101
|
Wen JL, Sun SL, Xue BL, Sun RC. Structural elucidation of inhomogeneous lignins from bamboo. Int J Biol Macromol 2015; 77:250-9. [DOI: 10.1016/j.ijbiomac.2015.03.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/05/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
|
102
|
Klamrassamee T, Laosiripojana N, Cronin D, Moghaddam L, Zhang Z, Doherty WOS. Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus. BIORESOURCE TECHNOLOGY 2015; 180:222-229. [PMID: 25614246 DOI: 10.1016/j.biortech.2014.12.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300°C for 1h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, CO stretching of syringyl ring and aromatic CH deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.
Collapse
Affiliation(s)
- Thepparat Klamrassamee
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand
| | - Dylan Cronin
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - William O S Doherty
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
103
|
Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 2015; 33:13-24. [DOI: 10.1016/j.biotechadv.2014.12.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/06/2014] [Accepted: 12/25/2014] [Indexed: 11/13/2022]
|
104
|
Wu JL, Pan TF, Guo ZX, Pan DM. Specific lignin accumulation in granulated juice sacs of Citrus maxima. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12082-12089. [PMID: 25419620 DOI: 10.1021/jf5041349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Juice sac granulation occurring in pummelo fruits [Citrus maxima (Burm.) Merr.] is an undesirable trait, and the underlying mechanism remains unresolved. Previous studies have shown that lignin metabolism is closely associated with the process of juice sac granulation. Here, a method suitable for lignin isolation from pummelo tissues is established. Acetylated lignins from different pummelo tissues and cultivars were analyzed by HSQC NMR. The results showed that lignins in granulated juice sacs were characterized by an extremely high abundance of guaiacyl units (91.13-96.82%), in contrast to lignins from other tissues, including leaves, stems, and segment membranes. The abnormally accumulated lignins in granulated juice sacs were specific and mainly polymerized from coniferyl alcohol. No significant difference was found in lignin types among various cultivars. These findings indicated that the mechanism of juice sac granulation might be similar among various cultivars, although very different degrees of juice sac granulation can be observed.
Collapse
Affiliation(s)
- Jia-Ling Wu
- College of Horticulture and Institute of Storage Science and Technology of Horticultural Products, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | | | | | | |
Collapse
|
105
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
106
|
Araújo P, Cesarino I, Mayer JLS, Ferrari IF, Kiyota E, Sawaya ACHF, Paes Leme AF, Mazzafera P. A model system to study the lignification process in Eucalyptus globulus. PHYSIOLOGIA PLANTARUM 2014; 152:17-31. [PMID: 24444279 DOI: 10.1111/ppl.12152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 12/09/2013] [Indexed: 05/06/2023]
Abstract
Recalcitrance of plant biomass is closely related to the presence of the phenolic heteropolymer lignin in secondary cell walls, which has a negative effect on forage digestibility, biomass-to-biofuels conversion and chemical pulping. The genus Eucalyptus is the main source of wood for pulp and paper industry. However, when compared to model plants such as Arabidopsis thaliana and poplar, relatively little is known about lignin biosynthesis in Eucalyptus and only a few genes were functionally characterized. An efficient, fast and inexpensive in vitro system was developed to study lignification in Eucalyptus globulus and to evaluate the potential role of candidate genes in this biological process. Seedlings were grown in four different conditions, in the presence or absence of light and with or without sucrose in the growth medium, and several aspects of lignin metabolism were evaluated. Our results showed that light and, to a lesser extent, sucrose induced lignin biosynthesis, which was followed by changes in S/G ratio, lignin oligomers accumulation and gene expression. In addition, higher total peroxidase activity and differential isoperoxidase profile were observed when seedlings were grown in the presence of light and sucrose. Peptide sequencing allowed the identification of differentially expressed peroxidases, which can be considered potential candidate class III peroxidases involved in lignin polymerization in E. globulus.
Collapse
Affiliation(s)
- Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Komape NPM, Aderogba M, Bagla VP, Masoko P, Eloff JN. Anti-bacterial and anti-oxidant activities of leaf extracts of Combretum vendae (Combretecacea) and the isolation of an anti-bacterial compound. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:73-7. [PMID: 25395708 PMCID: PMC4202521 DOI: 10.4314/ajtcam.v11i5.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Combretum vendae A.E. van Wyk (Combretaceae) is used for the treatment of bacterial related infections and oxidative related diseases by indigenous people of South Africa. Dried leaves extracts of C. vendae were investigated for bioactivity against a variety of bacterial strains and their antioxidant potential evaluated. MATERIALS AND METHODS Constituents of leaf material were serially extracted using solvents of varying polarities, TLC chromatograms of the fractions were sprayed with 2,2 diphenyl-1-picrylhydrazyl (DPPH) to determine the presence of antioxidant compounds. Bio-autography was used to determine the number of antibacterial compounds active against Staphylococcus aureus, Enterococcus faecalis, Eschericha coli and Pseudomonas aeruginosa. Minimum inhibitory concentration (MIC) values were determined using serial microplate dilution method. The chloroform fraction was subjected to bio-assay guided column chromatography to isolate the active compound. RESULTS The mass extracted by different solvents was below 10% dry weight. MIC values for different extracts against different pathogens ranges from 0.08 to 0.64 mg/ml. The compound isolated was identified as acacetin having an Rf value of 0.28 following elution in the Ethanol: Methanol: Water [E: M: W (10: 1.35: 1 v/v). Acacetin had MIC values ranging from 0.16 to 0.35 mg/ml. CONCLUSION We report for the first time the isolation of acacetin as the main antibacterial compound from the leaves of Combretum vendae.
