101
|
A LysM effector protein from the basidiomycete Rhizoctonia solani contributes to virulence through suppression of chitin-triggered immunity. Mol Genet Genomics 2019; 294:1211-1218. [PMID: 31076860 DOI: 10.1007/s00438-019-01573-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
Abstract
Rhizoctonia solani is a fungal species that belongs to the fungal division Basidiomycota. It is a soil-borne pathogen that attacks a broad range of plant species and crops. Disease symptoms are commonly seen as damping off of seedlings and root rot, although it can infect plants at any developmental stage. Despite the severity of this disease, many aspects in R. solani infection biology remain unclear. Here we investigated the role of a LysM effector, previously predicted from the genome of a R. solani AG2-2IIIB strain that has sugar beet as a host. Gene expression analysis showed that RsLysM was highly induced upon sugar beet infection. When RsLysM was heterologously expressed in Cercospora beticola, necrotic lesion size and fungal colonization ability were increased, indicating a role in virulence. RsLysM displayed chitin-binding affinity and suppression of chitin-triggered immunity but could not protect hyphae from hydrolysis. Overall, this study is the first characterization of a LysM effector from Basidiomycota, suggesting that this necrotrophic fungal species relies on perturbation of chitin-triggered immunity to establish a successful infection.
Collapse
|
102
|
Wang C, Liu Y, Liu L, Wang Y, Yan J, Wang C, Li C, Yang J. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi J Biol Sci 2019; 26:795-807. [PMID: 31049006 PMCID: PMC6486625 DOI: 10.1016/j.sjbs.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.
Collapse
Key Words
- ATMT, agrobacterium tumefaciens-mediated transformation
- BAS, biotrophy-associated secreted
- BIC, biotrophic interfacial complex
- Bgh, Blumeria graminis
- DAB, diaminobenzidine
- EIHM, extra-invasive hyphal membrane
- Effector
- GFP, green fluorescence protein
- GST, glutathione-S-transferase
- Hemibiotrophic fungi
- IH, invasive hyphae
- LTH, Lijiangxintuanheigu
- M.oryzae, Magnaporthe oryzae
- Magnaporthe oryzae
- ORF, open reading frame
- OsMPK12, rice mitogen-activated protein kinase 12
- OsMPK6, rice mitogen-activated protein kinase 6
- PBS, phosphate buffer saline
- PCD, programmed cell death
- PDA, potato dextrose agar
- PR gene, pathogenicity related gene
- ROS, reactive oxygen species
- Rice
- YLG, Yue Liang Gu
- hpi, hours post inoculation
Collapse
Affiliation(s)
- Chunmei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yanfang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China.,Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jinlu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| |
Collapse
|
103
|
Wawra S, Fesel P, Widmer H, Neumann U, Lahrmann U, Becker S, Hehemann JH, Langen G, Zuccaro A. FGB1 and WSC3 are in planta-induced β-glucan-binding fungal lectins with different functions. THE NEW PHYTOLOGIST 2019; 222:1493-1506. [PMID: 30688363 DOI: 10.1111/nph.15711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in β-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain β1-3-glucan but has no affinity for shorter β1-3- or β1-6-linked glucose oligomers. Comparative analysis with the previously identified β-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require β1-6-linked glucose for efficient binding to branched β1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two β-glucan-binding lectins. Our results highlight the importance of the β-glucan cell wall component in plant-fungus interactions and the potential of β-glucan-binding lectins as specific detection tools for fungi in vivo.
Collapse
Affiliation(s)
- Stephan Wawra
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Philipp Fesel
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Heidi Widmer
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Ulla Neumann
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Urs Lahrmann
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Stefan Becker
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Center for Marine Environmental Sciences, University of Bremen, MARUM, Bremen, 28359, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Center for Marine Environmental Sciences, University of Bremen, MARUM, Bremen, 28359, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
104
|
Kar B, Patel P, Free SJ. Trichophyton rubrum LysM proteins bind to fungal cell wall chitin and to the N-linked oligosaccharides present on human skin glycoproteins. PLoS One 2019; 14:e0215034. [PMID: 30947244 PMCID: PMC6449025 DOI: 10.1371/journal.pone.0215034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
The Trichophyton rubrum genome contains six proteins containing two or more lysin M (LysM) domains. We have characterized two of these proteins, LysM1 and LysM2, and demonstrated that these proteins have the capacity to bind two substrates, chitin and N-linked oligosaccharides associated with human skin glycoproteins. We have characterized the individual LysM domains in LysM1, and shown that the protein contains two functional LysM domains. Each of these domains can bind to chitin, to N-linked oligosaccharides in human skin glycoproteins, and to N-linked oligosaccharides on fungal glycoproteins. We hypothesize that LysM proteins could provide the pathogen with three important functions. First, the T. rubrum LysM proteins could shield host cell wall chitin from the human immune system. Second, the LysM proteins could shield the pathogen’s glycoproteins from host degradation and immune surveillance. Third, the LysM proteins could help facilitate pathogen adhesion to human skin.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Pavan Patel
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
105
|
The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol 2019; 103:2295-2309. [DOI: 10.1007/s00253-019-09639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
|
106
|
Schmitz AM, Pawlowska TE, Harrison MJ. A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
107
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
108
|
Ökmen B, Mathow D, Hof A, Lahrmann U, Aßmann D, Doehlemann G. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. MOLECULAR PLANT PATHOLOGY 2018; 19:2603-2622. [PMID: 30047221 PMCID: PMC6638180 DOI: 10.1111/mpp.12732] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 05/11/2023]
Abstract
The success of plant-pathogenic fungi mostly relies on their arsenal of virulence factors which are expressed and delivered into the host tissue during colonization. The biotrophic fungal pathogen Ustilago hordei causes covered smut disease on both barley and oat. In this study, we combined cytological, genomics and molecular biological methods to achieve a better understanding of the molecular interactions in the U. hordei-barley pathosystem. Microscopic analysis revealed that U. hordei densely colonizes barley leaves on penetration, in particular the vascular system. Transcriptome analysis of U. hordei at different stages of host infection revealed differential expression of the transcript levels of 273 effector gene candidates. Furthermore, U. hordei transcriptionally activates core effector genes which may suppress even non-host early defence responses. Based on expression profiles and novelty of sequences, knockout studies of 14 effector candidates were performed in U. hordei, which resulted in the identification of four virulence factors required for host colonization. Yeast two-hybrid screening identified potential barley targets for two of the effectors. Overall, this study provides a first systematic analysis of the effector repertoire of U. hordei and identifies four effectors (Uvi1-Uvi4) as virulence factors for the infection of barley.
