101
|
Ren R, Zhou H, Zhang L, Jiang X, Liu Y. Ca 2+ participates in programmed cell death by modulating ROS during pollen cryopreservation. PLANT CELL REPORTS 2022; 41:1043-1057. [PMID: 35190883 DOI: 10.1007/s00299-022-02836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
After cryopreservation, the Ca2+ content increased, which affected the intracellular ROS content, then participated in the occurrence of programmed cell death in pollen. Programmed cell death (PCD) is one of the reasons for the decline in pollen viability after cryopreservation. However, the role of calcium ions (Ca2+) in PCD during pollen cryopreservation has not been revealed in the existing studies. In this study, Paeonia lactiflora 'Fen Yu Nu' pollen was used as the research material for investigating the effects of Ca2+ changes on PCD indices and reactive oxygen species (ROS) during pollen cryopreservation. The results showed that after cryopreservation, with the decrease of pollen viability, the Ca2+ content significantly increased. The regulation of Ca2+ content had a significant effect on PCD indices, which showed that the Ca2+ carrier A23187 accelerated the decrease of mitochondrial membrane potential level and increased the activity of caspase-3-like and caspase-9-like proteases and the apoptosis rate. The expression levels of partial pro-PCD genes were upregulated, the anti-PCD gene BI-1 was downregulated, and the addition of Ca2+-chelating agent EGTA had the opposite effect. The addition of the Ca2+ carrier A23187 after cryopreservation significantly increased the ROS content of pollen, the addition of the Ca2+-chelating agent EGTA had the opposite effect, and Ca2+ regulators also had significant effects on the contents of ROS production and clearance-related substances. Ca2+ affected intracellular ROS content by acting on the ROS production and clearance system during the cryopreservation of pollen and is thus involved in the occurrence of PCD.
Collapse
Affiliation(s)
- Ruifen Ren
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
| | - Hao Zhou
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lingling Zhang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xueru Jiang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yan Liu
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
102
|
Al‐Hajaya Y, Karpinska B, Foyer CH, Baker A. Nuclear and peroxisomal targeting of catalase. PLANT, CELL & ENVIRONMENT 2022; 45:1096-1108. [PMID: 35040158 PMCID: PMC9305541 DOI: 10.1111/pce.14262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Catalase is a well-known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2-1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2-1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non-infected plants.
Collapse
Affiliation(s)
- Yousef Al‐Hajaya
- Centre for Plant Sciences and School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Present address:
Department of Laboratory Medical SciencesMutah UniversityKarakJordan
| | - Barbara Karpinska
- Centre for Plant Sciences and School of BiologyUniversity of LeedsLeedsUK
| | - Christine H. Foyer
- Centre for Plant Sciences and School of BiologyUniversity of LeedsLeedsUK
- Present address:
School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| |
Collapse
|
103
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
104
|
Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH. H2O2-Responsive Hormonal Status Involves Oxidative Burst Signaling and Proline Metabolism in Rapeseed Leaves. Antioxidants (Basel) 2022; 11:antiox11030566. [PMID: 35326216 PMCID: PMC8944793 DOI: 10.3390/antiox11030566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Drought alters the level of endogenous reactive oxygen species (ROS) and hormonal status, which are both involved in the regulation of stress responses. To investigate the interplay between ROS and hormones in proline metabolism, rapeseed (Brassica napus L.) plants were exposed to drought or exogenous H2O2 (Exo-H2O2) treatment for 10 days. During the first 5 days, the enhanced H2O2 concentrations in drought treatment were associated with the activation of superoxide dismutase (SOD) and NADPH oxidase, with enhanced ABA and SA levels, while that in Exo-H2O2 treatment was mainly associated with SA-responsive POX. During the latter 5 days, ABA-dependent ROS accumulation was predominant with an upregulated oxidative signal-inducible gene (OXI1) and MAPK6, leading to the activation of ABA synthesis and the signaling genes (NCED3 and MYC2). During the first 5 days, the enhanced levels of P5C and proline were concomitant with SA-dependent NDR1-mediated signaling in both drought and Exo-H2O2 treatments. In the latter 5 days of drought treatment, a distinct enhancement in P5CR and ProDH expression led to higher proline accumulation compared to Exo-H2O2 treatment. These results indicate that SA-mediated P5C synthesis is highly activated under lower endogenous H2O2 levels, and ABA-mediated OXI1-dependent proline accumulation mainly occurs with an increasing ROS level, leading to ProDH activation as a hypersensitive response to ROS and proline overproduction under severe stress.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Van Hien La
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Dong-Won Bae
- Central Instruments Facility, Gyeongsang National University, Jinju 52828, Korea;
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Correspondence: ; Tel.: +82-62-530-2126
| |
Collapse
|
105
|
Oh GGK, O’Leary BM, Signorelli S, Millar AH. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1521-1536. [PMID: 34919733 PMCID: PMC8896607 DOI: 10.1093/plphys/kiab578] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.
Collapse
Affiliation(s)
- Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Brendan M O’Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Saskatoon Research and Development Centre, Agriculture and Agri-food, Saskatoon, SK S7N 0X2, Canada
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
106
|
Regon P, Dey S, Rehman M, Pradhan AK, Chowra U, Tanti B, Talukdar AD, Panda SK. Transcriptomic Analysis Revealed Reactive Oxygen Species Scavenging Mechanisms Associated With Ferrous Iron Toxicity in Aromatic Keteki Joha Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:798580. [PMID: 35283928 PMCID: PMC8913046 DOI: 10.3389/fpls.2022.798580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Lowland acidic soils with water-logged regions are often affected by ferrous iron (Fe2+) toxicity, a major yield-limiting factor of rice production. Under severe Fe2+ toxicity, reactive oxygen species (ROS) are crucial, although molecular mechanisms and associated ROS homeostasis genes are still unknown. In this study, a comparative RNA-Seq based transcriptome analysis was conducted to understand the Fe2+ toxicity tolerance mechanism in aromatic Keteki Joha. About 69 Fe homeostasis related genes and their homologs were identified, where most of the genes were downregulated. Under severe Fe2+ toxicity, the biosynthesis of amino acids, RNA degradation, and glutathione metabolism were induced, whereas phenylpropanoid biosynthesis, photosynthesis, and fatty acid elongation were inhibited. The mitochondrial iron transporter (OsMIT), vacuolar iron transporter 2 (OsVIT2), ferritin (OsFER), vacuolar mugineic acid transporter (OsVMT), phenolic efflux zero1 (OsPEZ1), root meander curling (OsRMC), and nicotianamine synthase (OsNAS3) were upregulated in different tissues, suggesting the importance of Fe retention and sequestration for detoxification. However, several antioxidants, ROS scavenging genes and abiotic stress-responsive transcription factors indicate ROS homeostasis as one of the most important defense mechanisms under severe Fe2+ toxicity. Catalase (CAT), glutathione (GSH), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were upregulated. Moreover, abiotic stress-responsive transcription factors, no apical meristem (NAC), myeloblastosis (MYB), auxin response factor (ARF), basic helix-loop-helix (bZIP), WRKY, and C2H2-zinc finger protein (C2H2-ZFP) were also upregulated. Accordingly, ROS homeostasis has been proposed as an essential defense mechanism under such conditions. Thus, the current study may enrich the understanding of Fe-homeostasis in rice.
