101
|
Gkizi D, González Gil A, Pardal AJ, Piquerez SJM, Sergaki C, Ntoukakis V, Tjamos SE. The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4565-4576. [PMID: 33829257 PMCID: PMC8163062 DOI: 10.1093/jxb/erab154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The biocontrol agent Paenibacillus alvei K165 was previously shown to protect Arabidopsis thaliana plants against Verticillium dahliae. Here we show that K165 also confers inherited immune resistance to V. dahliae. By performing a histone acetyltransferases mutant screen, ChIP assays, and transcriptomic experiments, we were able to show that histone acetylation significantly contributes to the K165 biocontrol activity and establishment of inheritable resistance to V. dahliae. K165 treatment primed the expression of immune-related marker genes and the cinnamyl alcohol dehydrogenase gene CAD3 through the function of histone acetyltransferases. Our results reveal that offspring of plants treated with K165 have primed immunity and enhanced lignification, both contributing towards the K165-mediated inherited immune resistance. Thus, our study paves the way for the use of biocontrol agents for the establishment of inheritable resistance to agronomically important pathogens.
Collapse
Affiliation(s)
- Danai Gkizi
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | | | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
102
|
Seasonal Variations of Rosmarinic Acid and Its Glucoside and Expression of Genes Related to Their Biosynthesis in Two Medicinal and Aromatic Species of Salvia subg. Perovskia. BIOLOGY 2021; 10:biology10060458. [PMID: 34067387 PMCID: PMC8224735 DOI: 10.3390/biology10060458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Here, we studied two closely related medicinal and aromatic plants from Asia, called Russian sage or from their previously used Latin name–Perovskia. These plants contain various specialized metabolites called phenylpropanoids that contribute to their medicinal uses. In our experiments, several different specialized phytochemicals were traced down in the roots and leaves with the major metabolite called rosmarinic acid, known for health beneficial properties. In order to check if the composition of these plants is regulated by specific genes encoding proteins that assemble these phytochemicals, we analyzed their expression during the growth season (spring, summer and fall). Despite being the closest kin, the two species of Russian sage displayed different seasonal changes in the composition of bioactive metabolites and the activity of genes responsible for their production. The genes’ activity was correlated with rosmarinic acid content in the roots but not in the green parts of the plants. Two genes pointed out were linked to the regulation of rosmarinic acid biosynthesis, called RAS (for Rosmarinic Acid-Synthase) and a newly reported version of an oxidizing enzyme called Cyp98A14. These discoveries broaden our understanding of relationships between the genes’ activity and production of bioactive constituents in herbs such as the two studied species of Russian sages. Abstract Salvia abrotanoides Kar. and Salvia yangii B.T. Drew are medicinal and aromatic plants belonging to the subgenus Perovskia and used as herbal medicines in Asia. Derivatives of caffeic acid, mainly rosmarinic acid (RA), are the major phenolic compounds identified in these plants. Understanding the factors and molecular mechanisms regulating the accumulation of pharmacologically and ecologically relevant phenolic metabolites is essential for future biotechnological and medical applications. Up to date, no studies of phenylpropanoid biosynthetic pathway at the transcriptional level has been performed in the Perovskia subgenus. Using a combined qRT-PCR transcriptional activity analysis with LC-MS based metabolic profiling of roots and leaves at the beginning, in the middle and at the end of vegetation season, we have identified the following gene candidates with properties correlating to phenolic acid biosynthesis in S. abrotanoides and S. yangii: PAL, C4H, 4CL, TAT, HPPR, RAS1, RAS2 and Cyp98A14. A comparison of phenolic acid profiles with gene transcript levels revealed the transcriptional regulation of RA biosynthesis in the roots but not the leaves of the studied species. Additionally, RAS1 and Cyp98A14 were identified as rate-limiting steps regulating phenylpropanoid biosynthesis on a transcription level. In the future, this will facilitate the gene-based metabolic enhancement of phenolic compounds production in these promising medicinal herbs.
Collapse
|
103
|
Mora-Márquez F, Vázquez-Poletti JL, López de Heredia U. NGScloud2: optimized bioinformatic analysis using Amazon Web Services. PeerJ 2021; 9:e11237. [PMID: 33959420 PMCID: PMC8054753 DOI: 10.7717/peerj.11237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background NGScloud was a bioinformatic system developed to perform de novo RNAseq analysis of non-model species by exploiting the cloud computing capabilities of Amazon Web Services. The rapid changes undergone in the way this cloud computing service operates, along with the continuous release of novel bioinformatic applications to analyze next generation sequencing data, have made the software obsolete. NGScloud2 is an enhanced and expanded version of NGScloud that permits the access to ad hoc cloud computing infrastructure, scaled according to the complexity of each experiment. Methods NGScloud2 presents major technical improvements, such as the possibility of running spot instances and the most updated AWS instances types, that can lead to significant cost savings. As compared to its initial implementation, this improved version updates and includes common applications for de novo RNAseq analysis, and incorporates tools to operate workflows of bioinformatic analysis of reference-based RNAseq, RADseq and functional annotation. NGScloud2 optimizes the access to Amazon’s large computing infrastructures to easily run popular bioinformatic software applications, otherwise inaccessible to non-specialized users lacking suitable hardware infrastructures. Results The correct performance of the pipelines for de novo RNAseq, reference-based RNAseq, RADseq and functional annotation was tested with real experimental data, providing workflow performance estimates and tips to make optimal use of NGScloud2. Further, we provide a qualitative comparison of NGScloud2 vs. the Galaxy framework. NGScloud2 code, instructions for software installation and use are available at https://github.com/GGFHF/NGScloud2. NGScloud2 includes a companion package, NGShelper that contains Python utilities to post-process the output of the pipelines for downstream analysis at https://github.com/GGFHF/NGShelper.
Collapse
Affiliation(s)
- Fernando Mora-Márquez
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Luis Vázquez-Poletti
- GI Arquitectura de Sistemas Distribuidos, Dpto. de Arquitectura de Ordenadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
| | - Unai López de Heredia
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
104
|
Mamat A, Tusong K, Xu J, Yan P, Mei C, Wang J. Integrated transcriptomic and proteomic analysis reveals the complex molecular mechanisms underlying stone cell formation in Korla pear. Sci Rep 2021; 11:7688. [PMID: 33833305 PMCID: PMC8032765 DOI: 10.1038/s41598-021-87262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Korla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.
Collapse
Affiliation(s)
- Aisajan Mamat
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China.
| | - Kuerban Tusong
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Juan Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Peng Yan
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| | - Jixun Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, 403 Nanchang Road, Urumqi, 830091, China
| |
Collapse
|
105
|
Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, Klosterman SJ, Javornik B, Zhang X, Zhu L. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. PLANT CELL REPORTS 2021; 40:735-751. [PMID: 33638657 DOI: 10.1007/s00299-021-02672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
GhMYB4 acts as a negative regulator in lignin biosynthesis, which results in alteration of cell wall integrity and activation of cotton defense response. Verticillium wilt of cotton (Gossypium hirsutum) caused by the soil-borne fungus Verticillium dahliae (V. dahliae) represents one of the most important constraints of cotton production worldwide. Mining of the genes involved in disease resistance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Defense-induced lignification in plants is necessary for innate immunity, and there are reports of a correlation between increased lignification and disease resistance. In this study, we present an example in cotton whereby plants with reduced lignin content also exhibit enhanced disease resistance. We identified a negative regulator of lignin synthesis, in cotton encoded in GhMYB4. Overexpression of GhMYB4 in cotton and Arabidopsis enhanced resistance to V. dahliae with reduced lignin deposition. Moreover, GhMYB4 could bind the promoters of several genes involved in lignin synthesis, such as GhC4H-1, GhC4H-2, Gh4CL-4, and GhCAD-3, and impair their expression. The reduction of lignin content in GhMYB4-overexpressing cotton led to alterations of cell wall integrity (CWI) and released more oligogalacturonides (OGs) which may act as damage-associated molecular patterns (DAMPs) to stimulate plant defense responses. In support of this hypothesis, exogenous application with polygalacturonic acid (PGA) in cotton activated biosynthesis of jasmonic acid (JA) and JA-mediated defense against V. dahliae, similar to that described for cotton plants overexpressing GhMYB4. This study provides a new candidate gene for cotton disease-resistant breeding and an increased understanding of the relationship between lignin synthesis, OG release, and plant immunity.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qin Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430000, Hubei, China
| | - Jili Shen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaoguang Yang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA, 93905, USA
| | - Branka Javornik
- Centre for Plant Biotechnology and Breeding, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
106
|
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J Mol Sci 2021; 22:3560. [PMID: 33808132 PMCID: PMC8037110 DOI: 10.3390/ijms22073560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.