Collapse
Affiliation(s)
- Bilal Ökmen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneBioCenter, Zuelpicher Str. 47a50674CologneGermany
| | - Daniel Mathow
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic InteractionsKarl von Frisch StrD‐35043MarburgGermany
| | - Alexander Hof
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic InteractionsKarl von Frisch StrD‐35043MarburgGermany
| | - Urs Lahrmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Division of Personalized Tumor Therapy93053RegensburgGermany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic InteractionsKarl von Frisch StrD‐35043MarburgGermany
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneBioCenter, Zuelpicher Str. 47a50674CologneGermany
| |
Collapse
|
109
|
Ökmen B, Kemmerich B, Hilbig D, Wemhöner R, Aschenbroich J, Perrar A, Huesgen PF, Schipper K, Doehlemann G. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. THE NEW PHYTOLOGIST 2018; 220:249-261. [PMID: 29916208 DOI: 10.1111/nph.15265] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases. Genetic, biochemical and microscopic experiments were performed to elucidate the in vitro and in planta functions of U. maydis UmFly1. U. maydis ∆umfly1 mutants show significantly reduced virulence, which coincides with reduced cleavage of the maize chitinase ZmChiA within its chitin-binding domain. Moreover, deletion of umfly1 affected the cell separation of haploid U. maydis sporidia. This phenotype is associated with posttranslational activation of the endogenous chitinase UmCts1. Genetic complementation of the ∆umfly1 mutant with a homologous gene from closely related, but nonpathogenic, yeast fully rescued the cell separation defect in vitro, but it could not recover the ∆umfly1 defect in virulence and cleavage of the maize chitinase. We report on the dual function of the secreted fungalysin UmFly1. We hypothesize that co-evolution of U. maydis with its host plant extended the endogenous function of UmFly1 towards the modulation of plant chitinase activity to promote infection.
Collapse
Affiliation(s)
- Bilal Ökmen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Bastian Kemmerich
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Daniel Hilbig
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Raphael Wemhöner
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Jörn Aschenbroich
- Institute for Microbiology, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| |
Collapse
|
110
|
Fiorin GL, Sanchéz-Vallet A, Thomazella DPDT, do Prado PFV, do Nascimento LC, Figueira AVDO, Thomma BPHJ, Pereira GAG, Teixeira PJPL. Suppression of Plant Immunity by Fungal Chitinase-like Effectors. Curr Biol 2018; 28:3023-3030.e5. [PMID: 30220500 DOI: 10.1016/j.cub.2018.07.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Crop diseases caused by fungi constitute one of the most important problems in agriculture, posing a serious threat to food security [1]. To establish infection, phytopathogens interfere with plant immune responses [2, 3]. However, strategies to promote virulence employed by fungal pathogens, especially non-model organisms, remain elusive [4], mainly because fungi are more complex and difficult to study when compared to the better-characterized bacterial pathogens. Equally incomplete is our understanding of the birth of microbial virulence effectors. Here, we show that the cacao pathogen Moniliophthora perniciosa evolved an enzymatically inactive chitinase (MpChi) that functions as a putative pathogenicity factor. MpChi is among the most highly expressed fungal genes during the biotrophic interaction with cacao and encodes a chitinase with mutations that abolish its enzymatic activity. Despite the lack of chitinolytic activity, MpChi retains substrate binding specificity and prevents chitin-triggered immunity by sequestering immunogenic chitin fragments. Remarkably, its sister species M. roreri encodes a second non-orthologous catalytically impaired chitinase with equivalent function. Thus, a class of conserved enzymes independently evolved as putative virulence factors in these fungi. In addition to unveiling a strategy of host immune suppression by fungal pathogens, our results demonstrate that the neofunctionalization of enzymes may be an evolutionary pathway for the rise of new virulence factors in fungi. We anticipate that analogous strategies are likely employed by other pathogens.
Collapse
Affiliation(s)
- Gabriel Lorencini Fiorin
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Andrea Sanchéz-Vallet
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands; Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Paula Favoretti Vital do Prado
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Leandro Costa do Nascimento
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Antonio Vargas de Oliveira Figueira
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz," Piracicaba 13400-970, Brazil
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil.
| | | |
Collapse
|
111
|
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, Croll D. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:21-40. [PMID: 29768136 DOI: 10.1146/annurev-phyto-080516-035303] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation.
Collapse
Affiliation(s)
- Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, AgroParisTech, Université Paris-Sud, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
112
|
Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, Sánchez‐Vallet A. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. THE NEW PHYTOLOGIST 2018; 219:1048-1061. [PMID: 29693722 PMCID: PMC6055703 DOI: 10.1111/nph.15180] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 05/11/2023]
Abstract
Cultivar-strain specificity in the wheat-Zymoseptoria tritici pathosystem determines the infection outcome and is controlled by resistance genes on the host side, many of which have been identified. On the pathogen side, however, the molecular determinants of specificity remain largely unknown. We used genetic mapping, targeted gene disruption and allele swapping to characterise the recognition of the new avirulence factor Avr3D1. We then combined population genetic and comparative genomic analyses to characterise the evolutionary trajectory of Avr3D1. Avr3D1 is specifically recognised by wheat cultivars harbouring the Stb7 resistance gene, triggering a strong defence response without preventing pathogen infection and reproduction. Avr3D1 resides in a cluster of putative effector genes located in a genome region populated by independent transposable element insertions. The gene was present in all 132 investigated strains and is highly polymorphic, with 30 different protein variants identified. We demonstrated that specific amino acid substitutions in Avr3D1 led to evasion of recognition. These results demonstrate that quantitative resistance and gene-for-gene interactions are not mutually exclusive. Localising avirulence genes in highly plastic genomic regions probably facilitates accelerated evolution that enables escape from recognition by resistance proteins.