Collapse
Affiliation(s)
- Preetom Regon
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- Plant Molecular Biology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| | - Sangita Dey
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Mehzabin Rehman
- Plant Molecular Biology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| | - Amit Kumar Pradhan
- Plant Molecular Biology Laboratory, Department of Botany, Gauhati University, Guwahati, India
- Department of Botany, Pragjyotish College, Guwahati, India
| | | | - Bhaben Tanti
- Plant Molecular Biology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
107
|
Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics 2022; 114:110285. [DOI: 10.1016/j.ygeno.2022.110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
108
|
Dixit N. Salinity Induced Antioxidant Defense in Roots of Industrial Hemp (IH: Cannabis sativa L.) for Fiber during Seed Germination. Antioxidants (Basel) 2022; 11:antiox11020244. [PMID: 35204127 PMCID: PMC8868197 DOI: 10.3390/antiox11020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Global climate change induced sea level rise, rainfed agriculture, poor quality irrigation water, and seawater intrusion through interconnected ditches and inland waterways cause soil salinity in inland and coastal areas. To reclaim and prevent further soil erosion, salt tolerant crops are required. Industrial Hemp (IH: Cannabis sativa L.) is used for food, fiber, and medicinal purposes throughout the world. In spite of that, little is known about the salt tolerance mechanisms in IH. Seed germination and development of the roots are the primary events in the life cycle of a plant, which directly interact with soil salinity. Therefore, in vitro germination experiments were conducted on the roots of 5-day-old seedlings using four varieties (V1: CFX-2, V2: Joey, V3: Bialobrzeskie, and V4: Henola) of IH for fiber. Five salinity treatments (0, 50, 80, 100, 150, and 200 mM NaCl) were used to screen the IH varieties on the basis of I: seed germination percent (SGP), II: quantitative morphological observations (root length (RL) and root fresh weight (RFW)), III: oxidative stress indices (hydrogen peroxide (H2O2) and lipid peroxidation), and IV: antioxidant defense system comprises of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), glutathione reductase (GR). The varieties V1 and V3 showed salt tolerance up to 100 mM by maintaining higher SGP, less reduction in RL and RFW. These roots in V1 and V3 showed lower levels of H2O2 and lipid peroxidation by displaying higher activities of SOD, CAT, GPOD, APOD, and GR while a reciprocal trend was observed in V4. However, roots in V2 showed higher activities of antioxidant enzymes with lower levels of H2O2 and lipid peroxidation, but showed declines in RL and RFW at 80 mM NaCl onward. Roots in V4 were the most susceptible to NaCl stress at 50 mM and onward.
Collapse
Affiliation(s)
- Naveen Dixit
- Department of Agriculture Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
109
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
110
|
Santos Wagner AL, Araniti F, Ishii-Iwamoto EL, Abenavoli MR. Resveratrol exerts beneficial effects on the growth and metabolism of Lactuca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:26-37. [PMID: 34971953 DOI: 10.1016/j.plaphy.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In order to assist sustainable agriculture, new strategies and methods are being used based on the utilization of new natural molecules. These natural compounds can be used as potential natural crop protectors and growth promoters, and the elucidation of their modes/mechanisms of action can represent a big step towards cleaner agriculture free of agrochemicals. In the present paper, the mechanisms underlying the effects of exogenous resveratrol (R), a natural phytoalexin found in plants, on Lactuca sativa metabolism were investigated through physiological and metabolomic approaches. The results highlighted that R stimulates the growth of lettuce. A reduction of the O2⋅- production in R-treated seedlings and an increase in the photosynthesis efficiency was observed, indicated by a higher Fv/Fm. The metabolomic analysis of lettuce seedlings treated with R identified 116 metabolites related to galactose, amino acids, sugar and nucleotide sugar, and ascorbate and aldarate metabolisms. Increased content of some polyamines and several metabolites was also observed, which may have contributed to scavenging free radicals and activating antioxidant enzymes, thus reducing oxidative damage and improving PSII protection in R-treated seedlings.
Collapse
Affiliation(s)
- Ana Luiza Santos Wagner
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria, 2, 20133, Milan, Italy
| | - Emy Luiza Ishii-Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil.
| | - Maria Rosa Abenavoli
- Department of Agriculture, University of Reggio di Calabria, 89124, Reggio Calabria, Italy.