Collapse
Affiliation(s)
- Ruixue Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| |
Collapse
|
107
|
Gómez-Martínez H, Gil-Muñoz F, Bermejo A, Zuriaga E, Badenes ML. Insights of Phenolic Pathway in Fruits: Transcriptional and Metabolic Profiling in Apricot ( Prunus armeniaca). Int J Mol Sci 2021; 22:ijms22073411. [PMID: 33810284 PMCID: PMC8037730 DOI: 10.3390/ijms22073411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in polyphenols, plant secondary metabolites, in terms of fruit quality and diet, mainly due to their antioxidant effect. However, the identification of key gene enzymes and their roles in the phenylpropanoid pathway in temperate fruits species remains uncertain. Apricot (Prunus armeniaca) is a Mediterranean fruit with high diversity and fruit quality properties, being an excellent source of polyphenol compounds. For a better understanding of the phenolic pathway in these fruits, we selected a set of accessions with genetic-based differences in phenolic compounds accumulation. HPLC analysis of the main phenolic compounds and transcriptional analysis of the genes involved in key steps of the polyphenol network were carried out. Phenylalanine ammonia-lyase (PAL), dihydroflavonol-4-reductase (DFR) and flavonol synthase (FLS) were the key enzymes selected. Orthologous of the genes involved in transcription of these enzymes were identified in apricot: ParPAL1, ParPAL2, ParDFR, ParFLS1 and ParFLS2. Transcriptional data of the genes involved in those critical points and their relationships with the polyphenol compounds were analyzed. Higher expression of ParDFR and ParPAL2 has been associated with red-blushed accessions. Differences in expression between paralogues could be related to the presence of a BOXCOREDCPAL cis-acting element related to the genes involved in anthocyanin synthesis ParFLS2, ParDFR and ParPAL2.
Collapse
|
108
|
Lavhale SG, Joshi RS, Kumar Y, Giri AP. Functional insights into two Ocimum kilimandscharicum 4-coumarate-CoA ligases involved in phenylpropanoid biosynthesis. Int J Biol Macromol 2021; 181:202-210. [PMID: 33774069 DOI: 10.1016/j.ijbiomac.2021.03.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Plant 4-coumarate-CoA ligase (4CL) catalyzes the ligation of CoA to cinnamic acid and its derivatives. Activated CoA esters are utilized for the biosynthesis of phenolic metabolites and lignin that play essential function in plants. Here, we characterize the diversity of Ocimum kilimandscharicum 4CLs (Ok4CLs). Phylogenetic analysis suggest that Ok4CLs could be grouped into three classes, class I - enzymes mostly involved in lignin biosynthesis, class II - non-structural phenylpropanoid biosynthesis and class III - yet to be characterized for specific role(s). We selected two Ok4CLs namely Ok4CL7 and Ok4CL15 for further characterization. Gene expression analysis suggested that Ok4CL7 is highly expressed in leaf trichomes, whereas Ok4CL15 is abundant in the roots. The recombinant Ok4CL7 and Ok4CL15 had optimal enzyme activities at 40 °C in pH 8 and 7, respectively. Ok4CL7 showed substrate preference towards p-coumaric acid, ferulic acid and caffeic acid. While, Ok4CL15 preferred p-coumaric acid, ferulic acid and sinapic acid. Feruloyl adenylate showed higher number of contacts and lowers binding energy with Ok4CL7 and 15 compared to cinnamoyl adenylate. Based on root-specific expression and preference for sinapic acid, Ok4CL15 might be involved in lignin biosynthesis. Further exploration is needed to unravel the role of diverse Ok4CLs in O. kilimandscharicum.
Collapse
Affiliation(s)
- Santosh G Lavhale
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
109
|
Chao N, Qi Q, Li S, Ruan B, Jiang X, Gai Y. Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar. PeerJ 2021; 9:e10741. [PMID: 33665007 PMCID: PMC7916539 DOI: 10.7717/peerj.10741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) divides the mass flux to H, G and S units in monolignol biosynthesis and affects lignin content. Ten HCT homologs were identified in the Populus trichocarpa (Torr. & Gray) genome. Both genome duplication and tandem duplication resulted in the expansion of HCT orthologs in Populus. Comprehensive analysis including motif analysis, phylogenetic analysis, expression profiles and co-expression analysis revealed the divergence and putative function of these candidate PoptrHCTs. PoptrHCT1 and 2 were identified as likely involved in lignin biosynthesis. PoptrHCT9 and 10- are likely to be involved in plant development and the response to cold stress. Similar functional divergence was also identified in Populus tomentosa Carr. Enzymatic assay of PtoHCT1 showed that PtoHCT1 was able to synthesize caffeoyl shikimate using caffeoyl-CoA and shikimic acid as substrates.
Collapse
Affiliation(s)
- Nan Chao
- School of Life Science, Tsinghua University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Brent Ruan
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| |
Collapse
|
110
|
Wang B, Zhao X, Zhao Y, Shanklin J, Zhao Q, Liu CJ. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. THE NEW PHYTOLOGIST 2021; 229:3345-3359. [PMID: 33253431 DOI: 10.1111/nph.17121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Phenylpropanoid metabolism represents a substantial metabolic sink for photosynthetically fixed carbon. The evolutionarily conserved Sucrose Non-Fermenting Related Kinase 1 (SnRK1) is a major metabolic sensor that reprograms metabolism upon carbon deprivation. However, it is not clear if and how the SnRK1-mediated sugar signaling pathway controls phenylpropanoid metabolism. Here, we show that Arabidopsis SnRK1 negatively regulates phenylpropanoid biosynthesis via a group of Kelch domain-containing F-box (KFB) proteins that are responsible for the ubiquitination and degradation of phenylalanine ammonia lyase (PAL). Downregulation of AtSnRK1 significantly promoted the accumulation of soluble phenolics and lignin polymers and drastically increased PAL cellular accumulation but only slightly altered its transcription level. Co-expression of SnRK1α with PAL in Nicotiana benthamiana leaves resulted in the severe attenuation of the latter's protein level, but protein interaction assays suggested PAL is not a direct substrate of SnRK1. Furthermore, up or downregulation of AtSnRK1 positively affected KFBPALs gene expression, and energy starvation upregulated KFBPAL expression, which partially depends on AtSnRK1. Collectively, our study reveals that SnRK1 negatively regulates phenylpropanoid biosynthesis, and KFBPALs act as regulatory components of the SnRK1 signaling network, transcriptionally regulated by SnRK1 and subsequently mediate proteasomal degradation of PAL in response to the cellular carbon availability.
Collapse
Affiliation(s)
- Bin Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianhai Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yunjun Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qiao Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
111
|
Sambyal K, Singh RV. Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 2021; 41:394-405. [PMID: 33618601 DOI: 10.1080/07388551.2020.1869687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Salicylic acid is one of the potent pharmaceutical organic acids that have various applications in the medical field. It acts as a plant hormone and helps in plant's growth & defence against pathogens. Beyond its numerous functions in plants, SA has great pharmaceutical importance since it acts as an intermediate for the synthesis of various drugs and dyes e.g. aspirin. At the industrial scale, chemical methods are used for the synthesis of SA but presently, several other sources are available that have the capability to alternate the chemical process which will be a step forward toward green synthesis. Aim of this paper is to provide comprehensive knowledge of SA production and its biological application.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab
| | | |
Collapse
|
112
|
Nunes da Silva M, Santos CS, Cruz A, López-Villamor A, Vasconcelos MW. Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Sci Rep 2021; 11:3781. [PMID: 33580134 PMCID: PMC7881030 DOI: 10.1038/s41598-021-83445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system.
Collapse
Affiliation(s)
- Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Cruz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
- Misión Biológica de Galicia (MBG-CSIC), Carballeira 8, Salcedo, 36143, Pontevedra, Spain
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
113
|
Chen S, Wang Y, Yu L, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng C, Tang H, Li J, Li Y, Chen J, Zhang W, Kuang H, Robertson JS, Zhao PX, Li H, Shu S, Yordanov YS, Huang H, Goodstein DM, Gai Y, Qi Q, Min J, Xu C, Wang S, Qu GZ, Paterson AH, Sankoff D, Wei H, Liu G, Yang C. Genome sequence and evolution of Betula platyphylla. HORTICULTURE RESEARCH 2021; 8:37. [PMID: 33574224 PMCID: PMC7878895 DOI: 10.1038/s41438-021-00481-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 05/07/2023]
Abstract
Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1-MKK2-MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. platyphylla genome. The chromosome-level genome and gene resources of B. platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B. platyphylla.