Collapse
Affiliation(s)
- Lukas Meile
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelCH‐2000NeuchâtelSwitzerland
| | - Patrick C. Brunner
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | - Clémence Plissonneau
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
- UMR BIOGERINRAAgroParisTechUniversité Paris‐SaclayAvenue Lucien Bretignières, BP 01Thiverval‐GrignonF‐78850France
| | - Fanny E. Hartmann
- Ecologie Systématique EvolutionUniversite Paris‐SudAgroParisTechCNRSUniversité Paris‐Saclay91400OrsayFrance
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | | |
Collapse
|
113
|
BAS2 Is Required for Conidiation and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Int J Mol Sci 2018; 19:ijms19071860. [PMID: 29941774 PMCID: PMC6073657 DOI: 10.3390/ijms19071860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023] Open
Abstract
The hemibiotrophic fungi Colletotrichum gloeosporioides can cause anthracnose in rubber trees. By searching the genome of the fungal pathogen, the BAS2 encoding a biotrophy-associated secreted protein was identified. In the present study, the knockout mutants of BAS2 were constructed and the functions of BAS2 were investigated. The in vitro assays showed that BAS2 was not necessary for vegetative growth but was important for normal asexual reproduction in C. gloeosporioides. Pathogenicity assays suggested that BAS2 was involved in the process of the pathogen penetrating into the host tissue. Subcellular localization analysis revealed that BAS2 showed secretional characteristics in the fungi, and BAS2 mainly function as a cytoplasmic protein after being secreted into the host cell. Extracellular proteomics analysis revealed that BAS2 was required for the secretion of a series of proteins, which were important for the pathogenicity of C. gloeosporioides. These data lead to a better understanding of the biotrophy-associated secreted protein in regulating the pathogenesis of C. gloeosporioides.
Collapse
|
114
|
Ma LS, Pellegrin C, Kahmann R. Repeat-containing effectors of filamentous pathogens and symbionts. Curr Opin Microbiol 2018; 46:123-130. [PMID: 29929732 DOI: 10.1016/j.mib.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Pathogenic and symbiotic filamentous microbes secrete effectors which suppress host immune responses and promote a successful colonization. Pathogen effectors are engaged in the arms race with their hosts and because of this they are subject to intense evolutionary pressure. Effectors particularly prone to rapid evolution display repeat-containing domains which can easily expand or contract and accumulate point mutations without altering their original function. In this review we address the diversity of function in such repeat-containing effectors, focus on new findings and point out avenues for future work.
Collapse
|
115
|
Figueroa M, Hammond‐Kosack KE, Solomon PS. A review of wheat diseases-a field perspective. MOLECULAR PLANT PATHOLOGY 2018; 19:1523-1536. [PMID: 29045052 PMCID: PMC6638159 DOI: 10.1111/mpp.12618] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 05/19/2023]
Abstract
Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant PathologyStakman‐Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. PaulMN 55108USA
| | - Kim E. Hammond‐Kosack
- Department of Biointeractions and Crop ProtectionRothamsted Research, West CommonHarpendenHertfordshire AL5 2JQUK
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
116
|
Pusztahelyi T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 2018; 9:189-201. [PMID: 30181925 PMCID: PMC6115883 DOI: 10.1080/21501203.2018.1473299] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Chitin is the second abundant polysaccharide in the world after cellulose. It is a vital structural component of the fungal cell wall but not for plants. In plants, fungi are recognised through the perception of conserved microbe-associated molecular patterns (MAMPs) to induce MAMP-triggered immunity (MTI). Chitin polymers and their modified form, chitosan, induce host defence responses in both monocotyledons and dicotyledons. The plants' response to chitin, chitosan, and derived oligosaccharides depends on the acetylation degree of these compounds which indicates possible biocontrol regulation of plant immune system. There has also been a considerable amount of recent research aimed at elucidating the roles of chitin hydrolases in fungi and plants as chitinase production in plants is not considered solely as an antifungal resistance mechanism. We discuss the importance of chitin forms and chitinases in the plant-fungal interactions and their role in persistent and possible biocontrol. Abbreviations ET, ethylene; GAP, GTPase-activating protein; GEF, GDP/GTP exchange factor; JA, jasmonic acid; LysM, lysin motif; MAMP, microbe-associated molecular pattern; MTI, MAMP-triggered immunity; NBS, nucleotide-binding site; NBS-LRR, nucleotide-binding site leucine-rich repeats; PM, powdery mildew; PR, pathogenesis-related; RBOH, respiratory burst oxidase homolog; RLK, receptor-like kinase; RLP, receptor-like protein; SA, salicylic acid; TF, transcription factor.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Hungary
| |
Collapse
|
117
|
Duba A, Goriewa-Duba K, Wachowska U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int J Mol Sci 2018; 19:E1138. [PMID: 29642627 PMCID: PMC5979484 DOI: 10.3390/ijms19041138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonosporanodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat-pathogens interactions which can be used to develop new strategies for controlling fungal diseases.
Collapse
Affiliation(s)
- Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| |
Collapse
|
118
|
Ma X, Keller B, McDonald BA, Palma-Guerrero J, Wicker T. Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:420-431. [PMID: 29090630 DOI: 10.1094/mpmi-10-17-0245-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The fungus Zymoseptoria tritici causes septoria tritici blotch (STB) on wheat, an important disease globally and the most damaging wheat disease in Europe. Despite the global significance of STB, the molecular basis of wheat defense against Z. tritici is poorly understood. Here, we use a comparative transcriptomic study to investigate how wheat responds to infection by four distinct strains of Z. tritici. We examined the response of wheat across the entire infection cycle, identifying both shared responses to the four strains and strain-specific responses. We found that the early asymptomatic phase is characterized by strong upregulation of genes encoding receptor-like kinases and pathogenesis-related proteins, indicating the onset of a defense response. We also identified genes that were differentially expressed among the four fungal strains, including genes related to defense. Genes involved in senescence were induced during both the asymptomatic phase and at late stages of infection, suggesting manipulation of senescence processes by both the plant and the pathogen. Our findings illustrate the need, when identifying important genes affecting disease resistance in plants, to include multiple pathogen strains.
Collapse
Affiliation(s)
- Xin Ma
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Beat Keller
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Bruce A McDonald
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Javier Palma-Guerrero
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Thomas Wicker
- 2 Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
119
|
|
120
|
McDonald MC, Solomon PS. Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol 2018; 46:14-18. [PMID: 29452845 DOI: 10.1016/j.mib.2018.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 02/04/2023]
Abstract
For many years pathogens of wheat have remained poorly understood. Hindered by an inaccessible host and the obligate nature of many of the pathogens, our understanding of these interactions has been limited compared to other more amenable pathosystems. However, breakthroughs over recent years have shed new light on diseases of wheat, particularly those caused by the genetically tractable necrotrophic pathogens. We now understand that many of the necrotrophic fungal pathogens do interact with wheat in a strict gene-for-gene relationship, and that pathogen and host partners in these interactions have now been identified. This improved understanding of necrotrophic effector biology has fundamentally changed the way we consider these important wheat diseases.
