36A gene induction following challenge with LPS. Despite the presence of five predicted C/EBP binding sites, luciferase reporter assays demonstrated that C/EBPβ confers responsiveness to LPS primarily through a half-CRE•C/EBP element in the proximal Il36A promoter. Electrophoretic mobility shift assays showed that C/EBPβ but not CREB proteins interact with this critical half-CRE•C/EBP element. In addition, overexpression of C/EBPβ in C/EBPβ(low) cells enhanced the expression of Il36A whereas CREB-1 had no effect. Finally, chromatin immunoprecipitation confirmed that C/EBPβ but neither CREB-1, ATF-2 nor ATF4 is directly recruited to the proximal promoter region of the Il36A gene. Together, these findings demonstrate an essential role of C/EBPβ in the regulation of the Il36A gene via the proximal half-CRE•C/EBP element in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany.
| | - Nanthapon Ruangkiattikul
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | - Nina Janze
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | | | - Michael Kracht
- Rudolf -Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| |
Collapse
|
140
|
Honda KL, Lamon-Fava S, Matthan NR, Wu D, Lichtenstein AH. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. Prostaglandins Leukot Essent Fatty Acids 2015; 97:27-34. [PMID: 25921297 PMCID: PMC4562472 DOI: 10.1016/j.plefa.2015.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022]
Abstract
Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity.
Collapse
Affiliation(s)
- Kaori L Honda
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
141
|
Scruggs BS, Gilchrist DA, Nechaev S, Muse GW, Burkholder A, Fargo DC, Adelman K. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. Mol Cell 2015; 58:1101-12. [PMID: 26028540 DOI: 10.1016/j.molcel.2015.04.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding, and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression.
Collapse
Affiliation(s)
- Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Daniel A Gilchrist
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sergei Nechaev
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ginger W Muse
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adam Burkholder
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David C Fargo
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
142
|
The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat Immunol 2015; 16:775-84. [PMID: 25985234 PMCID: PMC4474778 DOI: 10.1038/ni.3170] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
Early B cell development is orchestrated by the combined activities of the transcriptional regulators E2A, EBF1, Foxo1 and Ikaros. However, how the genome-wide binding patterns of these regulators are modulated during B lineage development remains to be determined. Here we found that in lymphoid progenitor cells, the chromatin remodeler Brg1 specified the B cell fate. In committed pro-B cells, Brg1 regulated contraction of the locus encoding the immunoglobulin heavy chain (Igh) and controlled expression of the gene encoding the transcription factor c-Myc (Myc) to modulate the expression of genes encoding products that regulate ribosome biogenesis. In committed pro-B cells, Brg1 suppressed a pre-B lineage-specific pattern of gene expression. Finally, we found that Brg1 acted mechanistically to establish B cell fate and modulate cell growth by facilitating access of lineage-specific transcription factors to enhancer repertoires.
Collapse
|
143
|
Clark PGK, Vieira LCC, Tallant C, Fedorov O, Singleton DC, Rogers CM, Monteiro OP, Bennett JM, Baronio R, Müller S, Daniels DL, Méndez J, Knapp S, Brennan PE, Dixon DJ. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. Angew Chem Int Ed Engl 2015; 54:6217-21. [PMID: 25864491 PMCID: PMC4449114 DOI: 10.1002/anie.201501394] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/05/2015] [Indexed: 11/06/2022]
Abstract
The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Peter G K Clark
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Lucas C C Vieira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Cynthia Tallant
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Dean C Singleton
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Catherine M Rogers
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Octovia P Monteiro
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - James M Bennett
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Roberta Baronio
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Susanne Müller
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | | | - Jacqui Méndez
- Promega Corporation, 2800 Woods Hollow Road, Madison, W153611 (USA)
| | - Stefan Knapp
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Paul E Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK).