Collapse
Affiliation(s)
- Su Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Lili Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Zheng
- BGI-Tech, BGI-Shenzhen, Shenzhen, China
| | - Sui Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Zhen Yue
- BGI-Tech, BGI-Shenzhen, Shenzhen, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Sapna Kumari
- College of Forest Resources and Environmental Science, Institute of Computing and Cybersystems, Michigan Technological University, Houghton, MI, USA
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jun Li
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Yuqi Li
- BGI-Tech, BGI-Shenzhen, Shenzhen, China
| | - Jiongjiong Chen
- Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wenbo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Hanhui Kuang
- Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jon S Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia
| | - Patrick X Zhao
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Huiyu Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Yordan S Yordanov
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - David M Goodstein
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | | | | | | | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Institute of Computing and Cybersystems, Michigan Technological University, Houghton, MI, USA
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| |
Collapse
|
114
|
Wang X, Wang D, Xu W, Kong L, Ye X, Zhuang Q, Fan D, Luo K. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res 2021; 49:190-205. [PMID: 33332564 PMCID: PMC7797065 DOI: 10.1093/nar/gkaa1191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.
Collapse
Affiliation(s)
- Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Denghui Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qianye Zhuang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
115
|
Singh V, Zemach H, Shabtai S, Aloni R, Yang J, Zhang P, Sergeeva L, Ligterink W, Firon N. Proximal and Distal Parts of Sweetpotato Adventitious Roots Display Differences in Root Architecture, Lignin, and Starch Metabolism and Their Developmental Fates. FRONTIERS IN PLANT SCIENCE 2021; 11:609923. [PMID: 33552103 PMCID: PMC7855870 DOI: 10.3389/fpls.2020.609923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 06/10/2023]
Abstract
Sweetpotato is an important food crop globally, serving as a rich source of carbohydrates, vitamins, fiber, and micronutrients. Sweetpotato yield depends on the modification of adventitious roots into storage roots. The underlying mechanism of this developmental switch is not fully understood. Interestingly, storage-root formation is manifested by formation of starch-accumulating parenchyma cells and bulking of the distal part of the root, while the proximal part does not show bulking. This system, where two parts of the same adventitious root display different developmental fates, was used by us in order to better characterize the anatomical, physiological, and molecular mechanisms involved in sweetpotato storage-root formation. We show that, as early as 1 and 2 weeks after planting, the proximal part of the root exhibited enhanced xylem development together with increased/massive lignin deposition, while, at the same time, the distal root part exhibited significantly elevated starch accumulation. In accordance with these developmental differences, the proximal root part exhibited up-regulated transcript levels of sweetpotato orthologs of Arabidopsis vascular-development regulators and key genes of lignin biosynthesis, while the distal part showed up-regulation of genes encoding enzymes of starch biosynthesis. All these recorded differences between proximal and distal root parts were further enhanced at 5 weeks after planting, when storage roots were formed at the distal part. Our results point to down-regulation of fiber formation and lignification, together with up-regulation of starch biosynthesis, as the main events underlying storage-root formation, marking/highlighting several genes as potential regulators, providing a valuable database of genes for further research.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Hanita Zemach
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Sara Shabtai
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Jun Yang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Peng Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Nurit Firon
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| |
Collapse
|
116
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
117
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
118
|
Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Funct Integr Genomics 2021; 21:73-99. [PMID: 33404914 DOI: 10.1007/s10142-020-00762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.
Collapse
|
119
|
Lin SJ, Yang YZ, Teng RM, Liu H, Li H, Zhuang J. Identification and expression analysis of caffeoyl-coenzyme A O-methyltransferase family genes related to lignin biosynthesis in tea plant (Camellia sinensis). PROTOPLASMA 2021; 258:115-127. [PMID: 32929631 DOI: 10.1007/s00709-020-01555-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/02/2020] [Indexed: 05/09/2023]
Abstract
Tea plant, an economically important crop, is used in producing tea, which is a non-alcoholic beverage. Lignin, the second most abundant component of the cell wall, reduces the tenderness of tea leaves and affects tea quality. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) involved in lignin biosynthesis affects the efficiency of lignin synthesis and lignin composition. A total of 10 CsCCoAOMTs were identified based on tea plant genome. Systematic analysis of CCoAOMTs was conducted for its physicochemical properties, phylogenetic relationships, conserved motifs, gene structure, and promoter cis-element prediction. Phylogenetic analysis suggested that all the CsCCoAOMT proteins can be categorized into three clades. The promoters of six CsCCoAOMT genes possessed lignin-specific cis-elements, indicating they are possibly essential for lignin biosynthesis. According to the distinct tempo-spatial expression profiles, five genes were substantially expressed in eight tested tissues. Most CsCCoAOMT genes were expressed in stems and leaves in three tea plant cultivars 'Longjing 43,' 'Anjibaicha,' and 'Fudingdabai' by RT-qPCR detection and analysis. The expression levels of two genes (CsCCoAOMT5 and CsCCoAOMT6) were higher than those of the other genes. The expression levels of most CsCCoAOMT genes in 'Longjing 43' were significantly higher than that those in 'Anjibaicha' and 'Fudingdabai.' Correlation analysis revealed that only the expression levels of CsCCoAOMT6 were positively correlated with lignin content in the leaves and stems. These results lay a foundation for the future exploration of the roles of CsCCoAOMTs in lignin biosynthesis in tea plant.
Collapse
Affiliation(s)
- Shi-Jia Lin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Ya-Zhuo Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Hao Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
120
|
Zeng D, Que C, Teixeira da Silva JA, Xu S, Li D. Comparative Transcriptomic and Metabolic Analyses Reveal the Molecular Mechanism of Ovule Development in the Orchid, Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2021; 12:814275. [PMID: 35126436 PMCID: PMC8813969 DOI: 10.3389/fpls.2021.814275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 05/04/2023]
Abstract
Ovule development is pivotal to plant reproduction and seed development. Cymbidium sinense (Orchidaceae) has high ornamental value due to its pleasant aroma and elegant floral morphology. The regulatory mechanism underlying ovule development in orchids, especially C. sinense, is largely unknown and information on the C. sinense genome is very scarce. In this study, a combined analysis was performed on the transcriptome and non-targeted metabolomes of 18 C. sinense 'Qi Jian Hei Mo' ovule samples. Transcriptome analysis assembled gene-related information related to six growth stages of C. sinense ovules (S1-S6, equivalent to 30, 35, 42, 46, 53, and 60 days after pollination). Illumina sequencing technology was used to obtain the complete set of transcriptome sequences of the 18 samples. A total of 81,585 unigene sequences were obtained after assembly, 24,860 (30.47%) of which were functionally annotated. Using transcriptome sequencing technology, a total of 9845 differentially expressed unigenes (DEUs) were identified in C. sinense ovules that were assigned to specific metabolic pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). DEUs associated with transcription factors (TFs) and phytohormones were identified and analyzed. The TFs homeobox and MADS-box were associated with C. sinense ovule development. In particular, the phytohormones associated with DEUs such as indole-3-acetic acid (IAA), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), brassinosteroid (BR), and jasmonate (JA), may have important regulatory effects on C. sinense ovule development. Metabolomic analysis showed an inconsistent number of KEGG annotations of differential metabolites across comparisons (S2_vs_S4, S2_vs_S5, and S4_vs_S5 contained 23, 26, and 3 annotations, respectively) in C. sinense ovules. This study provides a valuable foundation for further understanding the regulation of orchid ovule development and formation, and establishes a theoretical background for future practical applications during orchid cultivation.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Caixia Que
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
| | | | - Shutao Xu
- College of Innovative Design, City University of Macau, Taipa, Macao SAR, China
| | - Dongmei Li
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
- *Correspondence: Dongmei Li,
| |
Collapse
|
121
|