Collapse
Affiliation(s)
| | - Mutalib Aderogba
- Phytomedicine Programme, Department of Para-clinical Sciences, University of Pretoria , Private Bag X04, Onderstepoort, 0110
| | - Victor Patrick Bagla
- University of Limpopo, Department of Biochemistry, Microbiology and Biotechnology, Private Bag X1106, Sovenga, 0727
| | - Peter Masoko
- University of Limpopo, Department of Biochemistry, Microbiology and Biotechnology, Private Bag X1106, Sovenga, 0727
| | - Jacobus Nicolaas Eloff
- Phytomedicine Programme, Department of Para-clinical Sciences, University of Pretoria , Private Bag X04, Onderstepoort, 0110
| |
Collapse
|
108
|
García JR, Anderson N, Le-Feuvre R, Iturra C, Elissetche J, Chapple C, Valenzuela S. Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus. PLANT CELL REPORTS 2014; 33:1263-1274. [PMID: 24737414 DOI: 10.1007/s00299-014-1614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene. Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase that catalyzes the 5-hydroxylation step required for the production of syringyl units in lignin biosynthesis. The Eucalyptus globulus enzyme was characterized in vitro, and results showed that the preferred substrates were coniferaldehyde and coniferyl alcohol. Complementation experiments demonstrated that both cDNA and genomic constructs derived from F5H from E. globulus under the control of the cinnamate 4-hydroxylase promoter from Arabidopsis thaliana, or a partial F5H promoter from E. globulus, can rescue the inability of the A. thaliana fah1-2 mutant to accumulate sinapate esters and syringyl lignin. E. globulus is a species widely used to obtain products that require lignin removal, and the results suggest that EglF5H is a good candidate for engineering efforts aimed at increasing the lignin syringyl unit content, either for kraft pulping or biofuel production.
Collapse
Affiliation(s)
- José Renán García
- Centro de Biotecnología y Facultad Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
109
|
Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L. Production of clean pyrolytic sugars for fermentation. CHEMSUSCHEM 2014; 7:1662-8. [PMID: 24706373 DOI: 10.1002/cssc.201301259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 05/07/2023]
Abstract
This study explores the separate recovery of sugars and phenolic oligomers produced during fast pyrolysis with the effective removal of contaminants from the separated pyrolytic sugars to produce a substrate suitable for fermentation without hydrolysis. The first two stages from a unique recovery system capture "heavy ends", mostly water-soluble sugars and water-insoluble phenolic oligomers. The differences in water solubility can be exploited to recover a sugar-rich aqueous phase and a phenolic-rich raffinate. Over 93 wt % of the sugars is removed in two water washes. These sugars contain contaminants such as low-molecular-weight acids, furans, and phenols that could inhibit successful fermentation. Detoxification methods were used to remove these contaminants from pyrolytic sugars. The optimal candidate is NaOH overliming, which results in maximum growth measurements with the use of ethanol-producing Escherichia coli.
Collapse
Affiliation(s)
- Marjorie R Rover
- Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-0997.
| | | | | | | | | | | |
Collapse
|
110
|
Xiao LP, Lin Z, Peng WX, Yuan TQ, Xu F, Li NC, Tao QS, Xiang H, Sun RC. Unraveling the structural characteristics of lignin in hydrothermal pretreated fibers and manufactured binderless boards from Eucalyptus grandis. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/2043-7129-2-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Eucalyptus grandis is one of the most abundant biomass from plantation in many parts of the world. The binderless board were manufactured from hydrothermal pretreated fibers of Eucalyptus wood and characterized for the chemical analyses and mechanical strengths in order to assess the mechanism of self-bonding. To make clear the self-bonding mechanism of these binderless boards, the structural characteristics of cellulolytic enzyme lignin (CEL) isolated from Eucalyptus wood, its hydrothermal pretreated fibers, and binderless boards were thoroughly investigated by chemical and spectroscopic methods.
Results
The result revealed that hydrothermal pretreatment and hot pressing process could change cellulose crystalline structures by disrupting inter/intra hydrogen bonding of cellulose chains. During the hydrothermal pretreatment of Eucalyptus wood, acid-catalyzed cleavage of β-O-4′ linkages and ester bonds were the major mechanisms of lignin cleavage. This degradation pathway led to a more condensed lignin which has a high average molecular weight and more phenolic hydroxyl groups than the control. The hot pressing process resulted in the binderless boards with reduced lignin contents and decreased the glass transition temperature, thus making the lignin more accessible to the fiber surface. CEL isolated from the binderless boards showed an increased syringyl to guaiacyl propane (S/G) ratio but a lower molecular weight than those of the untreated Eucalyptus wood and the hydrothermal pretreated fibers.
