101
|
Wang X, Li C, Zhou Z, Zhang Y. Identification of Three (Iso)flavonoid Glucosyltransferases From Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2019; 10:28. [PMID: 30761172 PMCID: PMC6362427 DOI: 10.3389/fpls.2019.00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
(Iso)flavonoids are one of the largest groups of natural phenolic products conferring great value to the health of plants and humans. Pueraria lobata, a legume, has long been used in Chinese traditional medicine. (Iso)flavonoids mainly present as glycosyl-conjugates and accumulate in P. lobata roots. However, the molecular mechanism underlying the glycosylation processes in (iso)flavonoid biosynthesis are not fully understood. In the current study, three novel UDP-glycosyltransferases (PlUGT4, PlUGT15, and PlUGT57) were identified in P. lobata from RNA-seq data. Biochemical assays of these three recombinant PlUGTs showed all of them were able to glycosylate isoflavones (genistein and daidzein) at the 7-hydroxyl position in vitro. In comparison with the strict substrate specificity for PlUGT15 and PlUGT57, PlUGT4 displayed utilization of a broad range of sugar acceptors. Particularly, PlUGT15 exhibited a much higher catalytic efficiency toward isoflavones (genistein and daidzein) than any other identified 7-O-UGT from P. lobata. Moreover, the transcriptional expression patterns of these PlUGTs correlated with the accumulation of isoflavone glucosides in MeJA-treated P. lobata, suggesting their possible in vivo roles in the glycosylation process.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zilin Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yansheng Zhang,
| |
Collapse
|
102
|
Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P, Luo Y. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:212-219. [PMID: 30053665 DOI: 10.1016/j.scitotenv.2018.07.247] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Root exudates are the main media of information communication and energy transfer between plant roots and the soil. Understanding the response of root exudates to contamination stress is crucial in revealing the rhizoremediation mechanisms. Here, we investigate the response of alfalfa root exudates to bis(2-ethylhexyl) phthalate (DEHP) stress based on nontargeted metabolomic analysis. Alfalfa root exudates were collected using greenhouse hydroponic culture and analysed by gas chromatography-time of flight mass spectrometry (GC-TOFMS). A total of 314 compounds were identified in alfalfa root exudates of which carbohydrates, acids and lipids accounted for 28.6, 15.58 and 13.87%, respectively. Orthogonal partial least squares discriminant analysis (OPLS-DA) shows that DEHP exerted an important influence on the composition and quantity of root exudates. Fifty metabolites were clearly changed even at lower concentrations of DEHP, including common carbohydrates, fatty acids and some special rhizosphere signal materials, such as 4',5-dihyrroxy-7-methoxyisoflavone. DEHP stress significantly suppressed carbohydrate metabolism but promoted fatty acid metabolism. However, amino acid metabolism, lipid metabolism and the tricarboxylic acid (TCA) cycle showed little change in response to DEHP stress.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
103
|
Schenke D, Utami HP, Zhou Z, Gallegos MT, Cai D. Suppression of UV-B stress induced flavonoids by biotic stress: Is there reciprocal crosstalk? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:53-63. [PMID: 30558728 DOI: 10.1016/j.plaphy.2018.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 05/11/2023]
Abstract
Plants respond to abiotic UV-B stress with enhanced expression of genes for flavonoid production, especially the key-enzyme chalcone synthase (CHS). Some flavonoids are antioxidative, antimicrobial and/or UV-B protective secondary metabolites. However, when plants are challenged with concomitant biotic stress (simulated e.g. by the bacterial peptide flg22, which induces MAMP triggered immunity, MTI), the production of flavonoids is strongly suppressed in both Arabidopsis thaliana cell cultures and plants. On the other hand, flg22 induces the production of defense related compounds, such as the phytoalexin scopoletin, as well as lignin, a structural barrier thought to restrict pathogen spread within the host tissue. Since all these metabolites require the precursor phenylalanine for their production, suppression of the flavonoid production appears to allow the plant to focus its secondary metabolism on the production of pathogen defense related compounds during MTI. Interestingly, several flavonoids have been reported to display anti-microbial activities. For example, the plant flavonoid phloretin targets the Pseudomonas syringae virulence factors flagella and type 3 secretion system. That is, suppression of flavonoid synthesis during MTI might have also negative side-effects on the pathogen defense. To clarify this issue, we deployed an Arabidopsis flavonoid mutant and obtained genetic evidence that flavonoids indeed contribute to ward off the virulent bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Finally, we show that UV-B attenuates expression of the flg22 receptor FLS2, indicating that there is negative and reciprocal interaction between this abiotic stress and the plant-pathogen defense responses.
Collapse
Affiliation(s)
- Dirk Schenke
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts Universität zu Kiel, 24118, Kiel, Germany.
| | - Hashlin Pascananda Utami
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts Universität zu Kiel, 24118, Kiel, Germany
| | - Zheng Zhou
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts Universität zu Kiel, 24118, Kiel, Germany
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008, Granada, Spain
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts Universität zu Kiel, 24118, Kiel, Germany
| |
Collapse
|
104
|
Xu LY, Wang LY, Wei K, Tan LQ, Su JJ, Cheng H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 2018; 19:955. [PMID: 30577813 PMCID: PMC6304016 DOI: 10.1186/s12864-018-5291-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map. RESULTS A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation. CONCLUSIONS To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
Collapse
Affiliation(s)
- Li-Yi Xu
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li-Yuan Wang
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Kang Wei
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing-Jing Su
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Hao Cheng
- National Centre for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
105
|
Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy-Induced Hypertension: Review of In Vitro, In Vivo, and Clinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7421489. [PMID: 30622610 PMCID: PMC6304490 DOI: 10.1155/2018/7421489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Since improving maternal and child health is a public health priority worldwide, the main aim of treatment of hypertension in pregnant women is to prevent complications during pregnancy, labor, and postpartum. In consequence, much attention is paid to the use of antihypertensive drugs that can be used safely during pregnancy. Several side effects of methyldopa, which is currently the most commonly used antihypertensive drug in pregnant women, mean that the search for an effective and safe alternative still continues. Flavonoid compounds present in medicinal plants, vegetables, and fruits may be a promising source of new drugs. In this aspect, quercetin, a well-known flavonoid due to its antihypertensive action, may be considered a prototype for safe antihypertensive drugs. This review focuses on the selective activity of quercetin. Based on recent studies, a few problems were discussed, including (1) pathology of pregnancy-induced hypertension; (2) search for new pharmacological treatments of pregnancy-induced hypertension; (3) issues with the use of herbal extracts during pregnancy; (4) flavonoids as natural active chemical compounds; (5) quercetin: its action during pregnancy, in vitro and in vivo pharmacological activities, clinical trials, and meta-analysis; (6) quercetin intake during pregnancy; (7) other natural compounds tested during pregnancy; (8) potential problems with the use of quercetin; (9) safety profile of quercetin. Various studies have shown a beneficial effect of quercetin on vascular endothelial function and its antioxidative and anti-inflammatory activity on cellular and tissue level. It is known that in animal models quercetin affects positively the development of embryo, fetus, and placenta. Because this flavonoid did not have teratogenic and abortive effect, it is generally recognized as safe. For this reason it should be appreciated and studied in the aspect of its potential use in the prevention and treatment of pregnancy-induced hypertension among women in this risk group.
