101
|
Chong SL, Virkki L, Maaheimo H, Juvonen M, Derba-Maceluch M, Koutaniemi S, Roach M, Sundberg B, Tuomainen P, Mellerowicz EJ, Tenkanen M. O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 2014; 24:494-506. [DOI: 10.1093/glycob/cwu017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
102
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
103
|
Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR. The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels. Bioscience 2014. [DOI: 10.1093/biosci/bit037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
104
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
105
|
Zhao Q, Dixon RA. Altering the cell wall and its impact on plant disease: from forage to bioenergy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:69-91. [PMID: 24821183 DOI: 10.1146/annurev-phyto-082712-102237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The individual sugars found within the major classes of plant cell wall polymers are dietary components of herbivores and are targeted for release in industrial processes for fermentation to liquid biofuels. With a growing understanding of the biosynthesis of the complex cell wall polymers, genetic modification strategies are being developed to target the cell wall to improve the digestibility of forage crops and to render lignocellulose less recalcitrant for bioprocessing. This raises concerns as to whether altering cell wall properties to improve biomass processing traits may inadvertently make plants more susceptible to diseases and pests. Here, we review the impacts of cell wall modification on plant defense, as assessed from studies in model plants utilizing mutants or transgenic modification and in crop plants specifically engineered for improved biomass or bioenergy traits. Such studies reveal that cell wall modifications can indeed have unintended impacts on plant defense, but these are not always negative.
Collapse
Affiliation(s)
- Qiao Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401;
| | | |
Collapse
|
106
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
107
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24904623 DOI: 10.3389/fpls.2017.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
- Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| |
Collapse
|
108
|
Biely P, Westereng B, Puchart V, de Maayer P, A. Cowan D. Recent Progress in Understanding the Mode of Action of Acetylxylan Esterases. J Appl Glycosci (1999) 2014. [DOI: 10.5458/jag.jag.jag-2013_018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
109
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:228. [PMID: 24904623 PMCID: PMC4036129 DOI: 10.3389/fpls.2014.00228] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
| | | | - Vincenzo Lionetti
- *Correspondence: Vincenzo Lionetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome 00185, Italy e-mail:
| |
Collapse
|
110
|
Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol 2013; 26:100-7. [PMID: 24679265 DOI: 10.1016/j.copbio.2013.11.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/05/2013] [Accepted: 11/28/2013] [Indexed: 12/24/2022]
Abstract
Plant cells are surrounded by a rigid wall made up of cellulose microfibrils, pectins, hemicelluloses, and lignin. This cell wall provides structure and protection for plant cells. In grasses and in dicot secondary cell walls, the major hemicellulose is a polymer of β-(1,4)-linked xylose units called xylan. Unlike cellulose--which is synthesized by large complexes at the plasma membrane--xylan is synthesized by enzymes in the Golgi apparatus. Xylan synthesis thus requires the coordinated action and regulation of these synthetic enzymes as well as others that synthesize and transport substrates into the Golgi. Recent research has identified several genes involved in xylan synthesis, some of which have already been used in engineering efforts to create plants that are better suited for biofuel production.
Collapse
Affiliation(s)
- Emilie A Rennie
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
111
|
Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL, Pawar PMA, Mellerowicz EJ, Tenkanen M, Cheng K, Pauly M, Scheller HV. Reduced Wall Acetylation proteins play vital and distinct roles in cell wall O-acetylation in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1107-17. [PMID: 24019426 PMCID: PMC3813637 DOI: 10.1104/pp.113.225193] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.
Collapse
Affiliation(s)
- Yuzuki Manabe
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Yves Verhertbruggen
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | | | - Jesper Harholt
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Sun-Li Chong
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Prashant Mohan-Anupama Pawar
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Ewa J. Mellerowicz
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Maija Tenkanen
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Kun Cheng
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | - Markus Pauly
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, California 94608 (Y.M., Y.V., H.V.S.); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Y.M., Y.V., H.V.S.)