Conclusions
Based on the finding of this study, it is suggested that the combination of hydrothermal pretreatment and hot pressing process is a good way for conditioning hardwood sawdust for the production of binderless boards. The thermal softening of lignin, rich in phenolic hydroxyl groups, and increased condensed lignin structure contributed to the self-bonding formation of lignocellulosic materials.
Collapse
|
111
|
Araújo P, Ferreira MS, de Oliveira DN, Pereira L, Sawaya ACHF, Catharino RR, Mazzafera P. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in Eucalyptus. Anal Chem 2014; 86:3415-9. [PMID: 24451041 DOI: 10.1021/ac500220r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant biomass has been suggested as an alternative to produce bioethanol. The recalcitrance of plant biomass to convert cellulose into simpler carbohydrates used in the fermentation process is partially due to lignin, but the standard methods used to analyze lignin composition frequently use toxic solvents and are laborious and time-consuming. MS imaging was used to study lignin in Eucalyptus, since this genus is the main source of cellulose in the world. Hand-cut sections of stems of two Eucalyptus species were covered with silica and directly analyzed by matrix-assisted laser sesorption ionization (MALDI)-imaging mass spectrometry (MS). Information available in the literature about soluble lignin subunits and structures were used to trace their distribution in the sections and using a software image a relative quantification could be made. Matrixes routinely used in MALDI-imaging analysis are not satisfactory to analyze plant material and were efficiently substituted by thin layer chromatography (TLC) grade silica. A total of 22 compounds were detected and relatively quantified. It was also possible to establish a proportion between syringyl and guaiacyl monolignols, characteristic for each species. Because of the simple way that samples are prepared, the MALDI-imaging approach presented here can replace, in routine analysis, complex and laborious MS methods in the study of lignin composition.
Collapse
Affiliation(s)
- Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, University of Campinas , CP 6109, 13083-970, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
112
|
Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:6. [PMID: 24401177 PMCID: PMC3917704 DOI: 10.1186/1754-6834-7-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biofuel production from lignocellulosic material is hampered by biomass recalcitrance towards enzymatic hydrolysis due to the compact architecture of the plant cell wall and the presence of lignin. The purpose of this work is to study the ability of an industrially available laccase-mediator system to modify and remove lignin during pretreatment of wood (Eucalyptus globulus) feedstock, thus improving saccharification, and to analyze the chemical modifications produced in the whole material and especially in the recalcitrant lignin moiety. RESULTS Up to 50% lignin removal from ground eucalypt wood was attained by pretreatment with recombinant Myceliophthora thermophila laccase and methyl syringate as mediator, followed by alkaline peroxide extraction in a multistage sequence. The lignin removal directly correlated with increases (approximately 40%) in glucose and xylose yields after enzymatic hydrolysis. The pretreatment using laccase alone (without mediator) removed up to 20% of lignin from eucalypt wood. Pyrolysis-gas chromatography/mass spectrometry of the pretreated wood revealed modifications of the lignin polymer, as shown by lignin markers with shortened side chains and increased syringyl-to-guaiacyl ratio. Additional information on the chemical modifications produced was obtained by two-dimensional nuclear magnetic resonance of the whole wood swollen in dimethylsulfoxide-d6. The spectra obtained revealed the removal of guaiacyl and syringyl lignin units, although with a preferential removal of the former, and the lower number of aliphatic side-chains per phenylpropane unit (involved in main β-O-4' and β-β' inter-unit linkages), in agreement with the pyrolysis-gas chromatography/mass spectrometry results, without a substantial change in the wood polysaccharide signals. However, the most noticeable modification observed in the spectra was the formation of Cα-oxidized syringyl lignin units during the enzymatic treatment. Further insight into the modifications of lignin structure, affecting other inter-unit linkages and oxidized structures, was attained by nuclear magnetic resonance of the lignins isolated from the eucalypt feedstock after the enzymatic pretreatments. CONCLUSIONS This work shows the potential of an oxidative enzymatic pretreatment to delignify and improve cellulase saccharification of a hardwood feedstock (eucalypt wood) when applied directly on the ground lignocellulosic material, and reveals the main chemical changes in the pretreated material, and its recalcitrant lignin moiety, behind the above results.