| |
Collapse
|
111
|
Wu X, Hou H, Liu Y, Yin S, Bian S, Liang S, Wan C, Yuan S, Xiao K, Liu B, Hu J, Yang J. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126834. [PMID: 34390954 DOI: 10.1016/j.jhazmat.2021.126834] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Microplastic accumulation in agricultural soils can stress plants and affects quality of the products. Current research on the effects of microplastics on plants is not consistent and the underlying mechanisms are yet unknown. Here, the molecular mechanisms of the stress response were investigated via metabolomic and transcriptomic analyses of rice Oryza sativa L. II Y900 and XS123 under the exposure of polystyrene microplastics (PS-MPs) in a field study. Distinct responses were obtained in these two rice subspecies, showing decreased head rice yield by 10.62% in Y900 and increase by 6.35% in XS123. The metabolomics results showed that PS-MPs exposure inhibited 29.63% of the substance accumulation-related metabolic pathways and 43.25% of the energy expenditure-related metabolic pathways in the Y900 grains; however, these related pathways were promoted in the XS123 grains. The transcriptomics results indicated that the expression of genes encoding proteins involved in the tricarboxylic acid cycle in the Y900 grains was inhibited, but it was enhanced in the XS123 grains. The XS123 subspecies could response against microplastic exposure stress through the metabolite accumulation and energy expenditure pathways, while the Y900 could not. The results provide insight into the perturbation of rice grains in farmlands with microplastics contamination.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei 430065, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Chaofan Wan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
112
|
Vall-Llaura N, Fernández-Cancelo P, Nativitas-Lima I, Echeverria G, Teixidó N, Larrigaudière C, Torres R, Giné-Bordonaba J. ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:38-48. [PMID: 34971954 DOI: 10.1016/j.plaphy.2021.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
ROS are known as toxic by-products but also as important signaling molecules playing a key role in fruit development and ripening. To counteract the negative effects of ROS, plants and fruit own multiple ROS-scavenging mechanisms aiming to ensure a balanced ROS homeostasis. In the present study, changes in specific ROS (i.e. H2O2) as well as enzymatic (SOD, CAT, POX, APX) and non-enzymatic (phenylpropanoids, carotenoids and ascorbate) ROS-scavenging systems were investigated along four different stages of nectarine (cv. 'Diamond Ray') fruit development and ripening (39, 70, 94 and 121 DAFB) both at the metabolic (28 individual metabolites or enzymes) and transcriptional level (24 genes). Overall, our results demonstrate a complex ROS-related transcriptome and metabolome reprogramming during fruit development and ripening. At earlier fruit developmental stages an increase on the respiration rate is likely triggering an oxidative burst and resulting in the activation of specific ethylene response factors (ERF1). In turn, ROS-responsive genes or the biosynthesis of specific antioxidant compounds (i.e. phenylpropanoids) were highly expressed or accumulated at earlier fruit developmental stages (39-70 DAFB). Nonetheless, as the fruit develops, the decrease in the fruit respiration rate and the reduction of ERF1 genes leads to lower levels of most non-enzymatic antioxidants and higher accumulation of H2O2. Based on available literature and the observed accumulation dynamics of H2O2, it is anticipated that this compound may not only be a by-product of ROS-scavenging but also a signaling molecule accumulated during the ripening of nectarine fruit.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Pablo Fernández-Cancelo
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Isabel Nativitas-Lima
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain; Colegio de Postgraduados (COLPOS), Campus Montecillo, 56230, Texcoco, Mexico.
| | - Gemma Echeverria
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Christian Larrigaudière
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| | - Jordi Giné-Bordonaba
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
113
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
114
|
Huo D, Li D, Xu S, Tang Y, Xie X, Li D, Song F, Zhang Y, Li A, Sun L. Disposable Stainless-Steel Wire-Based Electrochemical Microsensor for In Vivo Continuous Monitoring of Hydrogen Peroxide in Vein of Tomato Leaf. BIOSENSORS 2022; 12:bios12010035. [PMID: 35049663 PMCID: PMC8773776 DOI: 10.3390/bios12010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 05/29/2023]
Abstract
As one of the pivotal signal molecules, hydrogen peroxide (H2O2) has been demonstrated to play important roles in many physiological processes of plants. Continuous monitoring of H2O2 in vivo could help understand its regulation mechanism more clearly. In this study, a disposable electrochemical microsensor for H2O2 was developed. This microsensor consists of three parts: low-cost stainless-steel wire with a diameter of 0.1 mm modified by gold nanoparticles (disposable working electrode), an untreated platinum wire with a diameter of 0.1 mm (counter electrode), and an Ag/AgCl wire with a diameter of 0.1 mm (reference electrode), respectively. The microsensor could detect H2O2 in levels from 10 to 1000 µM and exhibited excellent selectivity. On this basis, the dynamic change in H2O2 in the vein of tomato leaf under high salinity was continuously monitored in vivo. The results showed that the production of H2O2 could be induced by high salinity within two hours. This study suggests that the disposable electrochemical microsensor not only suits continuously detecting H2O2 in microscopic plant tissue in vivo but also reduces the damage to plants. Overall, our strategy will help to pave the foundation for further investigation of the generation, transportation, and elimination mechanism of H2O2 in plants.
Collapse
Affiliation(s)
- Doudou Huo
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Daodong Li
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Songzhi Xu
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Yujie Tang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Xueqian Xie
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Yali Zhang
- School of Medicine, Nantong University, Qixiu Road 19, Nantong 226001, China;
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| |
Collapse
|
115
|
A Structural Perspective on the RNA Editing of Plant Respiratory Complexes. Int J Mol Sci 2022; 23:ijms23020684. [PMID: 35054870 PMCID: PMC8775464 DOI: 10.3390/ijms23020684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
The last steps of respiration, a core energy-harvesting process, are carried out by a chain of multi-subunit complexes in the inner mitochondrial membrane. Several essential subunits of the respiratory complexes are RNA-edited in plants, frequently leading to changes in the encoded amino acids. While the impact of RNA editing is clear at the sequence and phenotypic levels, the underlying biochemical explanations for these effects have remained obscure. Here, we used the structures of plant respiratory complex I, complex III2 and complex IV to analyze the impact of the amino acid changes of RNA editing in terms of their location and biochemical features. Through specific examples, we demonstrate how the structural information can explain the phenotypes of RNA-editing mutants. This work shows how the structural perspective can bridge the gap between sequence and phenotype and provides a framework for the continued analysis of RNA-editing mutants in plant mitochondria and, by extension, in chloroplasts.
Collapse
|
116
|
Zeng W, Mostafa S, Lu Z, Jin B. Melatonin-Mediated Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:847175. [PMID: 35615125 PMCID: PMC9125191 DOI: 10.3389/fpls.2022.847175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/19/2022] [Indexed: 05/07/2023]
Abstract
Melatonin is a multi-functional molecule that is ubiquitous in all living organisms. Melatonin performs essential roles in plant stress tolerance; its application can reduce the harmful effects of abiotic stresses. Plant melatonin biosynthesis, which usually occurs within chloroplasts, and its related metabolic pathways have been extensively characterized. Melatonin regulates plant stress responses by directly inhibiting the accumulation of reactive oxygen and nitrogen species, and by indirectly affecting stress response pathways. In this review, we summarize recent research concerning melatonin biosynthesis, metabolism, and antioxidation; we focus on melatonin-mediated tolerance to abiotic stresses including drought, waterlogging, salt, heat, cold, heavy metal toxicity, light and others. We also examine exogenous melatonin treatment in plants under abiotic stress. Finally, we discuss future perspectives in melatonin research and its applications in plants.