Collapse
|
106
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
107
|
Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front Cell Neurosci 2018; 12:373. [PMID: 30405355 PMCID: PMC6206263 DOI: 10.3389/fncel.2018.00373] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a pathological feature of quite a number of Central Nervous System diseases such as Alzheimer and Parkinson's disease among others. The hallmark of brain neuroinflammation is the activation of microglia, which are the immune resident cells in the brain and represents the first line of defense when injury or disease occur. Microglial activated cells can adopt different phenotypes to carry out its diverse functions. Thus, the shift into pro-inflammatory/neurotoxic or anti-inflammatory/neuroprotective phenotypes, depending of the brain environment, has totally changed the understanding of microglia in neurodegenerative disease. For this reason, novel therapeutic strategies which aim to modify the microglia polarization are being developed. Additionally, the understanding of how nutrition may influence the prevention and/or treatment of neurodegenerative diseases has grown greatly in recent years. The protective role of Mediterranean diet (MD) in preventing neurodegenerative diseases has been reported in a number of studies. The Mediterranean dietary pattern includes as distinctive features the moderate intake of red wine and extra virgin olive oil, both of them rich in polyphenolic compounds, such as resveratrol, oleuropein and hydroxytyrosol and their derivatives, which have demonstrated anti-inflammatory effects on microglia on in vitro studies. This review summarizes our understanding of the role of dietary phenolic compounds characteristic of the MD in mitigating microglia-mediated neuroinflammation, including explanation regarding their bioavailability, metabolism and blood-brain barrier.
Collapse
Affiliation(s)
- Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Ana B. Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Stéphanie Krisa
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Tristan Richard
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - M. Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
108
|
Antonio AS, Wiedemann LSM, Veiga Junior VF. The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Adv 2018; 8:25767-25784. [PMID: 35539808 PMCID: PMC9082723 DOI: 10.1039/c8ra02067a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
The Capsicum genus is one of the most popular plants consumed and cultivated worldwide, containing approximately 50 000 varieties of pepper. Due to its wide biodiversity, the chemical composition within the genus also presents a great variability. Its major applications are in food and pharmacological industry, as pepper presents a chemical composition rich in capsaicinoids, carotenoids, flavonoids and volatile compounds which is attributed to the ability of the fruit to remove insipidity, produce aromas and act against oxidative diseases. Due the existence of several cultivars there is a huge intraspecific chemical variability within each species, which can be considered as an obstacle when selecting and cultivating a species to be applied as a natural product source for a specific objective. The usage of pepper-based products in different industrial areas requires pre-established ranges of chemical compounds, such as capsaicinoids, which in high concentration are toxic when consumed by humans. Applying a pepper with a chemical profile closely related to the concentration that is required after industrial processing can improve efficacy and effectiveness of the process. An insight into the chemical characteristics of major secondary bioactive compounds within Capsicum, the factors that affect their concentration and their chemosystematic implication are reported and discussed.
Collapse
Affiliation(s)
- A S Antonio
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University Avenida Rodrigo Octávio, 6200, Coroado, CEP: 69.077-000 Manaus AM Brazil
| | - L S M Wiedemann
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University Avenida Rodrigo Octávio, 6200, Coroado, CEP: 69.077-000 Manaus AM Brazil
| | - V F Veiga Junior
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University Avenida Rodrigo Octávio, 6200, Coroado, CEP: 69.077-000 Manaus AM Brazil
- Chemistry Section, Military Institute of Engineering Praça General Tibúrcio, 80, Praia Vermelha, Urca, CEP: 22.290-270 Rio de Janeiro RJ Brazil
| |
Collapse
|
109
|
Sun MY, Li JY, Li D, Huang FJ, Wang D, Li H, Xing Q, Zhu HB, Shi L. Full-Length Transcriptome Sequencing and Modular Organization Analysis of the Naringin/Neoeriocitrin-Related Gene Expression Pattern in Drynaria roosii. PLANT & CELL PHYSIOLOGY 2018; 59:1398-1414. [PMID: 29660070 DOI: 10.1093/pcp/pcy072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/31/2018] [Indexed: 05/28/2023]
Abstract
Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.
Collapse
Affiliation(s)
- Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing-Yi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Feng-Jie Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Quan Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui-Bin Zhu
- Hangzhou1gene Technology Co., Ltd., HangZhou, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
110
|
Zhang S, Zhang L, Tai Y, Wang X, Ho CT, Wan X. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant ( Camellia sinensis) Using 'Omics'-Based Network Approaches: A Future Perspective. FRONTIERS IN PLANT SCIENCE 2018; 9:480. [PMID: 29915604 PMCID: PMC5994431 DOI: 10.3389/fpls.2018.00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/29/2018] [Indexed: 05/23/2023]
Abstract
Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, 'omics'-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight 'omics'-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in 'omics' analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with 'omics'-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant.
Collapse
Affiliation(s)
- Shihua Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Institute of Applied Mathematics, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Institute of Applied Mathematics, Anhui Agricultural University, Hefei, China
| | - Yuling Tai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Institute of Applied Mathematics, Anhui Agricultural University, Hefei, China
| |
Collapse
|
111
|
Alkhalidy H, Wang Y, Liu D. Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients 2018; 10:nu10040438. [PMID: 29614722 PMCID: PMC5946223 DOI: 10.3390/nu10040438] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
112
|
Guerreiro TM, Gonçalves RF, Melo CFOR, de Oliveira DN, Lima EDO, Visintin JA, de Achilles MA, Catharino RR. A Metabolomic Overview of Follicular Fluid in Cows. Front Vet Sci 2018; 5:10. [PMID: 29473045 PMCID: PMC5809397 DOI: 10.3389/fvets.2018.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Follicular fluid (FF) protects the oocyte against proteolysis and extrusion during ovulation, providing an appropriate microenvironment that favors proper embryonic development; thereby, FF plays a key role in embryo quality. Being directly related to cattle breeding, studying FF is extremely important in livestock science to measure cattle fertility. This may eventually help to assess the quality of both meat and milk, products widely consumed worldwide. There is an important commercial interest in the evaluation and characterization of compounds present in the FF of livestock that present greater likelihood of pregnancy. Mass spectrometry is a great ally for this type of analysis and can provide quick and efficient screening for molecular markers in biological samples. The present study demonstrated the potential of high-resolution mass spectrometry in analyzing FF samples from two distinct groups of Nellore cows (Bos indicus): high and low fertility, as determined by the number of oocytes produced. We were able to delineate markers of interest for each group, which may ultimately be related to biochemical pathways that lead to higher or lower reproductive performance.