Li G, Hu F, Zhang Y, Zhao Y, Wang H, Chen T, Cheng X, Cai Y. Comparative genomic analysis of superoxide dismutase ( SOD) genes in three Rosaceae species and expression analysis in Pyrus bretschneideri. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:39-52. [PMID: 33627961 PMCID: PMC7873169 DOI: 10.1007/s12298-021-00926-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Superoxide dismutases (SODs) are antioxidant enzymes that play a critical role in the polymerization of lignin monomers. Although current research has indicated that SODs are involved in plant growth and development, information on SODs in pear (Pyrus bretschneideri) and their function in lignin formation is scarce. In this study, 25 SODs, containing three kinds of plant SODs (Cu/Zn-SODs, Mn-SODs, and Fe-SODs), were identified from three Rosaceae species, and 11 of these genes were found in pear. According to the evolutionary analysis, the genes were divided into four subgroups, the division of which is consistent with the intron-exon and conserved motif analyses. These PbSODs were randomly scattered across 7 chromosomes. We have analysed the conserved domains and gene family evolution and predicted the cis-elements of the promoter. Ka/Ks analysis pointed that SOD genes mainly underwent purifying selection. Subsequently, the expression patterns of 11 PbSODs were examined in different tissues, at different developmental periods, in different pear varieties and under different hormone treatments. Gene expression analysis showed that PbCSD3 exhibited transcript levels consistent with the typical changes in lignin content. The changes in SOD activity and hydrogen peroxide (H2O2) content combined with the results of a spatio-temporal expression analysis showed that PbCSD3 was a candidate gene in reactive oxygen species (ROS) metabolism during the lignification of pear stone cells. Thus, our research reveals the evolutionary features of the SOD family in Rosaceae species and provide useful information for analysis of functional genome of the SOD family in pear. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-021-00926-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Fei Hu
- Plant Protection and Agroproducts Safety Institute, Anhui Academy of Agricultural Sciences, Hefei Anhui, 230031 People’s Republic of China
| | - Yang Zhang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Yu Zhao
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Han Wang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Tianzhe Chen
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036 China
| |
Collapse
|
122
|
The Biosynthesis of Phenolic Compounds is an Integrated Defence Mechanism to Prevent Ozone Injury in Salvia officinalis. Antioxidants (Basel) 2020; 9:antiox9121274. [PMID: 33327632 PMCID: PMC7765139 DOI: 10.3390/antiox9121274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Specialized metabolites constitute a major antioxidant system involved in plant defence against environmental constraints, such as tropospheric ozone (O3). The objective of this experiment was to give a thorough description of the effects of an O3 pulse (120 ppb, 5 h) on the phenylpropanoid metabolism of sage, at both biochemical and molecular levels. Variable O3-induced changes were observed over time among the detected phenylpropanoid compounds (mostly identified as phenolic acids and flavonoids), likely because of their extraordinary functional diversity. Furthermore, decreases in the phenylalanine ammonia-lyase (PAL), phenol oxidase (PPO), and rosmarinic acid synthase (RAS) activities were reported during the first hours of treatment, probably due to an O3-induced oxidative damage to proteins. Both PAL and PPO activities were also suppressed at 24 h from the beginning of exposure, whereas enhanced RAS activity occurred at the end of treatment and at the recovery time, suggesting that specific branches of the phenolic pathways were activated. The increased RAS activity was accompanied by the up-regulation of the transcript levels of genes like RAS, tyrosine aminotransferase, and cinnamic acid 4-hydroxylase. In conclusion, sage faced the O3 pulse by regulating the activation of the phenolic biosynthetic route as an integrated defence mechanism.
Collapse
|
123
|
Mora-Márquez F, Chano V, Vázquez-Poletti JL, López de Heredia U. TOA: A software package for automated functional annotation in non-model plant species. Mol Ecol Resour 2020; 21:621-636. [PMID: 33070442 DOI: 10.1111/1755-0998.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
The increase of sequencing capacity provided by high-throughput platforms has made it possible to routinely obtain large sets of genomic and transcriptomic sequences from model and non-model organisms. Subsequent genomic analysis and gene discovery in next-generation sequencing experiments are, however, bottlenecked by functional annotation. One common way to perform functional annotation of sets of sequences obtained from next-generation sequencing experiments, is by searching for homologous sequences and accessing the related functional information deposited in genomic databases. Functional annotation is especially challenging for non-model organisms, like many plant species. In such cases, existing free and commercial general-purpose applications may not offer complete and accurate results. We present TOA (Taxonomy-oriented annotation), a Python-based user-friendly open source application designed to establish functional annotation pipelines geared towards non-model plant species that can run in Linux/Mac computers, HPCs and cloud servers. TOA performs homology searches against proteins stored in the PLAZA databases, NCBI RefSeq Plant, Nucleotide Database and Non-Redundant Protein Sequence Database, and outputs functional information from several ontology systems: Gene Ontology, InterPro, EC, KEGG, Mapman and MetaCyc. The software performance was validated by comparing the runtimes, total number of annotated sequences and accuracy of the functional information obtained for several plant benchmark data sets with TOA and other functional annotation solutions. TOA outperformed the other software in terms of number of annotated sequences and accuracy of the annotation and constitutes a good alternative to improve functional annotation in plants. TOA is especially recommended for gymnosperms or for low quality sequence data sets of non-model plants.
Collapse
Affiliation(s)
- Fernando Mora-Márquez
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Víctor Chano
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Luis Vázquez-Poletti
- GI Arquitectura de Sistemas Distribuidos, Dpto. Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
| | - Unai López de Heredia
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
124
|
Li G, Liu X, Zhang Y, Muhammad A, Han W, Li D, Cheng X, Cai Y. Cloning and functional characterization of two cinnamate 4-hydroxylase genes from Pyrus bretschneideri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:135-145. [PMID: 32937268 DOI: 10.1016/j.plaphy.2020.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Cinnamate 4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway in plants and is involved in the biosynthesis of secondary metabolites such as lignin and flavonoids. However, the function of C4H in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. By searching pear genome databases, we identified three C4H genes (PbC4H1, PbC4H2 and PbC4H3) encoding proteins that share higher identity with bonafide C4Hs from several species with typical cytochrome P450 domains, suggesting that all three PbC4Hs are also bonafide C4Hs that have close evolutionary relationships with C4Hs from other land plants. Quantitative real-time PCR (qRT-PCR) results indicated that the three PbC4Hs were specifically expressed in one or more tissues. The expression levels of PbC4H1 and PbC4H3 first increased and then decreased during pear fruit development. Treatment with exogenous hormones (ABA, MeJA, and SA) altered the expression of the three PbC4Hs to varying degrees. The expression levels of the PbC4Hs were first induced and then decreased under ABA treatment, while MeJA treatment significantly increased the expression levels of the PbC4Hs. Following treatment with SA, expression levels of PbC4H1 and PbC4H2 increased, while expression levels of PbC4H3 decreased. Enzymatic analysis of the recombinant proteins expressed in yeast indicated that PbC4H1 and PbC4H3 catalysed the conversion of trans-cinnamic acid to p-coumaric acid. Moreover, the expression of PbC4H1 and PbC4H3 in Arabidopsis resulted in an increase in both the lignin content and the thickness of cell walls for intervascular fibres and xylem cells. Taken together, the results of our study not only revealed the potential role of PbC4H1 and PbC4H3 in lignin biosynthesis but also established a foundation for future investigations of the regulation of lignin synthesis and stone cell development in pear fruit by molecular biological techniques.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| | - Xin Liu
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yang Zhang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Abdullah Muhammad
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Wenlong Han
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
125
|
Pilaisangsuree V, Anuwan P, Supdensong K, Lumpa P, Kongbangkerd A, Limmongkon A. Enhancement of adaptive response in peanut hairy root by exogenous signalling molecules under cadmium stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153278. [PMID: 32980640 DOI: 10.1016/j.jplph.2020.153278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Plants counteract Cd toxicity by activating cellular stress responses. The simultaneous exogenous application of methyl jasmonate (MeJA) and methyl-β-cyclodextrin (CD) before Cd exposure improved the response of Arachis hypogaea hairy root culture to the unfavourable effects of Cd toxicity. At 24 h after elicitation, genes that encode key enzymes in the phenylpropanoid biosynthesis pathway (i.e., PAL and RS3) were up-regulated to 3.2- and 5.4-fold changes respectively, thereby inducing stilbene production. The up-regulation of genes that encode transcription factors (i.e., ERF1 and ERF6) significantly increased the expression of several genes (PR4A, PR5, PR10, and chitinase) that encode the pathogenesis-related (PR) proteins to 25.8-, 45-, 5- and 12.6-fold changes, respectively. The more dramatic up-regulation of PR protein-encoding genes demonstrated the significant role of defence proteins in plant protective mechanisms. The prolonged (i.e., 72-h) treatment with MeJA + CD_Cd triggered adaptive responses by substantially increasing the levels of antioxidants, stilbenes, and other phenolic substances. These findings suggest that the interaction between signalling elicitors (MeJA and CD) and Cd modulates a complex signalling network for plant defence system.