Collapse
Affiliation(s)
- Alejandro Rico
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| |
Collapse
|
113
|
Sun YC, Xu JK, Xu F, Sun RC, Jones GL. Dissolution, regeneration and characterisation of formic acid and Alcell lignin in ionic liquid-based systems. RSC Adv 2014. [DOI: 10.1039/c3ra46278a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
114
|
Kim H, Ralph J. A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. RSC Adv 2014. [DOI: 10.1039/c3ra46338a] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amorphous cellulose and xylan structures were analyzed using high-resolution 2D-NMR, and the NMR data were obtained in a DMSO-d6/pyridine-d5 (4 : 1) solvent system.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Biochemistry and the DOE Great Lakes Bioenergy Research Center
- Wisconsin Energy Institute
- University of Wisconsin
- Madison, USA
| | - John Ralph
- Department of Biochemistry and the DOE Great Lakes Bioenergy Research Center
- Wisconsin Energy Institute
- University of Wisconsin
- Madison, USA
- Department of Biological Systems Engineering
| |
Collapse
|
115
|
Wen JL, Sun SL, Yuan TQ, Xu F, Sun RC. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11067-75. [PMID: 24168231 DOI: 10.1021/jf403717q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Effective delignification of lignocelluloses is a very important to guarantee the economic feasibility of organosolv-based biorefinery. Eucalyptus chips were successively subjected to organosolv pretreatment (AEOP) and extended delignification (ED) process in the present study. The effects of delignification processes were scientifically evaluated by component analysis, SEM, and CP-MAS NMR techniques. It was found that the integrated process of organosolv pretreatment and subsequent delignification resulted in an effective delignification. The fundamental chemistry of the lignin obtained after these processes was thoroughly investigated by FT-IR, multidimensional NMR ((31)P-, (13)C-, and 2D-HSQC NMR), and GPC techniques. It was observed that an extensive cleavage of aryl ether linkages, ethoxylation, and some condensation reactions occurred in AEOP process, while α-oxidation mainly took place in alkaline hydrogen peroxide (AHP) process. It is believed that better understanding the fundamental chemistry of lignin facilitates the optimization of the delignification process. More importantly, well-defined of lignin polymers will facilitate their value-added applications in current and future biorefineries.
Collapse
Affiliation(s)
- Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University , Beijing, China
| | | | | | | | | |
Collapse
|
116
|
Sette M, Lange H, Crestini C. Quantitative HSQC Analyses of Lignin: A Practical Comparison. Comput Struct Biotechnol J 2013; 6:e201303016. [PMID: 24688724 PMCID: PMC3962123 DOI: 10.5936/csbj.201303016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023] Open
Abstract
Lignin is the second-most abundant polymer after cellulose within the biomass of our planet. Structurally, it displays random oligomeric units without fixed repetition schemes beyond the stage of dimers. Quantitative 1H-13C HSQC measurements have recently greatly facilitated lignin analyses. In some cases, however, long acquisition times needed for obtaining quantitative HSQCs are not compatible with the chemical integrity of (a potentially functionalised) lignin sample. We thus compared different methods that were developed for more time-efficient quantitative HSQC measurements with respect to their usefulness in lignin analyses: reliable and reproducible results were obtained using both the QQ-HSQC and the HSQC0 method.
Collapse
Affiliation(s)
- Marco Sette
- University of Rome 'Tor Vergata', Department of Chemical Sciences and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Heiko Lange
- University of Rome 'Tor Vergata', Department of Chemical Sciences and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudia Crestini
- University of Rome 'Tor Vergata', Department of Chemical Sciences and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
117
|
Prinsen P, Rencoret J, Gutiérrez A, Liitiä T, Tamminen T, Colodette JL, Berbis MÁ, Jiménez-Barbero J, Martínez ÁT, del Río JC. Modification of the Lignin Structure during Alkaline Delignification of Eucalyptus Wood by Kraft, Soda-AQ, and Soda-O2 Cooking. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401364d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pepijn Prinsen
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain
| | - Tiina Liitiä
- VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Tarja Tamminen
- VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Jorge L. Colodette
- Department
of Forestry Engineering at Federal University of Viçosa, Viçosa, MG 36570-000, Brazil
| | - M. Álvaro Berbis
- Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ángel T. Martínez
- Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain
| |
Collapse
|
118
|
Komatsu T, Kikuchi J. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR. Anal Chem 2013; 85:8857-65. [PMID: 24010724 DOI: 10.1021/ac402197h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together.