Collapse
Affiliation(s)
- Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Roseli Fernandes Gonçalves
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University - USP, São Paulo, Brazil
| | - Carlos Fernando O Rodrigues Melo
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Jose Antônio Visintin
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University - USP, São Paulo, Brazil
| | | | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
113
|
Grignon-Dubois M, Rezzonico B. Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: First evidence of three infraspecific flavonoid chemotypes in three distinctive geographical regions. PHYTOCHEMISTRY 2018; 146:91-101. [PMID: 29253735 DOI: 10.1016/j.phytochem.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
The flavonoid content of Zostera noltei leaves was investigated over a broad spatial scale using chromatographic and spectroscopic techniques (HPLC-DAD, LC/MS and NMR). Samples were collected at fifteen localities covering Mediterranean Sea and NE Atlantic coast, and representative of three types of coastal ecosystems: mesotidal bays, coastal lagoons, and open-sea. Three geographically distinct flavonoid chemotypes were identified on the basis of their respective major compound. One is characterized by apigenin 7-sulfate (Eastern part of Gulf of Cadiz), one by diosmetin 7-sulfate (French Atlantic coast and Mediterranean Sea), and the third contained similar quantities of the above two compounds (Mauritania and South Portugal). Our results show that metabolomic profiling using a combination of analytical techniques is a tool of choice to characterize chemical phenotype accurately. This work emphasizes for the first time the spatial variability in the flavonoid chemistry of Z. noltei throughout Atlantic and Mediterranean range, and constitutes the first report of chemical races in the Zosteraceae family. This infraspecific chemical differentiation should be considered when dealing with the role of Z. noltei in coastal ecosystems or in the selection of the best population donor for Z. noltei beds restoration. Combined with molecular identification, phenolic fingerprinting might be helpful to elucidate the evolutionary history of Z. noltei.
Collapse
|
114
|
Abstract
Increasing extent of pathogenic resistance to drugs has encouraged the seeking for new anti-virulence drugs. Many pharmacological and pharmacognostical researches are performed to identify new drugs or discover new structures for the development of novel therapeutic agents in the antibiotic treatments. Although many phytochemicals show prominent antimicrobial activity, their power lies in their anti-virulence properties. Quorum sensing (QS) is a bacterial intercellular communication mechanism, which depends on bacterial cell population density and controls the pathogenesis of many organisms by regulating gene expression, including virulence determinants. QS has become an attractive target for the development of novel anti-infective agents that do not rely on the use of antibiotics. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Medicinal plants offer an attractive repertoire of phytochemicals with novel microbial disease-controlling potential, due to the spectrum of secondary metabolites present in extracts, which include phenolics, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. They have recently received considerable attention as a new source of safe and effective QS inhibitory substances. The objective of this review is to give a brief account of the research reports on the plants and natural compounds with anti-QS potential.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
115
|
Abstract
Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.
Collapse
Affiliation(s)
- Luis A Cañas
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain.
| | - José Pío Beltrán
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain
| |
Collapse
|
116
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
117
|
Narożna D, Książkiewicz M, Przysiecka Ł, Króliczak J, Wolko B, Naganowska B, Mądrzak CJ. Legume isoflavone synthase genes have evolved by whole-genome and local duplications yielding transcriptionally active paralogs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:149-167. [PMID: 28969795 DOI: 10.1016/j.plantsci.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 05/04/2023]
Abstract
Isoflavone synthase (IFS) is the key enzyme of isoflavonoid biosynthesis. IFS genes were identified in numerous species, although their evolutionary patterns have not yet been reconstructed. To address this issue, we performed structural and functional genomic analysis. Narrow leafed lupin, Lupinus angustifolius L., was used as a reference species for the genus, because it has the most developed molecular tools available. Nuclear genome BAC library clones carrying IFS homologs were localized by linkage mapping and fluorescence in situ hybridization in three chromosome pairs. Annotation of BAC, scaffold and transcriptome sequences confirmed the presence of three full-length IFS genes in the genome. Microsynteny analysis and Bayesian inference provided clear evidence that IFS genes in legumes have evolved by lineage-specific whole-genome and tandem duplications. Gene expression profiling and RNA-seq data mining showed that the vast majority of legume IFS copies have maintained their transcriptional activity. L. angustifolius IFS homologs exhibited organ-specific expression patterns similar to those observed in other Papilionoideae. Duplicated lupin IFS homologs retained non-negligible levels of substitutions in conserved motifs, putatively due to positive selection acting during early evolution of the genus, before the whole-genome duplication. Strong purifying selection preserved newly arisen IFS duplicates from further nonsynonymous changes.
Collapse
Affiliation(s)
- Dorota Narożna
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Łucja Przysiecka
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland.
| | - Joanna Króliczak
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Cezary J Mądrzak
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| |
Collapse
|
118
|
Fresquet-Corrales S, Roque E, Sarrión-Perdigones A, Rochina M, López-Gresa MP, Díaz-Mula HM, Bellés JM, Tomás-Barberán F, Beltrán JP, Cañas LA. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS One 2017; 12:e0184839. [PMID: 28902886 PMCID: PMC5597232 DOI: 10.1371/journal.pone.0184839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.
Collapse
Affiliation(s)
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Alejandro Sarrión-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maricruz Rochina
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - María P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Huertas M. Díaz-Mula
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Francisco Tomás-Barberán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José P. Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Luis A. Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| |
Collapse
|
119
|
Yin Q, Shen G, Di S, Fan C, Chang Z, Pang Y. Genome-Wide Identification and Functional Characterization of UDP-Glucosyltransferase Genes Involved in Flavonoid Biosynthesis in Glycine max. PLANT & CELL PHYSIOLOGY 2017; 58:1558-1572. [PMID: 28633497 DOI: 10.1093/pcp/pcx081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Flavonoids, natural products abundant in the model legume Glycine max, confer benefits to plants and to animal health. Flavonoids are present in soybean mainly as glycoconjugates. However, the mechanisms of biosynthesis of flavonoid glycosides are largely unknown in G. max. In the present study, 212 putative UDP-glycosyltransferase (UGT) genes were identified in G. max by genome-wide searching. The GmUGT genes were distributed differentially among the 20 chromosomes, and they were expressed in various tissues with distinct expression profiles. We further analyzed the enzymatic activities of 11 GmUGTs that are potentially involved in flavonoid glycosylation, and found that six of them (UGT72X4, UGT72Z3, UGT73C20, UGT88A13, UGT88E19 and UGT92G4) exhibited activity toward flavonol, isoflavone, flavone and flavanol aglycones with different kinetic properties. Among them, UGT72X4, UGT72Z3 and UGT92G4 are flavonol-specific UGTs, and UGT73C20 and UGT88E19 exhibited activity toward both flavonol and isoflavone aglycones. In particular, UGT88A13 exhibited activity toward epicatechin, but not for the flavonol aglycones kaempferol and quercetin. Overexpression of these six GmUGT genes significantly increased the contents of isoflavone and flavonol glucosides in soybean hairy roots. In addition, overexpression of these six GmUGT genes also affected flavonol glycoside contents differently in seedlings and seeds of transgenic Arabidopsis thaliana. We provide valuable information on the identification of all UGT genes in soybean, and candidate GmUGT genes for potential metabolic engineering of flavonoid compounds in both Escherichia coli and plants.
