101
|
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. THE PLANT CELL 2012; 24:2515-27. [PMID: 22730403 PMCID: PMC3406919 DOI: 10.1105/tpc.112.099119] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 05/18/2023]
Abstract
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Kristýna Floková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Daniel I. Păcurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583-0915
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Monica Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaia Geiss
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles–Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
102
|
Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. PROTOPLASMA 2012; 249 Suppl 2:S137-45. [PMID: 22569926 DOI: 10.1007/s00709-012-0409-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/29/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates (JAs) are plant hormones which are crucial for the response of plants to several biotic and abiotic stresses. Beside this important function, they are involved in several developmental processes throughout plant life. In this short review, we would like to summarize the recent findings about the function of JAs in photomorphogenesis with a main focus on the model plant rice. Early plant development is determined to a large extent by light. Depending on whether seedlings are raised in darkness or in light, they show a completely different appearance which led to the terms skoto- and photomorphogenesis, respectively. The different appearance depending on the light conditions has been used to screen for mutants in photoperception and signalling. By this approach, mutants for several photoreceptors and in the downstream signalling pathways could be isolated. In rice, we and others isolated mutants with a very intriguing phenotype. The mutated genes have been cloned by map-based cloning, and all of them encode for JA biosynthesis genes. The most bioactive form of JAs identified so far is the amino acid conjugate jasmonoyl-isoleucin (JA-Ile). In order to conjugate JA to Ile, an enzyme of the GH3 family, JASMONATE RESISTANT 1, is required. We characterized mutants of OsJAR1 on a physiological and biochemical level and found evidence for redundantly active enzymes in rice.
Collapse
Affiliation(s)
- Katharina Svyatyna
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstr 2, 76128 Karlsruhe, Germany
| | | |
Collapse
|
103
|
Kumar R, Agarwal P, Tyagi AK, Sharma AK. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 2012. [PMID: 22228229 DOI: 10.1007/s00438‐011‐0672‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
In plants, auxin-mediated responses are regulated by diverse proteins. One such class of proteins, i.e. GH3, is involved in the conjugation of IAA to amino acids and provides a negative feedback loop to control auxin homoeostasis. In order to have a better understanding of the mechanism of the auxin action, 15 genes encoding GH3 members were identified using existing EST databases of tomato. Their orthologs were identified from tobacco, potato, N. benthemiana, pepper, and petunia. Phylogenetic analysis of AtGH3, SlGH3, and their Solanaceae orthologs provided insights into various orthologous relationships among these proteins. These genes were found to be responsive to a variety of signals including, phytohormones and environmental stresses. Analysis of AuxRE elements in their promoters showed variability in the sequence as well as number of this element. Up-regulation of only 11 SlGH3 genes, in response to exogenous auxin, suggested possible relationship between the diversity in the sequence and number of AuxRE element with the auxin inducibility. Expression analysis of SlGH3 genes in different vegetative and reproductive tissues/stages suggested limited or no role for most of the SlGH3 genes at the initiation of fruit ripening. However, up-regulation of SlGH3-1 and -2 at the onset of fruit ripening indicates that these genes could have a role in fruit ripening. The present study characterizes GH3 gene family of tomato and its evolutionary relationship with members of this family from other Solanaceae species and Arabidopsis. It could help in the identification of GH3 genes and revelation of their function during vegetative/reproductive development stages from other Solanaceae members.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | | | | | | |
Collapse
|
104
|
Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG. Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. FRONTIERS IN PLANT SCIENCE 2012; 3:234. [PMID: 23125844 PMCID: PMC3485569 DOI: 10.3389/fpls.2012.00234] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/01/2012] [Indexed: 05/04/2023]
Abstract
Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H(2)O(2) in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO(2) levels to ambient CO(2) concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H(2)O(2) production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H(2)O(2) may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H(2)O(2).