Collapse
Affiliation(s)
- Takanori Komatsu
- RIKEN Center for Sustainable Resource Science , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 235-0045, Japan
| | | |
Collapse
|
119
|
Chan JMW, Bauer S, Sorek H, Sreekumar S, Wang K, Toste FD. Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catal 2013. [DOI: 10.1021/cs400333q] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Julian M. W. Chan
- Department of Chemistry, University of California, Berkeley, Berkeley, California
94720, United States
- Energy Biosciences Institute (EBI), Berkeley, California 94720, United
States
| | - Stefan Bauer
- Energy Biosciences Institute (EBI), Berkeley, California 94720, United
States
| | - Hagit Sorek
- Energy Biosciences Institute (EBI), Berkeley, California 94720, United
States
| | - Sanil Sreekumar
- Department of Chemistry, University of California, Berkeley, Berkeley, California
94720, United States
- Energy Biosciences Institute (EBI), Berkeley, California 94720, United
States
| | - Kun Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, California
94720, United States
- Institute of Biomass
Chemistry
and Technology, Beijing Forestry University, Beijing 100083, China
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, California
94720, United States
- Energy Biosciences Institute (EBI), Berkeley, California 94720, United
States
| |
Collapse
|
120
|
Sun SL, Wen JL, Ma MG, Li MF, Sun RC. Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4226-4235. [PMID: 23581961 DOI: 10.1021/jf400824p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To investigate the inhomogeneity of the lignin from sweet sorghum stem, successive alkali treatments were applied to extract lignin fragments in the present study. The successive treatments released 80.3% of the original lignin from the sorghum stem. The chemical structural inhomogeneity of the isolated lignins was comparatively and comprehensively investigated by UV, FT-IR, and NMR spectra. The lignins were found to be predominantly composed of β-O-4' aryl ether linkages, together with minor amounts of β-β', β-5', β-1', and α,β-diaryl ether linkages. In addition, hydroxycinnamic acid (mainly p-coumaric acid), which was found to be attached to lignin, was released and co-precipitated in the lignin fractions isolated in the initial extracting steps, whereas hydroxycinnamic acids (p-coumaric and ferulic acids) were not detected in the subsequently extracted lignin fractions. Moreover, the high proportion of carbon-carbon structures was potentially related to the high amounts of guaiacyl units in the lignin investigated. Thermogravimetric analysis revealed that the higher molecular weights of lignins resulted in relatively higher thermal stability, and the higher content of C-C structures in the lignin probably led to a higher "char residue". These findings suggested that the lignin fractions extracted from sweet sorghum stem by successive alkali extractions had inhomogeneous features in both chemical composition and structure.
Collapse
Affiliation(s)
- Shao-Long Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | | | | | | | | |
Collapse
|
121
|
Rencoret J, Marques G, Gutiérrez A, Jiménez-Barbero J, Martínez ÁT, del Río JC. Structural Modifications of Residual Lignins from Sisal and Flax Pulps during Soda-AQ Pulping and TCF/ECF Bleaching. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302810c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O.
Box 1052, E-41080-Seville, Spain
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O.
Box 1052, E-41080-Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O.
Box 1052, E-41080-Seville, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O.
Box 1052, E-41080-Seville, Spain
| |
Collapse
|
122
|
Rencoret J, Ralph J, Marques G, Gutiérrez A, Martínez ÁT, del Río JC. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2434-45. [PMID: 23398235 DOI: 10.1021/jf304686x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , PO Box 1052, E-41080 Seville, Spain
| | | | | | | | | | | |
Collapse
|
123
|
Wen JL, Sun SL, Xue BL, Sun RC. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. MATERIALS 2013; 6:359-391. [PMID: 28809313 PMCID: PMC5452107 DOI: 10.3390/ma6010359] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/04/2013] [Accepted: 01/18/2013] [Indexed: 11/16/2022]
Abstract
The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (insitu), as well as their applications are reviewed.
Collapse
Affiliation(s)
- Jia-Long Wen
- Beijing key laboratory of lignocellulosic chemistry, Beijing Forestry University, Beijing 100000, China.
| | - Shao-Long Sun
- Beijing key laboratory of lignocellulosic chemistry, Beijing Forestry University, Beijing 100000, China.
| | - Bai-Liang Xue
- Beijing key laboratory of lignocellulosic chemistry, Beijing Forestry University, Beijing 100000, China.
| | - Run-Cang Sun
- Beijing key laboratory of lignocellulosic chemistry, Beijing Forestry University, Beijing 100000, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510000, China.
| |
Collapse
|
124
|
Wagner A, Tobimatsu Y, Goeminne G, Phillips L, Flint H, Steward D, Torr K, Donaldson L, Boerjan W, Ralph J. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. PLANT MOLECULAR BIOLOGY 2013; 81:105-117. [PMID: 23131896 DOI: 10.1007/s11103-012-9985-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Suppression of the lignin-related gene cinnamoyl-CoA reductase (CCR) in the Pinus radiata tracheary element (TE) system impacted both the metabolite profile and the cell wall matrix in CCR-RNAi lines. UPLC-MS/MS-based metabolite profiling identified elevated levels of p-coumaroyl hexose, caffeic acid hexoside and ferulic acid hexoside in CCR-RNAi lines, indicating a redirection of metabolite flow within phenylpropanoid metabolism. Dilignols derived from coniferyl alcohol such as G(8-5)G, G(8-O-4)G and isodihydrodehydrodiconiferyl alcohol (IDDDC) were substantially depleted, providing evidence for CCR's involvement in coniferyl alcohol biosynthesis. Severe CCR suppression almost halved lignin content in TEs based on a depletion of both H-type and G-type lignin, providing evidence for CCR's involvement in the biosynthesis of both lignin types. 2D-NMR studies revealed minor changes in the H:G-ratio and consequently a largely unchanged interunit linkage distribution in the lignin polymer. However, unusual cell wall components including ferulate and unsaturated fatty acids were identified in TEs by thioacidolysis, pyrolysis-GC/MS and/or 2D-NMR in CCR-RNAi lines, providing new insights into the consequences of CCR suppression in pine. Interestingly, CCR suppression substantially promoted pyrolytic breakdown of cell wall polysaccharides, a phenotype most likely caused by the incorporation of acidic compounds into the cell wall matrix in CCR-RNAi lines.