Collapse
Affiliation(s)
- Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaogeng Lu,
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Biao Jin,
| |
Collapse
|
117
|
Feitosa-Araujo E, da Fonseca-Pereira P, Knorr LS, Schwarzländer M, Nunes-Nesi A. NAD meets ABA: connecting cellular metabolism and hormone signaling. TRENDS IN PLANT SCIENCE 2022; 27:16-28. [PMID: 34426070 DOI: 10.1016/j.tplants.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
NAD is a ubiquitous metabolic coenzyme. Although the role of NAD as a central redox shuttle remains of critical interest in plant metabolism, recent evidence indicates that NAD serves additional functions in signaling and regulation. A link with the plant stress hormone abscisic acid (ABA) has emerged on the basis of similar plant phenotypes following interference with NAD or ABA, especially in stomatal development, stomatal movements, responses to pathogens and abiotic stress insults, and seed germination. The association between NAD and ABA regulation appears specific and cannot be accounted for by pleiotropic interference. Here, we review the current picture of the NAD - ABA relationship, discuss emerging candidate mechanisms, and assess avenues to dissect interaction mechanisms.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany.
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Lena S Knorr
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
118
|
Tao M, Zhu W, Han H, Liu S, Liu A, Li S, Fu H, Tian J. Mitochondrial proteomic analysis reveals the regulation of energy metabolism and reactive oxygen species production in Clematis terniflora DC. leaves under high-level UV-B radiation followed by dark treatment. J Proteomics 2021; 254:104410. [PMID: 34923174 DOI: 10.1016/j.jprot.2021.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Clematis terniflora DC. is an important medicinal plant from the family Ranunculaceae. A previous study has shown that active ingredients in C. terniflora, such as flavonoids and coumarins, are increased under ultraviolet B radiation (UV-B) and dark treatment and that the numbers of genes related to the tricarboxylic acid cycle and mitochondrial electron transport chain (mETC) are changed. To uncover the mechanism of the response to UV-B radiation and dark treatment in C. terniflora, mitochondrial proteomics was performed. The results showed that proteins related to photorespiration, mitochondrial membrane permeability, the tricarboxylic acid cycle, and the mETC mainly showed differential expression profiles. Moreover, the increase in alternative oxidase indicated that another oxygen-consuming respiratory pathway in plant mitochondria was induced to minimize mitochondrial reactive oxygen species production. These results suggested that respiration and mitochondrial membrane permeability were deeply influenced to avoid energy consumption and maintain energy balance under UV-B radiation and dark treatment in C. terniflora leaf mitochondria. Furthermore, oxidative phosphorylation was able to regulate intracellular oxygen balance to resist oxidative stress. This study improves understanding of the function of mitochondria in response to UV-B radiation and dark treatment in C. terniflora. SIGNIFICANCE: C. terniflora was an important traditional Chinese medicine for anti-inflammatory. Previous study showed that the contents of coumarins which were the main active ingredient in C. terniflora were induced by UV-B radiation and dark treatment. In the present study, to uncover the regulatory mechanism of metabolic changes in C. terniflora, mitochondrial proteomics analysis of leaves was performed. The results showed that photorespiration and oxidative phosphorylation pathways were influenced under UV-B radiation and dark treatment. Mitochondria in C. terniflora leaf played a crucial role in energy mechanism and regulation of cellular oxidation-reduction to maintain cell homeostasis under UV-B radiation followed with dark treatment.
Collapse
Affiliation(s)
- Minglei Tao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Changshu Qiushi Technology Co. Ltd, Suzhou 215500, PR China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
119
|
Juby B, Minimol JS, Suma B, Santhoshkumar AV, Jiji J, Panchami PS. Drought mitigation in cocoa (Theobroma cacao L.) through developing tolerant hybrids. BMC PLANT BIOLOGY 2021; 21:594. [PMID: 34911452 PMCID: PMC8672530 DOI: 10.1186/s12870-021-03352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non-traditional areas. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GV1 55 x M 13.12 didn't yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. RESULTS The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress show low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions. CONCLUSIONS This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.
Collapse
Affiliation(s)
- Baby Juby
- Department of Plant Breeding and Genetics, College of Agriculture, Kerala Agricultural University, Thrissur, India
| | | | - Basura Suma
- Cocoa Research Centre, Kerala Agricultural University, Thrissur, India
| | | | - Joseph Jiji
- Department of Plant Breeding and Genetics, College of Agriculture, Kerala Agricultural University, Thrissur, India
| | | |
Collapse
|
120
|
Venice F, Chialva M, Domingo G, Novero M, Carpentieri A, Salvioli di Fossalunga A, Ghignone S, Amoresano A, Vannini C, Lanfranco L, Bonfante P. Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1547-1564. [PMID: 34767660 PMCID: PMC9300078 DOI: 10.1111/tpj.15578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
As other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production. Here, by combining deep dual-mRNA sequencing and proteomics applied to Lotus japonicus roots colonized by the fungal line with bacteria (B+) and by the cured line (B-), we tested the hypothesis that L. japonicus (i) activates its symbiotic pathways irrespective of the presence or absence of the endobacterium, but (ii) perceives the two fungal lines as different physiological entities. Morphological observations confirmed the absence of clear endobacteria-dependent changes in the mycorrhizal phenotype of L. japonicus, while transcript and proteomic datasets revealed activation of the most important symbiotic pathways. They included the iconic nutrient transport and some less-investigated pathways, such as phenylpropanoid biosynthesis. However, significant differences between the mycorrhizal B+/B- plants emerged in the respiratory pathways and lipid biosynthesis. In both cases, the roots colonized by the cured line revealed a reduced capacity to activate genes involved in antioxidant metabolism, as well as the early biosynthetic steps of the symbiotic lipids, which are directed towards the fungus. Similar to its pre-symbiotic phase, the intraradical fungus revealed transcripts related to mitochondrial activity, which were downregulated in the cured line, as well as perturbation in lipid biosynthesis.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Matteo Chialva
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Guido Domingo
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Mara Novero
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Andrea Carpentieri
- Department of Chemical SciencesUniversity of Naples Federico IINapoliItaly
| | | | - Stefano Ghignone
- National Research Council (CNR)Institute for Sustainable Plant Protection (IPSP)TurinItaly
| | - Angela Amoresano
- Department of Chemical SciencesUniversity of Naples Federico IINapoliItaly
| | - Candida Vannini
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Paola Bonfante
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| |
Collapse
|
121
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
122
|
Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants. Int J Mol Sci 2021; 22:ijms222312942. [PMID: 34884747 PMCID: PMC8657872 DOI: 10.3390/ijms222312942] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.