Collapse
Affiliation(s)
- Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
121
|
Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BPHJ. Tools of the crook- infection strategies of fungal plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:664-674. [PMID: 29277938 DOI: 10.1111/tpj.13810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of diverse nature during host colonization to modulate host physiology, manipulate other environmental factors or provide self-defence. These molecules, collectively known as effectors, are typically small secreted cysteine-rich proteins, but may also comprise secondary metabolites and sRNAs. Here, we discuss the most common strategies that fungal plant pathogens employ to subvert their host plants in order to successfully complete their life cycle and secure the release of abundant viable progeny.
Collapse
Affiliation(s)
- Luis Rodriguez-Moreno
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Melvin D Bolton
- USDA - Agricultural Research Service, Red River Valley Agricultural Research Center, Fargo, ND, USA
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
122
|
Yan JY, Zhao WS, Chen Z, Xing QK, Zhang W, Chethana KWT, Xue MF, Xu JP, Phillips AJL, Wang Y, Liu JH, Liu M, Zhou Y, Jayawardena RS, Manawasinghe IS, Huang JB, Qiao GH, Fu CY, Guo FF, Dissanayake AJ, Peng YL, Hyde KD, Li XH. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Res 2018; 25:87-102. [PMID: 29036669 PMCID: PMC5824938 DOI: 10.1093/dnares/dsx040] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/10/2017] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeriaceae are an important fungal family that cause woody plant diseases worldwide. Recent studies have established a correlation between environmental factors and disease expression; however, less is known about factors that trigger these diseases. The current study reports on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens. Botryosphaeriaceous genomes showed an expansion of gene families associated with cell wall degradation, nutrient uptake, secondary metabolism and membrane transport, which contribute to adaptations for wood degradation. Transcriptome analysis revealed that genes involved in carbohydrate catabolism, pectin, starch and sucrose metabolism, and pentose and glucuronate interconversion pathways were induced during infection. Furthermore, genes in carbohydrate-binding modules, lysine motif domain and the glycosyl hydrolase gene families were induced by high temperature. Among these genes, overexpression of two selected putative lignocellulase genes led to increased virulence in the transformants. These results demonstrate the importance of high temperatures in opportunistic infections. This study also presents a set of Botryosphaeriaceae-specific effectors responsible for the identification of virulence-related pathogen-associated molecular patterns and demonstrates their active participation in suppressing hypersensitive responses. Together, these findings significantly expand our understanding of the determinants of pathogenicity or virulence in Botryosphaeriaceae and provide new insights for developing management strategies against them.
Collapse
Affiliation(s)
- Ji Ye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wen Sheng Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Chen
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qi Kai Xing
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - K W Thilini Chethana
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Min Feng Xue
- Institute of Plant Protection, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jian Ping Xu
- Department of Biology, McMaster University, ON, Canada
| | - Alan J L Phillips
- University of Lisbon, Faculty of Sciences, Bio Systems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, Portugal
| | - Yong Wang
- Department of Plant Pathology, Guizhou University, Guiyang, Guizhou, China
| | - Jian Hua Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mei Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Zhou
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruvishika S Jayawardena
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ishara S Manawasinghe
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Jin Bao Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guang Hang Qiao
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chun Yuan Fu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Fei Guo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Asha J Dissanayake
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - You Liang Peng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Kevin D Hyde
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Xing Hong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
123
|
Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol 2018; 16:5. [PMID: 29325559 PMCID: PMC5765654 DOI: 10.1186/s12915-017-0457-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Background Structural variation contributes substantially to polymorphism within species. Chromosomal rearrangements that impact genes can lead to functional variation among individuals and influence the expression of phenotypic traits. Genomes of fungal pathogens show substantial chromosomal polymorphism that can drive virulence evolution on host plants. Assessing the adaptive significance of structural variation is challenging, because most studies rely on inferences based on a single reference genome sequence. Results We constructed and analyzed the pangenome of Zymoseptoria tritici, a major pathogen of wheat that evolved host specialization by chromosomal rearrangements and gene deletions. We used single-molecule real-time sequencing and high-density genetic maps to assemble multiple genomes. We annotated the gene space based on transcriptomics data that covered the infection life cycle of each strain. Based on a total of five telomere-to-telomere genomes, we constructed a pangenome for the species and identified a core set of 9149 genes. However, an additional 6600 genes were exclusive to a subset of the isolates. The substantial accessory genome encoded on average fewer expressed genes but a larger fraction of the candidate effector genes that may interact with the host during infection. We expanded our analyses of the pangenome to a worldwide collection of 123 isolates of the same species. We confirmed that accessory genes were indeed more likely to show deletion polymorphisms and loss-of-function mutations compared to core genes. Conclusions The pangenome construction of a highly polymorphic eukaryotic pathogen showed that a single reference genome significantly underestimates the gene space of a species. The substantial accessory genome provides a cradle for adaptive evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0457-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland.,UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Bretignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland.,Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
124
|
Kettles GJ, Bayon C, Sparks CA, Canning G, Kanyuka K, Rudd JJ. Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici. THE NEW PHYTOLOGIST 2018; 217:320-331. [PMID: 28895153 PMCID: PMC5724701 DOI: 10.1111/nph.14786] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 05/19/2023]
Abstract
The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored the impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino-acid N-terminal 'loop' region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells, but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggest that, although it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Carlos Bayon
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | | | - Gail Canning
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Kostya Kanyuka
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| | - Jason J. Rudd
- Biointeractions & Crop ProtectionRothamsted ResearchHarpendenAL5 2JQUK
| |
Collapse
|
125
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
126
|
Wang Y, Wang Y. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:6-12. [PMID: 29090656 DOI: 10.1094/mpmi-07-17-0177-fi] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The apoplastic space between the plant cell wall and the plasma membrane constitutes a major battleground for plant-pathogen interactions. To survive in harsh conditions in the plant apoplast, pathogens must cope with various immune responses. During infection, plant pathogens secrete an arsenal of effector proteins into the apoplast milieu, some of which are detected by the plant surveillance system and, thus, activate plant innate immunity. Effectors that evade plant perception act in modulating plant apoplast immunity to favor successful pathogen infection. The concerted actions of apoplastic effectors often determine the outcomes of plant-pathogen interactions. In this review, we summarize current advances on the understanding of apoplastic effectors and highlight the strategies employed by pathogens to counter host apoplastic defense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
127
|
Stewart EL, Croll D, Lendenmann MH, Sanchez‐Vallet A, Hartmann FE, Palma‐Guerrero J, Ma X, McDonald BA. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2018; 19:201-216. [PMID: 27868326 PMCID: PMC6638037 DOI: 10.1111/mpp.12515] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We conducted a comprehensive analysis of virulence in the fungal wheat pathogen Zymoseptoria tritici using quantitative trait locus (QTL) mapping. High-throughput phenotyping based on automated image analysis allowed the measurement of pathogen virulence on a scale and with a precision that was not previously possible. Across two mapping populations encompassing more than 520 progeny, 540 710 pycnidia were counted and their sizes and grey values were measured. A significant correlation was found between pycnidia size and both spore size and number. Precise measurements of percentage leaf area covered by lesions provided a quantitative measure of host damage. Combining these large and accurate phenotypic datasets with a dense panel of restriction site-associated DNA sequencing (RADseq) genetic markers enabled us to genetically dissect pathogen virulence into components related to host damage and those related to pathogen reproduction. We showed that different components of virulence can be under separate genetic control. Large- and small-effect QTLs were identified for all traits, with some QTLs specific to mapping populations, cultivars and traits and other QTLs shared among traits within the same mapping population. We associated the presence of four accessory chromosomes with small, but significant, increases in several virulence traits, providing the first evidence for a meaningful function associated with accessory chromosomes in this organism. A large-effect QTL involved in host specialization was identified on chromosome 7, leading to the identification of candidate genes having a large effect on virulence.