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK).
| |
Collapse
|
144
|
Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene 2015; 35:651-61. [PMID: 25961913 DOI: 10.1038/onc.2015.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Metastasis is one of the main causes of death in patients with colorectal cancer (CRC). Brg-1 is a central component of the SWItch/Sucrose NonFermentable chromatin-remodeling complex, which features a bromodomain and helicase/ATPase activity. The gene encoding Brg-1 is frequently mutated or silenced in human cancers. Several reports have proposed Brg-1 as a tumor suppressor; however, little is known about its role in oncogenesis and metastasis. Here we demonstrated that decreased Brg-1 regulates a novel miR-550a-5p/RNF43/Wnt/β-catenin signaling pathway, to promote CRC metastasis in vitro and in vivo. In particular, we used high-throughput RNA-sequencing analysis to show that Brg-1 negatively regulates miR-550a-5p in CRC cells. We further found that Brg-1 inhibits the transcriptional activity of miR-550a-5p promoter, and that decreased Brg-1 expression increased miR-550a-5p expression. We also identified ring finger 43 (RNF43), an inhibitor of Wnt/β-catenin signaling, as a target of miR-550a-5p. Knockdown of Brg-1 by small interfering RNA led to decreased RNF43 expression, increased Wnt signaling and increased CRC cell migration and invasion. This novel pathway defines a new function for Brg-1 and provides potential targets for the treatment of Brg-1 mutant and loss-of-function tumors.
Collapse
|
145
|
Clark PGK, Vieira LCC, Tallant C, Fedorov O, Singleton DC, Rogers CM, Monteiro OP, Bennett JM, Baronio R, Müller S, Daniels DL, Méndez J, Knapp S, Brennan PE, Dixon DJ. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. ACTA ACUST UNITED AC 2015; 127:6315-6319. [PMID: 27346896 PMCID: PMC4871321 DOI: 10.1002/ange.201501394] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/05/2015] [Indexed: 01/29/2023]
Abstract
The bromodomain‐containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin‐remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone‐fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure‐based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity‐building nitro‐Mannich/lactamization cascade processes allowed for early structure–activity relationship studies whereas an enantioselective organocatalytic nitro‐Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro‐inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Peter G K Clark
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Lucas C C Vieira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Cynthia Tallant
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Dean C Singleton
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Catherine M Rogers
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Octovia P Monteiro
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - James M Bennett
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Roberta Baronio
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Susanne Müller
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | | | - Jacqui Méndez
- Promega Corporation, 2800 Woods Hollow Road, Madison, W153611 (USA)
| | - Stefan Knapp
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Paul E Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| |
Collapse
|
146
|
Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP, Lin YJ, Zhang H, Marquez VE, Hammerman PS, Wong KK, Kim CF. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 2015; 520:239-42. [PMID: 25629630 PMCID: PMC4393352 DOI: 10.1038/nature14122] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/26/2014] [Indexed: 12/23/2022]
Abstract
Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Christine M. Fillmore
- Stem Cell Program, Boston Children’s Hospital, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
- Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Chunxiao Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston MA 02115 USA
| | - Pooja T. Desai
- Stem Cell Program, Boston Children’s Hospital, Boston MA 02115 USA
| | - Joanne M. Berry
- Stem Cell Program, Boston Children’s Hospital, Boston MA 02115 USA
| | - Samuel P. Rowbotham
- Stem Cell Program, Boston Children’s Hospital, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
- Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| | - Yi-Jang Lin
- Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston MA 02115 USA
| | | | - Peter S. Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston MA 02115 USA
| | - Carla F. Kim
- Stem Cell Program, Boston Children’s Hospital, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
- Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| |
Collapse
|
147
|
Parnell TJ, Schlichter A, Wilson BG, Cairns BR. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 2015; 4:e06073. [PMID: 25821983 PMCID: PMC4423118 DOI: 10.7554/elife.06073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/28/2015] [Indexed: 12/19/2022] Open