Collapse
Affiliation(s)
- Vijakhana Pilaisangsuree
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Piyanuch Anuwan
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kanitha Supdensong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pimpimon Lumpa
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
126
|
Zeng X, Sheng J, Zhu F, Wei T, Zhao L, Hu X, Zheng X, Zhou F, Hu Z, Diao Y, Jin S. Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus × giganteus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:179. [PMID: 33117433 PMCID: PMC7590476 DOI: 10.1186/s13068-020-01819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Miscanthus × giganteus is widely recognized as a promising lignocellulosic biomass crop due to its advantages of high biomass production, low environmental impacts, and the potential to be cultivated on marginal land. However, the high costs of bioethanol production still limit the current commercialization of lignocellulosic bioethanol. The lignin in the cell wall and its by-products released in the pretreatment step is the main component inhibiting the enzymatic reactions in the saccharification and fermentation processes. Hence, genetic modification of the genes involved in lignin biosynthesis could be a feasible strategy to overcome this barrier by manipulating the lignin content and composition of M. × giganteus. For this purpose, the essential knowledge of these genes and understanding the underlying regulatory mechanisms in M. × giganteus is required. RESULTS In this study, MgPAL1, MgPAL5, Mg4CL1, Mg4CL3, MgHCT1, MgHCT2, MgC3'H1, MgCCoAOMT1, MgCCoAOMT3, MgCCR1, MgCCR2, MgF5H, MgCOMT, and MgCAD were identified as the major monolignol biosynthetic genes in M. × giganteus based on genetic and transcriptional evidence. Among them, 12 genes were cloned and sequenced. By combining transcription factor binding site prediction and expression correlation analysis, MYB46, MYB61, MYB63, WRKY24, WRKY35, WRKY12, ERF021, ERF058, and ERF017 were inferred to regulate the expression of these genes directly. On the basis of these results, an integrated model was summarized to depict the monolignol biosynthesis pathway and the underlying regulatory mechanism in M. × giganteus. CONCLUSIONS This study provides a list of potential gene targets for genetic improvement of lignocellulosic biomass quality of M. × giganteus, and reveals the genetic, transcriptional, and regulatory landscape of the monolignol biosynthesis pathway in M. × giganteus.
Collapse
Affiliation(s)
- Xiaofei Zeng
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Jiajing Sheng
- School of Life Sciences, Nantong University, Nantong, 226019 People’s Republic of China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Tianzi Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xiaohu Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Ying Diao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
127
|
Cadena-Zamudio JD, Nicasio-Torres P, Monribot-Villanueva JL, Guerrero-Analco JA, Ibarra-Laclette E. Integrated Analysis of the Transcriptome and Metabolome of Cecropia obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21207572. [PMID: 33066422 PMCID: PMC7588936 DOI: 10.3390/ijms21207572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
This investigation cultured Cecropia obtusifolia cells in suspension to evaluate the effect of nitrate deficiency on the growth and production of chlorogenic acid (CGA), a secondary metabolite with hypoglycemic and hypolipidemic activity that acts directly on type 2 diabetes mellitus. Using cell cultures in suspension, a kinetics time course was established with six time points and four total nitrate concentrations. The metabolites of interest were quantified by high-performance liquid chromatography (HPLC), and the metabolome was analyzed using directed and nondirected approaches. Finally, using RNA-seq methodology, the first transcript collection for C. obtusifolia was generated. HPLC analysis detected CGA at all sampling points, while metabolomic analysis confirmed the identity of CGA and of precursors involved in its biosynthesis. Transcriptome analysis identified differentially expressed genes and enzymes involved in the biosynthetic pathway of CGA. C. obtusifolia probably expresses a key enzyme with bifunctional activity, the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HQT/HCT), which recognizes shikimic acid or quinic acid as a substrate and incorporates either into one of the two routes responsible for CGA biosynthesis.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Pilar Nicasio-Torres
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur (CIBIS), Xochitepec 62790, Morelos, Mexico;
| | - Juan Luis Monribot-Villanueva
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
- Correspondence: ; Tel.: +52-(228)-842-1823
| |
Collapse
|
128
|
Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez MÁ, Vahldick H, Shulse CN, Cole BJ, Juliano CE, Dickel DE, Savageau MA, Brady SM. Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation. Cell Rep 2020; 28:342-351.e4. [PMID: 31291572 DOI: 10.1016/j.celrep.2019.06.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/01/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Plant xylem cells conduct water and mineral nutrients. Although most plant cells are totipotent, xylem cells are unusual and undergo terminal differentiation. Many genes regulating this process are well characterized, including the Vascular-related NAC Domain 7 (VND7), MYB46, and MYB83 transcription factors, which are proposed to act in interconnected feedforward loops (FFLs). Less is known regarding the molecular mechanisms underlying the terminal transition to xylem cell differentiation. Here, we generate whole-root and single-cell data, which demonstrate that VND7 initiates sharp switching of root cells to xylem cell identity. Based on these data, we identified 4 candidate VND7 downstream target genes capable of generating this switch. Although MYB46 responds to VND7 induction, it is not among these targets. This system provides an important model to study the emergent properties that may give rise to totipotency relative to terminal differentiation and reveals xylem cell subtypes.
Collapse
Affiliation(s)
- Gina M Turco
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Joel Rodriguez-Medina
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Diane Han
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Miguel Á Valderrama-Gómez
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Hannah Vahldick
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Christine N Shulse
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael A Savageau
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
129
|
Kim SH, Lam PY, Lee MH, Jeon HS, Tobimatsu Y, Park OK. The Arabidopsis R2R3 MYB Transcription Factor MYB15 Is a Key Regulator of Lignin Biosynthesis in Effector-Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2020; 11:583153. [PMID: 33042196 PMCID: PMC7527528 DOI: 10.3389/fpls.2020.583153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Lignin, a major component of the secondary cell wall, is important for plant growth and development. Moreover, lignin plays a pivotal role in plant innate immunity. Lignin is readily deposited upon pathogen infection and functions as a physical barrier that limits the spread of pathogens. In this study, we show that an Arabidopsis MYB transcription factor MYB15 is required for the activation of lignin biosynthesis genes such as PAL, C4H, 4CL, HCT, C3'H, COMT, and CAD, and consequently lignin formation during effector-triggered immune responses. Upon challenge with the avirulent bacterial pathogen Pst DC3000 (AvrRpm1), lignin deposition and disease resistance were reduced in myb15 mutant plants. Furthermore, whereas invading pathogens, together with hypersensitive cell death, were restricted to the infection site in wild-type leaves, they spread beyond the infected area in myb15 mutants. The exogenous supply of the lignin monomer coniferyl alcohol restored lignin production and rescued immune defects in myb15 plants. These results demonstrate that regulation at the transcriptional level is key to pathogen-induced lignification and that MYB15 plays a central role in this process.
Collapse
Affiliation(s)
- Seu Ha Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Myoung-Hoon Lee
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Hwi Seong Jeon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
130
|
Shi M, Liu X, Zhang H, He Z, Yang H, Chen J, Feng J, Yang W, Jiang Y, Yao JL, Deng CH, Xu J. The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. HORTICULTURE RESEARCH 2020; 7:139. [PMID: 32922811 PMCID: PMC7458917 DOI: 10.1038/s41438-020-00360-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 05/08/2023]
Abstract
In citrus, lignin overaccumulation in the juice sac results in granulation and an unpleasant fruit texture and taste. By integrating metabolic phenotyping and transcriptomic analyses, we found 702 differentially expressed genes (DEGs), including 24 transcription factors (TFs), to be significantly correlated with lignin content. CgMYB58 was further identified as a critical R2R3 MYB TF involved in lignin overaccumulation owing to its high transcript levels in Huanong Red-fleshed pummelo (HR, Citrus grandis) fruits. Transient expression of CgMYB58 led to an increase in the lignin content in the pummelo fruit mesocarp, whereas its stable overexpression significantly promoted lignin accumulation and upregulated 19 lignin biosynthetic genes. Among these genes, CgPAL1, CgPAL2, Cg4CL1, and CgC3H were directly modulated by CgMYB58 through interaction with their promoter regions. Moreover, we showed that juice sac granulation in pummelo fruits could be affected by indole-3-acetic acid (IAA) and abscisic acid (ABA) treatments. In HR pummelo, ABA significantly accelerated this granulation, whereas IAA effectively inhibited this process. Taken together, these results provide novel insight into the lignin accumulation mechanism in citrus fruits. We also revealed the theoretical basis via exogenous IAA application, which repressed the expression of CgMYB58 and its target genes, thus alleviating juice sac granulation in orchards.