- Energy Biosciences Institute, Berkeley, California 94720 (S.G., K.C., M.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.H.)
- Department of Food and Environmental Sciences, University of Helsinki, FI–00014 Helsinki, Finland (S.-L.C., M.T.)
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umea, Sweden (P.M.-A.P., E.J.M); and
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.P., H.V.S.)
| | | |
Collapse
|
112
|
Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:813-27. [PMID: 23782466 PMCID: PMC6638991 DOI: 10.1111/mpp.12049] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expansins are cell wall loosening agents, known for their endogenous function in cell wall extensibility. The Arabidopsis expansin-like A2 (EXLA2) gene was identified by its down-regulation in response to infection by the necrotrophic pathogen Botrytis cinerea, and by the reduced susceptibility of an exla2 mutant to the same pathogen. The exla2 mutant was equally susceptible to Pseudomonas syringae pv. tomato, but was more resistant to the necrotrophic fungus Alternaria brassicicola, when compared with the wild-type or with transgenic, ectopic EXLA2-overexpressing lines. The exla2 mutants also enhanced tolerance to the phytoprostane-A1 . This suggests that the absence or down-regulation of EXLA2 leads to increased resistance to B. cinerea in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, and this down-regulation can be achieved by phytoprostane-A1 treatment. EXLA2 is induced significantly by salinity and cold, and by the exogenous application of abscisic acid. The exla2 mutant also showed hypersensitivity towards increased salt and cold, and this hypersensitivity required a functional abscisic acid pathway. The differential temporal expression of EXLA2 and the phenotypes in transgenic plants with altered expression of EXLA2 indicate that plant cell wall structure is an important player during Arabidopsis developmental stages. Our results indicate that EXLA2 appears to be important in response to various biotic and abiotic stresses, particularly in the pathogenesis of necrotrophic pathogens and in the tolerance to abiotic stress.
Collapse
Affiliation(s)
- Synan Abuqamar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al-Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|
113
|
Pogorelko G, Lionetti V, Bellincampi D, Zabotina O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. PLANT SIGNALING & BEHAVIOR 2013; 8:e25435. [PMID: 23857352 PMCID: PMC4002593 DOI: 10.4161/psb.25435] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Olga Zabotina
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| |
Collapse
|
114
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|
115
|
Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi M, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. PLANT PHYSIOLOGY 2013; 162:9-23. [PMID: 23463782 PMCID: PMC3641233 DOI: 10.1104/pp.113.214460] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/03/2013] [Indexed: 05/17/2023]
Abstract
The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.
Collapse
|
116
|
Chiniquy D, Varanasi P, Oh T, Harholt J, Katnelson J, Singh S, Auer M, Simmons B, Adams PD, Scheller HV, Ronald PC. Three Novel Rice Genes Closely Related to the Arabidopsis IRX9, IRX9L, and IRX14 Genes and Their Roles in Xylan Biosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:83. [PMID: 23596448 PMCID: PMC3622038 DOI: 10.3389/fpls.2013.00083] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 05/02/2023]
Abstract
Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
- Joint BioEnergy InstituteEmeryville, CA, USA
| | - Patanjali Varanasi
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Taeyun Oh
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
| | - Jesper Harholt
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, University of CopenhagenFrederiksberg C, Denmark
| | | | - Seema Singh
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Manfred Auer
- Joint BioEnergy InstituteEmeryville, CA, USA
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Blake Simmons
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | | | - Henrik V. Scheller
- Joint BioEnergy InstituteEmeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
- Joint BioEnergy InstituteEmeryville, CA, USA
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, Korea
| |
Collapse
|
117
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
118
|
Abstract
Recent progress in the identification and characterization of pectin biosynthetic proteins and the discovery of pectin domain-containing proteoglycans are changing our view of how pectin, the most complex family of plant cell wall polysaccharides, is synthesized. The functional confirmation of four types of pectin biosynthetic glycosyltransferases, the identification of multiple putative pectin glycosyl- and methyltransferases, and the characteristics of the GAUT1:GAUT7 homogalacturonan biosynthetic complex with its novel mechanism for retaining catalytic subunits in the Golgi apparatus and its 12 putative interacting proteins are beginning to provide a framework for the pectin biosynthetic process. We propose two partially overlapping hypothetical and testable models for pectin synthesis: the consecutive glycosyltransferase model and the domain synthesis model.