Collapse
Affiliation(s)
- Chanjuan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongna Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
123
|
Khatun M, Borphukan B, Alam I, Keya CA, Panditi V, Khan H, Huq S, Reddy MK, Salimullah M. Mitochondria-Targeted SmsHSP24.1 Overexpression Stimulates Early Seedling Vigor and Stress Tolerance by Multi-Pathway Transcriptome-Reprogramming. FRONTIERS IN PLANT SCIENCE 2021; 12:741898. [PMID: 34887885 PMCID: PMC8649800 DOI: 10.3389/fpls.2021.741898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Among the diverse array of heat shock proteins across the three domains of life, mitochondria-targeted small heat shock proteins (sHSPs) are evolved in the plant lineage. However, they remained mysterious and understudied. In this study, we reported a systematic study of a novel mitochondria-targeted nuclear sHSP from eggplant (Solanum melongena L.; SmsHSP24.1). Differential expression of SmsHSP24.1 indicated its positive role exerted during stress conditions. Escherichia coli-BL21 cell line overexpressing the SmsHSP24.1 showed excellent thermo-tolerance ability, tolerating up to 52°C. Spectrometry and electron microscopy revealed a multimeric structure of the protein which acted as a molecular chaperone at high temperatures. Overexpression of SmsHSP24.1 significantly enhanced resistance against heat, drought, and salt stresses and showed rapid germination in constitutively overexpressed eggplant lines. RNA-seq analysis reveals an apparent upregulation of a set of reactive oxygen species (ROS) scavenging enzymes of the glutathione (GHS) pathway and mitochondrial electron transport chain (ETC). Significant upregulation was also observed in auxin biosynthesis and cell-wall remodeling transcripts in overexpressed lines. qPCR, biochemical and physiological analysis further aligned with the finding of transcriptome analysis and suggested an essential role of SmsHSP24.1 under various stress responses and positive physiological influence on the growth of eggplants. Therefore, this gene has immense potential in engineering stress-resilient crop plants.
Collapse
Affiliation(s)
- Muslima Khatun
- Plant Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Iftekhar Alam
- Plant Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Haseena Khan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saaimatul Huq
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Malireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
124
|
Rattanawong K, Koiso N, Toda E, Kinoshita A, Tanaka M, Tsuji H, Okamoto T. Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1097-1115. [PMID: 34538012 PMCID: PMC9293154 DOI: 10.1111/tpj.15497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) play essential roles in plant development and environmental stress responses. In this study, ROS dynamics, the glutathione redox status, the expression and subcellular localization of glutathione peroxidases (GPXs), and the effects of inhibitors of ROS-mediated metabolism were investigated along with fertilization and early zygotic embryogenesis in rice (Oryza sativa). Zygotes and early embryos exhibited developmental arrest upon inhibition of ROS production. Egg cells accumulated high ROS levels, and, after fertilization, intracellular ROS levels progressively declined in zygotes in which de novo expression of GPX1 and 3 was observed through upregulation of the genes. In addition to inhibition of GPX activity, depletion of glutathione impeded early embryonic development and led to failure of the zygote to appropriately decrease H2 O2 levels. Moreover, through monitoring of the glutathione redox status, the developing zygotes exhibited a progressive glutathione oxidation, which became extremely delayed under inhibited GPX activity. Our results provide insights into the importance of ROS dynamics, GPX antioxidant activity, and glutathione redox metabolism during zygotic/embryonic development.
Collapse
Affiliation(s)
- Kasidit Rattanawong
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Atsuko Kinoshita
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| | - Mari Tanaka
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokachoTotsuka‐kuYokohamaKanagawaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawaHachioji, TokyoJapan
| |
Collapse
|
125
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
126
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
127
|
Wang L, Wen S, Wang R, Wang C, Gao B, Lu M. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2249-2260. [PMID: 34170605 PMCID: PMC8541782 DOI: 10.1111/pbi.13653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 05/19/2023]
Abstract
The WUSCHEL-related homeobox (WOX) transcription factors WOX11 and WOX12 regulate adventitious rooting and responses to stress. The underlying physiological and molecular regulatory mechanisms in salt stress tolerance remain largely unexplored. Here, we characterized the roles of PagWOX11/12a from 84K poplar (Populus alba × P. glandulosa) and the underlying regulatory mechanism in salt stress. PagWOX11/12a was strongly induced by salt stress in roots. Overexpression of PagWOX11/12a in poplar enhanced salt tolerance, as evident by the promotion of growth-related biomass. In contrast, salt-treated PagWOX11/12a dominant repression plants displayed reduced biomass growth. Under salt stress conditions, PagWOX11/12a-overexpressed lines showed higher reactive oxygen species (ROS) scavenging capacity and lower accumulation of hydrogen peroxide (H2 O2 ) than non-transgenic 84K plants, whereas the suppressors displayed the opposite phenotype. In addition, PagWOX11/12a directly bound to the promoter region of PagCYP736A12 and regulated PagCYP736A12 expression. The activated PagCYP736A12 could enhance ROS scavenging, thus reducing H2 O2 levels in roots under salt stress in PagWOX11/12a-overexpressed poplars. The collective results support the important role of PagWOX11/12a in salt acclimation of poplar trees, indicating that PagWOX11/12a enhances salt tolerance through modulation of ROS scavenging by directly regulating PagCYP736A12 expression in poplar.