Collapse
Affiliation(s)
- Qinggang Yin
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Guoan Shen
- Key Laboratory of Plant Molecular and Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shaokang Di
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Cunying Fan
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yongzhen Pang
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
120
|
Hirano K, Masuda R, Takase W, Morinaka Y, Kawamura M, Takeuchi Y, Takagi H, Yaegashi H, Natsume S, Terauchi R, Kotake T, Matsushita Y, Sazuka T. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1. PLANTA 2017; 246:61-74. [PMID: 28357539 DOI: 10.1007/s00425-017-2685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 05/28/2023]
Abstract
The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Reiko Masuda
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Wakana Takase
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoichi Morinaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Zensho Holdings Co., Ltd., Tokyo, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Takeuchi
- Rice Breeding Research Team, NARO Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | | | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
121
|
Kumar V, Yadav SK. Pyramiding of tea Dihydroflavonol reductase and Anthocyanidin reductase increases flavan-3-ols and improves protective ability under stress conditions in tobacco. 3 Biotech 2017; 7:177. [PMID: 28664364 PMCID: PMC5491439 DOI: 10.1007/s13205-017-0819-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/17/2017] [Indexed: 11/28/2022] Open
Abstract
Tea (Camellia sinensis) is one of the richest sources of flavan-3-ols, an important class of flavonoids. The expression level of gene-encoded key regulatory enzymes of flavan-3-ol/anthocyanin biosynthetic pathway, dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (ANR), has been highly correlated with the flavan-3-ol contents and antioxidant activity in tea plant. In the present study, pyramiding of CsDFR and CsANR in tobacco was achieved. However, single transgenic tobacco overexpressing either CsDFR or CsANR was documented earlier. In continuation, pyramided transgenic lines were evaluated for the possible, either same or beyond, effect on flavan-3-ol accumulation and protective ability against biotic and abiotic stresses. The pyramided transgenic lines showed early flowering and improved seed yield. The transcript levels of flavan-3-ol/anthocyanin biosynthetic pathway and related genes in pyramided transgenic lines were upregulated as compared to control tobacco plants. The accumulations of flavan-3-ols were also found to be higher in pyramided transgenic lines than control tobacco plants. In contrast, anthocyanin content was observed to be decreased in pyramided transgenic lines, while DPPH activity was higher in pyramided transgenic lines. In pyramided transgenic lines, strong protective ability against feeding by Spodoptera litura was documented. The seeds of pyramided transgenic lines were also found to have better germination rate under aluminum toxicity as compared to control tobacco plants. Interestingly, the synergistic effect of these two selected genes are not beyond from transgenic lines expressing either CsDFR and CsANR alone as published earlier in terms of flavan-3-ols accumulation. However, the unique flower color and better seed germination rate are some interestingly comparable differences that were reported in pyramided lines in relation to individual transgenic plants. In conclusion, the present results reveal an interesting dynamic between CsDFR and CsANR in modulating flavan-3-ol/anthocyanin levels and functional analysis of stacked CsDFR and CsANR transgenic tobacco lines.
Collapse
Affiliation(s)
- Vinay Kumar
- Centre for Plant Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151001, India.
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, 176061, India.
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, 176061, India
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, India
| |
Collapse
|
122
|
Biała W, Banasiak J, Jarzyniak K, Pawela A, Jasiński M. Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3231-3241. [PMID: 28369642 PMCID: PMC5853973 DOI: 10.1093/jxb/erx059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 05/18/2023]
Abstract
The ABCG10 protein of the model legume Medicago truncatula is required for efficient de novo production of the phenylpropanoid-derived phytoalexin medicarpin. Silencing the expression of MtABCG10 results, inter alia, in a lower accumulation of medicarpin and its precursors. In this study, we demonstrate that the impairment of medicarpin biosynthesis can be partially averted by the exogenous application of 4-coumarate, an early precursor of the core phenylpropanoid pathway, and the deoxyisoflavonoid formononetin. Experiments conducted using HPLC/MS in a heterologous system as well as in vitro transport assays with labelled substrate revealed that MtABCG10 is responsible for the membrane translocation of 4-coumarate and liquiritigenin, molecules representing key branching points in the phenylpropanoid pathway. The identification of transporters participating in the distribution of precursors is an important step in understanding phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Wanda Biała
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Joanna Banasiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Jarzyniak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Aleksandra Pawela
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michał Jasiński
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
- Correspondence:
| |
Collapse
|
123
|
DETERMINATION OF INFLUENCE OF AUXILIARY INGREDIENTS ON ANTIOXIDANT ACTIVITY OF EXTRACT OF LEAVES OF THE QUINCE AND GRAPES SEED MEAL IN PHYTOGEL WITH THE USE OF SPECTROMETRIC METHOD WITH THE DPPH INDICATOR SYSTEM. EUREKA: HEALTH SCIENCES 2017. [DOI: 10.21303/2504-5679.2017.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study an impact of auxiliary substances on gel containing extracts of quince leaves and grape seed meal, which is based on polymethylsiloxane.
Pharmaco - technological and physicochemical methods. In this study, a spectrophotometric method is applied to determine an antioxidant activity of the gel.
We examined an impact of auxiliary substances on the gel. According to the results of studies we chose auxiliary ingredients which improve not only gustatory quality but also technological parameters. Applying spectrometric analysis, we investigated an antioxidant activity of phytogel. The gel has a structure of rigid matrix, which is built through a process of condensation of methylsilanetriol and siloxane bonds between the silicon atoms, which makes it possible to maintain and stabilize active natural ingredients. The experiment proved that the extract of leaves of quince and grape seed meal have some antioxidant activity. But, upon the introduction of stevia extract as a coregent taste, the gel that contains quince leaf extract and grape seed meal increases the antioxidant activity. Phytogel has antioxidant activity of 84% relative to the reference sample, which suggests that the gel can resist the harmful effects of free radicals, which are constantly produced in the human organism
It was confirmed that the addition of auxiliary substances into the gel with the extracts of quince leaves and grape seed meal based on polymethylsiloxane increases bioavailability and therapeutic efficiency, in particular, the antioxidant activity, of the gel.
Stevia extract as an adjuvant in the phytogel, as gustatory corrector, increases the antioxidant activity of phyto pharmaceutical drugs.
Collapse
|
124
|
Eloy NB, Voorend W, Lan W, Saleme MDLS, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K, Nicomedes J, Ralph J, Boerjan W. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. PLANT PHYSIOLOGY 2017; 173:998-1016. [PMID: 27940492 PMCID: PMC5291018 DOI: 10.1104/pp.16.01108] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/06/2016] [Indexed: 05/18/2023]
Abstract
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.