Collapse
Affiliation(s)
- Melani A Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA.
| | | | | |
Collapse
|
119
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
120
|
Pawar PMA, Koutaniemi S, Tenkanen M, Mellerowicz EJ. Acetylation of woody lignocellulose: significance and regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:118. [PMID: 23734153 PMCID: PMC3659327 DOI: 10.3389/fpls.2013.00118] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/15/2013] [Indexed: 05/17/2023]
Abstract
Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.
Collapse
Affiliation(s)
| | - Sanna Koutaniemi
- Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmea, Sweden
- *Correspondence: Ewa J. Mellerowicz, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901-83 Umeå, Sweden. e-mail:
| |
Collapse
|
121
|
Moller IE, Pettolino FA, Hart C, Lampugnani ER, Willats WGT, Bacic A. Glycan profiling of plant cell wall polymers using microarrays. J Vis Exp 2012:e4238. [PMID: 23271573 DOI: 10.3791/4238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)(1,2). However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall(3). Furthermore, their composition is also modified during development(1), or in response to environmental cues(4). In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis(5). However, relatively few of the biosynthetic genes have been functionally characterized (4,5). Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types(6). Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained(7). Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)(8,9) have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously(9,10,11). Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)(10,11) that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems(12) and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable.
Collapse
Affiliation(s)
- Isabel E Moller
- Australian Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne.
| | | | | | | | | | | |
Collapse
|
122
|
Xing JH, Weng QY, Hao CC, Jia J, Kou HM, Han JM, Dong JG. T1N6_22 gene is required for biotic and abiotic stress responses in Arabidopsis. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412120162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
123
|
Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loqué D, Scheller HV. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. BIOTECHNOLOGY FOR BIOFUELS 2012; 5. [PMID: 23181474 PMCID: PMC3537538 DOI: 10.1186/1754-6834-5-84] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. RESULTS Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. CONCLUSIONS Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.
Collapse
Affiliation(s)
- Pia Damm Petersen
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, DK-1871, Denmark
| | - Jane Lau
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Berit Ebert
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Fan Yang
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Yves Verhertbruggen
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jin Sun Kim
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Patanjali Varanasi
- Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Anongpat Suttangkakul
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Manfred Auer
- Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
124
|
|
125
|
Orfila C, Dal Degan F, Jørgensen B, Scheller HV, Ray PM, Ulvskov P. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties. PLANTA 2012; 236:185-96. [PMID: 22293853 DOI: 10.1007/s00425-012-1596-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/11/2012] [Indexed: 05/22/2023]
Abstract
A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.
Collapse
Affiliation(s)
- Caroline Orfila
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
126
|
Rodríguez-Gacio MDC, Iglesias-Fernández R, Carbonero P, Matilla AJ. Softening-up mannan-rich cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3976-88. [PMID: 22553284 DOI: 10.1093/jxb/ers096] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-β-mannanases (MANs) that catalyse the random hydrolysis of the β-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes.
Collapse
|
127
|
Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol 2012; 23:330-7. [DOI: 10.1016/j.copbio.2011.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/26/2022]
|
128
|
Youngs H, Somerville C. Development of feedstocks for cellulosic biofuels. F1000 BIOLOGY REPORTS 2012; 4:10. [PMID: 22615716 PMCID: PMC3342825 DOI: 10.3410/b4-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of cellulosic ethanol in the Energy Independence and Security Act (EISA) of 2007 and the revised Renewable Fuel Standard (RFS2) has spurred development of the first commercial scale cellulosic ethanol biorefineries. These efforts have also revived interest in the development of dedicated energy crops selected for biomass productivity and for properties that facilitate conversion of biomass to liquid fuels. While many aspects of developing these feedstocks are compatible with current agricultural activities, improving biomass productivity may provide opportunities to expand the potential for biofuel production beyond the classical research objectives associated with improving traditional food and feed crops.