Collapse
Affiliation(s)
- Salma Balazadeh
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Nils Jaspert
- Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Muhammad Arif
- Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | | | - Veronica G. Maurino
- Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences, Heinrich-Heine-UniversityDüsseldorf, Germany
- *Correspondence: Veronica G. Maurino, Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
105
|
Fernández-Arbaizar A, Regalado JJ, Lorenzo O. Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) mutant during germination and seedling growth. PLANT & CELL PHYSIOLOGY 2012; 53:53-63. [PMID: 22156383 DOI: 10.1093/pcp/pcr174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The phytohormone ABA regulates seed germination and stress responses. The identification of clade A protein phosphatase type 2C (PP2C)-interacting proteins PYRABACTIN RESISTANCE 1 (PYR1)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) and PYR1-LIKEs (PYLs) as ABA receptors has been a major advance in understanding this process. Here, our aim was to identify additional ABA response loci by suppressor screening of the jasmonate (JA)-insensitive coronatine insensitive 1-16 (coi1-16) mutant using its ABA-hypersensitive phenotype. The identification and genetic characterization of Coi1-16 Resistant to ABA (CRA) loci revealed several unknown and three previously known abi mutants (abi1, abi3 and abi4), thus providing proof-of-concept evidence for this study. The synergistic effect of ABA and JA on seed germination and cotyledon expansion was analyzed in depth and the roles of cra5 coi1-16, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 in ABA signaling during seed germination and stress responses were functionally characterized. The cra5 coi1-16 mutant showed resistance to ABA, paclobutrazol, and abiotic stresses during germination and early developmental stages. Furthermore, the cra5 coi1-16 mutation was mapped to the short arm of chromosome V and mutants exhibited differential expression of ABA-responsive genes, suggesting that CRA5 may function as a positive regulator of ABA signaling. Interestingly, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 mutants display similar ABA- and abiotic stress-insensitive phenotypes during seed germination and seedling establishment. Taken together, our results demonstrate a key role for CRA genes in regulating the onset of seed germination by ABA, and highlight how cra mutants can be used as powerful tools to analyze novel molecular components of ABA signaling in seeds.
Collapse
|
106
|
Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. PHYTOCHEMISTRY 2011; 72:2097-112. [PMID: 21880337 DOI: 10.1016/j.phytochem.2011.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/11/2011] [Accepted: 08/04/2011] [Indexed: 05/18/2023]
Abstract
Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed.
Collapse
Affiliation(s)
- Alicja Piotrowska
- University of Bialystok, Institute of Biology, Swierkowa 20 B, 15-950 Bialystok, Poland
| | | |
Collapse
|
107
|
Zubo YO, Yamburenko MV, Kusnetsov VV, Börner T. Methyl jasmonate, gibberellic acid, and auxin affect transcription and transcript accumulation of chloroplast genes in barley. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1335-44. [PMID: 21316794 DOI: 10.1016/j.jplph.2011.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 05/21/2023]
Abstract
Phytohormones control growth and development of plants. Their effects on the expression of nuclear genes are well investigated. Although they influence plastid-related processes, it is largely unknown whether phytohormones exert their control also by regulating the expression of plastid/chloroplast genes. We have therefore studied the effects of methyl jasmonate (MeJA), gibberellic acid (GA(3)), an auxin (indole-3-acetic acid, IAA), a brassinosteroid (24-epibrassinolide, BR) and a cytokinin (6-benzyladenine) on transcription (run-on assays) and transcript levels (RNA blot hybridization) of chloroplast genes after incubation of detached barley leaves in hormone solutions. BR was the only hormone without significant influence on chloroplast transcription. It showed, however, a weak reducing effect on transcript accumulation. MeJA, IAA and GA(3) repressed both transcription and transcript accumulation, while BA counteracted the effects of the other hormones. Effects of phytohormones on transcription differed in several cases from their influence on transcript levels suggesting that hormones may act via separate signaling pathways on transcription and transcript accumulation in chloroplasts. We observed striking differences in the response of chloroplast gene expression on phytohormones between the lower (young cells) and the upper segments (oldest cells) of barley leaves. Quantity and quality of the hormone effects on chloroplast gene expression seem to depend therefore on the age and/or developmental stage of the cells. As the individual chloroplast genes responded in different ways on phytohormone treatment, gene- and transcript-specific factors should be involved. Our data suggest that phytohormones adjust gene expression in the nucleo-cytoplasmic compartment and in plastids/chloroplasts in response to internal and external cues.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
108
|
Hoffmann M, Hentrich M, Pollmann S. Auxin-oxylipin crosstalk: relationship of antagonists. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:429-45. [PMID: 21658177 DOI: 10.1111/j.1744-7909.2011.01053.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stephan Pollmann (Corresponding author) Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Herein, the various plant hormones may interact additively, synergistically, or antagonistically. By their cooperation they create a delicate regulatory network whose net output largely depends on the action of specific phytohormone combinations rather than on the independent activities of separate hormones. While most classical studies of plant hormonal control have focused mainly on the action of single hormones or on the synergistic interaction of hormones in regulating various developmental processes, recent work is beginning to shed light on the crosstalk of nominally antagonistic plant hormones, such as gibberellins and auxins with oxylipins or abscisic acid. In this review, we summarize our current understanding of how two of the first sight antagonistic plant hormones, i.e. auxins and oxylipins, interact in controlling plant responses and development.