Collapse
Affiliation(s)
- Liu‐Qiang Wang
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of the State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Shuang‐Shuang Wen
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of the State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Rui Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chao Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Bei Gao
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongChina
| | - Meng‐Zhu Lu
- State Key Laboratory of Tree Genetics and BreedingKey Laboratory of Tree Breeding and Cultivation of the State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- State Key Laboratory of Subtropical SilvicultureCollege of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
128
|
Tivendale ND, Belt K, Berkowitz O, Whelan J, Millar AH, Huang S. Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species-Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:1185-1198. [PMID: 34018557 DOI: 10.1093/pcp/pcab061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Metabolism, auxin signaling and reactive oxygen species (ROS) all contribute to plant growth, and each is linked to plant mitochondria and the process of respiration. Knockdown of mitochondrial succinate dehydrogenase assembly factor 2 (SDHAF2) in Arabidopsis thaliana lowered succinate dehydrogenase activity and led to pH-inducible root inhibition when the growth medium pH was poised at different points between 7.0 and 5.0, but this phenomenon was not observed in wildtype (WT). Roots of sdhaf2 mutants showed high accumulation of succinate, depletion of citrate and malate and up-regulation of ROS-related and stress-inducible genes at pH 5.5. A change of oxidative status in sdhaf2 roots at low pH was also evidenced by low ROS staining in root tips and altered root sensitivity to H2O2. sdhaf2 had low auxin activity in root tips via DR5-GUS staining but displayed increased indole-3-acetic acid (IAA, auxin) abundance and IAA hypersensitivity, which is most likely caused by the change in ROS levels. On this basis, we conclude that knockdown of SDHAF2 induces pH-related root elongation and auxin hyperaccumulation and hypersensitivity, mediated by altered ROS homeostasis. This observation extends the existing evidence of associations between mitochondrial function and auxin by establishing a cascade of cellular events that link them through ROS formation, metabolism and root growth at different pH values.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University,Plaenty Rd and Kingsburg Dr, Bundoora, VIC 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University,Plaenty Rd and Kingsburg Dr, Bundoora, VIC 3083, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
129
|
Fan M, Yang K, Zhou R, Liu Q, Guo X, Sun Y. Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica (Naidong). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:795-805. [PMID: 34530324 DOI: 10.1016/j.plaphy.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 05/15/2023]
Abstract
Cold is a common problem that limits the distribution of Camellia. Camellia japonica (Naidong) is the northernmost species of camellia in China, which is a Tertiary remnant species that can adapt to large changes in temperature. An analysis of the transcriptional response of C. japonica (Naidong) to cold is very important for the planting and distribution of camellia. In this study, the rate of H₂O₂ levels, electrolyte leakage, chlorophyll and sugar content had a higher degree of cold response during 12-72 h period, than other periods (0-12h, 72h-120h) in C. japonica (Naidong) response to cold treatment. We constructed the first full-length C. japonica (Naidong) transcriptome and identified 4544 significantly differentially expressed genes (DEGs). A weighted gene coexpression network analysis showed that carbon metabolism, lipid metabolism, and transcription factors played important roles in the resistance of C. japonica (Naidong) to cold stress, and three hub transcription factor regulatory networks were constructed. In addition, overexpressing CjRAV1 led to cold sensitivity in Arabidopsis thaliana, thus CjRAV1 likely plays a negative regulatory role during cold stress in Camellia japonica. This study deepens our understanding of the regulatory mechanism of C. japonica (Naidong) under cold stress and will benefit genetic improvement of camellia.
Collapse
Affiliation(s)
- MengLong Fan
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kai Yang
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Rui Zhou
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - QingHua Liu
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Guo
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - YingKun Sun
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
130
|
Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells 2021; 10:cells10102537. [PMID: 34685517 PMCID: PMC8533957 DOI: 10.3390/cells10102537] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
- Correspondence: (M.H.); (V.F.)
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari 396450, India;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, P.O. Box 50329, Lemesos 3603, Cyprus
- Correspondence: (M.H.); (V.F.)
| |
Collapse
|
131
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
132
|
Abid S, Kaliraj L, Rahimi S, Kim YJ, Yang DC, Kang SC, Balusamy SR. Synthesis and characterization of glycol chitosan coated selenium nanoparticles acts synergistically to alleviate oxidative stress and increase ginsenoside content in Panax ginseng. Carbohydr Polym 2021; 267:118195. [PMID: 34119162 DOI: 10.1016/j.carbpol.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
The objective of the present study is synthesis of glycol chitosan coated selenium nanoparticles (GC-Se NPs) and evaluation of oxidative stress and ginsenoside accumulation in P. ginseng C. A. Meyer. We synthesized (Se NPs and GC-Se NPs) and characterized using various spectroscopic analyses. The highest concentration (20 mg L-1) of GC-Se NPs induced moderate ROS (O2- and H2O2) accumulation and upregulation of PgSOD and PgCAT showing good biocompatibility and less toxicity at the highest concentration. Furthermore, ginsenoside biosynthetic pathway genes (PgHMGR, PgSS, PgSE, PgDDS) also showed significant upregulation upon 20 mg L-1 GC-Se NPs treatment. At 20 mg L-1 GC-Se NPs treatment, ginsenoside accumulated upto 217.47 mg/mL and 169.86 mg/mL mainly due to the increased proportion of Rb1 and Re ginsenosides. Altogether, our results suggested that ecofriendly conjugation of GC with Se NPs could be used as a bio fortifier to enhance the ginsenoside profile and to increase the quality of ginseng roots.
Collapse
Affiliation(s)
- Suleman Abid
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Lalitha Kaliraj
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Shadi Rahimi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
133
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
134
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
135
|
Żur I, Kopeć P, Surówka E, Dubas E, Krzewska M, Nowicka A, Janowiak F, Juzoń K, Janas A, Barna B, Fodor J. Impact of Ascorbate-Glutathione Cycle Components on the Effectiveness of Embryogenesis Induction in Isolated Microspore Cultures of Barley and Triticale. Antioxidants (Basel) 2021; 10:1254. [PMID: 34439502 PMCID: PMC8389252 DOI: 10.3390/antiox10081254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhanced antioxidant defence plays an essential role in plant survival under stress conditions. However, excessive antioxidant activity sometimes suppresses the signal necessary for the initiation of the desired biological reactions. One such example is microspore embryogenesis (ME)-a process of embryo-like structure formation triggered by stress in immature male gametophytes. The study focused on the role of reactive oxygen species and antioxidant defence in triticale (×Triticosecale Wittm.) and barley (Hordeum vulgare L.) microspore reprogramming. ME was induced through various stress treatments of tillers and its effectiveness was analysed in terms of ascorbate and glutathione contents, total activity of low molecular weight antioxidants and activities of glutathione-ascorbate cycle enzymes. The most effective treatment for both species was a combination of low temperature and exogenous application of 0.3 M mannitol, with or without 0.3 mM reduced glutathione. The applied treatments induced genotype-specific defence responses. In triticale, both ascorbate and glutathione were associated with ME induction, though the role of glutathione did not seem to be related to its function as a reducing agent. In barley, effective ME was accompanied by an accumulation of ascorbate and high activity of enzymes regulating its redox status, without direct relation to glutathione content.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Katarzyna Juzoń
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (P.K.); (E.S.); (E.D.); (M.K.); (A.N.); (F.J.); (K.J.); (A.J.)
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (J.F.)
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (J.F.)
| |
Collapse
|
136
|
Cell Death and Metabolic Stress in Gymnodinium catenatum Induced by Allelopathy. Toxins (Basel) 2021; 13:toxins13070506. [PMID: 34357978 PMCID: PMC8310274 DOI: 10.3390/toxins13070506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●-) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●- production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.