Collapse
Affiliation(s)
- Meiyan Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Zhenyu He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Wenhui Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Youwu Jiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142 New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142 New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei 430070 China
| |
Collapse
|
131
|
Abstract
Cordyceps is a parasitic edible fungus with a variety of metabolically active ingredients. The main active ingredient, extracellular polysaccharide (EPS), shows favourable application prospects in prevention and treatment of certain diseases. EPS extracted from different parts of various Cordyceps species can be used in health foods or medicinal preparations because of the structural diversity and multiple bioactivities. In terms of the complexity of composition and structure, researchers have speculated on the anabolic pathways of EPSs and the genes involved in the synthesis process. Studies to increase the yield of polysaccharides are limited because the synthesis pathways and anabolic regulation mechanisms of Cordyceps exopolysaccharide remain unknown. This review summarises the current researches in the yield of Cordyceps polysaccharides. A mechanism for the biosynthesis of Cordyceps polysaccharides was proposed by referring to the polysaccharide synthesis in other species. Furthermore, we also discuss the future perspective and ongoing challenges of EPS in uses of health foods and pharmaceutics.
Collapse
Affiliation(s)
- Shengli Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xi Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
132
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 DOI: 10.1101/370320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/27/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|
133
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 PMCID: PMC7307858 DOI: 10.1093/jxb/eraa132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|
134
|
Ding P, Ding Y. Stories of Salicylic Acid: A Plant Defense Hormone. TRENDS IN PLANT SCIENCE 2020; 25:549-565. [PMID: 32407695 DOI: 10.1016/j.tplants.2020.01.004] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) is a key plant hormone required for establishing resistance to many pathogens. SA biosynthesis involves two main metabolic pathways with multiple steps: the isochorismate and the phenylalanine ammonia-lyase pathways. Transcriptional regulations of SA biosynthesis are important for fine-tuning SA level in plants. We highlight here recent discoveries on SA biosynthesis and transcriptional regulations of SA biosynthesis. In addition, SA perception by NPR proteins is important to fulfil its function as a defense hormone. We highlight recent work to give a full picture of how NPR proteins support the role of SA in plant immunity. We also discuss challenges and potential opportunities for future research and application related to the functions of SA in plants.
Collapse
Affiliation(s)
- Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yuli Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
135
|
De Luca D, Lauritano C. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. BIOLOGY 2020; 9:E110. [PMID: 32456002 PMCID: PMC7284882 DOI: 10.3390/biology9050110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Marine microalgae are photosynthetic microorganisms at the base of the marine food webs. They are characterized by huge taxonomic and metabolic diversity and several species have been shown to have bioactivities useful for the treatment of human pathologies. However, the compounds and the metabolic pathways responsible for bioactive compound synthesis are often still unknown. In this study, we aimed at analysing the microalgal transcriptomes available in the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database for an in silico search of polyketide synthase type III homologs and, in particular, chalcone synthase (CHS) and stilbene synthase (STS), which are often referred to as the CHS/STS family. These enzymes were selected because they are known to produce compounds with biological properties useful for human health, such as cancer chemopreventive, anti-inflammatory, antioxidant, anti-angiogenic, anti-viral and anti-diabetic. In addition, we also searched for 4-Coumarate: CoA ligase, an upstream enzyme in the synthesis of chalcones and stilbenes. This study reports for the first time the occurrence of these enzymes in specific microalgal taxa, confirming the importance for microalgae of these pathways and giving new insights into microalgal physiology and possible biotechnological applications for the production of bioactive compounds.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, Università degli Studi Suor Orsola Benincasa, CAP80135 Naples, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
136
|
Kwon H, Cho DJ, Lee H, Nam MH, Kwon C, Yun HS. CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis. Biochem Biophys Res Commun 2020; 524:977-982. [PMID: 32059845 DOI: 10.1016/j.bbrc.2020.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
We previously found that VAMP721/722 SNARE proteins guide secretory vesicles to pathogen-attacking sites during immune responses in Arabidopsis, which suggests that these vesicles should deliver immune molecules. However, the lethality of vamp721 vamp722 double null mutant makes it difficult to understand the nature of cargo transported via VAMP721/722 vesicles. Since VAMP721/722-depleted (VAMP721+/-VAMP722-/- and VAMP721-/-VAMP722+/-) plants show compromised resistance to extracellular pathogens, we assume that an immune protein secreted through the VAMP721/722-engaged exocytosis would be remained more in VAMP721/722-depleted plants than WT. By comparing intracellular proteins between WT and VAMP721/722-depleted plants, we found caffeoyl-CoA O-methyltransferase 1 (CCOAOMT1) involved in the lignin biosynthesis was more abundantly detected in both VAMP721/722-depleted lines than WT. Plants are well-known to deposit secondary cell walls as physical barriers at pathogen-attempting sites. Therefore, extracellular detection of CCOAOMT1 and impaired resistance to Pseudomonas syringae DC3000 in ccoaomt1 plants suggest that plants secrete cell wall-modifying enzymes at least including CCOAOMT1 to reinforce the secondary cell walls for immunity.
Collapse
Affiliation(s)
- Hyeokjin Kwon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Da Jeong Cho
- Department of Molecular Biology, Dankook University, Cheonan, 31116, South Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, South Korea
| | - Myung Hee Nam
- Environmental Risk and Welfare Research Team, Korea Basic Science Institute (KBSI), Seoul, 02855, South Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, South Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
137
|
Sun SC, Xiong XP, Zhang XL, Feng HJ, Zhu QH, Sun J, Li YJ. Characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance. BMC PLANT BIOLOGY 2020; 20:125. [PMID: 32293290 PMCID: PMC7092558 DOI: 10.1186/s12870-020-2329-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND The function of 4-coumarate-CoA ligases (4CL) under abiotic stresses has been studied in plants, however, limited is known about the 4CL genes in cotton (G. hirsutum L.) and their roles in response to drought stress. RESULTS We performed genome-wide identification of the 4CL genes in G. hirsutum and investigated the expression profiles of the identified genes in various cotton tissues and in response to stress conditions with an aim to identify 4CL gene(s) associated with drought tolerance. We identified 34 putative 4CL genes in G. hirsutum that were clustered into three classes. Genes of the same class usually share a similar gene structure and motif composition. Many cis-elements related to stress and phytohormone responses were found in the promoters of the Gh4CL genes. Of the 34 Gh4CL genes, 26 were induced by at least one abiotic stress and 10 (including Gh4CL7) were up-regulated under the polyethylene glycol (PEG) simulated drought stress conditions. Virus-induced gene silencing (VIGS) in cotton and overexpression (OE) in Arabidopsis thaliana were applied to investigate the biological function of Gh4CL7 in drought tolerance. The Gh4CL7-silencing cotton plants showed more sensitive to drought stress, probably due to decreased relative water content (RWC), chlorophyll content and antioxidative enzyme activity, increased stomatal aperture, and the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2). Arabidopsis lines overexpressing Gh4CL7, however, were more tolerant to drought treatment, which was associated with improved antioxidative enzyme activity, reduced accumulation of MDA and H2O2 and up-regulated stress-related genes under the drought stress conditions. In addition, compared to their respective controls, the Gh4CL7-silencing cotton plants and the Gh4CL7-overexpressing Arabidopsis lines had a ~ 20% reduction and a ~ 10% increase in lignin content, respectively. The expression levels of genes related to lignin biosynthesis, including PAL, CCoAOMT, COMT, CCR and CAD, were lower in Gh4CL7-silencing plants than in controls. Taken together, these results demonstrated that Gh4CL7 could positively respond to drought stress and therefore might be a candidate gene for improvement of drought tolerance in cotton. CONCLUSION We characterized the 4CL gene family in upland cotton and revealed a role of Gh4CL7 in lignin biosynthesis and drought tolerance.