Collapse
Affiliation(s)
- Maik Hoffmann
- Centro de Biotecnología y Genómica de Plantas (U.P.M. - I.N.I.A.) Parque Científico y Tecnológico de la U.P.M., Campus de Montegancedo, Crta., Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
109
|
Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1757-73. [PMID: 21307383 DOI: 10.1093/jxb/erq412] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
110
|
Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J. Serotonin, a Tryptophan-Derived Signal Conserved in Plants and Animals, Regulates Root System Architecture Probably Acting as a Natural Auxin Inhibitor in Arabidopsis thaliana. ACTA ACUST UNITED AC 2011; 52:490-508. [PMID: 21252298 DOI: 10.1093/pcp/pcr006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria. CP 58030 Morelia, Michoacán, México
| | | | | | | | | |
Collapse
|
111
|
Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:317-43. [PMID: 21663438 DOI: 10.1146/annurev-phyto-073009-114447] [Citation(s) in RCA: 1084] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.
Collapse
|
112
|
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010; 2:a001594. [PMID: 20182605 DOI: 10.1101/cshperspect.a001594] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is abundant evidence of multiple biosynthesis pathways for the major naturally occurring auxin in plants, indole-3-acetic acid (IAA), and examples of differential use of two general routes of IAA synthesis, namely Trp-dependent and Trp-independent. Although none of these pathways has been completely defined, we now have examples of specific IAA biosynthetic pathways playing a role in developmental processes by way of localized IAA synthesis, causing us to rethink the interactions between IAA synthesis, transport, and signaling. Recent work also points to some IAA biosynthesis pathways being specific to families within the plant kingdom, whereas others appear to be more ubiquitous. An important advance within the past 5 years is our ability to monitor IAA biosynthesis and metabolism at increasingly higher resolution.
Collapse
Affiliation(s)
- Jennifer Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
113
|
Stewart JL, Nemhauser JL. Do trees grow on money? Auxin as the currency of the cellular economy. Cold Spring Harb Perspect Biol 2010; 2:a001420. [PMID: 20182619 DOI: 10.1101/cshperspect.a001420] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin plays a role in nearly every aspect of a plant's life. Signals from the developmental program, physiological status, and encounters with other organisms all converge on the auxin pathway. The molecular mechanisms facilitating these interactions are diverse; yet, common themes emerge. Auxin can be regulated by modulating rates of biosynthesis, conjugation, and transport, as well as sensitivity of a cell to the auxin signal. In this article, we describe some well-studied examples of auxin's interactions with other pathways.
Collapse
Affiliation(s)
- Jodi L Stewart
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | |
Collapse
|
114
|
Böttcher C, Keyzers RA, Boss PK, Davies C. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3615-25. [PMID: 20581124 DOI: 10.1093/jxb/erq174] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.
Collapse
|
115
|
Erb M, Glauser G. Family Business: Multiple Members of Major Phytohormone Classes Orchestrate Plant Stress Responses. Chemistry 2010; 16:10280-9. [DOI: 10.1002/chem.201001219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
116
|
Onkokesung N, Gális I, von Dahl CC, Matsuoka K, Saluz HP, Baldwin IT. Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. PLANT PHYSIOLOGY 2010; 153:785-98. [PMID: 20382894 PMCID: PMC2879812 DOI: 10.1104/pp.110.156232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 04/06/2010] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) and ethylene (ET) are known to play important roles in mediating plant defense against herbivores, but how they affect development in herbivore-attacked plants is unknown. We used JA-deficient (silenced in LIPOXYGENASE3 [asLOX3]) and ET-insensitive (expressing a mutated dominant negative form of ETHYLENE RESPONSE1 [mETR1]) Nicotiana attenuata plants, and their genetic cross (mETR1asLOX3), to examine growth and development of these plants under simulated herbivory conditions. At the whole plant level, both hormones suppressed leaf expansion after the plants had been wounded and the wounds had been immediately treated with Manduca sexta oral secretions (OS). In addition, ectopic cell expansion was observed around both water- and OS-treated wounds in mETR1asLOX3 leaves but not in mETR1, asLOX3, or wild-type leaves. Pretreating asLOX3 leaves with the ET receptor antagonist 1-methylcyclopropane resulted in local cell expansion that closely mimicked the mETR1asLOX3 phenotype. We found higher auxin (indole-3-acetic acid) levels in the elicited leaves of mETR1asLOX3 plants, a trait that is putatively associated with enhanced cell expansion and leaf growth in this genotype. Transcript profiling of OS-elicited mETR1asLOX3 leaves revealed a preferential accumulation of transcripts known to function in cell wall remodeling, suggesting that both JA and ET act as negative regulators of these genes. We propose that in N. attenuata, JA-ET cross talk restrains local cell expansion and growth after herbivore attack, allowing more resources to be allocated to induced defenses against herbivores.