Collapse
|
125
|
Kang S, Xiao L, Meng L, Zhang X, Sun R. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. Int J Mol Sci 2012. [PMID: 23203120 PMCID: PMC3509636 DOI: 10.3390/ijms131115209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the potential for the utilization of cotton stalk, ammonia hydrothermal treatment was applied to fractionate the samples into aqueous ammonia-soluble and ammonia-insoluble portions. The ammonia-soluble portion was purified to yield lignin fractions. The lignin fractions obtained were characterized by wet chemistry (carbohydrate analysis) and spectroscopy methods (FT-IR, 13C and 1H-13C HSQC NMR spectroscopy) as well as gel permeation chromatography (GPC). The results showed that the cotton stalk lignin fractions were almost absent of neutral sugars (0.43%–1.29%) and had relatively low average molecular weights (1255–1746 g/mol). The lignin fractions belonged to typical G-S lignin, which was composed predominately of G-type units (59%) and noticeable amounts of S-type units (40%) together with a small amount of H-type units (~1%). Furthermore, the ammonia-extractable lignin fractions were mainly composed of β-O-4′ inter-unit linkages (75.6%), and small quantities of β-β′ (12.2%), together with lower amounts of β-5′ carbon-carbon linkages (7.4%) and p-hydroxycinnamyl alcohol end groups.
Collapse
Affiliation(s)
- Sumin Kang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China; E-Mails: (S.K.); (L.X.); (L.M.)
| | - Lingping Xiao
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China; E-Mails: (S.K.); (L.X.); (L.M.)
| | - Lingyan Meng
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China; E-Mails: (S.K.); (L.X.); (L.M.)
| | - Xueming Zhang
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China; E-Mails: (S.K.); (L.X.); (L.M.)
- Authors to whom correspondence should be addressed; E-Mails: (X.Z.); (R.S.); Tel./Fax: +86-010-6233-6903 (X.Z.)
| | - Runcang Sun
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China; E-Mails: (S.K.); (L.X.); (L.M.)
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Authors to whom correspondence should be addressed; E-Mails: (X.Z.); (R.S.); Tel./Fax: +86-010-6233-6903 (X.Z.)
| |
Collapse
|
126
|
Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez AT. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. BIORESOURCE TECHNOLOGY 2012; 119:114-22. [PMID: 22728191 DOI: 10.1016/j.biortech.2012.05.112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 05/02/2023]
Abstract
The ability of Trametes villosa laccase, in conjuction with 1-hydroxybenzotriazole (HBT) as mediator and alkaline extraction, to remove lignin was demonstrated during treatment of wood (Eucalyptus globulus) and non-wood (Pennisetum purpureum) feedstocks. At 50 Ug(-1) laccase and 2.5% HBT concentration, 48% and 32% of the Eucalyptus and Pennisetum lignin were removed, respectively. Two-dimensional nuclear magnetic resonance of the feedstocks, swollen in dimethylsulfoxide-d(6), revealed the removal of p-hydroxyphenyl, guaiacyl and syringyl lignin units and aliphatic (mainly β-O-4'-linked) side-chains of lignin, and a moderate removal of p-coumaric acid (present in Pennisetum) without a substantial change in polysaccharide cross-signals. The enzymatic pretreatment (at 25 Ug(-1)) of Eucalyptus and Pennisetum feedstocks increased the glucose (by 61% and 12% in 72 h) and ethanol (by 4 and 2 g L(-1) in 17 h) yields from both lignocellulosic materials, respectively, as compared to those without enzyme treatment.
Collapse
Affiliation(s)
- Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain.