Collapse
Affiliation(s)
- Nubia B Eloy
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wannes Voorend
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wu Lan
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Marina de Lyra Soriano Saleme
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Igor Cesarino
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Ruben Vanholme
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Rebecca A Smith
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Geert Goeminne
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Andreas Pallidis
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Kris Morreel
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - José Nicomedes
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - John Ralph
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wout Boerjan
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.);
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.);
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
125
|
|
126
|
Xu Q, Zhu J, Zhao S, Hou Y, Li F, Tai Y, Wan X, Wei C. Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing Approach for In-depth Understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1205. [PMID: 28744294 PMCID: PMC5504172 DOI: 10.3389/fpls.2017.01205] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 05/22/2023]
Abstract
Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL) splice isoforms. Herein, we applied single-molecule sequencing to pooled tea plant tissues, to provide a more complete transcriptome of C. sinensis. Moreover, we identified 94 FL transcripts and four alternative splicing events for enzyme-coding genes involved in the biosynthesis of flavonoids, theanine and caffeine. According to the comparison between long-read isoforms and assemble transcripts, we improved the quality and accuracy of genes sequenced by short-read next-generation sequencing technology. The resulting FL transcripts, together with the improved assembled transcripts and identified alternative splicing events, enhance our understanding of genes involved in the biosynthesis of characteristic secondary metabolites in C. sinensis.
Collapse
|
127
|
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5:e47. [PMID: 28620474 PMCID: PMC5465813 DOI: 10.1017/jns.2016.41] [Citation(s) in RCA: 2534] [Impact Index Per Article: 281.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD. Information on the working mechanisms of flavonoids is still not understood properly. However, it has widely been known for centuries that derivatives of plant origin possess a broad spectrum of biological activity. Current trends of research and development activities on flavonoids relate to isolation, identification, characterisation and functions of flavonoids and finally their applications on health benefits. Molecular docking and knowledge of bioinformatics are also being used to predict potential applications and manufacturing by industry. In the present review, attempts have been made to discuss the current trends of research and development on flavonoids, working mechanisms of flavonoids, flavonoid functions and applications, prediction of flavonoids as potential drugs in preventing chronic diseases and future research directions.
Collapse
Affiliation(s)
- A. N. Panche
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
- MGM's Institute of Biosciences and Technology, Mahatma Gandhi Mission, N-6, CIDCO, Aurangabad-431003, India
| | - A. D. Diwan
- MGM's Institute of Biosciences and Technology, Mahatma Gandhi Mission, N-6, CIDCO, Aurangabad-431003, India
| | - S. R. Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
128
|
Rojas Rodas F, Di S, Murai Y, Iwashina T, Sugawara S, Mori T, Nakabayashi R, Yonekura-Sakakibara K, Saito K, Takahashi R. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase. PLANT MOLECULAR BIOLOGY 2016; 92:445-456. [PMID: 27561783 DOI: 10.1007/s11103-016-0523-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/03/2016] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase and corresponds to the Fg1 gene. GmF3G6″Gt had an amino acid similarity of 82 % with GmF3G6″Rt encoding flavonol 3-O-glucoside/galactoside (1→6) rhamnosyltransferase, suggesting a recent evolutionary divergence of the two genes. This may be the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. A scheme for the control of FG biosynthesis is proposed.
Collapse
Affiliation(s)
- Felipe Rojas Rodas
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518, Japan
- Universidad Católica de Oriente, Rionegro, Antioquia, Colombia
| | - Shaokang Di
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518, Japan
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yoshinori Murai
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, 305-0005, Japan
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, 305-0005, Japan
| | - Satoko Sugawara
- The RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Mori
- The RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryo Nakabayashi
- The RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Kazuki Saito
- The RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryoji Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518, Japan.
- NARO Institute of Crop Science, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
129
|
Pan J, Wang W, Li D, Shu Z, Ye X, Chang P, Wang Y. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 2016; 17:809. [PMID: 27756219 PMCID: PMC5070194 DOI: 10.1186/s12864-016-3158-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. RESULTS Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log2Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. CONCLUSION Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low temperature and NO are identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low-temperature tolerance in pollen tube.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
130
|
Free radical scavenging activity of three different flowers-Hibiscus rosa-sinensis, Quisqualis indica and Senna surattensis. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
131
|
Awasthi P, Gupta AP, Bedi YS, Vishwakarma RA, Gandhi SG. Mannitol Stress Directs Flavonoid Metabolism toward Synthesis of Flavones via Differential Regulation of Two Cytochrome P450 Monooxygenases in Coleus forskohlii. FRONTIERS IN PLANT SCIENCE 2016; 7:985. [PMID: 27458469 PMCID: PMC4933719 DOI: 10.3389/fpls.2016.00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 monooxygenases (CYP450s) are known to play important roles in biosynthesis of all secondary metabolites, including flavonoids. Despite this, few CYP450s have been functionally characterized in model plants and roles of fewer CYP450s are known in non-model, medicinal, and aromatic plants. Our study in Coleus forskohlii indicates that flavone synthase (CYP93B) and flavonoid 3' monooxygenase (CYP706C) are key enzymes positioned at a metabolic junction, to execute the biosynthesis of different sub-classes of flavonoids (flavones, flavonol, anthocynanin, isoflavones etc.) from a common precursor. Such branch points are favored targets for artificially modulating the metabolic flux toward specific metabolites, through genetic manipulation or use of elicitors that differentially impact the expression of branch point genes. Genkwanin, the only flavone reported from C. forskohlii, is known to possess anti-inflammatory activity. It is biosynthesized from the general flavonoid precursor: naringenin. Two differentially expressed cytochrome P450 genes (CfCYP93B, CfCYP706C), exhibiting maximum expression in leaf tissues, were isolated from C. forskohlii. Mannitol treatment resulted in increased expression of CfCYP93B and decrease in expression of CfCYP706C. Metabolite quantification data showed that genkwanin content increased and anthocyanin levels decreased in response to mannitol treatment. Alignment, phylogenetic analysis, modeling, and molecular docking analysis of protein sequences suggested that CfCYP93B may be involved in conversion of naringenin to flavones (possibly genkwanin via apigenin), while CfCYP706C may act on common precursors of flavonoid metabolism and channel the substrate toward production of flavonols or anthocynanins. Decrease in expression of CfCYP706C and increase in accumulation of genkwanin suggested that mannitol treatment may possibly lead to accumulation of genkwanin via suppression of a competitive branch of flavonoids in C. forskohlii.