Collapse
Affiliation(s)
- Ethan l. Stewart
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| | - Daniel Croll
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| | - Mark H. Lendenmann
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| | | | - Fanny E. Hartmann
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| | | | - Xin Ma
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| | - Bruce A. McDonald
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2Zürich8092Switzerland
| |
Collapse
|
128
|
Abstract
The availability of complete fungal genomes is expanding rapidly and is offering an extensive and accurate view of this "kingdom." The scientific milestone of free access to more than 1000 fungal genomes of different species was reached, and new and stimulating projects have meanwhile been released. The "1000 Fungal Genomes Project" represents one of the largest sequencing initiative regarding fungal organisms trying to fill some gaps on fungal genomics. Presently, there are 329 fungal families with at least one representative genome sequenced, but there is still a large number of fungal families without a single sequenced genome. In addition, additional sequencing projects helped to understand the genetic diversity within some fungal species. The availability of multiple genomes per species allows to support taxonomic organization, brings new insights for fungal evolution in short-time scales, clarifies geographical and dispersion patterns, elucidates outbreaks and transmission routes, among other objectives. Genotyping methodologies analyze only a small fraction of an individual's genome but facilitate the comparison of hundreds or thousands of isolates in a small fraction of the time and at low cost. The integration of whole genome strategies and improved genotyping panels targeting specific and relevant SNPs and/or repeated regions can represent fast and practical strategies for studying local, regional, and global epidemiology of fungi.
Collapse
Affiliation(s)
- Ricardo Araujo
- University of Porto, Porto, Portugal; School of Medicine and Health Sciences, Flinders University, Adelaide, SA, Australia.
| | | |
Collapse
|
129
|
Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Zymoseptoria tritici. mBio 2017; 8:mBio.01919-17. [PMID: 29184021 PMCID: PMC5705923 DOI: 10.1128/mbio.01919-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fungal wheat pathogen Zymoseptoria tritici possesses a large complement of accessory chromosomes showing presence/absence polymorphism among isolates. These chromosomes encode hundreds of genes; however, their functional role and why the chromosomes have been maintained over long evolutionary times are so far not known. In this study, we addressed the functional relevance of eight accessory chromosomes in reference isolate IPO323. We induced chromosome losses by inhibiting the β-tubulin assembly during mitosis using carbendazim and generated several independent isogenic strains, each lacking one of the accessory chromosomes. We confirmed chromosome losses by electrophoretic karyotyping and whole-genome sequencing. To assess the importance of the individual chromosomes during host infection, we performed in planta assays comparing disease development results in wild-type and chromosome mutant strains. Loss of the accessory chromosomes 14, 16, 18, 19, and 21 resulted in increased virulence on wheat cultivar Runal but not on cultivars Obelisk, Titlis, and Riband. Moreover, some accessory chromosomes affected the switch from biotrophy to necrotrophy as strains lacking accessory chromosomes 14, 18, 19, and 21 showed a significantly earlier onset of necrosis than the wild type on the Runal cultivar. In general, we observed that the timing of the lifestyle switch affects the fitness of Z. tritici. Taking the results together, this study was the first to use a forward-genetics approach to demonstrate a cultivar-dependent functional relevance of the accessory chromosomes of Z. tritici during host infection. Zymoseptoria tritici is a prominent fungal pathogen of wheat of worldwide distribution. This fungus shows a remarkable genome organization, with a large number of chromosomes that are present in only some isolates and therefore considered to be “accessory” chromosomes. To date, the function of these accessory chromosomes in Z. tritici has been unknown, although their maintenance in the species over evolutionary times suggests a functional relevance. Here we deleted whole accessory chromosomes to test the effect of these chromosomes on host specificity and virulence of the fungus. We show for the first time that some accessory chromosomes of Z. tritici affect the fitness of the fungus during host infection in a cultivar-dependent manner. These results show that the accessory chromosomes encode host-specific virulence determinants having a negative effect on fitness. Understanding the population dynamic of the accessory chromosomes and the molecular interaction of pathogen and plant traits is crucial to improve wheat-breeding strategies.
Collapse
|
130
|
Levin E, Ballester AR, Raphael G, Feigenberg O, Liu Y, Norelli J, Gonzalez-Candelas L, Ma J, Dardick C, Wisniewski M, Droby S. Identification and characterization of LysM effectors in Penicillium expansum. PLoS One 2017; 12:e0186023. [PMID: 29084256 PMCID: PMC5662087 DOI: 10.1371/journal.pone.0186023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022] Open
Abstract
P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.
Collapse
Affiliation(s)
- Elena Levin
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Ana Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino, Paterna, Valencia, Spain
| | - Ginat Raphael
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Oleg Feigenberg
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - John Norelli
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Luis Gonzalez-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino, Paterna, Valencia, Spain
| | - Jing Ma
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Christopher Dardick
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Michael Wisniewski
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
- * E-mail:
| |
Collapse
|
131
|
King R, Urban M, Lauder RP, Hawkins N, Evans M, Plummer A, Halsey K, Lovegrove A, Hammond-Kosack K, Rudd JJ. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces. PLoS Pathog 2017; 13:e1006672. [PMID: 29020037 PMCID: PMC5653360 DOI: 10.1371/journal.ppat.1006672] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.