Collapse
Affiliation(s)
| | - Ivan Gális
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (N.O., I.G., C.C.v.D., I.T.B.); Faculty of Agriculture, Kyushu University, 812–8581 Fukuoka, Japan (K.M.); Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, 07745 Jena, Germany (H.-P.S.)
| | | | | | | | | |
Collapse
|
117
|
Abstract
A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
Collapse
Affiliation(s)
- Paul Overvoorde
- Department of Biology, Macalester College, St. Paul, MN 55105, USA
| | | | | |
Collapse
|
118
|
Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A. Exploring the impact of wounding and jasmonates on ascorbate metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:337-50. [PMID: 20346686 PMCID: PMC2880922 DOI: 10.1016/j.plaphy.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 05/20/2023]
Abstract
Vitamin C (ascorbate, AsA) is the most abundant water-soluble antioxidant in plants. Ascorbate provides the first line of defense against damaging reactive oxygen species (ROS), and helps protect plant cells from many factors that induce oxidative stress, including wounding, ozone, high salinity, and pathogen attack. Plant defenses against these stresses are also dependent upon jasmonates (JAs), a class of plant hormones that promote ROS accumulation. Here, we review evidence showing that wounding and JAs influence AsA accumulation in various plant species, and we report new data from Arabidopsis and tomato testing the influence of JAs on AsA levels in wounded and unwounded plants. In both species, certain mutations that impair JA metabolism and signaling influence foliar AsA levels, suggesting that endogenous JAs may regulate steady-state AsA. However, the impact of wounding on AsA accumulation was similar in JA mutants and wild type controls, indicating that this wound response does not require JAs. Our findings also indicate that the effects of wounding and JAs on AsA accumulation differ between species; these factors both enhanced AsA accumulation in Arabidopsis, but depressed AsA levels in tomato. These results underscore the importance of obtaining data from more than one model species, and demonstrate the complexity of AsA regulation.
Collapse
Affiliation(s)
- Walter P. Suza
- Arkansas Biosciences Institute at Arkansas State University
| | - Carlos A. Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Kelly Carruthers
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Shashank Kulkarni
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
| | - Fiona L. Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR
- Authors to whom correspondence should be addressed (Fax 479 575 2452; ; Fax 870 972 2026; )
| | - Argelia Lorence
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
- Authors to whom correspondence should be addressed (Fax 479 575 2452; ; Fax 870 972 2026; )
| |
Collapse
|
119
|
Truman WM, Bennett MH, Turnbull CG, Grant MR. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. PLANT PHYSIOLOGY 2010; 152:1562-73. [PMID: 20081042 PMCID: PMC2832264 DOI: 10.1104/pp.109.152173] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity.
Collapse
|
120
|
|
121
|
Abstract
ARABIDOPSIS IS A SUPERB MODEL FOR THE STUDY OF AN IMPORTANT SUBGROUP OF OXYLIPINS: the jasmonates. Jasmonates control many responses to cell damage and invasion and are essential for reproduction. Jasmonic acid (JA) is a prohormone and is conjugated to hydrophobic amino acids to produce regulatory ligands. The major receptor for active jasmonate ligands is closely related to auxin receptors and, as in auxin signaling, jasmonate signaling requires the destruction of repressor proteins. This chapter uses a frequently asked question (FAQ) approach and concludes with a practical section.
Collapse
Affiliation(s)
- Iván F. Acosta
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
122
|
De Rybel B, Audenaert D, Beeckman T, Kepinski S. The past, present, and future of chemical biology in auxin research. ACS Chem Biol 2009; 4:987-98. [PMID: 19736989 DOI: 10.1021/cb9001624] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Research into the plant hormone auxin has always been tightly linked with the use of small molecules. In fact, most of the known players in auxin signaling and transport in the model plant Arabidopsis thaliana were identified by screening for resistance to auxin analogues. The use of high-throughput screening technologies has since yielded many novel molecules, opening the way for the identification of new target proteins to further elucidate known pathways. Here, we give an overview of well-established and novel molecules used in auxin research and highlight the current status and future perspectives of chemical biology approaches to auxin biology.