| | | | | | | | | | | | | |
Collapse
|
127
|
Bauer S, Sorek H, Mitchell VD, Ibáñez AB, Wemmer DE. Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8203-8212. [PMID: 22823333 DOI: 10.1021/jf302409d] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Miscanthus giganteus lignin was extracted by an organosolv process under reflux conditions (4 h) with varying concentrations of ethanol (65%, 75%, 85%, 95%) and 0.2 M hydrochloric acid as catalyst. The resulting lignin was extensively characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), and chemical analysis (residual sugars, Klason lignin, ash). The predominant linkage units present were β-O-4' (82-84%), resinol (6-7%), and phenylcoumaran (10-11%). The 65% ethanol solvent system gave the lowest lignin yield (14% of starting biomass) compared to 29-32% of the other systems. Increasing ethanol concentration resulted in decreasing carbohydrate content of the lignins (3.6-1.1%), a higher solubility in tetrahydrofuran (THF), a slight reduction of the molecular weight (M(w) 2.72-2.25 KDa), an increasing α-ethoxylation, and an increase in ethoxylated phenylpropenoic compounds (p-coumaric and ferulic acid), but the S/G ratio of the monolignols (0.63, GC/MS) and Klason lignin content (86-88%) were unaffected. An extraction method for these ethyl-esterified phenylpropenoids and smaller molecular weight lignin compounds was developed. The effect of reaction time (2, 4, and 8 h) was investigated for the 95% ethanol solvent system. Besides increased lignin yield (13-43%), a slight increase in M(w) (2.21-2.38 kDa) and S/G ratio (0.53-0.68, GC-MS) was observed. Consecutive extractions suggested that these changes were not from lignin modifications (e.g., condensations) but rather from extraction of lignin of different composition. The results were compared to similar solvent systems with 95% acetone and 95% dioxane.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
128
|
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 2012; 7:1579-89. [PMID: 22864199 DOI: 10.1038/nprot.2012.064] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in nuclear magnetic resonance (NMR) technology have made it possible to rapidly screen plant material and discern whole cell wall information without the need to deconstruct and fractionate the plant cell wall. This approach can be used to improve our understanding of the biology of cell wall structure and biosynthesis, and as a tool to select plant material for the most appropriate industrial applications. This is particularly true in an era when renewable materials are vital to the emerging bio-based economies. This protocol describes procedures for (i) the preparation and extraction of a biological plant tissue, (ii) solubilization strategies for plant material of varying composition and (iii) 2D NMR acquisition (for typically 15 min-5 h) and integration methods used to elucidate lignin subunit composition and lignin interunit linkage distribution, as well as cell wall polysaccharide profiling. Furthermore, we present data that demonstrate the utility of this new NMR whole cell wall characterization procedure with a variety of degradative methods traditionally used for cell wall compositional analysis.
Collapse
Affiliation(s)
- Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
129
|
Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. BIORESOURCE TECHNOLOGY 2012; 117:352-9. [PMID: 22634318 DOI: 10.1016/j.biortech.2012.04.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 05/04/2023]
Abstract
There are several approaches being investigated to improve the efficiency of biomass conversion into fermentable sugars, including those that engineer the feedstocks to enhance digestibility. In this study it was evaluated the impact of genotype modifications of three mutants of Eucalyptus globulus L., and of the corresponding wild type on cellulose hydrolyzability before and after ionic liquid (IL) pretreatment. Both untreated and IL-treated samples were chemically characterized and tested for cellulose hydrolizability. Results obtained indicate that genetic modifications altered wood lignin-S/G ratio. This alteration resulted in a different hydrolyzability of cellulose for untreated samples, i.e. high lignin-S/G ratio produced low glucose yield (r=-0.97; P<0.03; n=4), but did not affect glucose yield after IL pretreatment. IL pretreated samples had increased glucose yields compared to that of untreated samples due to the modification of microcrystalline cellulose I to mixtures of more hydrolysable cellulose II and amorphous cellulose, and to the partial removal of the steric impediment, or removal of the lignin "sheath" protecting cellulose, to enzymes. The efficiency of the IL pretreatment used in this study does not appear to be affected by the S/G content of the E. globulus.
Collapse
Affiliation(s)
- G Papa
- Gruppo Ricicla, Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Li M, Foster C, Kelkar S, Pu Y, Holmes D, Ragauskas A, Saffron CM, Hodge DB. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:38. [PMID: 22672858 PMCID: PMC3443053 DOI: 10.1186/1754-6834-5-38] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/27/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. RESULTS We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88-95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. CONCLUSIONS It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted.
Collapse
Affiliation(s)
- Muyang Li
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
| | - Cliff Foster
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
| | - Shantanu Kelkar
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
| | - Yunqiao Pu
- DOE BioEnergy Science Center, Georgia Institute of Technology, Georgia, USA
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, Michigan, USA
| | - Arthur Ragauskas
- DOE BioEnergy Science Center, Georgia Institute of Technology, Georgia, USA
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Georgia, USA
- Institute of Paper Science and Technology, Georgia Institute of Technology, Georgia, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
- Department of Forestry, Michigan State University, Michigan, USA
| | - David B Hodge
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
| |
Collapse
|
131
|
Exposure of grapes to smoke of vegetation with varying lignin composition and accretion of lignin derived putative smoke taint compounds in wine. Food Chem 2012; 135:787-98. [PMID: 22868160 DOI: 10.1016/j.foodchem.2012.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/14/2012] [Accepted: 05/03/2012] [Indexed: 11/20/2022]
Abstract
Smoke taint in wines from bushfire smoke exposure has become a concern for wine producers. Smoke taint compounds are primarily derived from pyrolysis of the lignin component of fuels. This work examined the influence of the lignin composition of pyrolysed vegetation on the types of putative smoke taint compounds that accrue in wines. At veraison, Merlot vines were exposed to smoke generated from five vegetation types with differing lignin composition. Smoke was generated under pyrolysis conditions that simulated bushfire temperature profiles. Lignin and smoke composition of each fuel type along with putative smoke taint compounds in wines were determined. The results showed that, regardless of fuel type, the commonly reported guaiacyl lignin derived smoke taint compounds, guaiacol and 4-methylguaiacol, represented about 20% of the total phenols in wines. Quantitatively, syringyl lignin derived compounds dominated the total phenol pools in both free and bound forms. The contributions of p-hydroxyphenyls were generally similar to the guaiacyl sources. A further unexpected outcome of the study was that pine smoke affected wines had significantly elevated levels of syringols compared to the controls although pine fuel and its smoke emission lacked syringyl products.