Collapse
Affiliation(s)
- Robert King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Martin Urban
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Rebecca P. Lauder
- Rothamsted Centre for Bioimaging, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Nichola Hawkins
- Fungicide resistance group, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Matthew Evans
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Amy Plummer
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Kirstie Halsey
- Rothamsted Centre for Bioimaging, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Alison Lovegrove
- Cereal cell walls group, Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Kim Hammond-Kosack
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Jason J. Rudd
- Wheat Pathogenomics Team, Department of BioInteractions and Crop Protection, Rothamsted Research, Harpenden, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
132
|
Cen K, Li B, Lu Y, Zhang S, Wang C. Divergent LysM effectors contribute to the virulence of Beauveria bassiana by evasion of insect immune defenses. PLoS Pathog 2017; 13:e1006604. [PMID: 28873459 PMCID: PMC5600412 DOI: 10.1371/journal.ppat.1006604] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022] Open
Abstract
The lysin motif (LysM) containing proteins can bind chitin and are ubiquitous in various organisms including fungi. In plant pathogenic fungi, a few LysM proteins have been characterized as effectors to suppress chitin-induced immunity in plant hosts and therefore contribute to fungal virulence. The effector mechanism is still questioned in fungus-animal interactions. In this study, we found that LysM proteins are also present in animal pathogenic fungi and have evolved divergently. The genome of the insect pathogen Beauveria bassiana encodes 12 LysM proteins, and the genes were differentially transcribed by the fungus when grown in different conditions. Deletion of six genes that were expressed by the fungus growing in insects revealed that two, Blys2 and Blys5, were required for full fungal virulence. Both proteins could bind chitin and Blys5 (containing two LysM domains) could additionally bind chitosan and cellulose. Truncation analysis of Blys2 (containing five LysM domains) indicated that the combination of LysM domains could determine protein-binding affinity and specificity for different carbohydrates. Relative to the wild-type strain, loss of Blys2 or Blys5 could impair fungal propagation in insect hemocoels and lead to the upregulation of antifungal gene in insects. Interestingly, the virulence defects of ΔBlys2 and ΔBlys5 could be fully restored by complementation with the Slp1 effector from the rice blast fungus Magnaporthe oryzae. In contrast to Slp1 and Blys2, Blys5 could potentially protect fungal hyphae against chitinase hydrolysis. The results of this study not only advance the understanding of LysM protein evolution but also establish the effector mechanism of fungus-animal interactions. Insect pathogenic fungi are of importance for both applied and basic research. Relative to the advances in understanding fungus-plant interactions, the mechanisms of the molecular pathogenesis of entomopathogenic fungi are rather limitedly understood. In particular, the machinery of effector-mediated inhibition of host immunity has not been well established in fungus-insect interactions. LysM effectors have been characterized as virulence factors in plant pathogens to suppress chitin-triggered immunity in plants. We found that the divergent LysM proteins are also present in animal pathogens. By using the insect pathogen Beauveria bassiana as a model, we revealed that two of 12 encoded LysM protein genes Blys2 and Blys5 that were transcribed by the fungus growing in insects are required for full fungal virulence against insect hosts. Interestingly, the virulence defects of ΔBys2 and ΔBys5 could be fully restored by complementation with the divergent Slp1 effector from the plant pathogen Magnaporthe oryzae. Both Blys2 and Blys5 can deregulate insect immune responses, and the latter can additionally protect fungal cells from chitinase hydrolysis. The findings of this study establish the contribution of LysM effectors to fungal virulence against insect hosts.
Collapse
Affiliation(s)
- Kai Cen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bing Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhen Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siwei Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
133
|
Fones HN, Eyles CJ, Kay W, Cowper J, Gurr SJ. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fungal Genet Biol 2017; 106:51-60. [PMID: 28694096 PMCID: PMC5556705 DOI: 10.1016/j.fgb.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/02/2022]
Abstract
Zymoseptoria tritici causes Septoria leaf blotch of wheat. The prevailing paradigm of the Z. tritici-wheat interaction assumes fungal ingress through stomata within 24-48h, followed by days of symptomless infection. This is extrapolated from studies testing the mode of fungal ingress under optimal infection conditions. Here, we explicitly assess the timing of entry, using GFP-tagged Z. tritici. We show that early entry is comparatively rare, and extended epiphytic growth possible. We test the hypotheses that our data diverge from earlier studies due to: i. random ingress of Z. tritici into the leaf, with some early entry events; ii. previous reliance upon fungal stains, combined with poor attachment of Z. tritici to the leaf, leading to increased likelihood of observing internal versus external growth, compared to using GFP; iii. use of exceptionally high humidity to promote entry in previous studies. We combine computer simulation of leaf-surface growth with thousands of in planta observations to demonstrate that while spores germinate rapidly on the leaf, over 95% of fungi remain epiphytic, growing randomly over the leaf for ten days or more. We show that epiphytic fungi are easily detached from leaves by rinsing and that humidity promotes epiphytic growth, increasing infection rates. Together, these results explain why epiphytic growth has been dismissed and early ingress assumed. The prolonged epiphytic phase should inform studies of pathogenicity and virulence mutants, disease control strategies, and interpretation of the observed low in planta growth, metabolic quiescence and evasion of plant defences by Zymoseptoria during symptomless infection.
Collapse
Affiliation(s)
- Helen N Fones
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Chris J Eyles
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - William Kay
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Josh Cowper
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK; Donder's Hon Chair, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
134
|
Yemelin A, Brauchler A, Jacob S, Laufer J, Heck L, Foster AJ, Antelo L, Andresen K, Thines E. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici. PLoS One 2017; 12:e0183065. [PMID: 28829795 PMCID: PMC5568738 DOI: 10.1371/journal.pone.0183065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 01/20/2023] Open
Abstract
A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.
Collapse
Affiliation(s)
- Alexander Yemelin
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Annamaria Brauchler
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Jacob
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Julian Laufer
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Larissa Heck
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Andrew J. Foster
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Luis Antelo
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karsten Andresen
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eckhard Thines
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
135
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
136
|
Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics 2017; 18:339. [PMID: 28464870 PMCID: PMC5412055 DOI: 10.1186/s12864-017-3699-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.