Collapse
Affiliation(s)
- Heather Youngs
- Energy Biosciences Institute, University of California BerkeleyBerkeley CA 94720USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California BerkeleyBerkeley CA 94720USA
| |
Collapse
|
129
|
Vega-Sánchez ME, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling SA, Talbot M, White RG, Joo M, Singh S, Auer M, Scheller HV, Ronald PC. Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. PLANT PHYSIOLOGY 2012; 159:56-69. [PMID: 22388489 PMCID: PMC3375985 DOI: 10.1104/pp.112.195495] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/29/2012] [Indexed: 05/17/2023]
Abstract
Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Pamela C. Ronald
- Joint BioEnergy Institute, Emeryville, California 94608 (M.E.V.-S., Y.V., U.C., X.C., V.S., P.V., M.J., S.S., M.A., H.V.S., P.C.R.); Divisions of Physical Biosciences (Y.V., U.C., V.S., H.V.S., P.C.R.) and Life Sciences (M.J., M.A.), Lawrence Berkeley National Laboratory, Berkeley, California 94720; Commonwealth Scientific and Industrial Research Organization Food Futures Flagship (S.A.J., M.T., R.G.W.) and Commonwealth Scientific and Industrial Research Organization Plant Industry (S.A.J.), Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia; Department of Plant Pathology (M.E.V.-S., X.C., P.C.R.) and The Genome Center (P.C.R.), University of California, Davis, California 95616; Biomass Science and Conversion Technologies Department, Sandia National Laboratories, Livermore, California 94551 (P.V., S.S.); and Department of Plant Molecular System Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Korea (P.C.R.)
| |
Collapse
|
130
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
131
|
Rautengarten C, Ebert B, Ouellet M, Nafisi M, Baidoo EE, Benke P, Stranne M, Mukhopadhyay A, Keasling JD, Sakuragi Y, Scheller HV. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. PLANT PHYSIOLOGY 2012; 158:654-65. [PMID: 22158675 PMCID: PMC3271757 DOI: 10.1104/pp.111.187187] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.
Collapse
|
132
|
Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. THE PLANT CELL 2012; 24:50-65. [PMID: 22247250 PMCID: PMC3289554 DOI: 10.1105/tpc.111.092411] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/02/2011] [Accepted: 12/22/2011] [Indexed: 05/17/2023]
Abstract
Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.
Collapse
Affiliation(s)
- Jin-Ying Gou
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Lisa M. Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
| | - Guichuan Hou
- Appalachian State University, Boone, North Carolina 28608-2027
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
133
|
Hansen SF, Harholt J, Oikawa A, Scheller HV. Plant Glycosyltransferases Beyond CAZy: A Perspective on DUF Families. FRONTIERS IN PLANT SCIENCE 2012; 3:59. [PMID: 22629278 PMCID: PMC3355507 DOI: 10.3389/fpls.2012.00059] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/10/2012] [Indexed: 05/18/2023]
Abstract
The carbohydrate active enzyme (CAZy) database is an invaluable resource for glycobiology and currently contains 45 glycosyltransferase families that are represented in plants. Glycosyltransferases (GTs) have many functions in plants, but the majority are likely to be involved in biosynthesis of polysaccharides and glycoproteins in the plant cell wall. Bioinformatic approaches and structural modeling suggest that a number of protein families in plants include GTs that have not yet been identified as such and are therefore not included in CAZy. These families include proteins with domain of unknown function (DUF) DUF23, DUF246, and DUF266. The evidence for these proteins being GTs and their possible roles in cell wall biosynthesis is discussed.