Collapse
|
132
|
del Río JC, Prinsen P, Rencoret J, Nieto L, Jiménez-Barbero J, Ralph J, Martínez AT, Gutiérrez A. Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3619-34. [PMID: 22414389 DOI: 10.1021/jf300099g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structure of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems was studied both in situ and in isolated milled "wood" lignins by several analytical methods. The presence of p-coumarate and ferulate in the cortex and pith, as well as in their isolated lignins, was revealed by pyrolysis in the presence of tetramethylammonium hydroxide, and by 2D NMR, and indicated that ferulate acylates the carbohydrates while p-coumarate acylates the lignin polymer. 2D NMR showed a predominance of alkyl aryl ether (β-O-4') linkages (82% of total interunit linkages), with low amounts of "condensed" substructures, such as resinols (β-β'), phenylcoumarans (β-5'), and spirodienones (β-1'). Moreover, the NMR also indicated that these lignins are extensively acylated at the γ-carbon of the side chain. DFRC analyses confirmed that p-coumarate groups acylate the γ-OHs of these lignins, and predominantly on syringyl units.
Collapse
Affiliation(s)
- José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Ogata Y, Chikayama E, Morioka Y, Everroad RC, Shino A, Matsushima A, Haruna H, Moriya S, Toyoda T, Kikuchi J. ECOMICS: a web-based toolkit for investigating the biomolecular web in ecosystems using a trans-omics approach. PLoS One 2012; 7:e30263. [PMID: 22319563 PMCID: PMC3271069 DOI: 10.1371/journal.pone.0030263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/12/2011] [Indexed: 01/05/2023] Open
Abstract
Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/.
Collapse
Affiliation(s)
| | - Eisuke Chikayama
- Plant Science Center, RIKEN, Yokohama, Kanagawa, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yusuke Morioka
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | - Amiu Shino
- Plant Science Center, RIKEN, Yokohama, Kanagawa, Japan
| | - Akihiro Matsushima
- Bioinformatics and Systems Engineering Division, RIKEN, Yokohama, Kanagawa, Japan
| | - Hideaki Haruna
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shigeharu Moriya
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Advanced Science Institute, RIKEN, Wako, Saitama, Japan
| | - Tetsuro Toyoda
- Bioinformatics and Systems Engineering Division, RIKEN, Yokohama, Kanagawa, Japan
- Biomass Engineering Program, RIKEN Cluster for Innovation, Wako, Saitama, Japan
| | - Jun Kikuchi
- Plant Science Center, RIKEN, Yokohama, Kanagawa, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Biomass Engineering Program, RIKEN Cluster for Innovation, Wako, Saitama, Japan
- Graduate School of Bioagriculture Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
134
|
Abstract
Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.
Collapse
Affiliation(s)
- Yi-ru Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | | | | |
Collapse
|
135
|
del Río JC, Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Martínez ÁT. Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11088-11099. [PMID: 21905657 DOI: 10.1021/jf201222r] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers and 29.0% in the shives. Analysis by Py-GC/MS indicated a H:G:S molar ratio of 13:72:15 in the milled wood lignin (MWL) isolated from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of β-O-4' aryl ether linkages, followed by β-5' phenylcoumaran and β-β' resinol-type linkages in both MWLs, with a higher content of condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar from both lignins, with a predominance of the β-5' followed by β-1' and 5-5' structures.
Collapse
Affiliation(s)
- José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, P.O. Box 1052, E-41080 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
136
|
Yuan TQ, Sun SN, Xu F, Sun RC. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10604-14. [PMID: 21879769 DOI: 10.1021/jf2031549] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To characterize the lignin structures and lignin-carbohydrate complex (LCC) linkages, milled wood lignin (MWL) and mild acidolysis lignin (MAL) with a high content of associated carbohydrates were sequentially isolated from ball-milled poplar wood. Quantification of their structural features has been achieved by using a combination of quantitative (13)C and 2D HSQC NMR techniques. The results showed that acetylated 4-O-methylgluconoxylan is the main carbohydrate associated with lignins, and acetyl groups frequently acylate the C2 and C3 positions. MWL and MAL exhibited similar structural features. The main substructures were β-O-4' aryl ether, resinol, and phenylcoumaran, and their abundances per 100 Ar units changed from 41.5 to 43.3, from 14.6 to 12.7, and from 3.7 to 4.0, respectively. The S/G ratios were estimated to be 1.57 and 1.62 for MWL and MAL, respectively. Phenyl glycoside and benzyl ether LCC linkages were clearly quantified, whereas the amount of γ-ester LCC linkages was ambiguous for quantification.
Collapse
Affiliation(s)
- Tong-Qi Yuan
- Institute of Biomass Chemistry and Technology, Beijing Forestry University , Beijing, China
| | | | | | | |
Collapse
|