Collapse
Affiliation(s)
- Shi-Chao Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xian-Peng Xiong
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiao-Li Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Hong-Jie Feng
- Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
138
|
Jardim-Messeder D, da Franca Silva T, Fonseca JP, Junior JN, Barzilai L, Felix-Cordeiro T, Pereira JC, Rodrigues-Ferreira C, Bastos I, da Silva TC, de Abreu Waldow V, Cassol D, Pereira W, Flausino B, Carniel A, Faria J, Moraes T, Cruz FP, Loh R, Van Montagu M, Loureiro ME, de Souza SR, Mangeon A, Sachetto-Martins G. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes. Mol Genet Genomics 2020; 295:717-739. [PMID: 32124034 DOI: 10.1007/s00438-020-01653-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil
| | - Jose Pedro Fonseca
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nicomedes Junior
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Lucia Barzilai
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix-Cordeiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Rodrigues-Ferreira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Bastos
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tereza Cristina da Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius de Abreu Waldow
- Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Daniela Cassol
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Willian Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Bruno Flausino
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Carniel
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Jessica Faria
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Moraes
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda P Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Loh
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc Van Montagu
- Institute of Plant Biotechnology Outreach, Gent University, Technologiepark 3, Zwijnaarde, 9052, Gent, Belgium
| | - Marcelo Ehlers Loureiro
- Laboratório de Fisiologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sonia Regina de Souza
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
139
|
Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q. MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation. PLANT PHYSIOLOGY 2020; 182:1272-1283. [PMID: 31871072 PMCID: PMC7054866 DOI: 10.1104/pp.19.01070] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Lignin is a phenylpropanoid-derived polymer that functions as a major component of cell walls in plant vascular tissues. Biosynthesis of the aromatic amino acid Phe provides precursors for many secondary metabolites, including lignins and flavonoids. Here, we discovered that MYB transcription factors MYB20, MYB42, MYB43, and MYB85 are transcriptional regulators that directly activate lignin biosynthesis genes and Phe biosynthesis genes during secondary wall formation in Arabidopsis (Arabidopsis thaliana). Disruption of MYB20, MYB42, MYB43, and MYB85 resulted in growth development defects and substantial reductions in lignin biosynthesis. In addition, our data showed that these MYB proteins directly activated transcriptional repressors that specifically inhibit flavonoid biosynthesis, which competes with lignin biosynthesis for Phe precursors. Together, our results provide important insights into the molecular framework for the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Su Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyue Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cuihuan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing 100084, China
| | - Yingping Cao
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Chunxiang Fu
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Xue Han
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
140
|
Pietrowska-Borek M, Wojdyła-Mamoń A, Dobrogojski J, Młynarska-Cieślak A, Baranowski MR, Dąbrowski JM, Kowalska J, Jemielity J, Borek S, Pedreño MA, Guranowski A. Purine and pyrimidine dinucleoside polyphosphates differentially affect the phenylpropanoid pathway in Vitis vinifera L. cv. Monastrell suspension cultured cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:125-132. [PMID: 31855818 DOI: 10.1016/j.plaphy.2019.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
It is known that the concentration of dinucleoside polyphosphates (NpnN's) in cells increases under stress and that adverse environmental factors induce biosynthesis of phenylpropanoids, which protect the plant against stress. Previously, we showed that purine NpnN's such as Ap3A and Ap4A induce both the activity of enzymes of the phenylpropanoid pathway and the expression of relevant genes in Arabidopsis seedlings. Moreover, we showed that Ap3A induced stilbene biosynthesis in Vitis vinifera cv. Monastrell suspension cultured cells. Data presented in this paper show that pyrimidine-containing NpnN's also modify the biosynthesis of stilbenes, affecting the transcript level of genes encoding key enzymes of the phenylpropanoid pathway and of these, Up4U caused the most effective accumulation of trans-resveratrol in the culture media. Similar effect was caused by Ap3A and Gp3G. Other pyrimidine NpnN's, such as Cp3C, Cp4C, and Ap4C, strongly inhibited the biosynthesis of stilbenes, but markedly (6- to 8-fold) induced the expression of the cinnamoyl-CoA reductase gene that controls lignin biosynthesis. Purine counterparts also clearly induced biosynthesis of trans-resveratrol and trans-piceid, but only slightly induced the expression of genes involved in lignin biosynthesis. In cells, Up3U caused a greater accumulation of trans-resveratrol and trans-piceid than did Up4U. Each of the NpnN's studied induced expression of the gene encoding the resveratrol transporter VvABCG44, which operates within the Vitis vinifera cell membrane. AMP, GMP, UMP, and CMP, potential products of NpnN degradation, did not affect the accumulation of stilbenes. The results obtained strongly support that NpnN's play a role as signaling molecules in plants.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Anna Wojdyła-Mamoń
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Agnieszka Młynarska-Cieślak
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jakub M Dąbrowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Maria Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Andrzej Guranowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
141
|
Wan Y, Zhang M, Hong A, Lan X, Yang H, Liu Y. Transcriptome and weighted correlation network analyses provide insights into inflorescence stem straightness in Paeonia lactiflora. PLANT MOLECULAR BIOLOGY 2020; 102:239-252. [PMID: 31832900 DOI: 10.1007/s11103-019-00945-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Lack of structural components results in inflorescence stem bending. Differentially expressed genes involved in lignin and hemicellulose biosynthesis are vital; genes involved in cellulose and glycan biosynthesis are also relevant. An erect inflorescence stem is essential for high-quality cut herbaceous peony flowers. To explore the factors underlying inflorescence stem bending, major cell walls contents were measured, and stem structure was observed in two herbaceous peony varieties with contrasting stem straightness traits ('Da Fugui', upright; 'Chui Touhong', bending). In addition, Illumina sequencing was performed and weighted correlation network analysis (WGCNA) was used to analyze the results. The results showed significant differences in lignin, hemicellulose and soluble sugar contents, sclerenchyma and xylem areas and thickening in cell walls in pith at stage S3, when bending begins. In addition, 44,182 significantly differentially expressed genes (DEGs) were found, and these DEGs were mainly enriched in 36 pathways. Among the DEGs, hub genes involved in lignin, cellulose, and xylan biosynthesis and transcription factors that regulated these process were identified by WGCNA. These results suggested that the contents of compounds that provided cell wall rigidity were vital factors affecting inflorescence stem straightness in herbaceous peony. Genes involved in or regulating the biosynthesis of these compounds are thus important; lignin and hemicellulose are of great interest, and cellulose and glycan should not be ignored. This paper lays a foundation for developing new herbaceous peony varieties suitable for cut flowers by molecular-assisted breeding.
Collapse
Affiliation(s)
- Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Aiying Hong
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Xinyu Lan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Huiyan Yang
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
142
|
Zhang S, Jia T, Zhang Z, Zou X, Fan S, Lei K, Jiang X, Niu D, Yuan Y, Shang H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:251-261. [PMID: 31884241 DOI: 10.1016/j.plaphy.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Doudou Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
143
|
Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:637-652. [PMID: 31626358 DOI: 10.1111/tpj.14570] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 05/18/2023]
Abstract
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Joint Center for Life Sciences, Tsinghua University-Peking University, Beijing, 100084, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Wu
- Joint Center for Life Sciences, Tsinghua University-Peking University, Beijing, 100084, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Ling Guan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cui-Huan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
144
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
145
|
4-Coumarate:coenzyme A ligase isoform 3 from Piper nigrum (Pn4CL3) catalyzes the CoA thioester formation of 3,4-methylenedioxycinnamic and piperic acids. Biochem J 2020; 477:61-74. [DOI: 10.1042/bcj20190527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Black pepper, dried green fruit of Piper nigrum L., is a household spice most popular in the world. Piperine, the pungency compound of black pepper, is proposed to partially arise from phenylpropanoid pathway. In the biosynthesis of piperine, 4-coumarate:CoA ligase (4CLs) must play a pivotal role in activating intermediate acids to corresponding CoA thioesters to serve as substrates. Based on transcriptome data, we isolated three P. nigrum 4CL isoforms (Pn4CL1, -2, and -3) from unripe peppercorn. These Pn4CLs were expressed in E. coli for in vitro enzyme assay with putative substrates, namely cinnamic, coumaric, ferulic, piperonylic, 3,4-methylenedioxycinnamic (3,4-MDCA), and piperic acids. Phylogenetic analysis and substrate usage study indicated that Pn4CL1, active towards coumaric and ferulic acids, belongs to class I 4CL for lignin synthesis. Pn4CL2 was a typical cinnamate-specific coumarate:CoA ligase-like (CLL) protein. The Pn4CL3, as class II enzyme, exhibited general 4CL activity towards coumaric and ferulic acids. However, Pn4CL3 was also active towards piperonylic acid, 3,4-MDCA, and piperic acid. Pn4CL3 possessed ∼2.6 times higher catalytic efficiency (kcat/KM) towards 3,4-MDCA and piperic acid than towards coumaric and ferulic acids, suggesting its specific role in piperine biosynthesis. Different substrate preference among the Pn4CL isoforms can be explained by 3-dimensional protein structure modeling, which demonstrated natural variants in amino acid residues of binding pocket to accommodate different substrates. Quantitative PCR analysis of these isoforms indicated that Pn4CL1 transcript level was highest in the roots whereas Pn4CL2 in the fruits and Pn4CL3 in the leaves.