Collapse
Affiliation(s)
- Cecilia H. Deng
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia
| | - Darcy A. B. Jones
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: The Centre for Crop and Disease Management, Curtin University, Bentley, Australia
| | - Carl H. Mesarich
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Present Address: Institute of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| | - Jason Shiller
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: INRA-Angers, Beaucouzé, Cedex, France
| | - Adam P. Taranto
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew J. Robinson
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Patrick Kastner
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
| | - Nathan E. Hall
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K. Bowen
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| |
Collapse
|
137
|
Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. THE ISME JOURNAL 2017; 11:1189-1204. [PMID: 28117833 PMCID: PMC5437930 DOI: 10.1038/ismej.2016.196] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/10/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022]
Abstract
Fungal pathogens can rapidly evolve virulence towards resistant crops in agricultural ecosystems. Gains in virulence are often mediated by the mutation or deletion of a gene encoding a protein recognized by the plant immune system. However, the loci and the mechanisms of genome evolution enabling rapid virulence evolution are poorly understood. We performed genome-wide association mapping on a global collection of 106 strains of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe, to identify polymorphisms linked to virulence on two wheat varieties. We found 25 distinct genomic loci associated with reproductive success of the pathogen. However, no locus was shared between the host genotypes, suggesting host specialization. The main locus associated with virulence encoded a highly expressed, small secreted protein. Population genomic analyses showed that the gain in virulence was explained by a segregating gene deletion polymorphism. The deletion was likely adaptive by preventing detection of the encoded protein. Comparative genomics of closely related species showed that the locus emerged de novo since speciation. A large cluster of transposable elements in direct proximity to the locus generated extensive rearrangements leading to multiple independent gene losses. Our study demonstrates that rapid turnover in the chromosomal structure of a pathogen can drive host specialization.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, Zurich, Switzerland
| | | | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, Zurich, Switzerland
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
138
|
Kombrink A, Rovenich H, Shi‐Kunne X, Rojas‐Padilla E, van den Berg GCM, Domazakis E, de Jonge R, Valkenburg D, Sánchez‐Vallet A, Seidl MF, Thomma BPHJ. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. MOLECULAR PLANT PATHOLOGY 2017; 18:596-608. [PMID: 27911046 PMCID: PMC6638240 DOI: 10.1111/mpp.12520] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chitin-binding lysin motif (LysM) effectors contribute to the virulence of various plant-pathogenic fungi that are causal agents of foliar diseases. Here, we report the LysM effectors of the soil-borne fungal vascular wilt pathogen Verticillium dahliae. Comparative genomics revealed three core LysM effectors that are conserved in a collection of V. dahliae strains. Remarkably, and in contrast with the previously studied LysM effectors of other plant pathogens, no expression of core LysM effectors was monitored in planta in a taxonomically diverse panel of host plants. Moreover, targeted deletion of the individual LysM effector genes in V. dahliae strain JR2 did not compromise virulence in infections on Arabidopsis, tomato or Nicotiana benthamiana. Interestingly, an additional lineage-specific LysM effector is encoded in the genome of V. dahliae strain VdLs17, but not in any other V. dahliae strain sequenced to date. Remarkably, this lineage-specific effector is expressed in planta and contributes to the virulence of V. dahliae strain VdLs17 on tomato, but not on Arabidopsis or N. benthamiana. Functional analysis revealed that this LysM effector binds chitin, is able to suppress chitin-induced immune responses and protects fungal hyphae against hydrolysis by plant hydrolytic enzymes. Thus, in contrast with the core LysM effectors of V. dahliae, this lineage-specific LysM effector of strain VdLs17 contributes to virulence in planta.
Collapse
Affiliation(s)
- Anja Kombrink
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Hanna Rovenich
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Xiaoqian Shi‐Kunne
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Eduardo Rojas‐Padilla
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Emmanouil Domazakis
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Ronnie de Jonge
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Dirk‐Jan Valkenburg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Andrea Sánchez‐Vallet
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 1WageningenPB 6708the Netherlands
| |
Collapse
|
139
|
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. THE NEW PHYTOLOGIST 2017; 214:619-631. [PMID: 28164301 DOI: 10.1111/nph.14434] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 05/06/2023]
Abstract
Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.
Collapse
Affiliation(s)
- Ziming Zhong
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Thierry C Marcel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Fanny E Hartmann
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Xin Ma
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Marcello Zala
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Aurélie Ducasse
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Johann Confais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Jérôme Compain
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Nicolas Lapalu
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Joëlle Amselem
- UR URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Bruce A McDonald
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Daniel Croll
- Plant Pathology Group, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Laboratory of Evolutionary Genetics, University of Neuchâtel Institute of Biology Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | | |
Collapse
|
140
|
Solomon PS. Have we finally opened the door to understanding Septoria tritici blotch disease in wheat? THE NEW PHYTOLOGIST 2017; 214:493-495. [PMID: 28318032 DOI: 10.1111/nph.14502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
141
|
Abstract
Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Richard P. Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
142
|
Palma-Guerrero J, Ma X, Torriani SFF, Zala M, Francisco CS, Hartmann FE, Croll D, McDonald BA. Comparative Transcriptome Analyses in Zymoseptoria tritici Reveal Significant Differences in Gene Expression Among Strains During Plant Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:231-244. [PMID: 28121239 DOI: 10.1094/mpmi-07-16-0146-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zymoseptoria tritici is an ascomycete fungus that causes Septoria tritici blotch, a globally distributed foliar disease on wheat. Z. tritici populations are highly polymorphic and exhibit significant quantitative variation for virulence. Despite its importance, the genes responsible for quantitative virulence in this pathogen remain largely unknown. We investigated the expression profiles of four Z. tritici strains differing in virulence in an experiment conducted under uniform environmental conditions. Transcriptomes were compared at four different infection stages to characterize the regulation of gene families thought to be involved in virulence and to identify new virulence factors. The major components of the fungal infection transcriptome showed consistent expression profiles across strains. However, strain-specific regulation was observed for many genes, including some encoding putative virulence factors. We postulate that strain-specific regulation of virulence factors can determine the outcome of Z. tritici infections. We show that differences in gene expression may be major determinants of virulence variation among Z. tritici strains, adding to the already known contributions to virulence variation based on differences in gene sequence and gene presence/absence polymorphisms.