Collapse
Affiliation(s)
- Sara Fasmer Hansen
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Jesper Harholt
- Department of Plant Biology and Biotechnology, University of CopenhagenFrederiksberg, Denmark
| | - Ai Oikawa
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Henrik V. Scheller
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Henrik V. Scheller, Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608, USA. e-mail:
| |
Collapse
|
134
|
Underwood W. The plant cell wall: a dynamic barrier against pathogen invasion. FRONTIERS IN PLANT SCIENCE 2012; 3:85. [PMID: 22639669 PMCID: PMC3355688 DOI: 10.3389/fpls.2012.00085] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/16/2012] [Indexed: 05/18/2023]
Abstract
Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area.
Collapse
Affiliation(s)
- William Underwood
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
- *Correspondence: William Underwood, Energy Biosciences Institute, University of California, 130 Calvin Lab, MC5230, Berkeley, CA 94720, USA. e-mail:
| |
Collapse
|
135
|
Abstract
Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.
Collapse
Affiliation(s)
- Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
136
|
Bar-Peled M, Urbanowicz BR, O’Neill MA. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II - Insights from Nucleotide Sugar Formation and Diversity. FRONTIERS IN PLANT SCIENCE 2012; 3:92. [PMID: 22639675 PMCID: PMC3355719 DOI: 10.3389/fpls.2012.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/23/2012] [Indexed: 05/02/2023]
Abstract
There is compelling evidence showing that the structurally complex pectic polysaccharide rhamnogalacturonan II (RG-II) exists in the primary cell wall as a borate cross-linked dimer and that this dimer is required for the assembly of a functional wall and for normal plant growth and development. The results of several studies have also established that RG-II structure and cross-linking is conserved in vascular plants and that RG-II likely appeared early in the evolution of land plants. Two features that distinguish RG-II from other plant polysaccharides are that RG-II is composed of 13 different glycoses linked to each other by up to 22 different glycosidic linkages and that RG-II is the only polysaccharide known to contain both apiose and aceric acid. Thus, one key event in land plant evolution was the emergence of genes encoding nucleotide sugar biosynthetic enzymes that generate the activated forms of apiose and aceric acid required for RG-II synthesis. Many of the genes involved in the generation of the nucleotide sugars used for RG-II synthesis have been functionally characterized. By contrast, only one glycosyltransferase involved in the assembly of RG-II has been identified. Here we provide an overview of the formation of the activated sugars required for RG-II synthesis and point to the possible cellular and metabolic processes that could be involved in assembling and controlling the formation of a borate cross-linked RG-II molecule. We discuss how nucleotide sugar synthesis is compartmentalized and how this may control the flux of precursors to facilitate and regulate the formation of RG-II.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, Complex Carbohydrate Research, The University of GeorgiaAthens, GA, USA
- *Correspondence: Maor Bar-Peled, Department of Plant Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA. e-mail:
| | | | - Malcolm A. O’Neill
- Complex Carbohydrate Research Center, The University of GeorgiaAthens, GA, USA
| |
Collapse
|
137
|
Wallace IS, Anderson CT. Small molecule probes for plant cell wall polysaccharide imaging. FRONTIERS IN PLANT SCIENCE 2012; 3:89. [PMID: 22639673 PMCID: PMC3355672 DOI: 10.3389/fpls.2012.00089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/19/2012] [Indexed: 05/21/2023]
Abstract
Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.
Collapse
Affiliation(s)
- Ian S. Wallace
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- *Correspondence: Charles T. Anderson, Department of Biology, The Pennsylvania State University, 201 Life Sciences Building, University Park, PA 16802, USA. e-mail:
| |
Collapse
|
138
|
Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:12. [PMID: 22639638 PMCID: PMC3355586 DOI: 10.3389/fpls.2012.00012] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides - the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production.