Abstract
ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures. DOI:http://dx.doi.org/10.7554/eLife.06073.001 The genome of an organism can contain hundreds to thousands of genes. However, these genes are not all active at the same time. Instead, mechanisms exist that control when genes are switched off or on. One such mechanism alters how tightly DNA is packaged into a structure called chromatin. To form chromatin, DNA is wrapped around histone proteins at different points along its length; these structures are known as nucleosomes. Once formed, chromatin can either adopt a tightly packed form that represses gene activity or a less compact form associated with gene activation. The proteins that control how chromatin is packed are called ‘chromatin remodelers’. These proteins work in complexes that either disassemble chromatin—for example, by repositioning nucleosomes or removing histones—or organize chromatin by replacing nucleosomes and making it more compact. Studies in many organisms have identified two key families of chromatin remodelers. In yeast, the ISWI family of complexes assembles chromatin and a protein complex called RSC disassembles chromatin. Parnell, Schlichter et al. used a range of genetic techniques to investigate whether these two chromatin-remodeling complexes work against each other in a species of yeast called Saccharomyces cerevisiae. The results suggest that this is indeed the case. Both the ISWI complex and the RSC complex bind to regions of DNA called promoters, which are found at the start of a gene and help to regulate its activity. Parnell, Schlichter et al. found that the RSC complex helps to activate genes by establishing or maintaining regions of nucleosome-poor chromatin at a promoter. The chromatin is relaxed in these regions, which allows the proteins that activate genes to access the DNA. This effect is partially counteracted by the ISWI complex, which repositions nucleosomes across the promoters to fill the gaps created by the RSC complex. In comparison, Parnell, Schlichter et al. found that promoters that do not have regions of nucleosome-poor chromatin contain a larger number of both of the remodeling complexes and have a high turnover of histone proteins. This suggests that at these sites, the RSC proteins are needed to overcome the assembly of nucleosomes by the ISWI complex in order to activate the gene. Thus, these two chromatin remodelers, ISWI and RSC, compete at promoters to determine whether they contain or lack nucleosomes, which helps determine whether the gene is silent or active, respectively. Future work will look further at how the ‘winner’ is determined: how transcription factors or signaling systems within the cell bias the recruitment or activity of RSC or ISWI at particular promoters, to determine gene activity. DOI:http://dx.doi.org/10.7554/eLife.06073.002
Collapse
Affiliation(s)
- Timothy J Parnell
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Alisha Schlichter
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Boris G Wilson
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Bradley R Cairns
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
148
|
The roles of SNF2/SWI2 nucleosome remodeling enzymes in blood cell differentiation and leukemia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:347571. [PMID: 25789315 PMCID: PMC4348595 DOI: 10.1155/2015/347571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis.
Collapse
|
149
|
The SWI/SNF chromatin remodeling complex regulates germinal center formation by repressing Blimp-1 expression. Proc Natl Acad Sci U S A 2015; 112:E718-27. [PMID: 25646472 DOI: 10.1073/pnas.1418592112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Germinal center (GC) reaction is crucial in adaptive immune responses. The formation of GC is coordinated by the expression of specific genes including Blimp-1 and Bcl-6. Although gene expression is critically influenced by the status of chromatin structure, little is known about the role of chromatin remodeling factors for regulation of GC formation. Here, we show that the SWI/SNF chromatin remodeling complex is required for GC reactions. Mice lacking Srg3/mBaf155, a core component of the SWI/SNF complex, showed impaired differentiation of GC B and follicular helper T cells in response to T cell-dependent antigen challenge. The SWI/SNF complex regulates chromatin structure at the Blimp-1 locus and represses its expression by interacting cooperatively with Bcl-6 and corepressors. The defect in GC reactions in mice lacking Srg3 was due to the derepression of Blimp-1 as supported by genetic studies with Blimp-1-ablated mice. Hence, our study identifies the SWI/SNF complex as a key mediator in GC reactions by modulating Bcl-6-dependent Blimp-1 repression.
Collapse
|
150
|
Saccani S, Trabucchi M. Regulation of stimulus-inducible gene expression in myeloid cells. Semin Immunol 2015; 27:33-43. [DOI: 10.1016/j.smim.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
|