Collapse
Affiliation(s)
- Javier Palma-Guerrero
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Xin Ma
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Stefano F F Torriani
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
- 2 Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland
| | - Marcello Zala
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Carolina S Francisco
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Fanny E Hartmann
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Daniel Croll
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| | - Bruce A McDonald
- 1 Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; and
| |
Collapse
|
143
|
Barnabas L, Ashwin NMR, Ramesh Sundar A, Malathi P, Viswanathan R. Putative orthologs of Ustilago maydis effectors screened from the genome of sugarcane smut fungus - Sporisorium scitamineum. AUSTRALASIAN PLANT PATHOLOGY 2017; 46:147-156. [DOI: 10.1007/s13313-017-0471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
144
|
Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 2017; 9:593-618. [PMID: 28204478 PMCID: PMC5381539 DOI: 10.1093/gbe/evx030] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Sclerotinia sclerotiorum is a phytopathogenic fungus with over 400 hosts including numerous economically important cultivated species. This contrasts many economically destructive pathogens that only exhibit a single or very few hosts. Many plant pathogens exhibit a “two-speed” genome. So described because their genomes contain alternating gene rich, repeat sparse and gene poor, repeat-rich regions. In fungi, the repeat-rich regions may be subjected to a process termed repeat-induced point mutation (RIP). Both repeat activity and RIP are thought to play a significant role in evolution of secreted virulence proteins, termed effectors. We present a complete genome sequence of S. sclerotiorum generated using Single Molecule Real-Time Sequencing technology with highly accurate annotations produced using an extensive RNA sequencing data set. We identified 70 effector candidates and have highlighted their in planta expression profiles. Furthermore, we characterized the genome architecture of S. sclerotiorum in comparison to plant pathogens that exhibit “two-speed” genomes. We show that there is a significant association between positions of secreted proteins and regions with a high RIP index in S. sclerotiorum but we did not detect a correlation between secreted protein proportion and GC content. Neither did we detect a negative correlation between CDS content and secreted protein proportion across the S. sclerotiorum genome. We conclude that S. sclerotiorum exhibits subtle signatures of enhanced mutation of secreted proteins in specific genomic compartments as a result of transposition and RIP activity. However, these signatures are not observable at the whole-genome scale.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Matthew Denton-Giles
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | | | - Jeffrey Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL
| | - Jan van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Malick Mbengue
- LIPM Université de Toulouse INRA CNRS, Castanet-Tolosan, France
| | - Olivier Navaud
- LIPM Université de Toulouse INRA CNRS, Castanet-Tolosan, France
| | | | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Stephanie Heard
- Department of Plant Pathology, University of Florida, Gainesville, FL
- Department of Plant Biology and Crop Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Richard Oliver
- Centre for Crop and Disease Management Department of Environment and Agriculture, Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
145
|
Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 2017; 18:16. [PMID: 28201981 PMCID: PMC5310080 DOI: 10.1186/s12863-017-0481-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. RESULTS We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. CONCLUSIONS Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Mario Iván Alemán-Duarte
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Luis Delaye
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Vianey Olmedo-Monfil
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
146
|
Buiate EAS, Xavier KV, Moore N, Torres MF, Farman ML, Schardl CL, Vaillancourt LJ. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. BMC Genomics 2017; 18:67. [PMID: 28073340 PMCID: PMC5225507 DOI: 10.1186/s12864-016-3457-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background Colletotrichum graminicola and C. sublineola cause anthracnose leaf and stalk diseases of maize and sorghum, respectively. In spite of their close evolutionary relationship, the two species are completely host-specific. Host specificity is often attributed to pathogen virulence factors, including specialized secondary metabolites (SSM), and small-secreted protein (SSP) effectors. Genes relevant to these categories were manually annotated in two co-occurring, contemporaneous strains of C. graminicola and C. sublineola. A comparative genomic and phylogenetic analysis was performed to address the evolutionary relationships among these and other divergent gene families in the two strains. Results Inoculation of maize with C. sublineola, or of sorghum with C. graminicola, resulted in rapid plant cell death at, or just after, the point of penetration. The two fungal genomes were very similar. More than 50% of the assemblies could be directly aligned, and more than 80% of the gene models were syntenous. More than 90% of the predicted proteins had orthologs in both species. Genes lacking orthologs in the other species (non-conserved genes) included many predicted to encode SSM-associated proteins and SSPs. Other common groups of non-conserved proteins included transporters, transcription factors, and CAZymes. Only 32 SSP genes appeared to be specific to C. graminicola, and 21 to C. sublineola. None of the SSM-associated genes were lineage-specific. Two different strains of C. graminicola, and three strains of C. sublineola, differed in no more than 1% percent of gene sequences from one another. Conclusions Efficient non-host recognition of C. sublineola by maize, and of C. graminicola by sorghum, was observed in epidermal cells as a rapid deployment of visible resistance responses and plant cell death. Numerous non-conserved SSP and SSM-associated predicted proteins that could play a role in this non-host recognition were identified. Additional categories of genes that were also highly divergent suggested an important role for co-evolutionary adaptation to specific host environmental factors, in addition to aspects of initial recognition, in host specificity. This work provides a foundation for future functional studies aimed at clarifying the roles of these proteins, and the possibility of manipulating them to improve management of these two economically important diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E A S Buiate
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.,Present Address: Monsanto Company Brazil, Uberlândia, Minas Gerais, Brazil
| | - K V Xavier
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA
| | - N Moore
- Department of Computer Science, University of Kentucky, Davis Marksbury Building, 328 Rose Street, Lexington, KY, 40504-0633, USA
| | - M F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.,Present Address: Functional Genomics Laboratory, Weill Cornell Medicine, Doha, Qatar
| | - M L Farman
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA
| | - C L Schardl
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA
| | - L J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
| |
Collapse
|
147
|
Jwa NS, Hwang BK. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1687. [PMID: 29033963 PMCID: PMC5627460 DOI: 10.3389/fpls.2017.01687] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- *Correspondence: Nam-Soo Jwa,
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
148
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
149
|
Kettles GJ, Bayon C, Canning G, Rudd JJ, Kanyuka K. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2017; 213:338-350. [PMID: 27696417 PMCID: PMC5132004 DOI: 10.1111/nph.14215] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/19/2016] [Indexed: 05/18/2023]
Abstract
The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacterium-mediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Carlos Bayon
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Gail Canning
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Jason J. Rudd
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Kostya Kanyuka
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
150
|
De Wit PJGM. Apoplastic fungal effectors in historic perspective; a personal view. THE NEW PHYTOLOGIST 2016; 212:805-813. [PMID: 27523582 DOI: 10.1111/nph.14144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Pierre J G M De Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|