Collapse
Affiliation(s)
- Praveen Awasthi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial ResearchJammu, India
| | - Ajai Prakash Gupta
- Quality Control, Quality Assurance & CMC Division, Council of Scientific and Industrial Research-Indian Institute of Integrative MedicineJammu, India
| | - Yashbir S. Bedi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial ResearchJammu, India
- Division of Biological Science, Faculty of Science, Academy of Scientific and Innovative ResearchKolkata, India
| | - Ram A. Vishwakarma
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial ResearchJammu, India
- Division of Biological Science, Faculty of Science, Academy of Scientific and Innovative ResearchKolkata, India
| | - Sumit G. Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial ResearchJammu, India
- Division of Biological Science, Faculty of Science, Academy of Scientific and Innovative ResearchKolkata, India
| |
Collapse
|
132
|
Chakrabarti M, Dinkins RD, Hunt AG. De novo Transcriptome Assembly and Dynamic Spatial Gene Expression Analysis in Red Clover. THE PLANT GENOME 2016; 9. [PMID: 27898811 DOI: 10.3835/plantgenome2015.06.0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Red clover ( L.) is a cool-season forage legume grown throughout the northeastern United States and is the most widely planted forage legume after alfalfa ( L.). Red clover provides high-value feed to the livestock because of high protein content and easy digestibility. To date, genomic resources for red clover are scarce. In the current study, a de novo transcriptome assembly of red clover was constructed representing different tissue types. The draft assembly consists of 37,565 contigs with N50 and average contig length of 1707 and 1262 bp, respectively. A comparative study with three other legume species displayed a high degree of sequence conservation between red clover and other legumes. The assembled transcriptome was annotated to allow identification of desirable genes. In particular, a genome-wide identification of red clover transcripts encoding putative transcription factors was performed. A comparative gene expression analysis between different tissue types was performed using the assembled transcriptome as the reference, which revealed dynamic gene expression patterns across different tissue types and also identified spatially dynamic gene coexpression clusters. Genes representing tissue-enriched clusters were subjected to gene ontology (GO) enrichment analysis to identify over-represented functional groups. Identification of these tissue-enriched gene coexpression clusters can help in future research focusing on developmental studies across tissues or in biotechnological improvement of red clover.
Collapse
|
133
|
Biological Activities of Aerial Parts Extracts of Euphorbia characias. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1538703. [PMID: 27314007 PMCID: PMC4895043 DOI: 10.1155/2016/1538703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods.
Collapse
|
134
|
Megías C, Cortés-Giraldo I, Alaiz M, Vioque J, Girón-Calle J. Isoflavones in chickpea ( Cicer arietinum ) protein concentrates. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
135
|
Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. THE PLANT GENOME 2016; 9. [PMID: 27898762 DOI: 10.3835/plantgenome2015.04.0025] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Comprehensive and systematic transcriptome profiling provides valuable insight into biological and developmental processes that occur throughout the life cycle of a plant. We have enhanced our previously published microarray-based gene atlas of maize ( L.) inbred B73 to now include 79 distinct replicated samples that have been interrogated using RNA sequencing (RNA-seq). The current version of the atlas includes 50 original array-based gene atlas samples, a time-course of 12 stalk and leaf samples postflowering, and an additional set of 17 samples from the maize seedling and adult root system. The entire dataset contains 4.6 billion mapped reads, with an average of 20.5 million mapped reads per biological replicate, allowing for detection of genes with lower transcript abundance. As the new root samples represent key additions to the previously examined tissues, we highlight insights into the root transcriptome, which is represented by 28,894 (73.2%) annotated genes in maize. Additionally, we observed remarkable expression differences across both the longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the primary root supported by fourfold differential expression of 9353 and 4728 genes, respectively. Among the latter were 1110 genes that encode transcription factors, some of which are orthologs of previously characterized transcription factors known to regulate root development in (L.) Heynh., while most are novel, and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. This comprehensive transcriptome dataset is a powerful tool toward understanding maize development, physiology, and phenotypic diversity.
Collapse
|
136
|
Gou L, Zhang R, Ma L, Zhu F, Dong J, Wang T. Multigene synergism increases the isoflavone and proanthocyanidin contents of Medicago truncatula. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:915-25. [PMID: 26260843 PMCID: PMC11629816 DOI: 10.1111/pbi.12445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 05/20/2023]
Abstract
Isoflavones and proanthocyanidins (PAs), which are flavonoid derivatives, possess many health benefits and play important roles in forage-based livestock production. However, the foliage of Medicago species accumulates limited levels of both isoflavones and PAs. In this study, biosynthesis of isoflavone and PA in Medicago truncatula was enhanced via synergy between soya bean isoflavone synthase (IFS1); two upstream enzymes, chalcone synthase (CHS) and chalcone isomerase (CHI); and the endogenous flavanone 3-hydroxylase (F3H). Constitutive expression of GmIFS1 alone resulted in ectopic accumulation of the isoflavone daidzein and large increases in the levels of the isoflavones formononetin, genistein and biochanin A in the leaves. Furthermore, coexpression of GmIFS1 with GmCHS7 and GmCHI1A generally increased the available flux to flavonoid biosynthesis and resulted in elevated isoflavone, flavone and PA contents. In addition, down-regulation of MtF3H combined with coexpression of GmIFS1, GmCHS7 and GmCHI1A led to the highest isoflavone levels (up to 2 μmol/g fresh weight in total). Taken together, our results demonstrate that multigene synergism is a powerful means to enhance the biosynthesis of particular flavonoids and can be more broadly applied to the metabolic engineering of forage species.
Collapse
Affiliation(s)
- Lanming Gou
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rongxue Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Lei Ma
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Present address:
State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyang455000China
| | - Fugui Zhu
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
137
|
Zhou TS, Zhou R, Yu YB, Xiao Y, Li DH, Xiao B, Yu O, Yang YJ. Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis). Int J Mol Sci 2016; 17:261. [PMID: 26907264 PMCID: PMC4783990 DOI: 10.3390/ijms17020261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3'H, designated as CsF3'H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3'H was highly homologous with the characterized F3'Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3'H-specific conserved motifs were discovered in the protein sequence of CsF3'H. Enzymatic analysis of the heterologously expressed CsF3'H in yeast demonstrated that tea F3'H catalyzed the 3'-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min(-1), respectively. Transcription level of CsF3'H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3',4'-flavan-3-ols, 3',4',5'-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3'H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3'H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3'H in the biosynthesis of 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols in tea leaves.
Collapse
Affiliation(s)
- Tian-Shan Zhou
- Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | - Rui Zhou
- Conagen Inc., 15 DeAngelo Dr., Bedford, MA 01730, USA.
| | - You-Ben Yu
- Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | - Yao Xiao
- Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | - Dong-Hua Li
- Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | - Bin Xiao
- Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| | - Oliver Yu
- Conagen Inc., 15 DeAngelo Dr., Bedford, MA 01730, USA.
| | - Ya-Jun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou 310008, China.
| |
Collapse
|
138
|
The Antiinflammatory Potential of Flavonoids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-63602-7.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
139
|
Ogo Y, Mori T, Nakabayashi R, Saito K, Takaiwa F. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:95-106. [PMID: 26438413 PMCID: PMC4682426 DOI: 10.1093/jxb/erv429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20-40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances.