Collapse
Affiliation(s)
- Bert De Rybel
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
123
|
Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 2009; 284:34506-13. [PMID: 19846562 PMCID: PMC2787311 DOI: 10.1074/jbc.m109.061432] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/16/2009] [Indexed: 12/27/2022] Open
Abstract
The wound response prohormone jasmonic acid (JA) accumulates rapidly in tissues both proximal and distal to injury sites in plants. Using quantitative liquid chromatography-mass spectrometry after flash freezing of tissues, we found that JA accumulated within 30 s of injury in wounded Arabidopsis leaves (p = 3.5 e(-7)). JA augmentation distal to wounds was strongest in unwounded leaves with direct vascular connections to wounded leaves wherein JA levels increased significantly within 120 s of wounding (p = 0.00027). This gave conservative and statistically robust temporal boundaries for the average velocity of the long distance signal leading to distal JA accumulation in unwounded leaves of 3.4-4.5 cm min(-1). Like JA, transcripts of the JA synthesis gene LIPOXYGENASE2 (LOX2) and the jasmonate response gene JAZ10.3 also accumulated to higher levels in directly interconnected leaves than in indirectly connected leaves. JA accumulation in a lox2-1 mutant plant was initiated rapidly after wounding then slowed progressively compared with the wild type (WT). Despite this, JAZ10.3 expression in the two genotypes was similar. Free cyclopentenone jasmonate levels were similar in both resting WT and lox2-1. In contrast, bound cyclopentenone jasmonates (arabidopsides) were far lower in lox2-1 than in the WT. The major roles of LOX2 are to generate arabidopsides and the large levels of JA that accumulate proximal to the wound. LOX2 is not essential for some of the most rapid events elicited by wounding.
Collapse
Affiliation(s)
- Gaetan Glauser
- From the School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland and
| | - Lucie Dubugnon
- Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Seyed A. R. Mousavi
- Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Serge Rudaz
- From the School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland and
| | - Jean-Luc Wolfender
- From the School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland and
| | - Edward E. Farmer
- Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| |
Collapse
|
124
|
Chandler JW. Auxin as compère in plant hormone crosstalk. PLANTA 2009; 231:1-12. [PMID: 19888599 DOI: 10.1007/s00425-009-1036-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 10/08/2009] [Indexed: 05/22/2023]
Abstract
The architecture of many hormone perceptions and signalling pathways has been recently well established, together with an awareness that plant hormone responses are the product of networks of interactions involving multiple hormones. As growth is quantitative, so are hormone responses, which underlie a systems approach to development and response. Auxin is arguably one of the best characterised hormones in plant development, and despite many excellent reviews on auxin perception, polar transport, and signal transduction, too little attention has been given to auxin crosstalk. This review, therefore, gives a précis of recent developments in hormone crosstalk involving auxin. For decades, the literature has described the involvement of multiple hormones in particular processes, although the mechanistic bases underlying points of crosstalk have been harder to pinpoint. Crosstalk falls into different categories, such as direct, indirect, or co-regulation. One conclusion for auxin crosstalk is that crosstalk operates extensively via the metabolism of other hormones, however, microarray approaches are increasingly identifying co-regulated genes and nodes of crosstalk at shared signalling components. Auxin crosstalk is often local, and is spatially and temporally regulated to provide adaptive value to environmental conditions and fine-tuning of responses.
Collapse
Affiliation(s)
- John W Chandler
- Department of Developmental Biology, Cologne University, Gyrhofstrasse 17, 50931, Cologne, Germany.
| |
Collapse
|
125
|
Abstract
Tight regulation of the auxin hormone indole-3-acetic acid (IAA) is crucial for plant development. Newly discovered IAA antagonists are the amide-linked tryptophan conjugates of IAA and jasmonic acid (JA). JA-Trp and IAA-Trp interfered with root gravitropism in Arabidopsis, and inhibited several responses to exogenously supplied IAA. Relatively low concentrations of the inhibitors occurred in Arabidopsis, but Pisum sativum flowers contained over 300 pmole g(-1) FW of JA-Trp. DihydroJA was an even more effective inhibitor than JA-Trp, suggesting that Trp conjugates with other JA derivatives may also be functional. JA-Trp and IAA-Trp add to the list of documented bioactive amide hormone conjugates. The only other example is JA-Ile, the recently discovered jasmonate signal. These examples establish that conjugation not only inactivates hormones, but in some cases creates novel compounds that function in hormone signaling.
Collapse
Affiliation(s)
- Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68521, USA.
| |
Collapse
|