Collapse
|
137
|
Naing AH, Kim CK. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2021; 172:1711-1723. [PMID: 33605458 DOI: 10.1111/ppl.13373] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 05/23/2023]
Abstract
Abiotic stresses, such as heat, drought, salinity, low temperature, and heavy metals, inhibit plant growth and reduce crop productivity. Abiotic stresses are becoming increasingly extreme worldwide due to the ongoing deterioration of the global climate and the increase in agrochemical utilization and industrialization. Plants grown in fields are affected by one or more abiotic stresses. The consequent stress response of plants induces reactive oxygen species (ROS), which are then used as signaling molecules to activate stress-tolerance mechanism. However, under extreme stress conditions, ROS are overproduced and cause oxidative damage to plants. In such conditions, plants produce anthocyanins after ROS signaling via the transcription of anthocyanin biosynthesis genes. These anthocyanins are then utilized in antioxidant activities by scavenging excess ROS for their sustainability. In this review, we discuss the physiological, biochemical, and molecular mechanisms underlying abiotic stress-induced anthocyanins in plants and their role in abiotic stress tolerance. In addition, we highlight the current progress in the development of anthocyanin-enriched transgenic plants and their ability to increase abiotic stress tolerance. Overall, this review provides valuable information that increases our understanding of the mechanisms by which anthocyanins respond to abiotic stress and protect plants against it. This review also provides practical guidance for plant biologists who are engineering stress-tolerant crops using anthocyanin biosynthesis or regulatory genes.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
138
|
Aebisher D, Cichonski J, Szpyrka E, Masjonis S, Chrzanowski G. Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity. Molecules 2021; 26:3793. [PMID: 34206525 PMCID: PMC8270304 DOI: 10.3390/molecules26133793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been reported as a cause of many diseases like Parkinson's, Alzheimer's, cardiovascular disease, and diabetes. Oxidative stress can also lead to cancer formation by promoting tumor development and progression. Antioxidants derived from Lamiaceae plants play an important role in natural medicine, pharmacology, cosmetology, and aromatherapy. Herein, we examine the antioxidative capacity of essential oils from seven aromatic Lamiaceae plants against the synthetic radicals DPPH and ABTS. Among the essential oils analyzed, the most robust scavenging capacities were found in mixtures of volatile compounds from thyme and savory. The scavenging activity of tested EOs against the ABTS radical was clearly higher than activity towards DPPH. Analysis of essential oils with weaker antioxidant activity has shown that volatile compounds from marjoram, sage, and hyssop were more active than EOs from lavender and mint. It can be suggested that the potent antioxidant capacity of thyme (Thymus vulgaris) and savory (Satyreja hortensis) are related to a high level of phenolic constituents, such as thymol and carvacrol. On the other hand, the elevated antioxidative power of marjoram, sage, and hyssop essential oils may also be due to their terpinene, o-cymene, terpinolene, and terpinen-4-ol constituents. Although non-phenolic components are less active than thymol or carvacrol, they may affect antioxidant capacity synergistically.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Institute of Medical Studies, Medical College of Rzeszów University, Warzywna 1A Street, 35-959 Rzeszów, Poland
| | - Jan Cichonski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Sygit Masjonis
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| | - Grzegorz Chrzanowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 8B Zelwerowicza Street, 35-601 Rzeszow, Poland; (J.C.); (E.S.); (S.M.)
| |
Collapse
|
139
|
Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. PLANTS 2021; 10:plants10061212. [PMID: 34203650 PMCID: PMC8232089 DOI: 10.3390/plants10061212] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Weed management is an arduous undertaking in crop production. Integrated weed management, inclusive of the application of bioherbicides, is an emerging weed control strategy toward sustainable agriculture. In general, bioherbicides are derived either from plants containing phytotoxic allelochemicals or certain disease-carrying microbes that can suppress weed populations. While bioherbicides have exhibited great promise in deterring weed seed germination and growth, only a few in vitro studies have been conducted on the physiological responses they evoke in weeds. This review discusses bioherbicide products that are currently available on the market, bioherbicide impact on weed physiology, and potential factors influencing bioherbicide efficacy. A new promising bioherbicide product is introduced at the end of this paper. When absorbed, phytotoxic plant extracts or metabolites disrupt cell membrane integrity and important biochemical processes in weeds. The phytotoxic impact on weed growth is reflected in low levels of root cell division, nutrient absorption, and growth hormone and pigment synthesis, as well as in the development of reactive oxygen species (ROS), stress-related hormones, and abnormal antioxidant activity. The inconsistency of bioherbicide efficacy is a primary factor restricting their widespread use, which is influenced by factors such as bioactive compound content, weed control spectrum, formulation, and application method.
Collapse
|
140
|
Zeng H, Xu H, Liu G, Wei Y, Zhang J, Shi H. Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125143. [PMID: 33858103 DOI: 10.1016/j.jhazmat.2021.125143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The most common environmental pollutants such as cadmium (Cd), glyphosate and tetracycline have led to profoundly adverse impacts on plant productivity. However, how tropical crops such as cassava sense these pollutants via roots and how rhizosphere microbiome interacts with the host and pollutants remain largely unknown. In this study, we found these stresses significantly inhibited plant growth and triggered cell damage in a dosage-dependent manner, and the toxic effect on redox homeostasis was correlated with antioxidant metabolism. Using metagenomics technique, we found the rhizosphere microbiomes dynamically altered as the dose of these stresses increased. We also identified stressor-associated metagenome-assembled genomes and microbial metabolic pathways as well as mobile genetic elements in the rhizosphere microbiomes. Next, a co-occurrence network of both physiological and microbiome features was constructed to explore how these pollutants derived oxidative damage through the microbiome succession. Notably, phyllosphere transplantation of Agrobacterium tumefaciens or Pseudomonas stutzeri can significantly alleviate the negative effects of stresses on cassava growth and redox homeostasis. Collectively, this study demonstrated the dynamics of rhizosphere bacterial microbiome of cassava under three common environmental stresses, and A. tumefaciens and P. stutzeri could be developed as potential beneficial bacteria to alleviate Cd, glyphosate and tetracycline-triggered damage to cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
141
|
Singh R, Misra AN, Sharma P. Effect of arsenate toxicity on antioxidant enzymes and expression of nicotianamine synthase in contrasting genotypes of bioenergy crop Ricinus communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31421-31430. [PMID: 33606168 DOI: 10.1007/s11356-021-12701-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a toxic environmental pollutant. Growing Ricinus communis (castor) on As-contaminated land has the advantage that in addition to revegetation of contaminated land, it can produce bioenergy. To date, As tolerance mechanisms of this plant are not fully understood. In our previous study, we screened tolerant and sensitive genotypes of castor and reported higher total As concentration, enhanced reactive oxygen species (ROS) generation, and oxidative stress in sensitive genotypes of castor GCH 2 and GCH 4 in comparison to tolerant genotypes WM and DCH 177. In the present study, we compared the activity, isoenzyme profile, and gene expression of ROS-scavenging enzymes, proline content, and expression of nicotianamine synthase genes (RcNAS1, RcNAS2, and RcNAS3) in As-tolerant and As-sensitive genotypes of castor. SOD and GPX activity increased significantly in roots of tolerant genotype WM but remained the same or decreased in sensitive genotype GCH 2 and GCH 4 at 200 μM arsenate [As(V)] treatment indicating their important role in As tolerance in castor. CAT activity and proline content increased in sensitive genotypes but remained the same in tolerant genotypes due to As(V) treatment. APX activity showed no significant change in roots and leaves of both tolerant and sensitive genotypes. NAS genes (RcNAS1, RcNAS2, and RcNAS3) encode enzymes that catalyze trimerization of S-adenosylmethionine to form nicotianamine and are critical for metal chelation and heavy metal tolerance. Differential responses of RcNAS1, RcNAS2, and RcNAS3 genes in WM and GCH 2 due to As(V) treatment suggest their role in As(V) tolerance.