Collapse
Affiliation(s)
- Yuko Ogo
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-ku, Chiba 260-8675, Japan
| | - Fumio Takaiwa
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
140
|
Messias RDS, Galli V, Silva SDDAE, Schirmer MA, Rombaldi CV. Micronutrient and functional compounds biofortification of maize grains. Crit Rev Food Sci Nutr 2015; 55:123-39. [PMID: 24915397 DOI: 10.1080/10408398.2011.649314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maize, in addition to being the main staple food in many countries, is used in the production of hundreds of products. It is rich in compounds with potential benefits to health, such as carotenoids, phenolic compounds, vitamin E, and minerals that act as cofactors for antioxidant enzymes. Many of these compounds have been neglected thus far in the scientific literature. Nevertheless, deficiencies in the precursors of vitamin A and some minerals, such as iron and zinc, in maize, in association with the great genetic variability in its cultivars and our genomic, transcriptomic, and metabolomic knowledge of this species make targeted biofortification strategies for maize promising. This review discusses the potential of the main microconstituents found in maize with a focus on studies aimed at biofortification.
Collapse
Affiliation(s)
- Rafael da Silva Messias
- a EMBRAPA Clima Temperado, Rodovia BR 396 , Km 78 Caixa Postal 403, CEP 96001-970, Pelotas , RS , Brazil
| | | | | | | | | |
Collapse
|
141
|
Kim J, Buell CR. A Revolution in Plant Metabolism: Genome-Enabled Pathway Discovery. PLANT PHYSIOLOGY 2015; 169:1532-1539. [PMID: 26224805 PMCID: PMC4634072 DOI: 10.1104/pp.15.00976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Genome-enabled discoveries are the hallmark of 21st century biology, including major discoveries in the biosynthesis and regulation of plant metabolic pathways. Access to next generation sequencing technologies has enabled research on the biosynthesis of diverse plant metabolites, especially secondary metabolites, resulting in a broader understanding of not only the structural and regulatory genes involved in metabolite biosynthesis but also in the evolution of chemical diversity in the plant kingdom. Several paradigms that govern secondary metabolism have emerged, including that (1) gene family expansion and diversification contribute to the chemical diversity found in the plant kingdom, (2) genes encoding biochemical pathway components are frequently transcriptionally coregulated, and (3) physical clustering of nonhomologous genes that encode components of secondary metabolic pathways can occur. With an increasing knowledge base that is coupled with user-friendly and inexpensive technologies, biochemists are poised to accelerate the annotation of biochemical pathways relevant to human health, agriculture, and the environment.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
142
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
143
|
Fatima T, Kesari V, Watt I, Wishart D, Todd JF, Schroeder WR, Paliyath G, Krishna P. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). PHYTOCHEMISTRY 2015; 118:181-191. [PMID: 26318327 DOI: 10.1016/j.phytochem.2015.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
In this study, phenolic compounds were analyzed in developing berries of four Canadian grown sea buckthorn (Hippophae rhamnoides L.) cultivars ('RC-4', 'E6590', 'Chuyskaya' and 'Golden Rain') and in leaves of two of these cultivars. Among phenolic acids, p-coumaric acid was the highest in berries, while gallic acid was predominant in leaves. In the flavonoid class of compounds, myricetin/rutin, kaempferol, quercetin and isorhamnetin were detected in berries and leaves. Berries of the 'RC-4' cultivar had approximately ⩾ 2-fold higher levels of myricetin and quercetin at 17.5mg and 17.2 mg/100 g FW, respectively, than the other cultivars. The flavonoid content in leaves was considerably more than in berries with rutin and quercetin levels up to 135 mg and 105 mg/100 g FW, respectively. Orthologs of 15 flavonoid biosynthesis pathway genes were identified within the transcriptome of sea buckthorn mature seeds. Semi-quantitative RT-PCR analysis of these genes in developing berries indicated relatively higher expression of genes such as CHS, F3'H, DFR and LDOX in the 'RC-4' cultivar than in the 'Chuyskaya' cultivar. Vitamin C levels in ripened berries of the Canadian cultivars were on the high end of the concentration range reported for most other sea buckthorn cultivars. Orthologs of genes involved in vitamins C and E biosynthesis were also identified, expanding the genomic resources for this nutritionally important plant.
Collapse
Affiliation(s)
- Tahira Fatima
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Vigya Kesari
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Ian Watt
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - David Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - James F Todd
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Resource Centre, Simcoe, ON, Canada.
| | - William R Schroeder
- Agroforestry Development Centre, Agriculture and Agri-Food Canada, Indian Head, SK, Canada.
| | | | - Priti Krishna
- Department of Biology, University of Western Ontario, London, ON, Canada; School of Environmental & Rural Sciences, University of New England, Armidale, NSW, Australia.
| |
Collapse
|
144
|
Auxins and Cytokinines Synthesis by Bradyrhizobium japonicum Under Flavonoids Influence. ACTA ACUST UNITED AC 2015. [DOI: 10.15407/microbiolj77.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
145
|
Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci 2015; 6:1341-52. [PMID: 25891864 DOI: 10.1021/acschemneuro.5b00051] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different polyphenol compounds are ingested when consuming a serving of fruits rich in polyphenols, spanning from one-phenol hydroxybenzoic acid to more complex polymeric compounds. Only a minor quantity of the polyphenols (5-10%) is absorbed. The remainder reaches the colon and is extensively metabolized by gut microbiota to low-molecular weight metabolites. Their subsequent tissue distribution is still undefined, although these microbial metabolites are currently believed to play a role in human health and disease states. To fill this knowledge gap, we performed a pharmacokinetics experiment in which a single bolus of 23 polyphenol microbial metabolites (total 2.7 μmol) was administered intravenously to rats to reliably reproduce a physiological postabsorption situation. Tissues and urine were collected shortly thereafter (15 s to 15 min) and were analyzed by UHPLC-MS/MS to quantitatively track these compounds. Remarkably, the brain was found to be a specific target organ for 10 of the 23 polyphenol metabolites injected, which significantly increased in the treated animals. In most cases, their appearance in the brain was biphasic, with an early wave at 2 min (4 compounds) and a second wave starting at 5 min; at 15 min, 9 compounds were still detectable. Most compounds were excreted into the urine. The concentrations in the brain of the treated animals were compared against those of the control group by Student's t test, with p-values < 0.1 considered to be statistically significant. These findings provide new perspectives for understanding the role of diet on brain chemistry. Our experimental approach has enabled us to obtain rich metabolomics information from a single experiment involving a limited number of animals.
Collapse
Affiliation(s)
- Mattia Gasperotti
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
146
|
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. PLANT, CELL & ENVIRONMENT 2015; 38:1658-72. [PMID: 25689473 DOI: 10.1111/pce.12518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 05/03/2023]
Abstract
In plants from temperate climates such as Arabidopsis thaliana, low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. During cold acclimation, massive changes in gene expression and in the content of primary metabolites and lipids have been observed. Here, we have analysed the influence of cold acclimation on flavonol and anthocyanin content and on the expression of genes related to flavonoid metabolism in 54 Arabidopsis accessions covering a wide range of freezing tolerance. Most flavonols and anthocyanins accumulated upon cold exposure, but the extent of accumulation varied strongly among the accessions. This was also true for most of the investigated transcripts. Correlation analyses revealed a high degree of coordination among metabolites and among transcripts, but only little correlation between metabolites and transcripts, indicating an important role of post-transcriptional regulation in flavonoid metabolism. Similarly, levels of many flavonoid biosynthesis genes were correlated with freezing tolerance after cold acclimation, but only the pool sizes of a few flavonols and anthocyanins. Collectively, our data provide evidence for an important role of flavonoid metabolism in Arabidopsis freezing tolerance and point to the importance of post-transcriptional mechanisms in the regulation of flavonoid metabolism in response to cold.