Collapse
Affiliation(s)
- Sascha Gille
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
| | - Markus Pauly
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
- *Correspondence: Markus Pauly, Calvin Lab, Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA. e-mail:
| |
Collapse
|
139
|
Gille S, de Souza A, Xiong G, Benz M, Cheng K, Schultink A, Reca IB, Pauly M. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. THE PLANT CELL 2011; 23:4041-53. [PMID: 22086088 PMCID: PMC3246330 DOI: 10.1105/tpc.111.091728] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 05/17/2023]
Abstract
In an Arabidopsis thaliana forward genetic screen aimed at identifying mutants with altered structures of their hemicellulose xyloglucan (axy mutants) using oligosaccharide mass profiling, two nonallelic mutants (axy4-1 and axy4-2) that have a 20 to 35% reduction in xyloglucan O-acetylation were identified. Mapping of the mutation in axy4-1 identified AXY4, a type II transmembrane protein with a Trichome Birefringence-Like domain and a domain of unknown function (DUF231). Loss of AXY4 transcript results in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds. Seed xyloglucan is instead O-acetylated by the paralog AXY4like, as demonstrated by the analysis of the corresponding T-DNA insertional lines. Wall fractionation analysis of axy4 knockout mutants indicated that only a fraction containing xyloglucan is non-O-acetylated. Hence, AXY4/AXY4L is required for the O-acetylation of xyloglucan, and we propose that these proteins represent xyloglucan-specific O-acetyltransferases, although their donor and acceptor substrates have yet to be identified. An Arabidopsis ecotype, Ty-0, has reduced xyloglucan O-acetylation due to mutations in AXY4, demonstrating that O-acetylation of xyloglucan does not impact the plant's fitness in its natural environment. The relationship of AXY4 with another previously identified group of Arabidopsis proteins involved in general wall O-acetylation, reduced wall acetylation, is discussed.
Collapse
Affiliation(s)
- Sascha Gille
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Amancio de Souza
- Energy Biosciences Institute, University of California, Berkeley, California 94720
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720
| | - Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Monique Benz
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Kun Cheng
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Alex Schultink
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Ida-Barbara Reca
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, California 94720
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720
| |
Collapse
|
140
|
Lee C, Teng Q, Zhong R, Ye ZH. The four Arabidopsis reduced wall acetylation genes are expressed in secondary wall-containing cells and required for the acetylation of xylan. PLANT & CELL PHYSIOLOGY 2011; 52:1289-301. [PMID: 21673009 DOI: 10.1093/pcp/pcr075] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Xylan is one of the major polysaccharides in cellulosic biomass, and understanding the mechanisms underlying xylan biosynthesis will potentially help us design strategies to produce cellulosic biomass better suited for biofuel production. Although a number of genes have been shown to be essential for xylan biosynthesis, genes involved in the acetylation of xylan have not yet been identified. Here, we report the comprehensive genetic and functional studies of four Arabidopsis REDUCED WALL ACETYLATION (RWA) genes and demonstrate their involvement in the acetylation of xylan during secondary wall biosynthesis. It was found that the RWA genes were expressed in cells undergoing secondary wall thickening and their expression was regulated by SND1, a transcriptional master switch of secondary wall biosynthesis. The RWA proteins were shown to be localized in the Golgi, where xylan biosynthesis occurs. Analyses of a suite of single, double, triple and quadruple rwa mutants revealed a significant reduction in the secondary wall thickening and the stem mechanical strength in the quadruple rwa1/2/3/4 mutant but not in other mutants. Further chemical and structural analyses of xylan demonstrated that the rwa1/2/3/4 mutations resulted in a reduction in the amount of acetyl groups on xylan. In addition, the ratio of non-methylated to methylated glucuronic acid side chains was altered in the rwa1/2/3/4 mutant. Together, our results demonstrate that the four Arabidopsis RWA genes function redundantly in the acetylation of xylan during secondary wall biosynthesis.
Collapse
Affiliation(s)
- Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|