Collapse
Affiliation(s)
- Rajani Singh
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, India
| | - Amarendra Narayan Misra
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, India
- Khallikote University, Berhampur, Odisha, 761008, India
| | - Pallavi Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, India.
| |
Collapse
|
142
|
Samo N, Ebert A, Kopka J, Mozgová I. Plant chromatin, metabolism and development - an intricate crosstalk. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102002. [PMID: 33497897 DOI: 10.1016/j.pbi.2021.102002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Chromatin structure influences DNA accessibility and underlying gene expression. Disturbances of chromatin structure often result in pleiotropic developmental phenotypes. Interactions between chromatin modifications and development have been the main focus of epigenetic studies. Recent years brought major advance in uncovering and understanding connections between chromatin organisation in the nucleus and metabolic processes that take place in the cytoplasm or other cellular compartments. Products of primary metabolism and cell redox states influence chromatin-modifying complexes, and chromatin modifiers in turn affect expression of metabolic genes. Current evidence indicates that complex interaction loops between these biological system layers exist. Applying interdisciplinary and holistic approaches will decipher causality and molecular mechanisms of the dynamic crosstalk between chromatin structure, metabolism and plant growth and development.
Collapse
Affiliation(s)
- Naseem Samo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
143
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
144
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
145
|
Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M. Autophagy Contributes to the Quality Control of Leaf Mitochondria. PLANT & CELL PHYSIOLOGY 2021; 62:229-247. [PMID: 33355344 PMCID: PMC8112837 DOI: 10.1093/pcp/pcaa162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Sendai, 980-0845, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 322-0012 Japan
| |
Collapse
|
146
|
Wang H, Xiao Q, Wei C, Chen H, Chen X, Dai C, Wen J, Ma C, Tu J, Fu T, Shen J, Yi B. A mitochondria-localized pentatricopeptide repeat protein is required to restore hau cytoplasmic male sterility in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1377-1386. [PMID: 33725137 DOI: 10.1007/s00122-021-03777-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
A mitochondria-localized pentatricopeptide repeat protein was identified by positional cloning and transferred into the hau CMS line, where it successfully restored fertility Cytoplasmic male sterility (CMS) is a maternally inherited trait that can be controlled by restorer-of-fertility (Rf) genes present in the nucleus. The hau CMS was identified as a new form of CMS associated with the mitochondrial transcript orf288; however, a lack of a restorer gene has limited its utilization in Brassica crops. Here, the combination of Brassica 60 K array with bulk segregant analysis and map-based cloning was used to delimit the Rfh locus to an 82.2-kb region on chromosome A09. A candidate gene encoding a mitochondria-localized pentatricopeptide repeat (PPR) protein was identified and transferred into the hau CMS line, where it successfully restored the fertility of the hau CMS plants. Furthermore, the expression analysis showed that Rfh was highly expressed in the flower buds, and the sequence analysis results implied that functional divergence between RFH and rfh could be due to 59 amino acid residue differences in the deduced protein sequences. In addition, a co-separated molecular marker was developed based on the divergent sequences between the dominant and recessive alleles. These results will help enable the heterosis of Brassica crops in the future.
Collapse
Affiliation(s)
- Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qing Xiao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Wei
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Hui Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Centre of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
147
|
Khlopkov A, Sherstneva O, Ladeynova M, Grinberg M, Yudina L, Sukhov V, Vodeneev V. Participation of calcium ions in induction of respiratory response caused by variation potential in pea seedlings. PLANT SIGNALING & BEHAVIOR 2021; 16:1869415. [PMID: 33404323 PMCID: PMC7971294 DOI: 10.1080/15592324.2020.1869415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Electrical signals in plants caused by external stimuli are capable of inducing various physiological responses. The mechanisms of transformation of a long-distance electrical signal (ES) into a functional response remain largely unexplored and require additional research. In this work, we investigated the role of calcium ions in the development of ES-induced respiratory response. Gradual heating of the leaf causes the propagation of variation potential (VP) in the pea seedling. The propagation of VP leads to a transient activation of respiration in an unaffected leaf. During the VP generation, a transient increase in the intracellular calcium concentration takes place. A calcium channel blocker inhibits the respiratory response, and a calcium ionophore induces the activation of respiration. Inhibitory analysis has showed that the VP-induced increase in respiration activity is probably associated with calcium-mediated activation of rotenone-insensitive alternative NADPH dehydrogenases in mitochondria.
Collapse
Affiliation(s)
- Andrey Khlopkov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oksana Sherstneva
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria Ladeynova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
148
|
Lodde V, Morandini P, Costa A, Murgia I, Ezquer I. cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes (Basel) 2021; 12:525. [PMID: 33916807 PMCID: PMC8067062 DOI: 10.3390/genes12040525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Piero Morandini
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Alex Costa
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Irene Murgia
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| |
Collapse
|
149
|
Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures. LAND 2021. [DOI: 10.3390/land10040357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.
Collapse
|
150
|
Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M, Coaker G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. NATURE PLANTS 2021; 7:403-412. [PMID: 33846592 PMCID: PMC8751180 DOI: 10.1038/s41477-021-00887-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain.
Collapse
Affiliation(s)
- Bardo Castro
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|