Collapse
Affiliation(s)
- Elisa Schulz
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| |
Collapse
|
147
|
Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 2015. [PMID: 26220550 PMCID: PMC4518527 DOI: 10.1186/s12864-015-1773-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Major secondary metabolites, including flavonoids, caffeine, and theanine, are important components of tea products and are closely related to the taste, flavor, and health benefits of tea. Secondary metabolite biosynthesis in Camellia sinensis is differentially regulated in different tissues during growth and development. Until now, little was known about the expression patterns of genes involved in secondary metabolic pathways or their regulatory mechanisms. This study aimed to generate expression profiles for C. sinensis tissues and to build a gene regulation model of the secondary metabolic pathways. Results RNA sequencing was performed on 13 different tissue samples from various organs and developmental stages of tea plants, including buds and leaves of different ages, stems, flowers, seeds, and roots. A total of 43.7 Gbp of raw sequencing data were generated, from which 347,827 unigenes were assembled and annotated. There were 46,693, 8446, 3814, 10,206, and 4948 unigenes specifically expressed in the buds and leaves, stems, flowers, seeds, and roots, respectively. In total, 1719 unigenes were identified as being involved in the secondary metabolic pathways in C. sinensis, and the expression patterns of the genes involved in flavonoid, caffeine, and theanine biosynthesis were characterized, revealing the dynamic nature of their regulation during plant growth and development. The possible transcription factor regulation network for the biosynthesis of flavonoid, caffeine, and theanine was built, encompassing 339 transcription factors from 35 families, namely bHLH, MYB, and NAC, among others. Remarkably, not only did the data reveal the possible critical check points in the flavonoid, caffeine, and theanine biosynthesis pathways, but also implicated the key transcription factors and related mechanisms in the regulation of secondary metabolite biosynthesis. Conclusions Our study generated gene expression profiles for different tissues at different developmental stages in tea plants. The gene network responsible for the regulation of the secondary metabolic pathways was analyzed. Our work elucidated the possible cross talk in gene regulation between the secondary metabolite biosynthetic pathways in C. sinensis. The results increase our understanding of how secondary metabolic pathways are regulated during plant development and growth cycles, and help pave the way for genetic selection and engineering for germplasm improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1773-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Fang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yao Yu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Qiong-Yi Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,Present address: The University of Queensland, Queensland Brain Institute, Brisbane St Lucia, QLD 4072, Australia.
| | - Sheng-Jun Wang
- Suzhou Genezym Biological Technology Co, Ltd, Suzhou, 215011, China.
| | - Xin-Chao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Da Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Ya-Jun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
148
|
Lei Z, Jing L, Qiu F, Zhang H, Huhman D, Zhou Z, Sumner LW. Construction of an Ultrahigh Pressure Liquid Chromatography-Tandem Mass Spectral Library of Plant Natural Products and Comparative Spectral Analyses. Anal Chem 2015; 87:7373-81. [PMID: 26107650 DOI: 10.1021/acs.analchem.5b01559] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A plant natural product tandem mass spectral library has been constructed using authentic standards and purified compounds. Currently, the library contains 1734 tandem mass spectra for 289 compounds, with the majority (76%) of the compounds being plant phenolics such as flavonoids, isoflavonoids, and phenylpropanoids. Tandem mass spectra and chromatographic retention data were acquired on a triple quadrupole mass spectrometer coupled to an ultrahigh pressure liquid chromatograph using six different collision energies (CEs) (10-60 eV). Comparative analyses of the tandem mass spectral data revealed that the loss of ring substituents preceded the C-ring opening during the fragmentation of flavonoids and isoflavonoids. At lower CE (i.e., 10 and 20 eV), the flavonoids and isoflavonoid central ring structures typically remained intact, and fragmentation was characterized by the loss of the substituents (i.e., methyl and glycosyl groups). At higher CE, the flavonoid and isoflavonoid core ring systems underwent C-ring cleavage and/or rearrangement depending on the structure, particularly hydroxylation patterns. In-source electrochemical oxidation was observed for phenolics that had ortho-diphenol moieties (i.e., vicinal hydroxyl groups on the aromatic rings). The ortho-diphenols were oxidized to ortho-quinones, yielding an intensive and, in most cases, a base ion peak corresponding to a [(M - 2H) - H](-) ion in their mass spectra. The library also contains reverse-phase retention times, allowing for the construction, validation, and testing of an artificial neural network retention prediction of other flavonoids and isoflavonoids not contained within the library. The library is freely available for nonprofit, academic use and it can be downloaded at http://www.noble.org/apps/Scientific/WebDownloadManager/DownloadArea.aspx.
Collapse
Affiliation(s)
- Zhentian Lei
- †Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States
| | - Li Jing
- †Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States
| | - Feng Qiu
- †Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States
| | - Hua Zhang
- ‡College of Life Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - David Huhman
- †Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States
| | - Zhiqin Zhou
- §College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400716, China
| | - Lloyd W Sumner
- †Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States
| |
Collapse
|
149
|
Liu Y, Shi Z, Maximova SN, Payne MJ, Guiltinan MJ. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao. BMC PLANT BIOLOGY 2015; 15:160. [PMID: 26109181 PMCID: PMC4481123 DOI: 10.1186/s12870-015-0529-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/20/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. RESULTS To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). CONCLUSION We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.
Collapse
Affiliation(s)
- Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Present address: Cellular & Molecular Pharmacology, University of California, San Francisco, Mission Bay Campus, Genentech Hall, N576/Box 2280, 600 16th Street, San Francisco, CA, 94158, USA.
| | - Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Siela N Maximova
- Department of Horticulture, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA, 16802, USA.
| | - Mark J Payne
- Hershey Center for Health and Nutrition, The Hershey Company, 1025 Reese Ave., Hershey, PA, 17033, USA.
| | - Mark J Guiltinan
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Horticulture, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA, 16802, USA.
| |
Collapse
|
150
|
Aliferis KA, Chamoun R, Jabaji S. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling. FRONTIERS IN PLANT SCIENCE 2015; 6:344. [PMID: 26042135 PMCID: PMC4434919 DOI: 10.3389/fpls.2015.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/30/2015] [Indexed: 05/20/2023]
Abstract
UNLABELLED The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and (1)H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib. RESEARCH mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs.
Collapse
Affiliation(s)
| | | | - Suha Jabaji
- Department of Plant Science, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|