Collapse
|
146
|
Zhang J, Tuskan GA, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional and Post-transcriptional Regulation of Lignin Biosynthesis Pathway Genes in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:652. [PMID: 32528504 PMCID: PMC7262965 DOI: 10.3389/fpls.2020.00652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 05/04/2023]
Abstract
Lignin is a heterogeneous polymer of aromatic subunits derived from phenylalanine. It is polymerized in intimate proximity to the polysaccharide components in plant cell walls and provides additional rigidity and compressive strength for plants. Understanding the regulatory mechanisms of lignin biosynthesis is important for genetic modification of the plant cell wall for agricultural and industrial applications. Over the past 10 years the transcriptional regulatory model of lignin biosynthesis has been established in plants. However, the role of post-transcriptional regulation is still largely unknown. Increasing evidence suggests that lignin biosynthesis pathway genes are also regulated by alternative splicing, microRNA, and long non-coding RNA. In this review, we briefly summarize recent progress on the transcriptional regulation, then we focus on reviewing progress on the post-transcriptional regulation of lignin biosynthesis pathway genes in the woody model plant Populus.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- *Correspondence: Jin Zhang,
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Jin-Gui Chen,
| |
Collapse
|
147
|
Yahia Darwish H, Abdelmigid H, Albogami S, Alotaibi S, Nour El-Deen A, Alnefaie A. Induction of Biosynthetic Genes Related to Rosmarinic Acid in Plant Callus Culture and Antiproliferative Activity Against Breast Cancer Cell Line. Pak J Biol Sci 2020; 23:1025-1036. [PMID: 32700853 DOI: 10.3923/pjbs.2020.1025.1036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Rosmarinic acid is considered as one of the most important secondary metabolites in medicinal plants especially of family Lamiaceae. Rosmarinic acid can prevent both the tumor initiation and promotion stages of carcinogenesis. The aim of current study was to evaluate the antiproliferative effects of Hyssopus officinalis and Thymus vulgaris callus crude extracts contained rosmarinic acid on breast cancer cells with correlation to phenylpropanoid biosynthetic pathway genes expression. MATERIALS AND METHODS Calli of both plants were maintained on Murashige and Skoog medium supplemented with kinetin and 2,4-D. Rosmarinic acid was determined spectrophotometrically in both seed-germinated plants (control) and callus tissues. Transcriptional profiling of rosmarinic acid pathway genes was performed with RT-PCR system. The human breast cancer cell line MCF-7 was treated with different levels of crude extracts at different time intervals in order to show their effects on the cell proliferation using a cell viability colorimetric assay (MTT). RESULTS The results showed a significant increase of rosmarinic acid content up to 6.5% in callus compared to control. The transcriptional profile of the selected rosmarinic acid genes in callus tissues indicated significant effects on the rosmarinic acid content in both genotypes. T. vulgaris (90 μg mL-1) and H. officinalis (150 μg mL-1) callus extracts had exhibited highest reduction in the cell MCF-7 viability after 48 h of exposure. CONCLUSION It was concluded that rosmarinic acid production increased in callus tissue, showed the higher gene expression levels and remarkably inhibited growth of human breast cancer cell line.
Collapse
|
148
|
Hirai R, Higaki T, Takenaka Y, Sakamoto Y, Hasegawa J, Matsunaga S, Demura T, Ohtani M. The Progression of Xylem Vessel Cell Differentiation is Dependent on the Activity Level of VND7 in Arabidopsis thaliana. PLANTS 2019; 9:plants9010039. [PMID: 31881731 PMCID: PMC7020236 DOI: 10.3390/plants9010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Xylem vessels are important for water conduction in vascular plants. The VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, master regulators of xylem vessel cell differentiation in Arabidopsis thaliana, can upregulate a set of genes required for xylem vessel cell differentiation, including those involved in secondary cell wall (SCW) formation and programmed cell death (PCD); however, it is not fully understood how VND activity levels influence these processes. Here, we examined the Arabidopsis VND7-VP16-GR line, in which VND7 activity is post-translationally activated by treatments with different concentrations of dexamethasone (DEX), a synthetic glucocorticoid. Our observations showed that 1 nM DEX induced weak SCW deposition, but not PCD, whereas 10 or 100 nM DEX induced both SCW deposition and PCD. The decreased chlorophyll contents and SCW deposition were apparent after 24 h of 100 nM DEX treatment, but became evident only after 48 h of 10 nM DEX treatment. Moreover, the lower DEX concentrations delayed the upregulation of VND7 downstream genes, and decreased their induction levels. They collectively suggest that the regulation of VND activity is important not only to initiate xylem vessel cell differentiation, but also regulate the quality of the xylem vessels through VND-activity-dependent upregulation of the PCD- and SCW-related genes.
Collapse
Affiliation(s)
- Risaku Hirai
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Yuto Takenaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Yuki Sakamoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Junko Hasegawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Sachihiro Matsunaga
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| |
Collapse
|
149
|
Chao N, Jiang WT, Wang XC, Jiang XN, Gai Y. Novel motif is capable of determining CCR and CCR-like proteins based on the divergence of CCRs in plants. TREE PHYSIOLOGY 2019; 39:2019-2026. [PMID: 31748812 DOI: 10.1093/treephys/tpz098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
Cinnamoyl-coenzyme A reductases (CCRs) have been reported as key enzymes involved in monolignol biosynthesis. In this study, a motif-aware workflow based on a new signature motif effectively distinguished CCRs from CCR-like proteins. The divergence of CCRs and CCR-like sequences in Populus tomentosa Carr, Panicum virgatum L, Oryza sativa L and Selaginella moellendorffii Hieron suggests that NWYCY is not efficient for CCR recognition. The novel motif H202(X)2K205 (CCR-SBM or CCR substrate binding motif) was introduced to distinguish between CCRs and CCR-like proteins. The site-directed mutant R205K in Os(I)CCR-like and H202 in PtoCCR7 resulted in the rescue and loss of activity, respectively, further validating the fact that CCR-SBM is critical for maintaining CCR activity. The molecular docking using feruloyl-cinnamoyl-coenzyme A (CoA) as the ligand and binary PhCCR-NADP structures as receptors indicated an interaction between H202 and K205 with CoA moiety. The genuine CCRs and CCR-like proteins from several angiosperms and gymnosperms were screened using a motif-aware workflow and were validated using a biochemical assay. Our results suggest that the motif-aware workflow is efficient and effective for the identification of CCRs and CCR-like proteins in land plants and can be used as a more accurate way of identifying genuine CCRs among land plants.
Collapse
Affiliation(s)
- Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
- School of Biotechnology, Jiangsu University of Science and Technology, ZhenJiang, Jiangsu 212003, People's Republic of China
| | - Wen-Ting Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
| | - Xue-Chun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
| | - Xiang-Ning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, People's Republic of China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, People's Republic of China
| |
Collapse
|
150
|
Chen J, Rao J, Wang Y, Zeng Z, Liu F, Tang Y, Chen X, Liu C, Liu T. Integration of Quantitative Trait Loci Mapping and Expression Profiling Analysis to Identify Genes Potentially Involved in Ramie Fiber Lignin Biosynthesis. Genes (Basel) 2019; 10:genes10110842. [PMID: 31653111 PMCID: PMC6896145 DOI: 10.3390/genes10110842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ramie fibers, one of the most important natural fibers in China, are mainly composed of lignin, cellulose, and hemicellulose. As the high lignin content in the fibers results in a prickly texture, the lignin content is deemed to be an important trait of the fiber quality. In this study, the genetic basis of the fiber lignin content was evaluated, resulting in the identification of five quantitative trait loci (QTLs). Three genes, whole_GLEAN_10021050, whole_GLEAN_10026962, and whole_GLEAN_10009464 that were identified on the QTL regions of qLC7, qLC10, and qLC13, respectively, were found to be homologs of the Arabidopsis lignin biosynthetic genes. Moreover, all three genes displayed differential expression in the barks located in the top and middle parts of the stem, where lignin was not being synthesized and where it was being biosynthesized, respectively. Sequence comparison found that these three genes had wide variations in their coding sequences (CDSs) and putative promoter regions between the two parents, especially the MYB gene whole_GLEAN_10021050, whose protein had insertions/deletions of five amino acids and substitutions of two amino acids in the conserved domain. This evidence indicates that these three genes are potentially involved in lignin biosynthesis in ramie fibers. The QTLs identified from this study provide a basis for the improvement of lignin content and fiber quality in ramie breeding. The characterization of the three candidate genes here will be helpful for the future clarification of their functions in ramie.
Collapse
Affiliation(s)
- Jianrong Chen
- College of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Jing Rao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Fang Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Yinghong Tang
- College of biological and environmental sciences, Hunan University of Arts and Science, Changde 410128, China.
| | - Xiaorong Chen
- Laboratory of ramie, Yichun Institute of Agricultural Sciences, Yichun 336000, China.
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|